
Improving the Up∗/Down∗ Routing Scheme for
Networks of Workstations �

José Carlos Sancho and Antonio Robles

Departamento de Informática de Sistemas y Computadores
Universidad Politécnica de Valencia

P.O.B. 22012,46071 - Valencia, SPAIN
{jcsancho,arobles}@gap.upv.es

Abstract. Networks of workstations (NOWs) are being considered as a cost-
effective alternative to parallel computers. Many NOWs are arranged as a switch-
based network with irregular topology, which makes routing and deadlock avoid-
ance quite complicated. Current proposals use the up∗/down∗ routing algorithm
to remove cyclic dependencies between channels and avoid deadlock. Recently,
a simple and effective methodology to compute up∗/down∗ routing tables has
been proposed by us. The resulting up∗/down∗ routing scheme makes use of a
different link direction assignment to compute routing tables. Assignment of link
direction is based on generating an underlying acyclic connected graph from the
network graph. In this paper, we propose and evaluate new heuristic rules to com-
pute the underlying graph. Moreover, we propose a traffic balancing algorithm to
obtain more efficient up∗/down∗ routing tables when source routing is used.
Evaluation results show that the routing algorithm based on the new methodol-
ogy increases throughput by a factor of up to 2.8 in large networks, also reducing
latency significantly.

Keywords: Networks of workstations, irregular topologies, routing algorithms,
deadlock avoidance.

1 Introduction

NOWs are arranged as a switch-based network with irregular topology which pro-
vides the wiring flexibility, scalability, and incremental expansion capability required
in this environment. Routing in irregular topologies can be based on either source or
distributed routing. In the former case, routing tables are used at each host to obtain
the port sequence to be used at intermediate switches to reach the destination. In order
to achieve high bandwidth and low latencies, NOWs are often connected using gigabit
local area network technologies. There are recent proposals for NOW interconnects like
Autonet [8], Myrinet [1], Servernet II [4], and Gigabit Ethernet [9].

Several deadlock-free routing algorithms have been proposed for NOWs, such as
up∗/down∗ routing [8], adaptive-trail routing [5], minimal adaptive routing [7], and
smart-routing [2]. However, we will focus on up∗/down∗ routing because it is the most
popular routing scheme currently used in commercial networks, like Myrinet [1].

� This work was supported by the Spanish CICYT under Grant TIC97-0897-C04-01.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 882–889, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Improving the Up∗/Down∗ Routing Scheme for Networks of Workstations 883

"up"

b

a

c d e

ihgf

(a)

b a h i

d

g f ce

(b)

0 1 2 3 4

5

6 7 8

(c)

Fig. 1. (a) Generated BFS spanning tree for a 9-switch network with assignment of
direction to links. (b) Generated DFS spanning tree, and (c) assignment of direction to
links for the same 9-switch network.

In this paper, we propose and evaluate new heuristic rules and a new traffic bal-
ancing algorithm that improve the methods to compute up∗/down∗ routing tables in a
NOW environment when source routing is used. Evaluation results show that the rout-
ing algorithm based on the new methodology increases throughput by a factor of up to
2.8 for large networks, also reducing latency significantly. The rest of the paper is orga-
nized as follows. In Section 2, the up∗/down∗ routing scheme and the methodologies
to compute its routing tables are described. In Section 3, new heuristic rules to com-
pute the up∗/down∗ routing scheme are proposed. Section 4 describes the proposed
traffic balancing algorithm when using source routing. Section 5 shows performance
evaluation results. Finally, in Section 6 some conclusions are drawn.

2 Up�/Down� Routing

Up∗/down∗ is the most popular routing scheme currently used in commercial net-
works. In order to compute up∗/down∗ routing tables, different methodologies can be
applied. These methodologies are based on an assignment of direction (“up” or “down”)
to the operational links in the network by building a spanning tree. These methodolo-
gies differ in the type of graph to be built. One methodology is based on a BFS spanning
tree, such as it was proposed in Autonet [8], whereas another methodology is based on
a DFS spanning tree, as it has been recently proposed in [6].

In networks without virtual channels, the only practical way of avoiding deadlocks
consists of restricting routing in such a way that cyclic channel dependencies 1 are

1 There is a channel dependency from a channel ci to a channel cj if a message can hold ci and
request cj . In other words, the routing algorithm allows the use of cj after reserving ci. Also,
there is a routing restriction when there is no channel denpendency.

884 José Carlos Sancho and Antonio Robles

avoided [3]. To avoid deadlocks while still allowing all links to be used, up∗/down∗

routing uses the following rule: a legal route must traverse zero or more links in “up”
direction followed by zero or more links in “down” direction. Thus, cyclic channel
dependencies are avoided by imposing routing restrictions, because a message cannot
traverse a link along the “up” direction after having traversed one in “down” direction.
Next, we describe how to compute both a BFS and DFS spanning tree, and how to
assign direction to links in each graph.

2.1 Computing a BFS Spanning Tree

First, to compute a BFS spanning tree, a switch must be chosen as the root. Starting
from the root, the rest of the switches in the network are arranged on a single BFS
spanning tree. The “up” end of each link is defined as: 1) the end whose switch is closer
to the root in the spanning tree; 2) the end whose switch has the lower identifier, if both
ends are at switches at the same tree level. Figure 1(a) shows the resulting link direction
assignment for a 9-switch network.

2.2 Computing a DFS Spanning Tree

Like in BFS spanning trees, an initial switch must be chosen as the root before starting
the computation of a DFS spanning tree. The rest of the switches are added following
a recursive procedure [6]. This procedure builds a path that connects all the switches in
the network. Figure 1(b) shows the DFS spanning tree obtained from the same network
graph used in Figure 1(a). Unlike in the BFS spanning tree, adding switches to build
the path is made by using heuristic rules. We will address this issue later.

Next, before assigning direction to links, switches in the network must be labeled
with positive integer numbers. A different label is assigned to each switch. The “up”
end of each link is defined as the end whose switch has the higher label. Figure 1(c)
shows the label assigned to each switch. Note that, the DFS spanning tree achieves a
lower number of routing restrictions, as can be seen by dashed lines in Figures 1(a) and
1(c) for the BFS and DFS spanning trees, respectively.

3 Applying New Heuristic Rules

Several spanning trees can be computed. In order to achieve better performance, heuris-
tics to find the suitable spanning tree are needed. For BFS spanning trees, heuristic rules
can only be applied to choose the root switch. The number of different BFS spanning
trees that can be computed on a network graph is limited by the number of switches in
the network. However, when computing a DFS spanning tree, heuristic rules can be ap-
plied to both the selection of the root switch and the selection of the following switches
of the spanning tree. Notice that the number of spanning trees that could be computed
in this case is very large.

We first focus on the heuristic rules for selecting the root switch. So far, two ap-
proaches have been used to select the root of a spanning tree: (R0) to select the switch
with identifier equal to zero, like in DEC AN1 [8]; (R1) to select the switch with lower

Improving the Up∗/Down∗ Routing Scheme for Networks of Workstations 885

‘up’

(a) (b) (c)

Fig. 2. Different link orientation patterns in a DFS spanning tree.

average topological distance to the rest of the switches, like Myrinet [1]. We propose a
new heuristic rule that will be referred to as R2. The heuristic is based on computing
all the spanning trees and selecting one of them based on two behavioral routing met-
rics, that is: (1) the average number of links in the shortest routing paths between hosts
over all pairs of hosts, referred to as average distance; and (2) the maximum number of
routing paths crossing through any network channel, referred to as crossing paths. We
first compute the metrics for each spanning tree obtained by selecting the root among
every switch in the network. Finally, the switch selected as the root will be the one that
provides the lower value for the crossing paths metric. In case of tie, the switch with
lower value of average distance will be selected. In short, the switch selected as the root
will be the one that allows more messages to follow minimal paths and provides a bet-
ter traffic balancing. The time complexity to compute the new heuristic rule is O(n3),
where n is the number of switches.

Unlike BFS spanning tree, after selecting the root switch, a DFS spanning tree still
allows heuristic rules to be applied to the rest of the switches when building the span-
ning tree. We propose the two following heuristic rules: (H1) The switch with higher
average topological distance to the rest of the switches is selected as the next switch
in the spanning tree, and so on. This heuristic was proposed in [6]. (H2) The switch
with a higher number of links connecting to switches that already belong to the span-
ning tree is selected as the next switch. In case of tie, the H1 heuristic rule is applied.
The H2 heuristic reduces the number of routing restrictions by increasing the number of
switches whose links exhibit the orientation patterns shown in the Figures 2(a) and 2(b),
which provide a lower number of routing restrictions in the switch than that provided
by the link orientation pattern shown in Figure 2(c).

Table 1 shows the values of the behavioral routing metrics computed for several
network2sizes using the up∗/down∗ routing algorithm based on both BFS and DFS
spanning trees, which have been obtained according to the heuristic rules proposed
above3. Besides the average distance and the crossing path metrics we have also in-
cluded the restrictions per switch metric that is the average number of routing restric-
tions per switch. As can be seen, a lower values of metrics are obtained when using the
R2 and H2 heuristic rules to compute spanning trees.

2 For further details on topology generation, see Section 5.1.
3 For DFS spanning trees, we assume that the R2 heuristic is used to select the root.

886 José Carlos Sancho and Antonio Robles

Table 1. Behavioral routing metrics for BFS and DFS spanning trees using different
heuristics.

Spanning
tree

Network
size

Average
distance

Crossing
paths

Restrictions
per node

R1 R2 R1 R2 R1 R2

16 2.208 2.133 37 23 3.375 3.125
BFS 32 3.102 2.871 173 63 3.562 2.937

64 4.013 3.787 593 238 3.281 2.875

H1 H2 H1 H2 H1 H2

16 2.108 2.091 23 23 3.125 2.875
DFS 32 2.792 2.752 73 43 2.821 2.625

64 3.634 3.590 204 190 2.687 2.585

4 TrafÞ c Balancing Algorithm

When a routing algorithm able to provide partial adaptivity, such as up∗/down∗ rout-
ing, is implemented using source routing, a strategy to select a single path between
each pair of hosts is needed. Different selection policies can be applied, such as random
and round-robin selections. However, they do not guarantee a suitable traffic balancing
in the network, which may reduce network performance. We propose a traffic balan-
cig algorithm that tries to achieve an uniform channel utilization, avoiding that a few
channels become a bottleneck in the network.

First, the algorithm associates a counter to every channel in the network. Each
counter is initialized to the number of routing paths crossing the channel, that is, the
channel utilization. Additionally, a cost function associated to every routing path ac-
cording to its channel utilization is evaluated. The procedure defined below is applied
repetitively to the channel with highest value of counter. In each step, a routing path
crossing the channel is selected to be removed if there is more than one routing path
between the source and the destination switch of this routing path. In this way, we pre-
vent the network to become disconnected. When a routing path is removed, the counters
associated with every channel crossed by the path are updated. If there is more than one
routing path able to be removed in a channel, the algorithm will first choose the rout-
ing path whose source and destination hosts have the highest number of routing paths
between them. The algorithm finishes when the number of routing paths between every
pair of hosts is reduced down to the unit. The time complexity to compute this traffic
balancing algorithm is O(n2 ∗ diameter), where n is the number of switches. This time
is much lower than that exhibited by other proposals, such as smart-routing [2].

5 Performance Evaluation

In this section, we evaluate by simulation the performance of the up∗/down∗ routing
scheme when the heuristic rules and the traffic balancing algorithm proposed in Sec-
tions 3 and 4, respectively, are applied to compute the routing tables. Table 2 shows

Improving the Up∗/Down∗ Routing Scheme for Networks of Workstations 887

the acronyms for the up∗/down∗ routing algorithms evaluated according to type of
spanning tree, heuristic, and traffic balancing algorithm used.

Table 2. Acronyms used for the up∗/down∗ routing algorithms.

Routing
algorithm

Spanning
tree

Root
heuristic

Path
heuristic

Traffic
balancing

UD−BFS1 BFS R1 - No

UD−BFS2 BFS R2 - No

UD−BFS2b BFS R2 - Yes

UD−DFS1 DFS R2 H1 No

UD−DFS2 DFS R2 H2 No

UD−DFS2b DFS R2 H2 Yes

5.1 Network Model

Network topology is completely irregular and has been generated randomly. We have
evaluated networks with 16, 32, and 64 switches. For space reasons, the results for
64 switches have not been plotted. We have generated ten different topologies for
each network size analyzed. The maximum variation in throughput improvement of
UD−DFS2b routing with respect to UD−BFS1 routing is not larger than 20%. Re-
sults plotted in this paper correspond to the topologies that achieve the average behavior
for each network size. We assume that every switch in the network has 8 ports, using 4
ports to connect to workstations and leaving 4 ports to connect to other switches. For
message length, 32-flit and 512-flit messages were considered. Different message des-
tination distributions have been used like uniform, bit-reversal, and matrix transpose.

In order to obtain realistic simulation results, we have used timing parameters for
the switches taken from a commercial network. We have selected Myrinet because it
is becoming increasingly popular due to having very good performance/cost ratio. Ac-
cording to Myrinet switches, the latency through the switch for the first flit is 150 ns,
and after transmitting the first flit, the switch transfers at the link rate of 6.25 ns per
flit. The clock cycle is 6.25 ns. Each switch has a crossbar whose arbiter processes one
message header at a time. Flits are one byte wide and the physical channel is one flit
wide. Also, source routing and wormhole switching is used like in Myrinet.

5.2 Simulation Results

Figures 3(a) and 3(b) show the average message latency versus accepted traffic for net-
works with 16 and 32 switches, respectively. Message size is 32 flits and uniform des-
tination distribution is used. We can observe that the new heuristic (H2) to compute the
DFS spanning tree allows UD−DFS2 to reduce latency with respect to UD−DFS1

888 José Carlos Sancho and Antonio Robles

800

900

1000

1100

1200

1300

1400

1500

0.005 0.01 0.015 0.02 0.025 0.03

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (n
s)

Accepted Traffic (flits/ns/switch)

’UD_BFS1’
’UD_BFS2’

’UD_BFS2b’
’UD_DFS1’
’UD_DFS2’

’UD_DFS2b’

(a)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

0.005 0.01 0.015 0.02

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (n
s)

Accepted Traffic (flits/ns/switch)

’UD_BFS1’
’UD_BFS2’

’UD_BFS2b’
’UD_DFS1’
’UD_DFS2’

’UD_DFS2b’

(b)

Fig. 3. Average message latency vs accepted traffic. Network size is (a) 16 and (b) 32
switches. Message length is 32 flits. Uniform distribution.

1000

1200

1400

1600

1800

0.005 0.01 0.015 0.02 0.025

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (n
s)

Accepted Traffic (flits/ns/switch)

’UD_BFS1’
’UD_BFS2’

’UD_BFS2b’
’UD_DFS1’
’UD_DFS2’

’UD_DFS2b’

(a)

1000
1100
1200

1300
1400
1500
1600

1700
1800
1900

0.005 0.01 0.015 0.02 0.025

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (n
s)

Accepted Traffic (flits/ns/switch)

’UD_BFS1’
’UD_BFS2’

’UD_BFS2b’
’UD_DFS1’
’UD_DFS2’

’UD_DFS2b’

(b)

Fig. 4. Average message latency vs accepted traffic. Network size is 32 switches. Mes-
sage length is 32 flits. (a) Bit-reversal and (b) matrix transpose message distributions.

for every value of traffic. It is due to the fact that the new heuristic introduces lower
number of routing restrictions than the previous heuristic (H1), allowing more mes-
sages to follow minimal paths. Obviously, the improvement is higher in large networks
because messages can profit more from following minimal paths. The improvement in
throughput of UD−DFS2 with respect to UD−BFS1 achieves a factor of up to 2.8
for a 64-switch network. Also, the new heuristic (R2) to select the root significantly im-
proves the performance of the up∗/down∗ routing scheme based on BFS spanning tree
with respect to the R1 heuristic. The improvement in throughput of UD−BFS2 with
respect to UD−BFS1 ranges from 20% for small networks to 60% for large networks.

Moreover, the traffic balancing algorithm only contributes to improve throughput
for small network sizes, especially when up∗/down∗ routing is based on DFS span-
ning tree. It is due to the fact that channel utilization is higher than for large networks.
As a consequence, an algorithm to balance traffic will achieve more benefits. The im-
provement in throughput of UD−DFS2b with respect to UD−DFS2 is about 16% in
16-switch networks.

Improving the Up∗/Down∗ Routing Scheme for Networks of Workstations 889

For space reasons, the results for long message (512-flits) are not plotted. The im-
provement in performance of the up∗/down∗ routing schemes based on a DFS spanning
tree with respect to those based on BFS spanning tree decreases slightly with respect to
the one achieved with short messages. Similar results were obtained in [6].

Figures 4(a) and 4(b) show the results for a 32-switch network when using message
distributions with temporal locality, such as bit-reversal and matrix transpose. The im-
provement in performance of UD−DFS2 with respect to UD−DFS1 is noticeably
decreased, although the latency reduction is still significant for the entire range of traf-
fic. Notice that UD−DFS2b increases throughput with respect to UD−BFS1 up to a
factor of 2.5.

6 Conclusions

In this paper, we have proposed new heuristics to obtain the underlying graph used by
the up∗/down∗ routing scheme to compute the routing tables. Moreover, an algorithm
to balance the traffic in the network using source routing has been proposed in order to
avoid that some channels become a bottleneck in the network. The main contribution of
these techniques is that they are able to improve network performance without adding
resources to the network that would increase its cost. Simply, routing tables have to be
updated.

The simulation results modeling a Myrinet network show that the up∗/down∗ rout-
ing algorithm based on DFS spanning tree, when the new heuristic to compute the span-
ning tree and the traffic balancing algorithm are applied, almost triples the throughput in
large networks with respect to the up∗/down∗ routing algorithm based on BFS span-
ning tree currently used in commercial networks. For smaller networks, performance
improvement is also smaller but the proposed heuristic rules always improve latency
and throughput.

References

1. N. J. Boden et al., Myrinet - A gigabit per second local area network, IEEE Micro, vol. 15,
Feb. 1995.

2. L. Cherkasova, V. Kotov, and T. Rockicki, Fibre channel fabrics: Evaluation and design, 29th
Hawaii International Conference on System Sciences, Feb. 1995.

3. W. J. Dally and C. L. Seitz, Deadlock-free message routing in multiprocessors interconnection
networks, IEEE Transactions on Computers, vol. C-36, no. 5, pp. 547-553, May. 1987.

4. D. García and W. Watson, Servernet II, in Proceedings of the 1997 Parallel Computer,
Routing, and Communication Workshop, Jun 1997.

5. W. Qiao and L. M. Ni., Adaptive routing in irregular networks using cut-trough switches, in
Proc. of the 1996 Int. Conf. on Parallel Processing, Aug. 1996.

6. J.C. Sancho, A. Robles, and J. Duato, New Methodology to Compute Deadlock-Free Routing
Tables for Irregular Networks, in in Proc. of CANPC’00, Jan. 2000.

7. F. Silla and J. Duato, Improving the Efficiency of Adaptive Routing in Networks with Irregular
Topology, in 1997 Int. Conference on High Performance Computing, Dec. 1997.

8. M. D. Schroeder et al., Autonet: A high-speed, self-configuring local area network using
point-to-point links, SRC research report 59, DEC, Apr. 1990.

9. R. Sheifert, Gigabit Ethernet, Addison-Wesley, April 1998.

	Introduction
	Up*$/$Down* Routing
	Computing a BFS Spanning Tree
	Computing a DFS Spanning Tree

	Applying New Heuristic Rules
	Traffic Balancing Algorithm
	Performance Evaluation
	Network Model
	Simulation Results

	Conclusions

