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Abstract

Though CNNs have achieved the state-of-the-art perfor-

mance on various vision tasks, they are vulnerable to adver-

sarial examples — crafted by adding human-imperceptible

perturbations to clean images. However, most of the ex-

isting adversarial attacks only achieve relatively low suc-

cess rates under the challenging black-box setting, where

the attackers have no knowledge of the model structure and

parameters. To this end, we propose to improve the trans-

ferability of adversarial examples by creating diverse in-

put patterns. Instead of only using the original images to

generate adversarial examples, our method applies random

transformations to the input images at each iteration. Ex-

tensive experiments on ImageNet show that the proposed at-

tack method can generate adversarial examples that trans-

fer much better to different networks than existing base-

lines. By evaluating our method against top defense so-

lutions and official baselines from NIPS 2017 adversarial

competition, the enhanced attack reaches an average suc-

cess rate of 73.0%, which outperforms the top-1 attack sub-

mission in the NIPS competition by a large margin of 6.6%.

We hope that our proposed attack strategy can serve as a

strong benchmark baseline for evaluating the robustness of

networks to adversaries and the effectiveness of different de-

fense methods in the future. Code is available at https:

//github.com/cihangxie/DI-2-FGSM .

1. Introduction

Recent success of Convolutional Neural Networks

(CNNs) leads to a dramatic performance improvement on

various vision tasks, including image classification [15, 32,

13], object detection [10, 28, 40] and semantic segmen-

tation [22, 5]. However, CNNs are extremely vulnerable

to small perturbations to the input images, i.e., human-

imperceptible additive perturbations can result in failure

predictions of CNNs. These intentionally crafted images

are known as adversarial examples [36]. Learning how to

generate adversarial examples can help us investigate the
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Figure 1. The comparison of success rates using three different

attacks. The ground-truth “walking stick” is marked as pink in the

top-5 confidence distribution plots. The adversarial examples are

crafted on Inception-v3 with the maximum perturbation ǫ = 15.

From the first row to the the third row, we plot the top-5 confidence

distributions of clean images, FGSM and I-FGSM, respectively.

The fourth row shows the result of the proposed Diverse Inputs

Iterative Fast Gradient Sign Method (DI2-FGSM), which attacks

the white-box model and all black-box models successfully.

robustness of different models [1] and understand the insuf-

ficiency of current training algorithms [11, 17, 37].

Several methods [11, 36, 16] have been proposed re-

cently to find adversarial examples. In general, these at-

tacks can be categorized into two types according to the

number of steps of gradient computation, i.e., single-step

attacks [11] and iterative attacks [36, 16]. Generally, itera-

tive attacks can achieve higher success rates than single-step

attacks in the white-box setting, where the attackers have

a perfect knowledge of the network structure and weights.

However, if these adversarial examples are tested on a dif-

ferent network (either in terms of network structure, weights

or both), i.e., the black-box setting, single-step attacks per-

form better. This trade-off is due to the fact that iterative

attacks tend to overfit the specific network parameters (i.e.,

have high white-box success rates) and thus making gener-

ated adversarial examples rarely transfer to other networks

(i.e., have low black-box success rates), while single-step

attacks usually underfit to the network parameters (i.e., have
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low white-box success rates) thus producing adversarial ex-

amples with slightly better transferability. Observing the

phenomenon, one interesting question is whether we can

generate adversarial examples with high success rates un-

der both white-box and black-box settings.

In this work, we propose to improve the transferability of

adversarial examples by creating diverse input patterns. Our

work is inspired by the data augmentation [15, 32, 13] strat-

egy, which has been proven effective to prevent networks

from overfitting by applying a set of label-preserving trans-

formations (e.g., resizing, cropping and rotating) to training

images. Meanwhile, [38, 12] showed that image transfor-

mations can defend against adversarial examples under cer-

tain situations, which indicates adversarial examples can-

not generalize well under different transformations. These

transformed adversarial examples are known as hard exam-

ples [30, 31] for attackers, which can then be served as good

samples to produce more transferable adversarial examples.

We incorporate the proposed input diversity strategy

with iterative attacks, e.g., I-FGSM [17] and MI-FGSM [9].

At each iteration, unlike the traditional methods which max-

imize the loss function directly w.r.t. the original inputs, we

apply random and differentiable transformations (e.g., ran-

dom resizing, random padding) to the input images with

probability p and maximize the loss function w.r.t. these

transformed inputs. Note that these randomized operations

were previously used to defend against adversarial exam-

ples [38], while here we incorporate them into the attack

process to create hard and diverse input patterns. Fig. 1

shows an adversarial example generated by our method and

compares the success rates to other attack methods under

both white-box and black-box settings.

We test the proposed input diversity on several network

under both white-box and black-box settings, and single-

model and multi-model settings. Compared with traditional

iterative attacks, the results on ImageNet (see Sec. 4.2)

show that our method gets significantly higher success rates

for black-box models and maintains similar success rates

for white-box models. By evaluating our attack method

w.r.t. the top defense solutions and official baselines from

NIPS 2017 adversarial competition [18], this enhanced at-

tack reaches an average success rate of 73.0%, which out-

performs the top-1 attack submission in the NIPS competi-

tion by a large margin of 6.6%. We hope that our proposed

attack strategy can serve as a benchmark for evaluating the

robustness of networks to adversaries and the effectiveness

of different defense methods in future.

2. Related Work

2.1. Generating Adversarial Examples

Traditional machine learning algorithms are known to

be vulnerable to adversarial examples [7, 14, 3]. Recently,

Szegedy et al. [36] pointed out that CNNs are also fragile

to adversarial examples, and proposed a box-constrained L-

BFGS method to find adversarial examples reliably. Due to

the expensive computation in [36], Goodfellow et al. [11]

proposed the fast gradient sign method to generate adver-

sarial examples efficiently by performing a single gradient

step. This method was extended by Kurakin et al. [16] to an

iterative version, and showed that the generated adversarial

examples can exist in the physical world. Dong et al. [9]

proposed a broad class of momentum-based iterative algo-

rithms to boost the transferability of adversarial examples.

The transferability can also be improved by attacking an

ensemble of networks simultaneously [21]. Besides image

classification, adversarial examples also exist in object de-

tection [39], semantic segmentation [39, 6], speech recog-

nition [6], deep reinforcement learning [20], etc.. Unlike

adversarial examples which can be recognized by human,

Nguyen et al. [25] generated fooling images that are dif-

ferent from natural images and difficult for human to recog-

nize, but CNNs classify these images with high confidences.

Our proposed input diversity is also related to EOT [2].

These two works differ in several aspects: (1) we mainly fo-

cus on the challenging black-box setting while [2] focuses

on the white-box setting; (2) our work aims at alleviating

overfitting in adversarial attacks, while [2] aims at making

adversarial examples robust to transformations, without any

discussion of overfitting; and (3) we do not apply expecta-

tion step in each attack iteration, while “expectation” is the

core idea in [2].

2.2. Defending Against Adversarial Examples

Conversely, many methods have been proposed recently

to defend against adversarial examples. [11, 17] proposed to

inject adversarial examples into the training data to increase

the network robustness. Tramèr et al. [37] pointed out that

such adversarially trained models still remain vulnerable to

adversarial examples, and proposed ensemble adversarial

training, which augments training data with perturbations

transferred from other models, in order to improve the net-

work robustness further. [38, 12] utilized randomized im-

age transformations to inputs at inference time to mitigate

adversarial effects. Dhillon et al. [8] pruned a random sub-

set of activations according to their magnitude to enhance

network robustness. Prakash et al. [27] proposed a frame-

work which combines pixel deflection with soft wavelet de-

noising to defend against adversarial examples. [24, 33, 29]

leveraged generative models to purify adversarial images by

moving them back towards the distribution of clean images.

3. Methodology

Let X denote an image, and ytrue denote the correspond-

ing ground-truth label. We use θ to denote the network pa-

rameters, and L(X, ytrue; θ) to denote the loss. To generate
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the adversarial example, the goal is to maximize the loss

L(X+ r, ytrue; θ) for the image X , under the constraint that

the generated adversarial example Xadv = X + r should

look visually similar to the original image X and the corre-

sponding predicted label yadv 6= ytrue. In this work, we use

l∞-norm to measure the perceptibility of adversarial pertur-

bations, i.e., ||r||∞ ≤ ǫ. The loss function is defined as

L(X, ytrue; θ) = −✶ytrue · log (softmax(l(X; θ))) , (1)

where ✶ytrue is the one-hot encoding of the ground-truth

ytrue and l(X; θ) is the logits output. Note that all the

baseline attacks have been implemented in the cleverhans

library [26], which can be used directly for our experiments.

3.1. Family of Fast Gradient Sign Methods

In this section, we give an overview of the family of fast

gradient sign methods.

Fast Gradient Sign Method (FGSM). FGSM [11] is the

first member in this attack family, which finds the adver-

sarial perturbations in the direction of the loss gradient

∇XL(X, ytrue; θ). The update equation is

Xadv = X + ǫ · sign(∇XL(X, ytrue; θ)). (2)

Iterative Fast Gradient Sign Method (I-FGSM). Ku-

rakin et al. [17] extended FGSM to an iterative version,

which can be expressed as

Xadv
0 = X (3)

Xadv
n+1 = ClipǫX

{

Xadv
n + α · sign(∇XL(Xadv

n , ytrue; θ))
}

,

where Clipǫ
X indicates the resulting image are clipped

within the ǫ-ball of the original image X , n is the iteration

number and α is the step size.

Momentum Iterative Fast Gradient Sign Method (MI-

FGSM). MI-FGSM [9] proposed to integrate the momen-

tum term into the attack process to stabilize update direc-

tions and escape from poor local maxima. The updating

procedure is similar to I-FGSM, with the replacement of

Eq. (3) by:

gn+1 = µ · gn +
∇XL(Xadv

n , ytrue; θ)

||∇XL(Xadv
n , ytrue; θ)||1

Xadv
n+1 = ClipǫX

{

Xadv
n + α · sign(gn+1)

}

,

(4)

where µ is the decay factor of the momentum term and gn
is the accumulated gradient at iteration n.

3.2. Motivation

Let θ̂ denote the unknown network parameters.

In general, a strong adversarial example should

have high success rates on both white-box mod-

els, i.e., L(Xadv, ytrue; θ) > L(X, ytrue; θ), and black-box

models, i.e., L(Xadv, ytrue; θ̂) > L(X, ytrue; θ̂). On one

hand, the traditional single-step attacks, e.g., FGSM, tend

to underfit to the specific network parameters θ due to

inaccurate linear appropriation of the loss L(X, ytrue; θ),
thus cannot reach high success rates on white-box models.

On the other hand, the traditional iterative attacks, e.g., I-

FGSM, greedily perturb the images in the direction of the

sign of the loss gradient ∇XL(X, ytrue; θ) at each iteration,

and thus easily fall into the poor local maxima and overfit

to the specific network parameters θ. These overfitted

adversarial examples rarely transfer to black-box models.

In order to generate adversarial examples with strong

transferability, we need to find a better way to optimize the

loss L(X, ytrue; θ) to alleviate this overfitting phenomenon.

Data augmentation [15, 32, 13] is shown as an effective

way to prevent networks from overfitting during the train-

ing process. Meanwhile, [38, 12] showed that adversarial

examples are no longer malicious if simple image trans-

formations are applied, which indicates these transformed

adversarial images can serve as good samples for better op-

timization. Those facts inspire us to apply random and dif-

ferentiable transformations to the inputs for the sake of the

transferability of adversarial examples.

3.3. Diverse Input Patterns

Based on the analysis above, we aim at generating more

transferable adversarial examples via diverse input patterns.

DI2-FGSM. First, we propose the Diverse Inputs Iterative

Fast Gradient Sign Method (DI2-FGSM), which applies im-

age transformations T (·) to the inputs with the probability p
at each iteration of I-FGSM [17] to alleviate the overfitting

phenomenon.

In this paper, we consider random resizing, which resizes

the input images to a random size, and random padding,

which pads zeros around the input images in a random man-

ner [38], as the instantiation of the image transformations

T (·)1. The transformation probability p controls the trade-

off between success rates on white-box models and success

rates on black-box models, which can be observed from

Fig. 4. If p = 0, DI2-FGSM degrades to I-FGSM and leads

to overfitting. If p = 1, i.e., only transformed inputs are

used for the attack, the generated adversarial examples tend

to have much higher success rates on black-box models but

lower success rates on white-box models, since the original

inputs are not seen by the attackers.

In general, the updating procedure of DI2-FGSM is sim-

ilar to I-FGSM, with the replacement of Eq. (3) by

X
adv
n+1 = Clip

ǫ

X
{Xadv

n +α ·sign
(

∇XL(T (Xadv

n ; p), ytrue; θ)
)

},

(5)

1We have also experimented with other image transformations, e.g.,

rotation or flipping, to create diverse input patterns, and found random re-

sizing & padding yields adversarial examples with the best transferability.
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Figure 2. Relationships between different attacks. By setting

setting values of the transformation probability p, the decay factor

µ and the total iteration number N , we can relate these different

attacks in the family of Fast Gradient Sign Methods.

where the stochastic transformation function T (Xadv
n ; p) is

T (Xadv
n ; p) =

{

T (Xadv
n ) with probability p

Xadv
n with probability 1− p

. (6)

M-DI2-FGSM. Intuitively, momentum and diverse inputs

are two completely different ways to alleviate the overfit-

ting phenomenon. We can combine them naturally to form

a much stronger attack, i.e., Momentum Diverse Inputs Iter-

ative Fast Gradient Sign Method (M-DI2-FGSM). The over-

all updating procedure of M-DI2-FGSM is similar to MI-

FGSM, with the only replacement of Eq. (4) by

gn+1 = µ · gn +
∇XL(T (Xadv

n ; p), ytrue; θ)

||∇XL(T (Xadv
n ; p), ytrue; θ)||1

. (7)

3.4. Relationships between Different Attacks

The attacks mentioned above all belong to the family of

Fast Gradient Sign Methods, and they can be related via dif-

ferent parameter settings as shown in Fig. 2. To summarize,

• If the transformation probability p = 0, M-DI2-FGSM

degrades to MI-FGSM, and DI2-FGSM degrades to I-

FGSM.

• If the decay factor µ = 0, M-DI2-FGSM degrades to

DI2-FGSM, and MI-FGSM degrades to I-FGSM.

• If the total iteration number N = 1, I-FGSM degrades

to FGSM.

3.5. Attacking an Ensemble of Networks

Liu et al. [21] suggested that attacking an ensemble

of multiple networks simultaneously can generate much

stronger adversarial examples. The motivation is that if

an adversarial image remains adversarial for multiple net-

works, then it is more likely to transfer to other networks

as well. Therefore, we can use this strategy to improve the

transferability even further.

We follow the ensemble strategy proposed in [9], which

fuse the logit activations together to attack multiple net-

works simultaneously. Specifically, to attack an ensemble

of K models, the logits are fused by:

l(X; θ1, ..., θK) =

K
∑

k=1

wklk(X; θk) (8)

where lk(X; θk) is the logits output of the k-th model with

the parameters θk, wk is the ensemble weight with wk ≥ 0

and
K
∑

k=1

wk = 1.

4. Experiment

4.1. Experiment Setup

Dataset. It is less meaningful to attack the images that are

already classified wrongly. Therefore, we randomly choose

5000 images from the ImageNet validation set that are clas-

sified correctly by all the networks which we test on, to form

our test dataset. All these images are resized to 299×299×3
beforehand.

Networks. We consider four normally trained net-

works, i.e., Inception-v3 (Inc-v3) [35], Inception-v4 (Inc-

v4) [34], Resnet-v2-152 (Res-152) [13] and Inception-

Resnet-v2 (IncRes-v2) [34], and three adversarially trained

networks [37], i.e., ens3-adv-Inception-v3 (Inc-v3ens3),

ens4-adv-Inception-v3 (Inc-v3ens4) and ens-adv-Inception-

ResNet-v2 (IncRes-v2ens). All networks are publicly avail-

able2,3.

Implementation details. For the parameters of different

attackers, we follow the default settings in [16] with the

step size α = 1 and the total iteration number N =
min(ǫ + 4, 1.25ǫ). We set the maximum perturbation of

each pixel to be ǫ = 15, which is still imperceptible for hu-

man observers [23]. For the momentum term, decay factor

µ is set to be 1 as in [9]. For the stochastic transformation

function T (X; p), the probability p is set to be 0.5, i.e., at-

tackers put equal attentions on the original inputs and the

transformed inputs. For transformation operations T (·), the

input X is first randomly resized to a rnd × rnd × 3 im-

age, with rnd ∈ [299, 330), and then padded to the size

330× 330× 3 in a random manner.

4.2. Attacking a Single Network

We first perform adversarial attacks on a single network.

We craft adversarial examples only on normally trained net-

works, and test them on all seven networks. The success

rates are shown in Table 1, where the diagonal blocks in-

dicate white-box attacks and off-diagonal blocks indicate

black-box attacks. We list the networks that we attack on in

rows, and networks that we test on in columns.

From Table 1, a first glance shows that M-DI2-FGSM

outperforms all other baseline attacks by a large margin on

all black-box models, and maintains high success rates on

all white-box models. For example, if adversarial examples

2https://github.com/tensorflow/models/tree/

master/research/slim
3https://github.com/tensorflow/models/tree/

master/research/adv_imagenet_models
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Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-152 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3

FGSM 64.6% 23.5% 21.7% 21.7% 8.0% 7.5% 3.6%

I-FGSM 99.9% 14.8% 11.6% 8.9% 3.3% 2.9% 1.5%

DI2-FGSM (Ours) 99.9% 35.5% 27.8% 21.4% 5.5% 5.2% 2.8%

MI-FGSM 99.9% 36.6% 34.5% 27.5% 8.9% 8.4% 4.7%

M-DI2-FGSM (Ours) 99.9% 63.9% 59.4% 47.9% 14.3% 14.0% 7.0%

Inc-v4

FGSM 26.4% 49.6% 19.7% 20.4% 8.4% 7.7% 4.1%

I-FGSM 22.0% 99.9% 13.2% 10.9% 3.2% 3.0% 1.7%

DI2-FGSM (Ours) 43.3% 99.7% 28.9% 23.1% 5.9% 5.5% 3.2%

MI-FGSM 51.1% 99.9% 39.4% 33.7% 11.2% 10.7% 5.3%

M-DI2-FGSM (Ours) 72.4% 99.5% 62.2% 52.1% 17.6% 15.6% 8.8%

IncRes-v2

FGSM 24.3% 19.3% 39.6% 19.4% 8.5% 7.3% 4.8%

I-FGSM 22.2% 17.7% 97.9% 12.6% 4.6% 3.7% 2.5%

DI2-FGSM (Ours) 46.5% 40.5% 95.8% 28.6% 8.2% 6.6% 4.8%

MI-FGSM 53.5% 45.9% 98.4% 37.8% 15.3% 13.0% 8.8%

M-DI2-FGSM (Ours) 71.2% 67.4% 96.1% 57.4% 25.1% 20.7% 14.9%

Res-152

FGSM 34.4% 28.5% 27.1% 75.2% 12.4% 11.0% 6.0%

I-FGSM 20.8% 17.2% 14.9% 99.1% 5.4% 4.6% 2.8%

DI2-FGSM (Ours) 53.8% 49.0% 44.8% 99.2% 13.0% 11.1% 6.9%

MI-FGSM 50.1% 44.1% 42.2% 99.0% 18.2% 15.2% 9.0%

M-DI2-FGSM (Ours) 78.9% 76.5% 74.8% 99.2% 35.2% 29.4% 19.0%

Table 1. The success rates on seven networks where we attack a single network. The diagonal blocks indicate white-box attacks, while

the off-diagonal blocks indicate black-box attacks which are much more challenging. Experiment results demonstrate that our proposed

input diversity strategy substantially improve the transferability of generated adversarial examples.
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Figure 3. Visualization of randomly selected clean images and

their corresponding adversarial examples. All these adversarial

examples are generated on Inception-v3 using our proposed DI2-

FGSM with the maximum perturbation of each pixel ǫ = 15.

are crafted on IncRes-v2, M-DI2-FGSM has success rates

of 67.4% on Inc-v4 (normally trained black-box model)

and 25.1% on Inc-v3ens3 (adversarially trained black-box

model), while strong baselines like MI-FGSM only obtains

the corresponding success rates of 45.9% and 15.3%, re-

spectively. This convincingly demonstrates the effective-

ness of the combination of input diversity and momentum

for improving the transferability of adversarial examples.

We then compare the success rates of I-FGSM and

DI2-FGSM to see the effectiveness of diverse input pat-

terns solely. By generating adversarial examples with in-

put diversity, DI2-FGSM significantly improves the suc-

cess rates of I-FGSM on challenging black-box models, re-

gardless whether this model is adversarially trained, and

maintains high success rates on white-box models. For

example, if adversarial examples are crafted on Res-152,

DI2-FGSM has success rates of 99.2% on Res-152 (white-

box model), 53.8% on Inc-v3 (normally trained black-

box model) and 11.1% on Inc-v3ens4 (adversarially trained

black-box model), while I-FGSM only obtains the corre-

sponding success rates of 99.1%, 20.8% and 4.6%, respec-

tively. Compared with FGSM, DI2-FGSM also reaches

much higher success rates on the normally trained black-

box models, and comparable performance on the adversari-

ally trained black-box models. Besides, we visualize 5 ran-

domly selected pairs of such generated adversarial images

and their clean counterparts in Figure 3. These visualization

results show that these generated adversarial perturbations

are human imperceptible.

It should be mentioned that the proposed input diver-

sity is not merely applicable to fast gradient sign meth-

ods. To demonstrate the generalization, we also incorpo-

rate C&W attack [4] with input diversity. The experiment is

conducted on 1000 correctly classified images. For the pa-

rameters of C&W, the maximal iteration is 250, the learning

rate is 0.01 and the confidence is 10. As Table 2 suggests,

our method D-C&W obtains a significant performance im-

provement over C&W on black-box models.

4.3. Attacking an Ensemble of Networks

Though the results in Table 1 show that momentum and

input diversity can significantly improve the transferability

of adversarial examples, they are still relatively weak at at-

tacking an adversarially trained network under the black-

box setting, e.g., the highest black-box success rate on

IncRes-v2ens is only 19.0%. Therefore, we follow the strat-
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Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-152 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3
C&W 100.0% 5.7% 5.3% 5.1% 3.0% 2.5% 1.1%

D-C&W (Ours) 100.0% 16.8% 13.0% 11.2% 5.8% 3.9% 2.1%

Inc-v4
C&W 15.1% 100.0% 9.2% 7.8% 4.4% 3.5% 1.9%

D-C&W (Ours) 29.3% 100.0% 20.1% 15.4% 7.1% 5.3% 3.1%

IncRes-v2
C&W 15.8% 11.2% 99.9% 8.6% 6.3% 3.6% 3.4%

D-C&W (Ours) 33.9% 25.6% 100.0% 19.4% 11.2% 7.3% 4.0%

Res-152
C&W 11.4% 6.9% 6.1% 100.0% 4.4% 4.1% 2.3%

D-C&W (Ours) 33.0% 27.7% 24.4% 100.0% 13.1% 9.3% 5.7%

Table 2. The success rates on seven networks where we attack a single network using C&W attack. Experiment results demonstrate

that the proposed input diversity strategy can enhance C&W attack for generating more transferable adversarial examples.

Model Attack -Inc-v3 -Inc-v4 -IncRes-v2 -Res-152 -Inc-v3ens3 -Inc-v3ens4 -IncRes-v2ens

Ensemble

I-FGSM 96.6% 96.9% 98.7% 96.2% 97.0% 97.3% 94.3%

DI2-FGSM (Ours) 88.9% 89.6% 93.2% 87.7% 91.7% 91.7% 93.2%

MI-FGSM 96.9% 96.9% 98.8% 96.8% 96.8% 97.0% 94.6%

M-DI2-FGSM (Ours) 90.1% 91.1% 94.0% 89.3% 92.8% 92.7% 94.9%

Hold-out

I-FGSM 43.7% 36.4% 33.3% 25.4% 12.9% 15.1% 8.8%

DI2-FGSM (Ours) 69.9% 67.9% 64.1% 51.7% 36.3% 35.0% 30.4%

MI-FGSM 71.4% 65.9% 64.6% 55.6% 22.8% 26.1% 15.8%

M-DI2-FGSM (Ours) 80.7% 80.6% 80.7% 70.9% 44.6% 44.5% 39.4%

Table 3. The success rates of ensemble attacks. Adversarial examples are generated on an ensemble of six networks, and tested on the

ensembled network (white-box setting) and the hold-out network (black-box setting). The sign “-” indicates the hold-out network. We

observe that the proposed M-DI2-FGSM significantly outperforms all other attacks on all black-box models.

egy in [21] to attack multiple networks simultaneously in

order to further improve transferability. We consider all

seven networks here. Adversarial examples are generated

on an ensemble of six networks, and tested on the ensem-

bled network and the hold-out network, using I-FGSM, DI2-

FGSM, MI-FGSM and M-DI2-FGSM, respectively. FGSM

is ignored here due to its low success rates on white-box

models. All ensembled models are assigned with equal

weight, i.e., wk = 1/6.

The results are summarized in Table 3, where the top row

shows the success rates on the ensembled network (white-

box setting), and the bottom row shows the success rates on

the hold-out network (black-box setting). Under the chal-

lenging black-box setting, we observe that M-DI2-FGSM

always generates adversarial examples with better transfer-

ability than other methods on all networks. For example,

by keeping Inc-v3ens3 as a hold-out model, M-DI2-FGSM

can fool Inc-v3ens3 with an success rate of 44.6%, while I-

FGSM, DI2-FGSM and MI-FGSM only have success rates

of 12.9%, 36.3% and 22.8%, respectively. Besides, com-

pared with MI-FGSM, we observe that using diverse input

patterns alone, i.e., DI2-FGSM, can reach a much higher

success rate if the hold-out model is an adversarially trained

network, and a comparable success rate if the hold-out

model is a normally trained network.

Under the white-box setting, we see that DI2-FGSM and

M-DI2-FGSM reach slightly lower (but still very high) suc-

cess rates on ensemble models compared with I-FGSM and

MI-FGSM. This is due to the fact that attacking multiple

networks simultaneously is much harder than attacking a

single model. However, the white-box success rates can be

improved if we assign the transformation probability p with

a smaller value, increase the number of total iteration N or

use a smaller step size α (see Sec. 4.4).

4.4. Ablation Studies

In this section, we conduct a series of ablation experi-

ments to study the impact of different parameters. We only

consider attacking an ensemble of networks here, since it

is much stronger than attacking a single network and can

provide a more accurate evaluation of the network robust-

ness. The max perturbation of each pixel ǫ is set to 15 for

all experiments.

Transformation probability p. We first study the influ-

ence of the transformation probability p on the success

rates under both white-box and black-box settings. We

set the step size α = 1 and the total iteration number

N = min(ǫ + 4, 1.25ǫ). The transformation probability p
varies from 0 to 1. Recall the relationships shown in Fig. 2,

M-DI2-FGSM (or DI2-FGSM) degrades to MI-FGSM (or

I-FGSM) if p = 0.

We show the success rates on various networks in Fig. 4.

We observe that both DI2-FGSM and M-DI2-FGSM achieve

a higher black-box success rates but lower white-box suc-

cess rates as p increase. Moreover, for all attacks, if p is

small, i.e., only a small amount of transformed inputs are

utilized, black-box success rates can increase significantly,

while white-box success rates only drop a little. This phe-

nomenon reveals the importance of adding transformed in-

puts into the attack process.
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Figure 4. The success rates of DI2-FGSM (a) and M-DI2-FGSM

(b) when varying the transformation probability p. “Ensem-

ble” (white-box setting) is with dashed lines and “Hold-out”

(black-box setting) is with solid lines.
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Figure 5. The success rates of DI2-FGSM (a) and M-DI2-FGSM

(b) when varying the total iteration number N . “Ensemble”

(white-box setting) is with dashed lines and “Hold-out” (black-

box setting) is with solid lines.

The trends shown in Fig. 4 also provide useful sugges-

tions of constructing strong adversarial attacks in practice.

For example, if you know the black-box model is a new

network that totally different from any existing networks,

you can set p = 1 to reach the maximum transferability. If

the black-box model is a mixture of new networks and ex-

isting networks, you can choose a moderate value of p to

maximize the black-box success rates under a pre-defined

white-box success rates, e.g., white-box success rates must

greater or equal than 90%.

Total iteration number N . We then study the influence of

the total iteration number N on the success rates under both

white-box and black-box settings. We set the transforma-

tion probability p = 0.5 and the step size α = 1. The total
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Figure 6. The success rates of DI2-FGSM (a) and M-DI2-FGSM

(b) when varying the step size α. “Ensemble” (white-box setting)

is with dashed lines and “Hold-out” (black-box setting) is with

solid lines.

iteration number N varies from 15 to 31, and the results are

plotted in Fig. 5. For DI2-FGSM, we see that the black-box

success rates and white-box success rates always increase

as the total iteration number N increase. Similar trends can

also be observed for M-DI2-FGSM except for the black-box

success rates on adversarially trained models, i.e., perform-

ing more iterations cannot bring extra transferability on ad-

versarially trained models. Moreover, we observe that the

success rates gap between M-DI2-FGSM and DI2-FGSM is

diminished as N increases.

Step size α. We finally study the influence of the step size

α on the success rates under both white-box and black-box

settings. We set the transformation probability p = 0.5.

In order to reach the maximum perturbation ǫ even for a

small step size α, we set the total iteration number be pro-

portional to the step size, i.e., N = ǫ/α. The results are

plotted in Fig. 6. We observe that the white-box success

rates of both DI2-FGSM and M-DI2-FGSM can be boosted

if a smaller step size is provided. Under the black-box set-

ting, the success rates of DI2-FGSM is insensitive to the

step size, while the success rates of M-DI2-FGSM can still

be improved with smaller step size.

4.5. NIPS 2017 Adversarial Competition

In order to verify the effectiveness of our proposed at-

tack methods in practice, we here reproduce the top defense

entries and official baselines from NIPS 2017 adversarial

competition [18] for testing transferability. Due to the re-

source limitation, we only consider the top-3 defense en-

tries, i.e., TsAIL [19], iyswim [38] and Anil Thomas4, as well

3 official baselines, i.e., Inc-v3adv, IncRes-v2ens and Inc-v3.

4https://github.com/anlthms/nips-2017/tree/

master/mmd
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Attack TsAIL iyswim Anil Thomas Inc-v3adv IncRes-v2ens Inc-v3 Average

I-FGSM 14.0% 35.6% 30.9% 98.2% 96.4% 99.0% 62.4%

DI2-FGSM (Ours) 22.7% 58.4% 48.0% 91.5% 90.7% 97.3% 68.1%

MI-FGSM 14.9% 45.7% 46.6% 97.3% 95.4% 98.7% 66.4%

MI-FGSM* 13.6% 43.2% 43.9% 94.4% 93.0% 97.3% 64.2%

M-DI2-FGSM (Ours) 20.0% 69.8% 64.4% 93.3% 92.4% 97.9% 73.0%

Table 4. The success rates on top defense solutions and official baselines from NIPS 2017 adversarial competition [18]. * indicates

the official results reported in the competition. Our proposed M-DI2-FGSM reaches an average success rate of 73.0%, which outperforms

the top-1 attack submission in the NIPS competition by a large margin of 6.6%.

We note that the No.1 solution and the No.3 solution apply

significantly different image transformations (compared to

random resizing & padding used in our attack method) for

defending against adversarial examples. For example, the

No.1 solution, TsAIL, applies an image denoising network

for removing adversarial perturbations, and the No.3 solu-

tion, Anil Thomas, includes a series of image transforma-

tions, e.g., JPEG compression, rotation, shifting and zoom-

ing, in the defense pipeline. The test dataset contains 5000
images which are all of the size 299 × 299 × 3, and their

corresponding labels are the same as the ImageNet labels.

Generating adversarial examples. When generating ad-

versarial examples, we follow the procedure in [18]: (1)

split the dataset equally into 50 batches; (2) for each batch,

the maximum perturbation ǫ is randomly chosen from the

set { 4

255
, 8

255
, 12

255
, 16

255
}; and (3) generate adversarial exam-

ples for each batch under the corresponding ǫ constraint.

Attacker settings. For the settings of attackers, we fol-

low [9] by attacking an ensemble eight diferent models, i.e.,

Inc-v3, Inc-v4, IncRes-v2, Res-152, Inc-v3ens3, Inc-v3ens4,

IncRes-v2ens and Inc-v3adv [17]. The ensemble weights

are set as 1/7.25 equally for the first seven models and

0.25/7.25 for Inc-v3adv. The total iteration number N is

10 and the decay factor µ is 1. This configuration for MI-

FGSM won the 1-st place in the NIPS 2017 adversarial at-

tack competition. For DI2-FGSM and M-DI2-FGSM, we

choose p = 0.4 according to the trends shown in Fig. 4.

Results. The results are summarized in Table 4. We also

report the official results of MI-FGSM (named MI-FGSM*)

as a reference to validate our implementation. The per-

formance difference between MI-FGSM and MI-FGSM*

is due to the randomness of the max perturbation magni-

tude introduced in the attack process. Compared with MI-

FGSM, DI2-FGSM have higher success rates on top de-

fense solutions while slightly lower success rates on base-

line models, which results in these two attack methods hav-

ing similar average success rates. By integrating both di-

verse inputs and momentum term, this enhanced attack,

M-DI2-FGSM, reaches an average success rate of 73.0%,

which is far better than other methods. For example, the

top-1 attack submission, MI-FGSM, in the NIPS competi-

tion only gets an average success rate of 66.4%. We believe

this superior transferability can also be observed on other

defense submissions which we do not evaluate on.

4.6. Discussion

We provide a brief discussion of why the proposed di-

verse input patterns can help to generate adversarial exam-

ples with better transferability. One hypothesis is that the

decision boundaries of different networks share similar in-

herent structures due to the same training dataset, e.g., Im-

ageNet. For example, as shown in Fig 1, different networks

make similar mistakes in the presence of adversarial exam-

ples. By incorporating diverse patterns at each attack iter-

ation, the optimization produces adversarial examples that

are more robust to small transformations. These adversarial

examples are malicious in a certain region at the network

decision boundary, thus increasing the chance to fool other

networks, i.e., they achieve better black-box success rate

than existing methods. In the future, we plan to validate

this hypothesis theoretically or empirically.

5. Conclusions

In this paper, we propose to improve the transferability

of adversarial examples with input diversity. Specifically,

our method applies random transformations to the input im-

ages at each iteration in the attack process. Compared with

traditional iterative attacks, the results on ImageNet show

that our proposed attack method gets significantly higher

success rates for black-box models, and maintains simi-

lar success rates for white-box models. We improve the

transferability further by integrating momentum term and

attacking multiple networks simultaneously. By evaluating

this enhanced attack against the top defense submissions

and official baselines from NIPS 2017 adversarial compe-

tition [18], we show that this enhanced attack reaches an

average success rate of 73.0%, which outperforms the top-1
attack submission in the NIPS competition by a large mar-

gin of 6.6%. We hope that our proposed attack strategy

can serve as a benchmark for evaluating the robustness of

networks to adversaries and the effectiveness of different

defense methods in future. Code is publicly available at

https://github.com/cihangxie/DI-2-FGSM.
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[12] C. Guo, M. Rana, M. Cissé, and L. van der Maaten. Coun-

tering adversarial images using input transformations. In In-

ternational Conference on Learning Representations, 2018.

2, 3

[13] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In European Conference on Com-

puter Vision, 2016. 1, 2, 3, 4

[14] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and

J. Tygar. Adversarial machine learning. In ACM workshop

on Security and artificial intelligence, 2011. 2

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems, 2012.

1, 2, 3

[16] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial ex-

amples in the physical world. In International Conference

on Learning Representations Workshop, 2017. 1, 2, 4

[17] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial

machine learning at scale. In International Conference on

Learning Representations, 2017. 1, 2, 3, 8

[18] A. Kurakin, I. Goodfellow, S. Bengio, Y. Dong, F. Liao,

M. Liang, T. Pang, J. Zhu, X. Hu, C. Xie, et al. Ad-

versarial attacks and defences competition. arXiv preprint

arXiv:1804.00097, 2018. 2, 7, 8

[19] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu.

Defense against adversarial attacks using high-level repre-

sentation guided denoiser. In Computer Vision and Pattern

Recognition, 2018. 7

[20] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu,

and M. Sun. Tactics of adversarial attack on deep reinforce-

ment learning agents. In International Joint Conference on

Artificial Intelligence, 2017. 2

[21] Y. Liu, X. Chen, C. Liu, and D. Song. Delving into transfer-

able adversarial examples and black-box attacks. In Interna-

tional Conference on Learning Representations, 2017. 2, 4,

6

[22] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Computer Vision

and Pattern Recognition, 2015. 1

[23] Y. Luo, X. Boix, G. Roig, T. Poggio, and Q. Zhao. Foveation-

based mechanisms alleviate adversarial examples. arXiv

preprint arXiv:1511.06292, 2015. 4

[24] D. Meng and H. Chen. Magnet: a two-pronged

defense against adversarial examples. arXiv preprint

arXiv:1705.09064, 2017. 2

[25] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks

are easily fooled: High confidence predictions for unrecog-

nizable images. In Computer Vision and Pattern Recogni-

tion, 2015. 2

[26] N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Fein-

man, A. Kurakin, C. Xie, Y. Sharma, T. Brown, A. Roy,

A. Matyasko, V. Behzadan, K. Hambardzumyan, Z. Zhang,

Y.-L. Juang, Z. Li, R. Sheatsley, A. Garg, J. Uesato,

W. Gierke, Y. Dong, D. Berthelot, P. Hendricks, J. Rauber,

and R. Long. cleverhans v2.1.0: an adversarial machine

learning library. arXiv preprint arXiv:1610.00768, 2018. 3

[27] A. Prakash, N. Moran, S. Garber, A. DiLillo, and J. Storer.

Deflecting adversarial attacks with pixel deflection. arXiv

preprint arXiv:1801.08926, 2018. 2

[28] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in Neural Information Processing Systems, 2015.

1

[29] P. Samangouei, M. Kabkab, and R. Chellappa. Defense-

GAN: Protecting classifiers against adversarial attacks using

generative models. In International Conference on Learning

Representations, 2018. 2

[30] A. Shrivastava, A. Gupta, and R. Girshick. Training region-

based object detectors with online hard example mining. In

Computer Vision and Pattern Recognition, 2016. 2

[31] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and

F. Moreno-Noguer. Discriminative learning of deep convolu-

tional feature point descriptors. In International Conference

on Computer Vision, 2015. 2

2738



[32] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations, 2015. 1, 2, 3

[33] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman.

Pixeldefend: Leveraging generative models to understand

and defend against adversarial examples. arXiv preprint

arXiv:1710.10766, 2017. 2

[34] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In AAAI, 2017. 4

[35] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

Computer Vision and Pattern Recognition, 2016. 4

[36] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,

I. Goodfellow, and R. Fergus. Intriguing properties of neural

networks. In International Conference on Learning Repre-

sentations, 2014. 1, 2
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