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Abstract

In classification and forecasting with tabular data, one often utilizes tree-based
models. Those can be competitive with deep neural networks on tabular data and,
under some conditions, explainable. The explainability depends on the depth of the
tree and the accuracy in each leaf of the tree. Decision trees containing leaves with
unbalanced accuracy can provide misleading explanations. Low-accuracy leaves
give less valid explanations, which could be interpreted as unfairness among ex-
planations. Here, we train a shallow tree with the objective of minimizing the max-
imum misclassification error across each leaf node. Then, we extend each leaf with
a separate tree-based model. The shallow tree provides a global explanation, while
the overall statistical performance of the shallow tree with extended leaves im-
proves upon decision trees of unlimited depth trained using classical methods (e.g.,
CART) and is comparable to state-of-the-art methods (e.g., well-tuned XGBoost).

1 Introduction
In classification and forecasting with tabular data, one often utilizes axis-aligned de-
cision trees [Payne and Meisel, 1977, Breiman et al., 1984]. A prime example of a
high-risk application of AI, where decision trees are widely used, is credit risk scor-
ing [Mays, 1995, Thomas et al., 2017, Lessmann et al., 2015] in the financial services
industry [Athey and Imbens, 2019]. There, the relevant regulation, such as the Equal
Credit Opportunity Act in the US [Equal Credit Opportunity Act , ECOA] and related
regulation [European Commission, 2016a,b] in the European Union, bars the use of
models that are not explainable [Rudin, 2019], which is often construed [Bracke et al.,
2019, Dupont et al., 2020, Consumer Financial Protection Bureau, 2022, Gunnarsson
et al., 2021] as requiring the use of decision trees. When studying the decision tree
that a bank uses, one often focuses on ways that would make it possible to obtain a
loan, and one would wish that the corresponding leaf of the decision tree had as high
accuracy as possible.

In many other domains, the use of tree-based models has an equally long tradition.
Consider, for example, judicial applications of AI such as the infamous Correctional
Offender Management Profiling for Alternative Sanctions (COMPAS) [Brennan et al.,
2009, Brennan and Dieterich, 2018, Courtland, 2018, Zhou et al., 2023], which is mar-
keted as the “nationally recognized decision tree model”, or medical applications of AI
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[e.g., Rakha et al., 2014, London, 2019, Tjoa and Guan, 2020]. It is hard to overstate
the importance of high accuracy of any rule that a medical doctor or a judge may learn
from a decision tree. In yet more domains, shallow decision trees are used [Bastani
et al., 2017] to provide globally valid explanations of black-box classifiers, which is
sometimes known [Bastani et al., 2017] as model extraction.

Shallow trees can indeed serve as global explanations for a classifier—or explain-
able classifiers per se—when each leaf is construed as a logical rule. Because various
individuals or subgroups may deem various outcomes of importance, a fair explanation
would have as high accuracy in each leaf of the decision tree as possible. The depth
needs to be low1 in order for the rule explaining the decision in each leaf to remain
comprehensible.

Similarly, one could argue that a decision tree can provide misleading explanations.
To evaluate how valid or misleading the decision tree is, we suggest considering the
minimal accuracy in any leaf of a tree (tree’s leaf accuracy). Indeed, a member of the
public, when presented with the decision tree, may assume that each leaf of a decision
tree can be construed as a logical rule. Consider, for example, the decision tree of Figure
1, based on the two-year variant of the well-known COMPAS [Brennan et al., 2009]
dataset, which considers the binary classification problem of whether the individual
would re-offend within the next two years. The left-most leaf may be interpreted as
suggesting that for up to 3 prior counts and under 23 years of age, the defendant will
re-offend within the next two years after release. However, the validity of this rule
is somewhat questionable: the training accuracy in that leaf is 66.8%, while the test
accuracy is 60% in that leaf. This suggests that 40% of defendants who meet these
criteria will actually not re-offend within two years. For a more extreme example, see
Figure 2, which shows two trees of similar overall accuracy for the pol(e) dataset. When
optimizing for overall accuracy, the minimum test accuracy in one leaf can be as low as
57.1% (cf. the left tree in Figure 2). However, when maximizing the minimum training
accuracy in one leaf, the minimum test accuracy in one leaf increases to 86.5% (cf. the
right tree in Figure 2). One could argue that this improves the validity and fairness of
the explanation provided by the tree.

Although a recent comparison of the statistical performance of gradient-boosted
trees and deep neural networks by Grinsztajn et al. [2022] has shown that the state-
of-the-art tree-based models can outperform state-of-the-art neural networks across a
comprehensive benchmark of tabular data sets, for our decision trees, the low depth
limits the overall accuracy. Therefore, one would like to improve the accuracy by “hy-
bridizing” the tree, where the top, fixed-depth tree maximizing the leaf accuracy ob-
jective would explain as much of the variance as possible, given the depth. And below,
tree-based models extending each leaf of the fixed-depth tree need not be interpretable
but would improve the overall accuracy of the hybrid tree.

Here, we aim to introduce such hybrid trees and a two-step procedure for training
these, to improve upon both the statistical performance and explainability of decision
trees. In the first step of the procedure, we use mixed-integer programming (MIP) to
train a shallow tree, with the objective of minimizing the maximum misclassification
error across each leaf node and with constraints bounding the number of samples in
each leaf node from below. Seen another way, we maximize the minimal accuracy in
any leaf of a tree. In the second step, we train further tree-based models, which extend
each leaf of the shallow tree. The shallow tree with the additional constraints on the

1According to Feldman [2000], humans can understand logical rules with boolean complexity of up to
5–9, depending on their ability, where the boolean complexity is the length of the shortest Boolean formula
logically equivalent to the concept, usually expressed in terms of the number of literals.
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Yes NoIf priors_count < 4

Yes NoIf age < 25 NoYes If age < 44

Yes

No

If priors_count < 7

Yes NoIf priors_count < 1

NoYes If age < 23
Will NOT reoffend

Test: 64.6%
Train: 66.4%

Will reoffend
Test: 69.5%
Train: 74.5%

Will NOT reoffend
Test: 61.4%
Train: 63.6%

Will reoffend
Test: 70.4%
Train: 64%

Will reoffend
Test: 60%

Train: 66.8%

Will reoffend
Test: 60.7%
Train: 65%

Will NOT reoffend
Test: 82.4%
Train: 62.5%

Figure 1: An example of the decision tree produced by proposed model for the COM-
PAS dataset, cf. Figure 3. The bold percentage shows the leaf accuracy in each leaf on
out-of-sample data before applying the extending model. Below that, in regular font,
we provide accuracy on training data.

accuracy in the leaves is easily explainable, while the overall statistical performance of
these hybrid trees [Zhou and Chen, 2002] combining shallow trees and the extending
tree-based models (which we call the hybrid-tree accuracy) improves upon the accu-
racy of decision trees of unlimited depth trained using classical methods (e.g., CART)
and is comparable to state-of-the-art tree-based methods, such as the well-tuned XG-
Boost of Grinsztajn et al. [2022].

Let us illustrate the statistical performance. Figure 3 shows that the accuracy of
well-tuned XGBoost of Grinsztajn et al. on the two-year COMPAS [Brennan et al.,
2009] test case exceeds 0.68. The accuracy of our shallow tree trained with the leaf-
accuracy objective is below 0.65, which should not be surprising, considering the over-
all model accuracy is not the main objective. Nevertheless, by utilising the extending
models in leaf nodes of the shallow tree, we can improve the accuracy very close to
0.68, which improves over both the accuracy of CART of the same depth alone (below
0.67) and CART of the same depth with extending models in leaf nodes of the tree
(slightly above 0.67).

This performance is rather typical across the benchmark of Grinsztajn et al.. The
proposed method outperforms CART with statistical significance, as detailed in Section
4.

Our contributions. We present:

• the challenge of fairness (or, equivalently, validity) of an explanation.

• leaf accuracy as a criterion for evaluating the validity and fairness of a classifica-
tion tree as a global explanation. Leaf accuracy of decision tree T is defined as
follows:

AL(T ) := min
l∈L(T )

1

|Xl|
∑

(x,y)∈Xl

Jy = ClK (1)

where L(T ) is the set of leaf nodes of tree T , Xl ⊆ X is the set of samples
assigned to the leaf l, and Cl is the decision class of the leaf l.
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Yes NoIf f5 < 99

Yes NoIf f6 < 100

class P
Test: 92.1%
Train: 92.9%

Yes NoIf f7 < 98

NoYes If f8 < 98

Yes NoIf f14 < 10

NoYes If f6 < 120

class N
Test: 100%
Train: 100%

class N
Test: 91.8%
Train: 94.7%

class N
Test: 90.8%
Train: 92.2%

class P
Test: 57.1%
Train: 68.4%

class N
Test: 85.7%
Train: 96.7%

Yes NoIf f5 < 99

Yes NoIf f6 < 104

class P
Test: 86.5%
Train: 87.6%

class N
Test: 98.2%
Train: 98.1%

Yes NoIf f7 < 124

NoYes If f8 < 94

class N
Test: 90.9%
Train: 90.3%

class N
Test: 100%
Train: 100%

class N
Test: 87.1%
Train: 87.8%

Low accuracy

CART after reduction:
Shallow tree accuracy: 92.17%
Hybrid-tree accuracy: 97.57%

Our model:
Shallow tree accuracy: 89.39%
Hybrid-tree accuracy: 97.62%

class N
Test: 98.2%
Train: 98.1%

No leaves with
significantly lower accuracy

Figure 2: A comparison of decision trees produced by CART and our method for pol
dataset. In each leaf, bold/regular percentage shows the leaf accuracy before extending
it further on the test/training data set, respectively. Below the name of the model, we
present the (hybrid-tree) accuracy of the hybrid/shallow tree in bold/regular font. The
CART tree contains a leaf with a notably lower accuracy compared to the overall accu-
racy of the model. The explanation provided by this leaf is less valid. This makes the
global explanation provided by the tree less fair. While model accuracies do not take
this into account, the proposed measure of leaf accuracy does. The left and right trees
have leaf accuracy on unseen data equal 57.1% and 86.5%, respectively.

• a method for training decision trees that are optimal with respect to leaf accu-
racy, which is scalable across a well-known benchmark [Grinsztajn et al., 2022],
despite its use of mixed-integer programming.

• benchmarking on tabular datasets [Grinsztajn et al., 2022] suggesting that the
leaf accuracy can be improved by up to 18.41 percentage points, while suffering
only a very modest drop (at most 2.76 percentage points across the benchmark)
in overall model accuracy, compared to well-tuned XGBoost [Grinsztajn et al.,
2022].

2 Related Work
Decision trees [Breiman et al., 1984] are among the leading supervised machine learn-
ing methods, where interpretability and out-of-sample classification performance is
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Mean XGBoost
Proposed model
CART

Figure 3: Performance on the COMPAS dataset: Mean statistical performance over 10
different train-test splits, evaluated in terms of model accuracy (horizontal axis) and
leaf accuracy (vertical axis) for five variants of (hybrid) decision trees. The horizontal
and vertical error bars are standard deviations across the 10 random runs. Notice that
the proposed model has better interpretability compared to any standard decision tree
and, once extended, accuracy comparable to a gradient-boosted tree.

important. Random forests [Breiman, 2001] and gradient-boosting tree-ensemble ap-
proaches [Mason et al., 1999, Friedman, 2001] improve upon their statistical perfor-
mance substantially while limiting the interpretability somewhat.

We are given n samples (xi1, . . . , xip, yi) with p features each, for i = 1 . . . n,
and their classification yi ∈ [K] into K classes. Let us denote sample i by xi =
(xi1, . . . , xip). A decision tree sequentially splits a set of samples into two partitions:
In each non-leaf node t, it splits the samples based on their values x:jt of a partic-
ular feature jt ∈ [p] and a threshold bt. (See Figure 1 for an illustration.) More re-
cently, decision trees play an important role in explainable artificial intelligence [Arri-
eta et al., 2020, Burkart and Huber, 2021] and interpretable machine learning [Rudin
et al., 2022].

Construction of an optimal axis-aligned binary decision tree is NP-Hard [Laurent
and Rivest, 1976], and hence all known polynomial-time algorithms, such as CART
[Breiman et al., 1984] produce suboptimal results, at least for some cases. Still, CART
[Breiman et al., 1984], which utilizes the Gini diversity index and cross-validation in
pruning trees, ranks among the leading algorithms [Wu et al., 2008] in machine learn-
ing. A decade later, Breiman suggested that boosting can be interpreted as an opti-
mization algorithm [Breiman, 1998], leading to the development of gradient-boosted
trees [e.g., Mason et al., 1999, Friedman, 2001]. Their well-tuned variants [e.g., Chen
and Guestrin, 2016, Ke et al., 2017, Prokhorenkova et al., 2018] are state-of-the-art
polynomial-time algorithms for training decision trees. We refer to [Gorishniy et al.,
2021, Grinsztajn et al., 2022] for comparisons against deep neural networks.

Bertsimas and Dunn [2017] and, independently others [Bessiere et al., 2009, Nar-
odytska et al., 2018, Günlük et al., 2021], pioneered the use of exponential-time algo-
rithms in the construction of decision trees. The integer-programming formulation of
Bertsimas and Dunn suffers from some issues of scalability [Verwer and Zhang, 2019],
but can be easily extended by the addition of further constraints, such as sparsity [Hu
et al., 2019, Xin et al., 2022, Zhang et al., 2023], fairness [Verwer and Zhang, 2019,
van der Linden et al., 2022], upper bounds on the number of leaves [Lin et al., 2020],
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incremental progress bounds [Lin et al., 2020], bounds on similarity of the support
[Lin et al., 2020], a wide variety of privacy-related constraints, and in our case, accu-
racy in the leaves. Likewise, there are numerous extensions in terms of the objective
[Lin et al., 2020], including F-score, AUC, and partial area under the ROC convex hull
and, in our case, the leaf accuracy. Subsequently, the optimal decision trees have grown
into a substantial subfield within machine learning research.

There have been several important proposals of alternative convex-programming
relaxations for optimal decision trees: Dash et al. [2018] have demonstrated the use
of an extended formulation in a column-generation (branch-and-price) approach; Zhu
et al. [2020] have introduced another alternative formulation and a number of valid
inequalities (cuts); Aghaei et al. [2020] have introduced yet another alternative for-
mulation based on the maximum flow problem. Independently, Carreira-Perpinán and
Tavallali [2018] suggested using non-linear optimization techniques, such as alternat-
ing minimization leading to much further research [Zantedeschi et al., 2021]. We refer
to Carrizosa et al. [2021], Nanfack et al. [2022] for overviews of mathematical opti-
mization in the construction of decision trees.

Much recent research [e.g., Vidal and Schiffer, 2020, Demirović et al., 2022, van der
Linden et al., 2022, Hua et al., 2022, Mazumder et al., 2022] has also focussed on im-
proving the scalability of exponential-time algorithms for optimal decision trees by
using branch-and-bound methods without relaxations in the form of convex optimiza-
tion and, more broadly, dynamic programming. These approaches are sometimes seen
as less transparent, as the mixed-integer formulation needs to be translated to the ap-
propriate pruning rules or cost-to-go functions, which are less succinct, and the correct-
ness of the translation can be non-trivial to verify. Nevertheless, Hua et al. [2022] have
demonstrated the scalability of their method to a dataset with over 245,000 samples
(utilizing less than 2000 core-hours), for example. On a benchmark of 21 datasets from
the UCI Repository with over 7,000 samples, the algorithm can improve training ac-
curacy by 3.6% and testing accuracy by 2.8% compared to the current state-of-the-art.
This seems to validate the practical relevance of optimal decision trees.

3 Mixed-Integer Formulation
Mixed-Integer (Linear) Programming is a method of mathematical optimization similar
to Linear Programming, with some of its variables limited to integer values. The goal
is to maximize an objective function while satisfying a number of (linear) non-strict
inequality constraints [Wolsey, 2021]. Because of the global optimization capabilities,
MIP enables our approach to not suffer from issues created by greedy top-down ap-
proaches like CART (e.g., Figure 2).

We build upon the Mixed-Integer Programming (MIP) formulation of optimal de-
cision trees [Bertsimas and Dunn, 2017], changing the objective and adding novel con-
straints. The entire MIP formulation is presented in Figure 4.

Base model As in the original optimal decision trees [Bertsimas and Dunn, 2017],
we have n samples with p features each. Every point has one of K classes, which is
represented in the formulation by a binary matrix Y such that Yik = 1 ⇐⇒ yi = k.
All tree nodes are split into two disjoint sets, TB and TL, which are sets of branching
nodes and leaf nodes, respectively. Variable at is a binary vector of dimension p that
selects a feature j to be used for decisions in node t. It holds that ajt = 1 ⇐⇒ j is
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max Q (2)

s. t. Q ≤
n∑

i=1

Sit + (1− lt) ∀t ∈ TL (3)

sit ≤ zit ∀i ∈ [n], ∀t ∈ TL (4)

rt ≤ sit + (1− zit) ∀i ∈ [n], ∀t ∈ TL (5)

rt ≥ sit + (zit − 1) ∀i ∈ [n], ∀t ∈ TL (6)

lt =

n∑
i=1

sit ∀t ∈ TL (7)

Sit ≤ sit ∀i ∈ [n], ∀t ∈ TL (8)

Sit ≤
K∑

k=1

Yikckt ∀i ∈ [n], ∀t ∈ TL (9)

Sit ≥ sit +

K∑
k=1

Yikckt − 1 ∀i ∈ [n], ∀t ∈ TL (10)

lt =

K∑
k=1

ckt ∀t ∈ TL (11)

aT
mxi ≥ bm − (1− zit) ∀i ∈ [n], ∀t ∈ TL,

∀m ∈ AR(t) (12)

aT
m(xi + ϵ) ≤ ∀i ∈ [n], ∀t ∈ TL,

bm + (1 + ϵmax)(1− zit) ∀m ∈ AL(t) (13)∑
t∈TL

zit = 1 ∀i ∈ [n] (14)

zit ≤ lt ∀i ∈ [n], ∀t ∈ TL (15)
n∑

i=1

zit ≥ Nminlt ∀t ∈ TL (16)

p∑
j=1

ajt = 1 ∀t ∈ TB (17)

0 ≤ bt ≤ 1 ∀t ∈ TB (18)

zit, lt ∈ {0, 1} ∀i ∈ [n], ∀t ∈ TL (19)

ajt ∈ {0, 1} ∀j ∈ [p], ∀t ∈ TB (20)

ckt ∈ {0, 1} ∀k ∈ [K], ∀t ∈ TL (21)

0 ≤ Q, rt, Sit, sit ≤ 1 ∀i ∈ [n], ∀t ∈ TL (22)

Figure 4: The complete MIP formulation of training the shallow tree maximizing the
minimum accuracy across all leaf nodes and constraining the number of samples per
leaf node. The constraints (11 – 21) are taken from the optimal decision trees of Bert-
simas and Dunn [2017], and the remaining constraints (3 – 10) and (22), together with
a different objective function (2), are parts of our extensions. We use [n] notation to
represent the set of integers {1, 2, 3, . . . , n}. An overview table of the variables and
parameters is in the Appendix (Table 3).
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the selected feature in node t. bt is then the value of the threshold. We assume all data
are normalized to [0, 1] range.

Equations (11–21) capture the original model of Bertsimas and Dunn [2017], wherein:

• Binary variable ckt is equal to 1 if and only if leaf node t predicts class k to data.

• Binary variable lt is equal to 1 if and only if there is any point classified by the
leaf node t.

• Binary variable zit is equal to 1 if and only if point xi is classified by leaf node
t.

The only modification to the original formulation is the omission of a binary variable
dt that decided whether a certain branching node is used. This introduced a flaw in
the original formulation [Bertsimas and Dunn, 2017], which led to invalid trees, so we
decided against using it. We assume it to always be 1 instead. To prune redundancies,
we introduce a process of tree reduction described in Section 3.

Equations (12) and (13) implement the split of samples to leaf node t using disjoint
sets AR(t) and AL(t), containing nodes to which the leaf t is on the right or on the left,
respectively. Since we cannot use strict inequality, we use ϵ, a p-dimension vector of
the smallest increments between two distinct consecutive values in every feature space
[Bertsimas and Dunn, 2017]:

ϵj = min
{
x
(i+1)
j − x

(i)
j

∣∣∣x(i+1)
j ̸= x

(i)
j ,∀i ∈ {1, . . . , n− 1}

}
where x

(i)
j is the i-th largest value in the j-th feature, ϵmax is the highest value of ϵj

and serves as a tight big-M bound.
Finally, Equation (16) bounds the number of points (Nmin) in a single leaf from

below.

MIP extensions In the original optimal decision trees [Bertsimas and Dunn, 2017],
the objective is to minimize total misclassification error. Instead, we wish to maximize
the leaf accuracy. Because a single sample usually contributes differently to accuracy
at different leaves, we need to introduce multiple new variables to track the accuracy
in each leaf:

• variable sit represents the potential accuracy that sample xi has in leaf t. It takes
values in the range [0, 1] and must sum to 1 when summing across all samples
assigned to leaf t. This is ensured by setting the value to 0 for all points that are
not assigned to the leaf t in constraint (4). The sum of 1 is enforced in constraint
(7) for non-empty leaves. Empty leaves do not have non-zero sit values for any
i and thus could not sum to 1.

• reference accuracy variable rt serves as a common variable to which all accuracy
contributions are equal. This is, of course, required only for points assigned to
the leaf t. This is enforced in (5) and (6).

• variable Sit represents the true assignment of accuracy given by the sample. That
is achieved by setting it to 0 for misclassified points using constraint (9) and by
setting it equal to sit otherwise by constraints (8) and (10).

8



• variable Q is our objective and represents the leaf accuracy of the tree. Equiva-
lent to AL(T ) defined in Equation (1), it is the lowest achieved accuracy across
all non-empty leaves as per constraint (3). For empty leaves, this constraint will
be trivially satisfied since Q cannot take value higher than 1 anyway.

Tree reduction After the optimizer of the mixed-integer program is obtained, empty
leaves are pruned to obtain the resulting unbalanced tree. Furthermore, to account for
suboptimal solutions obtained when the solver is run with a strict time limit, each pair
of sibling leaves classified in the same class is merged. This is performed recursively
until no further action can be performed. This leads to no loss in model accuracy and
oftentimes leads to an improvement in leaf accuracy, given the fact that we consider
the minimum over all leaves.

Tree extension Finally, we extend the remaining leaves with new tree-based models
to improve hybrid-tree accuracy that is comparable to the best-performing models. In
particular, we used XGBoost as the extending model since it was the best-performing
model on the used benchmark [Grinsztajn et al., 2022]. We trained a separate model for
each leaf of the shallow tree after the aforementioned reduction. The hyperparameters
of the models were tuned using 50 iterations of a Bayesian hyperparameter search
with 3-fold cross-validation in each leaf. In experiments, we reduce and extend trees
generated by other methods (OCT, CART) in the same way.

4 Numerical results
We have implemented the method in Python, and all code and results are provided
in the Supplementary material. We will release them under an open-source license on
GitHub once the paper has been accepted. The hyperparameters have been chosen as
follows:

• The shallow trees have been trained using the formulation in Figure 4 with depth
limited to four since that is a reasonable threshold for interpretability (e.g., print-
ability on an A4 page, similar to Figure 1) and for not diluting the dataset to
small parts that would impede the ability to train the extending models.

• To further support this, we set the minimal amount of points in a leaf (Nmin) to
50.

• MIPFocus and Heuristics hyperparameters were set to 1 and 0.8, respectively,
to focus on finding feasible solutions in the search since that leads to the fastest
improvements of the solution. However, our experiments in Appendix A.3 show
that default MIP solver hyperparameters perform similarly.

We performed our experiments on the benchmark of Grinsztajn et al., which con-
tains datasets for both regression and classification. The benchmark consists of real
datasets, on which tree-based models are the best performing, making it a good fit
for our purpose. Since our implementation considers only classification, we consider
only classification datasets. Grinsztajn et al. [2022] divide the datasets into numerical
datasets and datasets with some categorical features. We follow this distinction and
present results on both kinds of datasets separately. We also follow the suggestion of
Grinsztajn et al. to perform 10 different train-test splits with at most 10,000 data points
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Figure 5: Results on out-of-sample data. The plot shows a significant increase in leaf
accuracy when using our method, significantly improving the validity of the explana-
tions provided. It also shows an increase in model accuracy when extending the models
with XGBoost models in leaves. The results of the OCT model serve to compare to the
model we built upon.
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Figure 6: Results on out-of-sample data on all classification datasets from the tabular
benchmark partitioned into 3 categories by complexity. In square brackets are the num-
bers of datasets belonging to each partition. This plot shows that our method, when ex-
tended in leaves, does not significantly decrease overall performance compared to pure
XGBoost while sometimes improving upon accuracy obtainable by extended CART.
And it does so consistently for datasets of varying complexity.

or 80% of total data points (whichever is lower) for training across all datasets. That
is, each model has been trained on each dataset 10 times, with different seeds for data
splits. The training used 80% of all data points or 10,000 data points, whichever is
lower, while the remaining 20% of the dataset has been used as the test set for eval-
uating the model accuracy and leaf accuracy AL(T )—see Equation (1). All MIP for-
mulations of our shallow tree were warmstarted using a CART solution trained on the
same data with default scikit-learn parameters, except for maximal depth and a minimal
number of samples in a leaf, which were set to 4 and 50, respectively.

We performed all experiments on an internal cluster with sufficient amounts of
memory. Each run of the MIP solver has been limited to 8 hours on 8 cores of AMD
Epyc 7543, totaling 64 core-hours per split of a dataset. The extension part takes, on
average, around 1 additional 3 core-hours per split. This totals around 15,500 core-
hours for the entire classification part of the tabular benchmark and one configuration
of hyperparameters. Training each dataset requires between 15 and 95 GB of working
memory; details are provided in the Appendix (Figure 9). In this setting, the Gurobi
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Data Type Min Mean (± std) Max

Compared to CART

Leaf Accuracy categorical −0.0142 0.0569± 0.0533 0.1206
numerical −0.0061 0.0770± 0.0556 0.1841

Hybrid-tree Acc. categorical −0.0078 0.0040± 0.0071 0.0147
numerical −0.0244 0.0004± 0.0082 0.0087

Compared to XGBoost

Hybrid-tree Acc. categorical −0.0228 −0.0095± 0.0064 −0.0036
numerical −0.0276 −0.0108± 0.0076 0.0005

Table 1: Improvements in mean accuracy on datasets between our model and compara-
ble models. Data is computed by subtracting the mean accuracy of CART or XGBoost,
respectively, on each dataset from the mean accuracy of our model. In the first two
rows, we compare the leaf accuracy of our model to CART. In the middle two rows, we
compare the model accuracy of the hybrid trees with CART extended in the same way.
In the last two rows, we compare our extended hybrid-tree model to the mean XGBoost
model trained on the same dataset.

solver closes the MIP Gap to around 60% on average. Further discussion of MIP Gaps
is in Appendix A.3. Still, even after 1 hour of computation, the proposed model out-
performs CART; see Figure 10c in Appendix.

We compare our method of training classification trees to CART, as it is by far
the most common. All experiments used the scikit-learn implementation of CART,
also utilizing the option of cost complexity pruning. The hyperparameters for CART
were optimized using Bayesian hyperparameter optimization for 100 iterations using
5-fold cross-validation. Hyperparameter search space was notably constrained only by
fixing a maximal depth to 4 and a minimal number of samples in leaves to 50, ensuring
comparability to our shallow trees. In comparison to unconstrained depth CART and
CART with optimized lower bound on the number of samples in a leaf, our model
interestingly fared even better. See Appendix A.9 for details. The entire optimization
of CART with the extensions of the leaves took around 500 core-hours for the entire
benchmark.

The XGBoost results are taken from the authors of the paper introducing the bench-
mark, which suggests 20,000 core-hours have been spent producing these. [Grinsztajn
et al., 2022]

Figure 5 shows the average performance (model accuracy and leaf accuracy) over
categorical and numerical datasets. We include the comparison to optimal classification
trees (OCT) [Bertsimas and Dunn, 2017] since it is the formulation we built on. The
OCT model is warmstarted the same way as the proposed model and has the worst per-
formance. The proposed model improves the leaf accuracy by 7.09 percentage points
on average compared to CART.

Figure 6 shows again the average performance separately on categorical and nu-
merical datasets divided into three groups by complexity. The measure of complexity
is based on the performance of XGBoost provided by the authors of the benchmark.
The thresholds of partitions are 0.7 and 0.8 for datasets containing categorical features
and 0.75 and 0.85 for datasets with only numerical features. The thresholds were se-
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lected in order to separate too easy and too hard datasets, which make the plots less
informative, and to explore behavior on datasets with varying inner complexity. We see
that the proposed method always significantly improves the leaf accuracy compared to
CART.

Table 1 quantifies the differences numerically. Proposed models have worse accu-
racy by about 1 percentage point on average when compared to the uninterpretable,
best-performing state-of-the-art models (XGBoost). Compared to CART, a different
training process of the same model, our approach slightly improves the model accu-
racy, but more importantly, it improves the leaf accuracy.

Statistical significance Demšar [2006] summarizes statistical tests used for the com-
parison of algorithms on multiple datasets. Compared to CART, the proposed method
has better leaf accuracy and better hybrid-tree accuracy on a substantial majority of
datasets. Using the basic sign test [Demšar, 2006], both results are statistically signifi-
cant with p < 0.05. Using the Wilcoxon signed-rank test, we reject the null hypothesis
that CART performs better than the proposed method with high confidence (α ≤ 0.01
for leaf accuracy and α ≤ 0.05 for hybrid-tree accuracy).

For more insight into the results, refer to Appendix A.7.

5 Conclusions and Limitations
We have identified an important problem of the fairness and validity of a tree as an
explanation and have shown that contemporary tree-based models do leave room for
improvement in terms of fairness. The use of hybrid trees, where the top is constructed
with the goal of maximizing leaf accuracy, offers multiple benefits.

First, it ensures better validity of every explanation provided, improving the leaf
accuracy by around 7 percentage points on average across the benchmark of tabular
datasets [Grinsztajn et al., 2022].

Second, the hybrid-tree accuracy with tree-based models extending the leaves im-
proves over the accuracy of shallow trees constructed using integer programming as
well as hybrid trees, where the shallow tree is obtained using CART.

Finally, it is easy to extend to further constraints, such as shape constraints, in
the top tree. Overall, we hope that the proposed approach may lead to improving the
validity and fairness of decision trees as explanations.

Limitations

The hybrid-tree model aims to strike a balance between global explainability and model
accuracy. The extending models, while improving the accuracy, bar the use of the shal-
low tree as an explanation in cases when the extending model changes the decision
of the shallow tree. To explain such decisions, it requires the use of other explanation
methods. That being said, the shallow tree can explain a significant part of the data
while ensuring the global explanation provided is fair and valid for all paths from the
root.

The proposed approach shares some of the limitations of the original optimal deci-
sion trees [Bertsimas and Dunn, 2017]. Notably, the algorithms we utilize for solving
mixed-integer programming problems scale exponentially in the number of decision
variables. Having said that, depth-4 trees suffice to match state-of-the-art methods in
terms of accuracy when additional tree-based models extend from the leaves, which
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makes exponential time algorithms sufficiently fast in practice. Furthermore, all re-
cently proposed methods [e.g., Vidal and Schiffer, 2020, Demirović et al., 2022, van der
Linden et al., 2022, Hua et al., 2022, Mazumder et al., 2022] improving the scalability
can be applied, in principle.
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categorical datasets # of samples # of features # of classes

albert 58252 31 2
compas-two-years 4966 11 2
covertype 423680 54 2
default-of-credit-card-clients 13272 21 2
electricity 38474 8 2
eye movements 7608 23 2
road-safety 111762 32 2

numerical datasets # of samples # of features # of classes

bank-marketing 10578 7 2
Bioresponse 3434 419 2
california 20634 8 2
covertype 566602 32 2
credit 16714 10 2
default-of-credit-card-clients 13272 20 2
Diabetes130US 71090 7 2
electricity 38474 7 2
eye movements 7608 20 2
Higgs 940160 24 2
heloc 10000 22 2
house 16H 13488 16 2
jannis 57580 54 2
MagicTelescope 13376 10 2
MiniBooNE 72998 50 2
pol 10082 26 2

Table 2: Listed classification datasets of the tabular benchmark. Train sets contained
80% of the total amount of samples truncated to at most 10 000 samples. 16 datasets
affected by this have their number of samples in bold.

A.1 Datasets
We used the classification part of the data sets from the mid-sized tabular data put
together by Grinsztajn et al. [2022]. The datasets, with their properties, are listed in
Table 2. Training sets contained 80% of the total amount of samples truncated to at
most 10,000 samples. This constraint affects 16 of the 23 total datasets, although some
only marginally. The affected datasets have their number of samples in Table 2 in bold.
The remaining 20% of the samples were the testing dataset. We used 10 random seeds
that determined the train-test splits of each dataset and fixed the randomness in the
training process. The seeds were namely integers 0 to 9.

Additionally, datasets are either categorical or numerical. Categorical are those that
contain at least one categorical feature. Numerical datasets have no categorical fea-
tures. Four numerical datasets are the same as categorical datasets but with their cate-
gorical features removed (covertype, default-of-credit-card-clients,
electricity, eye movements). Only datasets without missing features and with
sufficient complexity are included in the benchmark. For more details on the method-
ology of dataset selection, we refer to the original paper [Grinsztajn et al., 2022].
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Symbol Explanation Size

Params Yik Equal 1 for true class of a sample n×K
xi Input samples n× p
ϵ Minimal change in feature values p

ϵmax Maximal value of ϵ 1
Nmin Minimum of samples in a leaf 1

TL Set of leaf nodes 2d

TB Set of decision (branching) nodes 2d − 1
AL(t) Ancestors of leaf t that decide left ≤ d− 1
AR(t) Ancestors of leaf t that decide right ≤ d− 1

Variables Q Tree’s leaf accuracy 1
sit Accuracy potential of xi in leaf t n× 2d

Sit Accuracy contribution of xi in leaf t n× 2d

rt Reference accuracy for s:t 2d

zit Assignment of xi to leaf t n× 2d

lt Non-emptiness of leaf t 2d

ckt Assignment of class k to leaf t K × 2d

ajt 1 if deciding on feature j in node t p× (2d − 1)
bt Decision threshold in node t 2d − 1

Table 3: Description of MIP symbols used in the proposed formulation in Figure 4.
Parameter n refers to the number of samples, K is the number of classes, p is the
number of features, and d is the depth of the tree.

A.2 MIP formulation description
We provide Table 3 with short descriptions of the parameters and variables in the MIP
formulation of the proposed model from Figure 4.

A.3 MIP Solver
We have utilized Gurobi optimizer as a MIP solver. Although the solver makes steady
progress towards global optimality, the road there is lengthy. Figure 7b shows the
progress of the MIP Gaps during the 8-hour optimization averaged over all datasets.
For a detailed, per-dataset view, see Figure 8. The solution is still improving, albeit
rather slowly, after 8 hours. The narrowing of the MIP gap is achieved only by finding
better feasible solutions. This lack of improvement of the objective bound might have
been affected by our hyperparameter settings which focused on finding feasible solu-
tions and heuristic search. However, tests with default parameters did not improve the
best bound either.

Default hyperparameters of Gurobi solver

The performance of the Gurobi optimizer depends on the choice of hyperparameters.
For the sake of simplicity, we have considered only two sets of parameters. To mea-
sure the performance change of our choice of (hyper)parameters, we ran a test with
the default value of the MIPFocus parameter and a test with the default value of the
Heuristics parameter.
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(a) Comparison of the Proposed model to models with default parameter configura-
tions shows varying results. MIPFocus seems to influence the search only very slightly.
Heuristics, on the other hand, show significant improvement on numerical datasets and
a decrease in performance on categorical datasets, with about the same absolute differ-
ence.

0 1 2 3 4 5 6 7 8
Hours

0

20

40

60

80

100

M
ea

n 
M

IP
 G

ap
 [%

]

categorical
Default MIPFocus
Proposed
Default Heuristics

0 1 2 3 4 5 6 7 8
Hours

0

20

40

60

80

100

M
ea

n 
M

IP
 G

ap
 [%

]

numerical
Default MIPFocus
Proposed
Default Heuristics

(b) Mean MIP optimality gap development over the solving time, averaged
over all datasets. For a non-aggregated version, see Figure 8.

Figure 7: Comparison of models with the proposed configuration of Gurobi hyperpa-
rameters and runs with default values of the modified parameters.
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Data type Minimal Mean (± std) Maximal

Leaf Accuracy categorical −0.0117 0.0158± 0.0234 0.0531
numerical −0.1178 −0.0143± 0.0402 0.0435

Hybrid-tree Accuracy categorical −0.0011 0.0017± 0.0035 0.0094
numerical −0.0047 0.0005± 0.0025 0.0062

Table 4: Detailed view of the differences in the accuracy between the default Heuristics
parameter and the proposed configuration (Heuristics = 0.8). A positive number means
the accuracy advantage of the proposed hyperparameter configuration. We see absolute
mean differences of comparable values. The negative difference in leaf accuracy on
numerical datasets also has a higher standard deviation, suggesting a stronger influence
by an outlier dataset. For a graphical representation of this data, see Figure 7a.

Data type Minimal Mean (± std) Maximal

Leaf Accuracy categorical −0.0304 0.0036± 0.0213 0.0299
numerical −0.0528 0.0034± 0.0342 0.0788

Hybrid-tree Accuracy categorical −0.0028 0.0016± 0.0043 0.0088
numerical −0.0026 0.0001± 0.0019 0.0032

Table 5: Detailed view of the differences in the accuracy between the default MIPFocus
parameter and the proposed configuration (MIPFocus = 1). A positive number means
the accuracy advantage of the proposed hyperparameter configuration. Both variants
seem to perform comparably, with a potential slight edge in favor of the proposed
configuration. For a graphical representation of this data, see Figure 7a.

The results (cf. Figure 7a and Tables 4, 5) show no significant improvements re-
garding the MIPFocus parameter. However, with the default value of the Heuristics
parameter, we observe an improvement in performance on numerical datasets and a
decrease in performance on categorical datasets. Both absolute differences in accuracy
are about 0.015, so we opted for the variant with similar performances on both categor-
ical and numerical datasets. That is the proposed variant focusing on heuristics. This
proposed configuration also shows a more stable increase in accuracy w.r.t. the perfor-
mance of CART models. The solver performance varies per dataset, as visualized in
Figure 8.

These differences in performance suggest that hyperparameter space regarding the
MIP solver should be further explored and could yield improvements. A closer look
at Figure 8 suggests that different configurations help achieve better conditions for the
solver on different datasets. This might be an area of further hyperparameter tuning
based on the specific attributes of the dataset.

A.4 Memory requirements
Overall, the memory requirements of the datasets were between 15 and 95 GB. On
average, all datasets required at most 70 GB of working memory. Figure 9 shows the
memory requirements of our formulation in more detail. The extension phase of the
process is negligible in this regard, as it requires only about 1.5 GB of working memory

21



0 2 4 6 8
Hours

0

20

40

60

80

100

M
IP

 G
ap

 [%
]

Default MIPFocus - categorical

0 2 4 6 8
Hours

0

20

40

60

80

100

M
IP

 G
ap

 [%
]

Default MIPFocus - numerical

0 2 4 6 8
Hours

0

20

40

60

80

100

M
IP

 G
ap

 [%
]

Proposed - categorical

0 2 4 6 8
Hours

0

20

40

60

80

100

M
IP

 G
ap

 [%
]

Proposed - numerical

categorical
albert
compas-two-years
covertype
default-of-credit-card-clients
electricity
eye_movements
road-safety

numerical
bank-marketing
Bioresponse
california
covertype
credit
default-of-credit-card-clients
Diabetes130US
electricity
eye_movements
Higgs
heloc
house_16H
jannis
MagicTelescope
MiniBooNE
pol

0 2 4 6 8
Hours

0

20

40

60

80

100

M
IP

 G
ap

 [%
]

Default Heuristics - categorical

0 2 4 6 8
Hours

0

20

40

60

80

100

M
IP

 G
ap

 [%
]

Default Heuristics - numerical

Figure 8: Mean MIP optimality gap development over the solving time averaged over
10 different train-test splits. The figure shows the progress of the value of the MIP
optimality gap averaged over all splits of each dataset. Each line corresponds to one
dataset. For an aggregated version, see Figure 7b.
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(a) Histogram of memory requirements of MIP solver for all dataset splits.
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(b) Mean memory requirements on datasets. Dots are colored according to the
number of features. Dataset Bioresponse is excluded from the color mapping
due to having significantly more features. Training sets were truncated to a
maximum of 10,000 points.

Figure 9: Memory requirements mostly do not exceed 70 GB. The memory require-
ments increase slightly when more time is given to the solver and significantly increase
when bigger training sets are considered. We can also see some correlation between
the number of features and memory requirements when looking at same-size datasets.

in total and is performed after the MIP optimization. Training and extending the CART
models also required less than 2 GB of working memory.

The amount of memory required by the MIP solver is dependent on the size of
the data in the number of training samples, as well as the number of features. Figure
9b shows this linear dependence of memory requirements on the size of the training
set. Based on the coloring of the nodes, we also see the dependence on the number of
features, especially in the case of the Bioresponse dataset.

Performance of the model given a shorter time

When considering a shorter time for optimization, we can lower the memory require-
ments to levels attainable by current personal computers. When optimizing our MIP
model for one hour, the required memory is below 50 GB for all datasets except Biore-
sponse, which has one order of magnitude more features than the rest of the datasets
included in the benchmark. The mean memory requirement is below 30 GB of working
memory (compared to 50 GB for the 8-hour run). See Figure 10 for details.
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(a) Histogram of memory requirements of MIP solver for all dataset
splits.
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(b) Mean memory requirements on datasets. Dots are colored ac-
cording to the number of features. Dataset Bioresponse is excluded
from the color mapping due to having a significantly higher num-
ber of features. Training sets were clipped to a maximum of 10,000
points.
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(c) Comparison of the performance of the Proposed model after 1 and 8 hours of opti-
mization.

Figure 10: Comparison to a version of the Proposed model that the Gurobi solver op-
timized for only one hour. Compared to the main configuration, which ran for 8 hours,
we notice a significant decrease in memory requirements for most datasets, up to tens
of gigabytes. An outlier dataset Bioresponse with cca 10 times more features sees a
smaller decrease of about 2 GB.
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Figure 11: Effect of reduction on leaf accuracy of the model. In grey is the leaf accuracy
before reduction, and in blue is the leaf accuracy after reduction. The plot shows mean
accuracy over all datasets of a given type created by the proposed model.

Figure 10c shows that even with this limited budget, we can achieve significant
improvement compared to CART in leaf accuracy and similar accuracy of hybrid trees.

A.5 Reduction of the trees
The reduction phase has a beneficial influence on the leaf accuracy of a model. Figure
11 shows this improvement in mean leaf accuracy over all datasets.

In Figure 12, we further provide a comparison of the complexity of the created
trees by comparing the distributions of the number of leaves (or potential explanations)
provided by the method.

The maximum amount of leaves of a tree with depth 4 is 16. CART model has,
on average, around 8 leaves after reduction. The proposed model’s distribution is close
to the distribution of CART models. When solving the MIP formulation directly, the
distribution is severely shifted toward very small trees. Our proposed method uses a
default CART solution to warmstart the search, which might explain the shape of the
distribution compared to the direct method and CART.

A.6 Hyperparameter search distributions
We needed to optimize hyperparameters for extending models and CART trees used
for comparisons. We used Bayesian hyperparameter search for that purpose.

Extending XGBoost models

For the hyperparameter search of XGBoost models in leaves, we used the distributions
listed in Table 6. The parameters are almost all the same as those used by [Grinsztajn
et al., 2022]. Only the Number of estimators and Max depth were more constrained to
account for the fewer samples available for training.

The Bayesian optimization was run for 50 iterations, with 3-fold cross-validation in
every leaf that contained enough points to perform the optimization. The same process
was used to extend all tested trees.

In leaves with an insufficient amount of samples to perform the cross-validation
(less than 3 samples of at least one class in our case), we train an XGBoost model with
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(a) Histogram of the number of leaves of the reduced trees optimized
directly using the proposed formulation. The trees are heavily pruned.
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(b) Histogram of the number of leaves of the reduced trees created with
the proposed formulation, warmstarted using a simple CART solution.
The trees are smaller compared to well-optimized CART but retain some
complexity. This was the chosen method.
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(c) Histogram of the number of leaves of the reduced trees created by
CART with optimized hyperparameters.

Figure 12: Comparison of the numbers of leaves of trees after the reduction procedure.
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Parameter name Distribution [range (inclusive)]

Max depth UniformInteger [1, 7]
Number of estimators UniformInteger [10, 500]

Min child weight LogUniformInteger [1, 1e2]
Learning rate Uniform [1e-5, 0.7]

Subsample Uniform [0.5, 1]
Col sample by level Uniform [0.5, 1]
Col sample by tree Uniform [0.5, 1]

Gamma LogUniform [1e-8, 7]
Alpha LogUniform [1e-8, 1e2]

Lambda LogUniform [1, 4]

Table 6: Distributions of hyperparameters of extending XGBoost models in leaves.
These were used in the Bayesian hyperparameter search in each leaf separately. All
distributions except Max depth and Number of estimators are the same as in [Grinsz-
tajn et al., 2022]. The two different distributions were selected smaller to improve the
optimization time and to account for lower amounts of data.

Parameter name Distribution [range (inclusive)]

Max depth UniformInteger [4, 4]
Min samples split UniformInteger [2, 100]
Min samples leaf UniformInteger [50, 50]

Max leaf nodes UniformInteger [2, 16]
Min impurity decrease Uniform [0, 0.2]

Cost complexity pruning parameter α Uniform [0, 0.3]

Table 7: Distributions of hyperparameters of CART models used to compare to our
method. Max depth and Min samples in a leaf were fixed, but remain in the table for
completeness.

a single tree of max depth 5. In leaves with 100% training accuracy, we do not learn
any model and use the majority class.

CART models

For the hyperparameter optimization of CART models, we also used Bayesian search,
with the distributions shown in Table 7.

The search was run for 100 iterations, with 5-fold cross-validation on the same
training data sets as our model. After this search, the best hyperparameters were used
to train the model on the full training data. The resulting tree was reduced, and every
leaf was extended by an XGBoost model in the same way as our models.

A.7 Detailed results
We also provide the full results for each dataset. Figures 13 and 14 are decomposed
variants of Figure 5 for categorical and numerical datasets, respectively. We also pro-
vide exact results in Tables 8 and 9, respectively. The detailed results show that the
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Figure 13: Detailed performance comparison of our model on categorical datasets.

proposed model outperforms the CART model in both accuracy measures on almost all
datasets and has comparable accuracy to XGBoost. Performed statistical tests (signed
test and Wilcoxon’s signed-rank test) resulted in proving the statistical significance of
the better performance of the proposed model, compared to CART.

A.8 Other optimization approaches
The best-performing approach of warmstarting the MIP solver with a CART solution
is not the only one we tested. In Figure 15, we see a comparison of three different
approaches to optimization.

• Direct refers to the straightforward use of the MIP formulation.

• Warmstarted uses a simple CART solution (created using default hyperparame-
ters) as a starting point of the solving process.

• Gradual refers to a special process where we start by training a tree with a depth
equal to 1 and use the solution found in some given time to start the search for a
tree with a depth of 2, and so forth until we reach the desired depth.
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Leaf Accuracy Hybrid-tree Accuracy

categorical datasets CART Proposed CART Proposed XGBoost

albert 0.5033 0.5706 0.6455 0.6510 0.6559
compas-two-years 0.4504 0.5711 0.6714 0.6772 0.6807
covertype 0.5966 0.7071 0.8482 0.8567 0.8658
default-of-credit-card-clients 0.4471 0.5246 0.7110 0.7117 0.7184
electricity 0.6392 0.6250 0.8859 0.8781 0.8861
eye movements 0.4202 0.4109 0.6303 0.6449 0.6677
road-safety 0.5701 0.6158 0.7573 0.7579 0.7689

Mean rank 1.7143 1.2857 2.8571 2.1429 1.0000

Table 8: Categorical datasets. Mean accuracy of models on out-of-sample data and
average ranks.

Leaf Accuracy Hybrid-tree Accuracy

numerical datasets CART Proposed CART Proposed XGBoost

bank-marketing 0.4861 0.5837 0.8001 0.8003 0.8044
Bioresponse 0.5201 0.5700 0.7702 0.7755 0.7920
california 0.5593 0.6861 0.8827 0.8914 0.8997
covertype 0.5365 0.6314 0.8074 0.8147 0.8190
credit 0.5153 0.6439 0.7707 0.7462 0.7738
default-of-credit-card-clients 0.5011 0.5136 0.7132 0.7124 0.7156
Diabetes130US 0.4630 0.5204 0.6028 0.6051 0.6059
electricity 0.6392 0.6331 0.8724 0.8600 0.8683
eye movements 0.4229 0.4265 0.6343 0.6364 0.6554
Higgs 0.4910 0.5698 0.6953 0.6992 0.7142
heloc 0.4881 0.6722 0.7128 0.7188 0.7183
house 16H 0.5956 0.6336 0.8733 0.8726 0.8881
jannis 0.4550 0.5079 0.7579 0.7632 0.7778
MagicTelescope 0.5168 0.6835 0.8478 0.8518 0.8605
MiniBooNE 0.4821 0.5809 0.9192 0.9194 0.9369
pol 0.6073 0.6550 0.9810 0.9811 0.9915

Mean rank 1.9375 1.0625 2.6875 2.1875 1.1250

Table 9: Numerical datasets. Mean accuracy of models on out-of-sample data and av-
erage ranks.
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Figure 14: Detailed performance comparison of our model on numerical datasets.
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Figure 15: Comparison of the various approaches to the optimization given the same
resources and conditions. Warmstarted refers to the approach of starting the optimiza-
tion process with a CART solution. The gradual approach is the approach of increasing
the depth of a tree and starting each new depth with the solution of the previous, shal-
lower tree. Direct means a simple, straightforward optimization of the formulation, as
it is stated, without any hints. All three approaches were run with the same resources.
For a closer investigation of the Gradual approach, see Table 10.

Data type Minimal Mean (± std) Maximal

Leaf Accuracy categorical −0.1094 0.0122± 0.0753 0.1130
numerical −0.0867 0.0117± 0.0624 0.1154

Hybrid-tree Accuracy categorical −0.0219 −0.0021± 0.0094 0.0083
numerical −0.0103 −0.0023± 0.0056 0.0076

Table 10: Comparison of Gradual and Warmstarted approach. Positive numbers show
an advantage in the mean accuracy of the Proposed (Warmstarted) approach. Gradual
refers to the approach when the depth of the tree is gradually increased during the
optimization process.

All three approaches were run with the same resources. This meant that even the
gradual approach took 8 hours in total. The time was distributed in a way that the
available time for the optimization process doubled with each increase in depth. This
means 32 minutes for the first run, 64 minutes for the tree of depth 2, 128 for depth 3,
and 4 hours 16 minutes for the final tree with depth 4.

Interestingly, while the direct approach understandably does not reach a perfor-
mance similar to the warmstarted variant, the gradual approach shows more promise. It
has higher hybrid-tree accuracy by another 0.2 percentage points on average while hav-
ing lower leaf accuracy by about 1.2 percentage points compared to the warmstarted
approach (cf. Table 10).

A.9 Ablation Analyses
We provide some comparing experiments performed by changing a single hyperparam-
eter (or a few related ones) and comparing the performance.
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Figure 16: Comparison of CART tree results with limited depth and without such a
strict limit on the depth. Deeper trees provide worse explanations (due to the length
of explanation) and perform worse in both accuracy measures. For a more detailed
description of the differences introduced by the depth, consult Table 11.

Data type Minimal Mean (± std) Maximal

Leaf Accuracy categorical −0.0769 0.2053± 0.2389 0.5404
numerical −0.1183 0.2441± 0.2115 0.5680

Hybrid-tree Accuracy categorical −0.0025 0.0173± 0.0185 0.0420
numerical −0.0006 0.0156± 0.0119 0.0370

Table 11: Detailed view of the differences in the accuracy between CART trees with
max depth 4 and CART trees with max depth 20. A positive number means the accuracy
advantage of the more constrained model (depth ≤ 4). For a graphical representation,
see Figure 16.

Unlimited depth CART

An argument could be made against our choice to compare our method to CART trees
with the same limit on depth. Figure 16 and Table 11 in more detail show a comparison
of CART models with a maximal depth of 4 and a maximal depth of 20. The actual
depth limit for each model was optimized along with other hyperparameters using the
Bayes hyperparameter optimization procedure.

Note that these tests were performed in earlier stages of testing without a fixed
lower bound on the number of samples in a leaf and without cost complexity pruning.
The lower bound on the number of samples was optimized using the Bayes optimiza-
tion in the range [0, 50].

The aggregated results show worse performance regarding both leaf accuracy and
hybrid-tree accuracy. Not only do the deeper trees perform worse, but the length of
provided explanations is also well above the 5-9 threshold suggested as the limit of
human understanding [Feldman, 2000].

Different minimum number of samples in leaves

A similar comparison is to see the performance of classically optimized lower bound
on the number of samples in each leaf. Figure 17 shows a comparison of CART mod-
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Figure 17: Comparison of performance of the proposed model with minimum samples
in leaves equal 50 and 1 and of CART trees with parameter equivalent to Nmin fixed to
50 or undergoing hyperparameter optimization. Low values of Nmin lead to overfitting
to training data and worse out-of-sample performance. Notice the high deviation of
the model with Nmin = 1. CART trees suffer from a similar thing, which suggests two
things. Hyperparameter optimization does not opt for high Nmin values, and this seems
to be a property of trees in general, no matter how they are obtained.

els when the lower bound is fixed to 50 and when it is optimized within the range
from 1 to 60 using Bayesian hyperparameter optimization. The figure also includes the
performance of the proposed model when Nmin is set to 1.

It stresses the importance of setting a minimal amount of samples in leaves. Without
enough points to support the leaf’s accuracy, it is more likely to be overfitted. On the
other hand, when choosing the Nmin parameter too high, we restrict some possibly
beneficial splits, supported by a smaller amount of training data.

Nmin is a critical hyperparameter, and further testing could provide more insight
into the proposed model’s performance.

Non-warmstarted OCT

We compare our method to warmstarted OCT because the proposed method also starts
from the same initial CART solution. This makes them more comparable. However,
we also tested the OCT variant directly optimized from the MIP formulation. See the
results in Figure 18. Both OCT models were run with the same hyperparameters as
the proposed model. Those being the heuristics-oriented solver, depth equal to 4, and a
minimal amount of samples in leaves equal to 50.

The average OCT performs worse than all our approaches (cf. Figure 15, all ap-
proaches are above the 0.55 mark, contrary to OCT in Figure 18), but the improve-
ment from the warmstarted variant is intriguing since it clearly manages to overtake the
CART model. Especially considering that it is not caused by the direct OCT method’s
inability to create complex trees without warmstarting. This is supported by Figure 19
showing a distribution of the number of leaves similar to the distribution of CART trees
(cf. Figure 12). This suggests that the OCT trees have comparable tree complexity to
CART and provide more valid explanations than CART, even without our extension to
the formulation. This is an interesting result, considering the fact that neither CART
nor OCT methods optimize for leaf accuracy.

Our model, however, more than doubles the improvement of direct OCT.
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Figure 18: Comparison of OCT trees that are warmstarted the same way as our Pro-
posed model and OCT without the warmstart, optimized directly. Interestingly, direct
OCT performs significantly better.
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(a) Histogram of the number of leaves in the reduced trees of the direct OCT method
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(b) Histogram of the number of leaves in the reduced trees of the warmstarted OCT method.

Figure 19: Comparison of reduced tree complexity of the OCT with and without warm-
start. OCT without warmstart creates trees of similar distribution as the CART method
(cf. Figure 12). And it achieves better leaf accuracy than CART (cf. Figure 18) despite
neither optimizing that objective.
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Deeper trees

Lastly, we provide a comparison of the proposed model of depths 4 and 5. Figure 20a
shows better overall results for shallower trees. This is likely caused by the exponential
increase in memory requirements, given the decrease in overall accuracy as well. We
provide data about its memory usage in Figure 20. With a model of twice the com-
plexity, the solver struggles to achieve comparable results to the shallower proposed
model.

This is certainly a topic of further exploration by incorporating scalability improve-
ments proposed in the literature.

A.10 More data
The 10,000 size limit on training samples was suggested by the authors of the bench-
mark [Grinsztajn et al., 2022]. Another good reason for such a limit is that we want
our model to balance the size of the formulation and the capability of the formulated
model. In other words, if we take a small amount of data, we are less likely to grasp
the intricacies of the target variable distribution within the dataset. And if we take too
many samples, we create a formulation that will not achieve good performance in a
reasonable time.

In a comparison of a model learned on a training dataset limited to 10,000 samples
with a dataset limited to 50,000 samples, we see that more data does not necessarily
lead to a better model, given the same time resources, see Figure 21. The 50,000 model
is worse because of the too-demanding complexity of the formulation.

It improves the model accuracy, which is unsurprising since each leaf obtains more
samples. The comparison to XGBoost is unreliable since the mean value for XGBoost
was computed from the performance of models trained on at most 10,000 samples.
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(a) Comparison of performances of the proposed model with depths 4 and 5. Shallower
trees perform better, possibly because they are easier to optimize.
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(b) Depth 5. Histogram of memory requirements of MIP solver for all dataset splits.
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(c) Depth 5. Mean memory requirements on datasets. Dots are colored according to the number
of features. Dataset Bioresponse is excluded from the color mapping due to having a significantly
higher number of features. Training sets were clipped to a maximum of 10,000 points.

Figure 20: Comparison of the memory requirements of the Proposed model with depth
5. The mean memory requirement almost increases from cca 51.1 GB to 77.3 GB with
an increase in depth from 4 to 5. Compare the above plots with Figure 9.
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Figure 21: Comparison of a proposed model trained on at most 10,000 and 50,000
data samples. We use only datasets where the constraint caused a change, meaning
we omit datasets with less than 12,500 samples. The number of datasets is in square
brackets. All other presented models use only 10,000 samples, so the comparison of
model accuracies is not fully representative.
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