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Abstract 

In this paper, an immune inspired multi-objective fuzzy modeling (IMOFM) mechanism is proposed specifically 
for high-dimensional regression problems. For such problems, prediction accuracy is often the paramount 
requirement. With such a requirement in mind, however, one should also put considerable efforts in eliciting 
models which are as transparent as possible, a ‘tricky’ exercise in itself. The proposed mechanism adopts a multi-
stage modeling procedure and a variable length coding scheme to account for the enlarged search space due to 
simultaneous optimisation of the rule-base structure and its associated parameters. We claim here that IMOFM can 
account for both Singleton and Mamdani Fuzzy Rule-Based Systems (FRBS) due to the carefully chosen output 
membership functions, the inference scheme and the defuzzification method. The proposed modeling approach has 
been compared to other representatives using a benchmark problem, and was further applied to a high-dimensional 
problem, taken from the steel industry, which concerns the prediction of mechanical properties of hot rolled steels. 
Results confirm that IMOFM is capable of eliciting not only accurate but also transparent FRBSs from quantitative 
data. 
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1. Introduction 

Traditionally, modeling tasks involve the building of 

mathematical equations which can best describe the 

underlying process. Such a modeling practice normally 

requires a deep understanding of the systems under 

investigation, hence the reason why it is often referred 

to as knowledge-Driven Modeling. On the contrary, 

Data-Driven Modeling (DDM), inspired principally 

from artificial intelligence techniques, is based on 

limited knowledge of the modeling process and relies on 

data describing the input and output mapping. 

DDM is able to make abstraction and generalizations of 

the process and plays often a complementary role to 

knowledge-based models. For complex systems, the 

linear regression may not be sufficient, which leads to 

the need of non-linear regression techniques. Among 

many of these techniques, Artificial Neural Networks 

(ANN), fuzzy rule-based systems (FRBS) and Neural-

Fuzzy Systems (NFS) have been receiving more 

attention during the last two decades due to the fact of 

not only being able to approximate practically any given 

function to an arbitrary accuracy, 1 but also being able to 

generalise reasonably well to any previously ‘unseen’  
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situations. The prevalence of these nonlinear regression 

techniques is largely attributed to the breakthrough in 

the nonlinear optimisation techniques, such as the 

Back-Error-Propagation algorithm2 and the bio-inspired 

optimisation.3, 4  

Since the first introduction of ‘fuzzy logic’, FRBS 
have been widely used in control engineering.2 

However, the predominant approach in the traditional 

design of fuzzy rule-based systems highly relies on 

human experts, which makes the fuzzy modeling 

process similar to the design of expert systems except 

that traditional expert systems were based on the 

classical Boolean logic and thus were not well suited to 

managing the progressiveness in the underlying process 

phenomena.5 More recently, FRBS has been combined 

with some learning components to automatically extract 

knowledge from resources such as data rather than from 

experts.2,6 Such learning components, on the one hand, 

lead to a coarse FRBS, and on the other hand, can 

further improve the accuracy of such a coarse model to 

a certain degree depending on the quality of the historic 

data and the power of the learning mechanism. Despite 

of great success, eliciting FRBS through ‘learning’ may 
suffer from two serious problems, e.g. the degradation 

of the model in terms of interpretability (transparency) 

and the over-fitting to the training patterns. Taking this 

into account, one can find that bio-inspired optimisation, 

in particular Genetic Algorithms (GAs), has a long 

history of being incorporated into fuzzy logic7 and 

demonstrate a possible route to the remedy for the 

previously mentioned problems.  

The main aim of this paper is to present a 

systematic immune-inspired multi-objective fuzzy 

modeling approach which can simultaneously account 

for the interpretability of the rule-base and its predictive 

accuracy for regression problems. The paper is 

organised as follows: Section 2 discusses the formation 

of the multi-objective fuzzy modeling problems and the 

FRBSs used in this work; Section 3 shortly reviews the 

existing evolutionary based approaches for improving 

FRBS’s interpretability; Section 4 introduces the 

proposed Immune inspired Multi-Objective Fuzzy 

Modeling (IMOFM) mechanism8,9 based on the 

Population Adaptive based Immune Algorithm 

(PAIA),10, 11; in Section 5, some implementation issues 

of IMOFM are discussed; experimental studies of 

IMOFM on a benchmark problem and on a real-world 

problem taken from steel industries are given in Section 

6; finally, conclusions are given in Section 7. 
 

2. FRBS and the Formation of Multi-Objective 

Fuzzy Modeling Problems 

2.1. Fuzzy inference systems and FRBS 

Fuzzy inference is a process of formulating the 

mapping from a given input to an output using fuzzy 

logic. The mapping then provides a basis from which 

decision can be made, or patterns discerned. The two 

most popular types of fuzzy inference systems are the 

Mamdani-type12 and Sugeno-type13, which vary 

somewhat in the way outputs are determined. The 

consequence part of the Mamdani-type is a fuzzy set 

while the consequence part of the Sugeno-type is a set 

of functions with the arguments that are the linguistic 

variables of the antecedent part. Hence, a FRBS can be 

formulated as follows:                                                           
where,     is the ith linguistic value (fuzzy set) for the 

jth linguistic variable    defined over the universe of 

discourse   ; the function          associated with      
that maps     to       is the corresponding membership 

function; Ri  represents the ith rule in the rule base, and    is the output of the ith rule. Typically,    can be the 

function of the inputs or the linguistic value of the 

output, which differentiate FRBS into Sugeno-type (the 

former) and Mamdani-type (the latter).  

In this paper, a special case of Sugeno-type, namely 

Singleton FRBS when    is the zero order function of 

the inputs, and Mamdani-type are employed due to their 

abilities of expressing linguistic meanings in both of 

their antecedents and consequents.  

2.2. Accuracy vs. Interpretability: formation of 

multi-objective fuzzy modeling problems 

As Casillas et al. pointed out in Ref. 14, modeling is the 

task that simplifies a real system or complex reality 

with the aim of easing its understanding. Hence, the 

development of reliable and comprehensible models 

must be the main theme of any modeling tasks. By 

‘reliable’ it is meant the model’s capability of faithfully 
representing the real systems, in other words ‘the model 
accuracy’. By ‘comprehensible’ it is meant the model’s 
capability of expressing the behavior of the real systems 

Published by Atlantis Press 

      Copyright: the authors 

                   323



Transparency, Fuzzy Modeling, Immune-Inspired Optimisation 

in a transparent way, in other words ‘model 

interpretability’. However, as Zadeh conjectured in his 

Principle of Incompatibility,15 it is very likely that 

accuracy and interpretability may well be exclusive 

requirements in a modeling process. Since both 

requirements are vital and cannot always be possessed 

at the same time, a good balance between them is the 

best outcome that one can achieve. The reflection of 

these in a fuzzy modeling scenario represents a 

dilemma of designing FRBS. As far as interpretability 

is concerned, attempts has indeed been made by 

Valente de Oliveira16 to tackle this problem via 

nonlinear constraints coded within a given optimisation 

scheme. However, his approach was deemed to include 

a ‘low-level interpretability’ as Zhou et al. discussed in 

their comprehensive survey.17 In Ref. 18, the authors 

conducted an experimental analysis of the associated 

algorithm and concluded that a numerical index alone is 

not enough for it to be widely accepted.  Hence, 

interpretability is mainly a subjective property and 

normally refers to at least one or all of the following 

aspects in a fuzzy modeling scenario:  

 
(i) The distribution of the fuzzy sets across each 

dimension should be well separated so that 
meaningful (distinguishable) linguistic terms can 
be associated with them, 

(ii) The number of fuzzy sets for each dimension and 
the number of rules should not be excessive. This is 
closely related to the cognitive studies19 which 
shows that the optimal number of chunks of 
information simultaneously held in human short-
term memory should be seven, plus or minus two. 
This implies that redundant rules and fuzzy sets 
should be merged or deleted, 

(iii) The number of input variables involved in each 
rule should be optimal, which means input 
variables are subject to either a global selection, in 
which case none of the rules in the rule base can 
use the deleted input variables, or a local selection, 
in which case the selection is done at the individual 
rule level.5 

(iv) The rule base should be complete and consistent. 
Otherwise, the knowledge represented by the rule 
base is incomplete, and different conclusions given 
similar premises would certainly confuse its users. 

Hence, ‘accuracy vs. interpretability’ issue in a fuzzy 
modeling context is a multi-objective optimization 

problem as shown in Fig. 1, where two competing 

objectives, viz. the predictive error (accuracy) and the 

rule base complexity (transparency), are minimized 

simultaneously. The aim is to find a set of ‘approximate 
Pareto FRBSs’ as close to the true Pareto front as 
possible. By finding a set of solutions, human can 

understand the underlying problem in a much greater 

depth, and finally a single optimal solution to a specific 

scenario is selected and applied. In the case shown in 

Fig. 1, if one requires certain transparency of the FRBS 

along with its good predictive accuracy the middle 

circle could be the one that fulfils the user’s need. 

3. Literature Review of Previous Works 

Originated from Karr’s work,7 the GA approach in 

fuzzy systems was initially utilized to adjust the 

parameters of membership functions, which leads to no 

significant difference when compared to other learning 

paradigms. The real significance of employing 

evolutionary algorithms (EAs) for optimizing FRBSs 

comes from EAs’ flexibility in terms of being able to 
encode and evolve almost every component of the 

FRBS.20 Such flexibility offers a solution so that one 

can take into account interpretability (structure) and 

predictive performance of the FRBS in a more coherent 

way. Broadly speaking, there currently exist two EA-

based streams to tackle interpretability issues: 
 

(i) The first stream is mainly concerned with the 
linguistic modeling using a Mamdani-type, in 
which a set of pre-specified fuzzy partitions 
(linguistic terms) are given a priori by experts or 
users (grid partition); the task is then to find an 
optimal FRBS in terms of its compactness and 
performance. These linguistic terms are fixed 
during the course of the evolution21, 22, 23 so that 
their physical meanings are retained. Only fuzzy 
rules are subject to selection via GAs so that a 
compact rule-base can be evolved from a large 

 

Fig. 1.  Pareto front in a bi-objective fuzzy modeling case. 
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number of candidate rules, which should lead to a 
more interpretable FRBS. Since the selection 
process removes irrelevant and inconsistent rules, 
the accuracy is also improved. In Ref. 23, the GA 
is not only used to select the optimal combination 
of rules but also to learn the granularity of different 
fuzzy partitions for each input, which leads to a 
more accurate fuzzy model while the linguistic 
feature is not compromised. Similar effort has been 
reported in Ref. 24, where multi-objective 
evolutionary algorithms were employed to 
concurrently learn the partition granularities of 
each variable and rule bases of Mamdani fuzzy 
systems for regression problems. Further relevant 
researches include those in Ref. 25-26, apart from 
the rule selection, these works also tuned the 
linguistic terms by a modified GA. However, such 
tuning is only operated in a restrained space in 
order to maintain their original semantics. 

(ii) The second stream generally uses an approximate 
fuzzy model as the starting point (in such a case, 
fuzzy partitions are extracted via some automatic 
learning components); the task is then to improve 
the model’s explanatory ability, which may have 
been lost during the automatic learning process, 
through a set of similarity-driven simplification 
and parameter adjusting operations.27, 28, 29, 30 Under 
this stream, a similarity measure is taken so that 
similar fuzzy sets can be merged. Consequently, 
similar rules are merged as well. Hence, the 
distinguishability of membership functions and the 
compactness of the rule-base are improved. In Ref. 
31, the idea of rule pruning is used to remove less 
relevant rules within a multi-objective optimization 
framework. The similarity measure is not explicitly 
used in this work.  

 

Comparing the two streams leads to the following: 

in the linguistic modeling stream, the target problems 

are normally associated with classifications and low-

dimensional function approximation; hence, the effect 

of the ‘curse of dimensionality’ due to the grid partition 
and the need for the parameter tuning due to the 

performance requirement are not serious issues; only 

very recently, such a linguistic modeling framework has 

been adopted for high-dimensional regression 

problems32; for the second stream, high-dimensional 

function approximation are often the case, as a result, 

an approximate FRBS is a better choice to start with 

due to the compactness requirement and the progressive 

nature of the regression problems.  However, to the best 

of our knowledge, majority of the works within the 

second modeling stream were using Sugeno-type which 

breaches the original intention of the FRBS. It is rather 

‘tricky’ to decide which modeling stream is more 
suitable. Both modeling streams have their limitations: 

1) although linguistic modeling often leads to well 

distributed membership functions more rules are 

required to achieve similar predictive performances as 

those provided by the second modeling stream with 

fewer rules, this being due to the restriction imposed on 

the membership function search space; 2) although the 

second modeling stream often leads to a compact rule-

base and higher predictive accuracy, the membership 

functions are not well distributed even after 

interpretability improvement; furthermore, if Sugeno-

type is employed the transparency in the consequents 

will be lost. 

In the light of the above considerations, the 

proposed IMOFM sits in the middle of the two 

modeling streams by using a compact FRBS with 

certain interpretability for high-dimensional regression 

problems. Although a Singleton/Mamdani FRBS is 

used in this work, unlike those in the first modeling 

stream, the membership functions of the proposed 

method can move freely within the variable intervals. 

Hence, it is still within the second modeling stream. 

However, it greatly improves the interpretability of the 

elicited FRBS, and can be viewed as a complement to 

Ref. 32 due to the fact that more compact and higher 

accurate FRBSs can be elicited.  

4. An Immune Inspired Multi-Objective Fuzzy 

Modeling (IMOFM) Mechanism 

IMOFM is a three-stage modeling procedure. The aim 

of the first two stages is to first extract an initial 

approximate FRBS and then to refine it in terms of its 

predictive accuracy. By doing so, an initial FRBS with 

the over-estimated number of rules can efficiently be 

elicited. Another reason of including the first two 

modeling stages, especially the second one 

(refinement), is that by doing so the most complex rule-

base can survive under the pressure of ‘Pareto’ 
selection. Without including the refining step, the rule-

base with a complex structure may be regarded inferior 

to the less complex rule-base in a ‘Pareto’ sense even if 
both are inaccurate in the early evolutionary stages. 

Hence, one may lose the chance of evolving the most 

accurate FRBS, which normally comes with a complex 
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structure. The refined initial FRBS is then used in the 

third stage to seed the initial population of PAIA in 

order to obtain a set of Pareto fuzzy models with 

improved interpretability. To tackle the problem of 

simultaneously optimizing the rule-base structure and 

parameters, a variable length coding scheme is adopted, 

and a new distance index is proposed to cope with the 

variable-length individuals, which should improve the 

efficiency of the search. For model structure 

optimization, a Model Simplification module is added in 

a bid to find transparent FRBSs, which will be further 

discussed in Section 4.3. Fig. 2 represents a schematic 

diagram of such a modeling framework. 

4.1. First Stage: Elictation of Initial FRBSs 

First, an evolutionary based K-means clustering 
algorithm11 is used to group the available data into a 
predefined number of clusters. In order to convert the 
obtained clusters into FRBSs, a certain mechanism has 
to be established so that          and the corresponding 

output    can be linked with the extracted clusters. 
Gaussian membership functions are used for the inputs 
of FRBSs. In such a case, the ith identified cluster 
centre     in the input space corresponds directly to the 

centroids of the Gaussian membership functions 

responsible for the ith rule. The spreads of the 

corresponding Gaussian membership functions are 

obtained by first calculating the   matrix as follows: 

                          
                      

where,               are k cluster centers in the input 

space,    is the Euclidean distance, and        
specifies the degree of data point   belonging to the ith  

cluster. Spread    is thus deduced as follows: 

                              
                                                       

                  
where, j indicates the dimension of the spread in the 

input space for the ith cluster, N is the total number of 

data points. The maximum value of      is picked to 

ensure a certain degree of overlap between different 

clusters. This also ensures a smooth transition of the 

predictions over different regions.   is used to adjust 

the degree of overlap, and is set to 0.95 in this work 

without any loss of generality. Hence, the Gaussian 

membership function on each dimension can be 

specified using Eq. 3: 

                                                   
For Singleton FRBS (IMOFM_S),    is equal to    . 

If Centroid of Area (COA) defuzzification method is 

employed, the crisp output of the initial Singleton 

FRBS can be computed as below: 

                                                           
where,                                                                      , and                                    is  

the parameter vector which is subject to further tuning 

in the second modeling stage.  

First Stage: 

Extracting The 

Initial FRBS

Second Stage: 

Refining The 

Initial FRBS

Third Stage: 

Multi-objective 

Fuzzy 

Modelling

A Set of Fuzzy 

Models

An Immune Algorithm Based Fuzzy 
Predictive Modeling Mechanism 

Activati-
on

Clone

Initial Population Pool

The Initial 

FRBS

Variable Length Coding

Clone

Affinity Maturation

Reselection

No

Model Simplification

 

Fig. 2.  The proposed IMOFM framework. 
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For Mamdani FRBS (IMOFM_M), the bell-shape 

membership functions are used for   :                                                        
where,     is obtained by using Eq. 1 and 2 but in  

the output space. Unlike traditional Mamdani FRBS 

where defuzzification is normally applied on the overall 

implied fuzzy set2, IMOFM employs the center of 

gravity (COG) defuzzificaiton on the implied fuzzy set 

as below:                                                     
Instead of using minimum and maximum for the T-

norm and S-norm, IMOFM chooses ‘product’ and 
‘plus’ respectively. All these modifications are to 

ensure computational efficiency comparing to the 

tranditional Mamdani implementation, and more 

importantly, to ensure that an analytical solution 

described in Eq. 7 can be deducted.                                                                                                                                                                                     
where,     is the center of area of the membership  

function        and is the peak (   ) if         is 

symmetric;        is the final defuzzified output of the 

FRBS.                     is the parameter vector  

which is subject to further fine-tuning in a bid to 

improve the model’s predict ive perfor mance.             denotes the area under         over the 

output interval           and            is 

calculated using Eq. (8). 

                                                                                                                                                       
Hence, after the first stage, a Singleton/Mamdani 

FRBS with the pre-specified number of rules is 

extracted from numerical data, which is analytical and 

can be further refined in the second modeling stage.  

4.2. Second Stage: Refinement of Initial FRBSs 

The initial fuzzy model extracted from the first stage is 

not optimal from two perspectives: 

 
(i) The structure of FRBS is not optimal as far as the 

interpretability is concerned. The FRBS elicited 
from the first stage contains redundant fuzzy sets 
and rules. 

(ii) The membership function parameters need to be 
tuned further as far as the accuracy is concerned. 

 

A constrained Back-Error-Propagation (BEP) algorithm 

is thus utilised to first improve the accuracy of the 

initial FRBS in order to seed the initial population in 

the third modeling stage.   

 BEP Algorithm for Singleton FRBS 

Recall Eq. 4 in Section 4.1, where a Singleton 

FRBS is defuzzified with respect to                                     By taking the partial derivative of 
the predictive error    with respect to each parameter in  , 
a set of parameter updating laws can be obtained, where       and       are  user -specific  parameters.                                                                                                                      
                                                                                                                            
                                                                                                                       
      

                                                                                                                            
  

                                                                                  
 BEP Algorithm for Mamdani FRBS 

Recall Eqs. 7 and 8 already developed in Section 4.1 

and using the same method except this time with respect 

to each parameter in                                       , following updating formulas are derivative.                                                            
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Comparing Eqs. 9~11 with Eqs. 12~15 leads to the 

conclusion that the two sets of parameter updating 

formulas are very similar to one another. The only 

difference lies in the fact that the latter include extra 

items, such as            and its partial derivatives with 

respect to     and    , which allows the updating 

formulas to adjust the spreads of the output membership 

functions as well. 

It is worth mentioning that in this work, a 

constraint handling scheme is added, which checks the 

boundary violation for centres during each iteration step 

and drives any violated centres back to the boundaries. 

4.3. Third Stage: Multi-Objective Fuzzy Modeling 

The previous two modeling stages can be viewed as a 

separate structure and parameter learning. To improve 

the interpretability of such an approximate FRBS, 

authors in Ref. 27, 33~35 performed model 

simplification and fine-tuning. The learning procedure 

described in these research investigations can still be 

labeled as being a separate learning process so that 

model simplifications rely heavily on the pre-specified 

thresholds according to the designer’s choice. Wang et 
al.30 proposed a hierarchical scheme to evolve both 

parts. However, a rule matrix was required, which 

rendered the scheme vulnerable to high dimensional 

problems due to the exponential increase in the matrix 

dimension. Research work reported in Ref. 28, 31, 36 

adopted a variable length coding strategy in order to 

cope with high dimensional problems. However, 

heuristic variation operators are used in these works, 

which did not do justice to the idea of using variable 

length coding. In fact, it may somehow impede the 

search power of the Evolutionary Algorithms (EA) as 

far as the real-valued optimization part is concerned. 

Apart from these problems, most of the aforementioned 

works dealt with Sugeno-type with linear functions as 

their consequents, which detracts from the linguistic 

attempts of the authors’ proposed methods.  
The proposed approach in this work utilizes a 

Population Adaptive Immune Algorithm (PAIA) within 

a multi-objective optimization framework and a 

variable length coding scheme with only effective rules 

being encoded. Hence, it does not suffer from ‘the curse 
of dimensionality’. A new distance index is proposed to 

facilitate the use of the original variation operator in 

PAIA. Details of these operators and the way of 

formulating objective functions and the initial 

population pool are explained followed by the 

description of PAIA. 

 Forming Objective Functions 

Two conflicting objective functions are formulated with 

the first focusing on the prediction accuracy and the 

second on the structure simplification as described in 
Eq. 16;               and         are  th predicted 

and real outputs; Nrule is the number of fuzzy rules in 

FRBS; Nset is the total number of fuzzy sets; RL is the 

summation of the rule length of each rule (‘Don’t care’ 
is not included in the rule length). 

                                                                                                      
 Formation of Initial Population Pool 
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The initial population is obtained with all individuals 

generated around the refined FRBS obtained from the 

first two stages using.                                                                                                                    
                     

                                                 

where,       and       are the centre and spread 

of the ith rule and the jth input membership function of 

the refined FRBS extracted from the first two modeling 
stages.        and       are the centre and the spread of 

the ith rule’s consequent of the refined FRBS.       is 

a random number within [-1, 1]. ‘     ’ defines the 

minimum interval between the centre and its 

corresponding upper        and lower        limits of 

the input (or the output) variable, whichever is smaller. 

The inclusion of ‘     ’ is to ensure that the newly 
generated centres are most likely within the inputs’ (or 
the outputs’) domains. Any violation of the domains 
will be dragging those centres (or consequents) back to 

the upper or lower limits, whichever is closest.    and   

are the user specified parameters which define how 

much different the newly generated FRBSs are from the 

refined FRBS. These two parameters are set to 0.2 and 

0.1 respectively and the size of the initial population in 

this work is set to 7. However, as will be discussed 

later, since PAIA is not sensitive to the size of initial 

population, the performance of IMOFM is not sensitive 

to the size of its initial population, neither is it to the 

aforementioned two parameters.  

 A Variable Length Coding Scheme   

Different encoding schemes have been proposed for the 

multi-objective fuzzy modeling and can be broadly 

divided into two categories: 1) encoding based on the 

global data-base; 2) encoding based on the effective 

rule parameters. The former is mainly found in the 

linguistic modeling stream.23, 37, 38 The latter is mainly 

found in the approximate modeling stream due to the 

lack of global data-base. The drawback of using the 

first encoding scheme is that it suffers from ‘the curse 
of dimensionality’. In such a case, the length of the 
chromosome grows exponentially with the increased 

dimensions. A typical problem associated with the first 

encoding scheme and the fixed length encoding 

scheme39 is illustrated in Fig. 3 (a) and (b) respectively. 

An ineffective real-valued optimisation may be induced 

because some active parameter genes may interact with 

the inactive ones. Conversely, if only the effective rule 

parameters are included in the coding, a variable length 

coding scheme is inevitable and is used in this work 

(refer to Fig. 3 (b) and (c)). In such a case, the increase 

in the code length is only linear to the variable’s 
dimension.  

 Variation Operators and a New Distance Index   

The variation operator used in PAIA is Affinity 
Maturation which mutates copied (cloned) solutions 

based on their distance (affinity) to the identified good 

solution (see the following part for more details). Such 

a variation operator is used in IMOFM to optimise the 

encoded parameters. However, in the original PAIA, 

such distance is calculated between two fixed-length 

individuals. Given the variable length coding scheme 

and the unconstrained optimization used in this work, a 

concomitant effect of the so-called ‘unordered sets of 
rules’40 may occur as shown in Fig. 4, where FRBS1 

and FRBS2 are exactly the same. However, because of 

the blind search mechanism, values encoded in ‘Rule1’ 
and ‘Rule7’ became different within the two FRBSs. 

(a)

Rule1 Rule2 Rule31 0 1

Chromosome1

Rule1 Rule2 Rule31 1 1

Chromosome2

Ineffective 

Optimization

Rule2 Rule3Rule1

FRBS2

Rule4

2
3
2

3
2

2
2

2
2

1
2

1
2 |;; bccc 

3
3

3
3
3

2
3

2
3

1
3

1
3 |;; bccc 

Rule2 Rule3Rule1

FRBS1

Inactive Rule

Ineffective 

Optimization

(b)

(c)

IMOFM_S:

3
3

3
3
3

2
3

2
3

1
3

1
3 |;; bccc  y

3IMOFM_M:

2
3

2
3
2

2
2

2
2

1
2

1
2 |;; bccc  y

2

 

Fig. 3. (a) Ineffective optimisation caused by the interaction of 
inactive gene (deactivated by 0) and active gene (activated by 
1); (b) and (c) variable length coding scheme for a 3-rule 
Singleton/Mamdani FRBS and a 4-rule Singleton/Mamdani 
FRBS. 
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Alternatively, rules may be deleted, e.g. Rule7 in 

FRBS2.  

Hence, a special procedure is required to align the 

closest rules from different FRBSs in order to have a 

meaningful crossover on the ‘unordered sets of rules’.40, 

41 To tackle this problem, a new distance index is 

proposed.  The basic idea is to find the distance of the 

closest rules in different FRBSs rather than the distance 

of the corresponding rules. The mathematical 

description of the idea is as follows:                                                                                                  
where,    and    are two FRBSs with    and    rules;    is the length of the rule;       (       represents the 

closest rule in       ) with respect to the             
rule in        ;        is the absolute value of  . 

 Model Simplification   

As one can see from Fig. 2, a model simplification step 

is added to the third stage in order to remove the 

redundancy both in the rules and in the fuzzy sets. This 

is to ensure the optimization of FRBS structure along 

with the accuracy at the same time. Five simplification 

steps are involved for each mutated FRBS: 

 
(i) Removing Unimportant Rules: the unimportant 

rules are those rules that contribute the least to any 
prediction error increase when not including this 
rule, as described by Eq. 20. This occurs because 
other rules may already have covered the input 
region under these rules.                                                                                                                                             

where,        is the root mean square error when 
all the rules in the rule base are used for predicting;        is the predictive error associated with the 
rule base when the  th rule is temporarily excluded. 
Insignificant rules are deleted when the following 
condition is met:                                                 

 where,    is the number of rules in the current 
FRBS;      is the maximum allowable number of 
rules, which equals the number of clusters used in 
the first modelling stage; rnd is a random number 
between [0, 1].    is a design parameter which 
limits the fewest rules in FRBS and has been set to 
0.5 in this work without any loss of generality. At 
each iteration step, each cloned individual has one 
insignificant rule removed unless the rule base 
reaches the fewest rules designated by Eq. 21. 

(ii) Merging Similar Rules: Similar rules should be 
merged together by taking the mean values of the 
corresponding fuzzy sets to keep the FRBS 
consistent and parsimonious. To measure the 
similarity of rules, the so-called similarity of rule 
premise (SRP)29 is used in this work. The 
following condition should be met for merging a 
pair of similar rules of each cloned individual at 
each iteration step:                                                                                                             
where,            are the similarity between two 

fuzzy sets and will be explained later;       is the 
threshold which randomly changes between [  , 
1] every t (specified by the user) iterations and    
is 0.95 in this work without any loss of generality 

(iii) Removing Universal Fuzzy Sets: Fuzzy sets 
which meet the following condition are regarded as 
universal fuzzy sets and are therefore deleted:                                         

 where,   is the universal fuzzy set;        is the 
threshold which randomly changes between [   , 
1] every   generations and     is 0.85 in this work. 
For computation purpose, if the width of a fuzzy 
set is more than two times wider than the universe 
of discourse of the corresponding dimension, it is 
regarded as the universal fuzzy set. 

(iv) Merging Similar Fuzzy Sets: Jin42 proposed a 
simplified similarity measure based on the distance 
measure if Gaussian membership functions are 

Rule1 Rule2 Rule3 Rule4

Rule5 Rule6 Rule6 Rule7

Rule7 Rule2 Rule3 Rule4

Rule5 Rule6 Rule6 Rule1

Input1 Input1

Input2

A very large distance in 
affinity calculateion

FRBS1 FRBS2

 

Fig. 4.  The problems associated with the FRBS having 
different rule lengths and unconstrained optimisation. 
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involved. Two fuzzy sets are considered to be 
similar if the following condition is met:                                                                                                                                                                                                                            

  

where,        is the threshold which randomly 
changes between [   , 1] every   generations and     is set to 0.95 in this work. The mean values of 
two similar fuzzy sets are calculated in order to 
substitute the original two fuzzy sets.  
 

It is worth mentioning that all the simplification 
processes, except for the ‘insignificant rules’, have only   chance to be evoked at each iteration, where   is 
taken to be 20% in this work. The similarity measures 
mentioned in Eqs. 23 and 24 will be checked for each 
fuzzy set. Only the ones with the maximum similarity 
values will be deleted or merged during each iteration 
step provided the conditions are also met. For this 
reason and because of the elitism which records any 
non-dominated solution found at each iteration step, it 
was found (see Section 6.1) that the aforementioned 
thresholds are not critical parameters within certain 
ranges. 

 A Population Adaptive Immune Algorithm   

PAIA9, 10 is an immune inspired multi-objective 

optimization algorithm.  Fig. 5 summarizes how PAIA 

is adapted for IMOFM.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Pseudo-code of PAIA for IMOFM. 

As one can see from Fig. 5, after a random initial 

population pool is generated, one of the good solutions             from the non-dominated set will be 

randomly selected in order to activate the rest of the 

solutions. The corresponding affinity (fitness) for each 

solution is calculated by using           as discussed 

before in Eq. 19. Clonal_Selection() will differentiate 

current solutions into selected solutions (pop_s), if their 

affinity values are the smallest one or smaller than a 

threshold  , and otherwise into unselected solutions 

(pop_us). Clone() will assign a fraction of the 

maximum clone size (Ncmax) to each pop_s and make a 

copy of themselves. The higher the affinity percentage 

the larger the fraction is assigned. For pop_us, it will be 

cloned only once regardless of their affinity. 

Affinity_Maturation() will mutate clones ( ) according 

to the following equations:                                                                                                                                                    
Where, N(0,1) is a Gaussian random variable with zero 

mean and standard deviation 1; i represents the 

dimension that has been chosen to mutate; G is the 

current iteration and Gen is the predefined total number 

of iterations. It is worth mentioning that, for    , one 

dimension is randomly chosen to mutate, while for      
more than one dimensions (two, in PAIA) are randomly 

chosen to mutate. Model_Simplification() simplifies the 

mutated clones via Eqs. 20~24 as discussed previously. 

Reselection() selects good solutions from the combined 

population of      and their parents based on their 

non-dominance and the size of the current non-

dominated solutions. Network_suppression() is used to 

adaptively control the size of population at each 

iteration step by suppressing too closed solutions if 

their Euclidian distance in the objective space is less 

than a predefined threshold  . In such a case, the one 

with larger affinity value is deleted.  

The computation complexity of PAIA for the block 

of non_domidation()is     ), where N is the size of 

pop at each iteration step. For evaluating the objective 

functions, this complexity is governed by        ) at 

each iteration step. It has been shown in Refs. 9~10 that       is not problem dependent and 95 is an 

empirically good number. Increase       does not lead 

to any improvement of the optimisation. Since pop and 

pop = random_initiation(); 

obj = Obj_Evaluation (pop); 

[nondominated_pop, dominated_pop] = non_domination(pop, obj); 

for i = 1 : Gen 

      Xidentified = random_pick_one(nondominated_pop); 

      N = size(nondominated_pop); 

     for                      

         Affinityj =                           /N; 

     end 

     for                  

        Affinitym = dist(              ); 

     end 

     [pop_s, pop_us] = Clonal_Selection(pop, Affinity,  ); 

     [c_s, c_us]= clone(pop_s, pop_us, Ncmax); 

     [c_am] = Affinity_Maturation(c_s, c_us); 

 c_sim = Model_Simplification(c_am); 

    obj_sim = Obj_Evaluation (c_sim); 

    [pop_rs, obj_rs] = Reselection(pop, obj, c_sim, obj_sim); 

    [pop, obj] = Network_suppression(pop_rs, obj_rs,  ); 

   [nondominated_pop dominated_pop] = non_domination(pop, obj); 

end 
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the clone size for each pop_s are adaptive with respect 

to the search process and only relatively good solutions 

are selected and maintained, PAIA can largely reduce 

the number of evaluation times comparing to traditional 

EAs and is not sensitive to the initial population size.  

5. IMOFM Implementation Issue 

Due to the simultaneous optimisation of the rule base 
structure and its parameters in the third modeling stage, 
some issues regarding the practical implementation of 
the algorithm should be treated with a special caution 
and deserves more exploration in this Section. In the 
following space, two issues are discussed. 

5.1. Coding representation and the rule base 

The mechanism behind coding calls for some 

comments because the rule-based structure and the 

associated parameters are optimized for a final 

outcome. As a result there exist two representations: 

one for structure optimization and the other for 

parameter optimization. The interface between the two 

representations is of prime importance when both 

optimizations are performed simultaneously. Without 

this interface, the parameter optimisation operated over 

the coding representation may lose vital structural 

information which is constantly being modified during 

the structure optimisation. In order to build up such a 

link, two concepts, namely ‘FISmap’ and ‘RULE’, are 
introduced into IMOFM and are shown in Fig. 6.  

The first concept is the so-called ‘FISmap’ matrix, 
which is a     matrix for IMOFM_S and         
for IMOFM_M. The elements of the  th row are all 

initialised to their row number and will be constantly 

updated so that it can reflect the current status of the 

rule base. The number stored in each element serves as 

the identification number of each membership function. 

For example, during the interpretability improvement 

operation at each iteration step, if the membership 

function of the first input in the  th rule is very similar 

to the membership function of the same input in the  th 

rule, two membership functions in the rule-base 

representation will be merged into a single one. In order 

to reflect such changes in the rule base structure, 

FISmap is updated, and if    , FISmap(i, 1) will 

remain to its initialised number ‘i’ and FIS(j, 1) will be 

updated using the smaller number ‘i’. By doing so, two 
similar membership functions would have been 

combined into a single one and their corresponding 

identification numbers would also have been updated 

using the smaller value. Universal fuzzy set is marked 

as ‘inf’ (‘inf’ represents infinity in Matlab®) in FISmap. 

The second concept relates to a so-called vector 

‘RULE’, which is a     vector initialised with 1. This 

vector serves as the flag to indicate which rule in the 

rule-base is active and which rule is inactive. Rules are 

deleted or merged, which lead to the corresponding 

elements in ‘RULE’ flipping from 1 to 0 (hence, ‘Rule 
2’ is an inactive rule as shown in Fig. 6). 

5.2. Spreads of the output membership function 

This issue only relates to IMOFM_M. Due to 

unconstrained optimisation, it is very likely that some 

spreads of the output membership functions become 

wide enough to be considered as the universal fuzzy set. 

However, it is every hard to associate any meaningful 

linguistic terms with the universal fuzzy set for the 

consequents. The solution to this problem is to impose a 

constraint on the spreads of the output membership 

functions so that they will not exceed 1 in a normalised 

universe of discourse. 

6. Experiments 

6.1. A benchmark problem 

The benchmark example used in this section is a 

nonlinear static system with two inputs and one output, 

A 3-rule FRBS after Immune Optimisation

A 3-rule FRBS Coding Representation

Mutation Points

A 3-rule FRBS after Structure Simplification
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Fig. 6.  If a link is set up, no missed mutation points are 
induced; inactive rules are not actually deleted but marked so 
that it will not participate in any computations afterwards. 
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which has been studied in Ref. 30. The system is 

defined as follows:                                                       
Although this problem is a simple low-dimensional 

problem, it is a very good example in terms of 

demonstrating how IMOFM works. The same 50 input-

output data pairs as those used in Refs. 6 and 43 are 

collected.  

The number of clusters is set to 5 in the first 

modeling stage. The refined 5-rule initial FRBS is used 

to seed the initial population in the third modeling 

stage. The initial population size is set to 7. The number 

of iterations in the third stage is set to 1200. The 

network threshold ( ) of PAIA is set to 0.0008 for this 

example to manage the population within the solution 

pool. Other parameters of PAIA are kept the same as 

those in Refs. 9~10. In order to obtain a quantitative 

comparison of the proposed method with other well-

known fuzzy modeling paradigms, IMOFM is 

compared with the methods proposed in Refs. 6, 30, 43 

44 and 45. Table 1 summarizes such comparative 

results focusing on their predictive performances 

(RMSE) and the number of rules. The results in Table 1 

include the average values of 30 runs.  

Table 1.  Comparisons of the predictive performance of different modeling methods. 

Modeling Methods (Ref.) No. of 
rules 

No. of fuzzy sets& 

 
No. of 

Parameters 
Consequents Performance 

(RMSE training) 

Ref. 44 6 12 trapzoidal*/Gaussian@ 30*/42@ Singleton 0.5925* 0.0707@ 

Ref. 43 6 12 trapzoidal 72 Fuzzy sets 0.5639* 0.2811@ 

Ref. 6 5 10 25 Singleton 0.5604* 0.3391@ 

Ref. 30       

   Initial  6 12 Gauss2mf. 66 Linear  - 0.1755@ 

   Pareto FRBS1 7 6 Gauss2mf. 45 Linear  0.0298# 

   Pareto FRBS2 4 3 Gauss2mf. 24 Linear  0.0520# 

   Pareto FRBS3 3 2 Gauss2mf. 17 Linear  0.0719# 

Ref. 45       

   Pareto FRBS1 4 8 Gaussian 28 Linear  0.0656# 

   Pareto FRBS2 4 5 Gaussian 22 Linear  0.0883# 

   Pareto FRBS3 3 5 Gaussian 19 Linear  0.1382# 

   Pareto FRBS4 2 4 Gaussian 14 Linear  0.2750# 

IMOFM_S ( NB: Average results over 30 runs are presented here)  

Average execution time (Intel(R) Core(TM)2 Duo CPU, 2.27 GHz): 1st stage: 0.5460sec; 2nd stage: 120sec; 3rd stage: 213sec   

   Initial FRBS 5 10 Gaussian 25 Singleton   0.5954* 0.0688@ 

   Pareto FRBS1(30 times) 5 10 Gaussian 25 Singleton  0.0688#       

   Pareto FRBS2(30 times) 5 9 Gaussian 23 Singleton   0.0696#      

   Pareto FRBS3(29 times) 4 8 Gaussian 20 Singleton 0.0930#           

   Pareto FRBS4(29 times) 3 6 Gaussian 15 Singleton 0.1417#           

   Pareto FRBS5(30 times) 2 4 Guassian 10 Singleton 0.2484#           

   Pareto FRBS6(25 times) 2(5T) 3 Gaussian 6 Singleton 0.4769#           

IMOFM_M (NB: Average results over 30 runs are presented here) 

Average execution time (Intel(R) Core(TM)2 Duo CPU, 2.27 GHz): 1st stage: 0.5460sec; 2nd stage: 37sec; 3rd stage: 229sec 

   Initial FRBS 5 15 Gaussian 30 Mamdani  0.6078* 0.0702@ 

   Pareto FRBS1(14 times) 5 15 Gaussian 30 Mamdani  0.0633#           

   Pareto FRBS2(25 times) 5 14 Gaussian 28 Mamdani  0.0651#           

   Pareto FRBS3(22 times) 5 13 Gaussian 26 Mamdani  0.0691#           

   Pareto FRBS4(26 times) 4 11 Gaussian 22 Mamdani  0.0781#           

   Pareto FRBS5(25 times) 4 10 Gaussian 20 Mamdani  0.0961#           

   Pareto FRBS6(28 times) 3 9 Gaussian 18 Mamdani  0.1311#           

   Pareto FRBS7(28 times) 3 8 Gaussian 16 Mamdani  0.1846#           

   Pareto FRBS8(25 times) 2 6 Gaussian 12 Mamdani  0.2482#           

   Pareto FRBS9(28 times) 2(5T) 5 Gaussian 10 Mamdani  0.2718#           
& For IMOFM_S, it is the number of fuzzy sets in its inputs; for IMOFM_M, it is the number of fuzzy sets in its   inputs and output.  
 * Initial model extracted directly from data using clustering algorithms or grid partition methods. 
@ Refined model or the consequents are computed through the estimation methods.  
 # Simplified model after model simplification and parameter fine tuning. 
T Total number of rule length.    Stardard deviation of the results obtained from 30 runs. 
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One challenge associated with EAs-based multi-

objective fuzzy modeling algorithms is how to include 

the results from different runs. This is because the 

algorithms of this type are stochastic in their nature. 

Hence, Table 1 also records the number of each FRBS’ 
configuration found within the 30 runs using the whole 

three-stage modeling procedure. Most configurations 

are found more than 20 times within 30 runs, which 

suggests that the proposed modeling method is robust 

and consistent. It is worth mentioning at this stage that 

the FRBS with a short rule length was identified. This 

is mainly attributed to the merging of some fuzzy sets 

with the universal fuzzy set. The proposed method is 

also compared to other modeling approaches with 

singleton or fuzzy sets as their consequents, and it was 

found to represent the most accurate results with 

simpler rule-base structures. In contrast, Refs. 30 and 

45 adopted linear Sugeno structure. As can be seen 

from this table, these two methods produced slightly 

better predictions using fewer rules, e.g. four rules, 

compared to five rules in the proposed work. However, 

due to the linear combinations in the consequents, the 

number of parameters involved in these two works and 

the proposed work is more or less the same. Due to the 

constraint on space, Fig. 7 only shows the Pareto fronts 

obtained by using IMOFM_S from one of the 30 runs. 

Fig. 8 and 9 only show the results of IMOFM_M. 

For the third modeling stage, a 4-rule simplified FRBS 

with 7 fuzzy sets in its inputs and 3 fuzzy sets in its 

consequents is chosen for the illustration purpose. 

Similar results have been obtained for IMOFM_S.  

Fig. 10 show the predictive performances of the 

simplified Singleton and Mamdani FRBS. For the 

Singleton FRBS, a 4-rule simplified FRBS with 7 fuzzy 

sets is chosen for the purpose of illustration.  

(a)

(c)

(b)

 

Fig. 8.  The membership functions from (a) 1st stage; (b) 2nd 
stage; (c) 3rd stage. 

 

Fig. 9.  4-rule simplified Mamdani FRBS. 

 

Fig. 7.  The Pareto fronts obtained by using IMOFM_S. 
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Based on this benchmark problem, analysis of 

IMOFM_S in terms of the influences of using different 

modeling stages and user-specified parameters on 

performance is given below. The observations are 

always held for IMOFM_M unless otherwise stated.  

 Influence of the Modeling Stages on Performance 

In order to test the influences of the each modeling 

stages, two variants of the proposed IMOFM are 

investigated: 1) the combination of the first stage and 

the third stage; 2) only the third stage. In the first case, 

an initial 5-rule FRBS is generated using the clustering 

algorithm, which is then fed to the third stage without 

any refinement. While in the latter case, the initial 5-

rule FRBS is randomly generated within the variable 

domains. Table 2 summarizes the results of the two 

variants.  

As shown in Table 2, more iterations are needed for 

the two variants to achieve a similar predictive 

performance as that obtained using the three-stage 

modeling procedure (refer to Table 1), and only a few 

Pareto FRBSs are obtained. The most complex structure 

which is supposed to evolve to the most accurate FRBS 

is discarded during the optimization since FRBSs with 

more rules may be replaced by FRBSs with fewer rules 

in the early iterations. In such a case, the ‘Pareto’ 
selection favours the one with a simpler structure. All 

these justified the inclusion of the first two stages.  

 Influence of the User-Specified Parameters on 
Performance 

IMOFM includes a set of user-defined parameters, 

among which some are inherited from PAIA and others 

are mainly associated with the third modeling stage. 

The investigations on how these parameters affect the 

performance of IMOFM are carried out. The emphasis 

has been given to two PAIA affiliated parameters, 

namely the initial population size and  , and four 

model-simplification parameters, namely   ,   ,     
and    . 

IMOFM is not sensitive to the size of the initial 

population. This parameter does have an impact on the 

speed of the algorithm’s convergence. However, given 

enough evaluation times the initial population size and 

the accuracy of IMOFM have no causal relationship. 

This has been proved in Fig. 11, where the average 

results of 10 independent runs with the initial 

population size varied from 1 to 10, each of which 

executes 1000 iterations (which are considered as 

enough evaluation times) are shown. The non-

dominated FRBSs with different initial population sizes 

produced very close Pareto fronts, which means that the 

initial population size is not a critical parameter.   is also not a critical parameter as far as the 

convergence accuracy is concerned. However, it is an 

important factor as far as the number of the obtained 

Pareto solutions is concerned. Without the need for 

increasing the evaluation times greatly, more Pareto 

solutions may be obtained by simply adjusting  . This 

property is regarded as one of the advantages of PAIA 

 

Fig. 10.  Predictive performances of the simplified Mamdani 
and Singleton FRBSs. 

Table 2. Comparisons of the predictive performance of 
different modeling stages for the benchmark problem. 

Modeling 
Methods (Ref.) 

No. 
of 

rules 

No. of 
fuzzy 
sets& 

 

The type 
of FRBS 

Performance 
(RMSE 
training) 

IMOFM (the first stage and the third stage); numbeer of iterations: 3000 

Initial FRBS 5 10 Singleton 0.6069* 
FRBS1 5 6 Singleton 0.1183# 

FRBS2 4 6 Singleton 0.1268# 

FRBS3 3 5 Singleton 0.1724# 

FRBS4 2 4 Singleton 0.2475# 

FRBS5 2(4T) 2 Singleton 0.7235# 

IMOFM (only the third stage); number of iterations: 4000 

Initial FRBS 5 10 Singleton 1.0363* 

FRBS1 4 7 Singleton 0.1116# 

FRBS2 4 6 Singleton 0.1223# 

FRBS3 3 5 Singleton 0.1502# 

FRBS4 3(8T) 4 Singleton 0.1753# 

FRBS5 3(7T) 4 Singleton 0.3211# 

    *:  Initial model extracted directly from data using clustering algorithms      
or grid partition methods; T:  Total number of rule length; 

    #:   Simplified model after model simplification and parameter fine 
tuning. 
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comparing to other EAs. Fig. 12 shows the Pareto 

fronts obtained using 0.1 and 0.0008 as their network 

suppression threshold  . The results are obtained over 

10 independent runs, each of which executes 1000 

iterations. 

A bigger value of the threshold means more Pareto 

solutions will be suppressed. A Smaller value means 

more Pareto solutions will be allowed to enter into the 

memory set during each iteration step. Hence, more 

Pareto FRBSs are in the final population. However, as 

can be seen in Fig. 12, this parameter does not affect 

the predictive performance of the elicited model.  

In order to investigate the effects of the model-

simplification parameters, only one parameter is 

selected each time with its value varied from 0 to 1. 

Other parameters are kept as constant so that one can 

concentrate on analysing the selected parameter.  

The first parameter to be investigated is    which is 

responsible for removing insignificant rules.    can 

vary from 0 to 1. In order to bypass the effects of other 

model simplification parameters,   ,      and     are 

all set to 1. Fig. 13 shows how    affects the least 

number of rules that IMOFM can obtain. It is worth 

mentioning that such a number is also affected by other 

model simplification parameters and thus may not be 

strictly specified by   . In this work,    is set to 0.5.  

In order to investigate the effect of the threshold    

which is responsible for merging similar rules,    is 

varied from 0 to 1 with       ,       and      . In such a situation, a small value of    will 

result in rules being merged even if they are quite 

different, and this may ultimately affect the predictive 

performances of the elicited FRBS. Fig. 14 shows the 

predictive performances of four Pareto FRBSs against 

different values of   . As shown in the figure, IMOFM 

with    varied between 0.9 and 1 generally produces 

more accurate predictions. Hence,    with a large 

value, e.g. between 0.9 and 1, is a preferable choice. 

 

Fig. 11.  The averaged Pareto fronts found in 10 independent 
runs with different initial population sizes. 

 

Fig. 13.  The effect of    on the least number of rules that 
IMOFM can obtain. 

 

Fig. 12.  Pareto FRBS obtained using different  . 

 

Fig. 14.  (a) 5-rule FRBS; (b) 4-rule FRBS; (c) 3-rule FRBS; 
(d) 2-rule FRBS. 
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can be regarded as the universal fuzzy set. A small 

value of this threshold means more fuzzy sets can be 

considered as the universal fuzzy set, and vice versa. If       ,         and      , a small value of     will result in more Pareto FRBS to be found since 

in such a case the probability of having similar rules are 

increased due to the deletion of some fuzzy sets. 

However, useful fuzzy sets may be deleted just because 

they are ‘wide enough’ to be considered as the universal 

fuzzy set in the case of using a small value of    . In 

such a case, the predictive performances of the elicited 

FRBS may be affected. Fig. 15 demonstrates how 

different     affects the predictive performances. 

Generally speaking, values between 0.6 and 1 are good 

values.  

As a general guide,     should be set to values 

smaller than 1 so that not only the same fuzzy sets but 

also similar ones can be merged. When similar fuzzy 

sets are merged, rules may become similar so that they 

will be merged consequently, a consideration which 

makes the rule-base more compact. Fig. 16 confirms 

that when     takes values smaller than 1 (      ,        ,         ) IMOFM can produce more 

Pareto FRBSs.  

6.2. Real World Applications 

The proposed modeling method is tested further with a 

high-dimensional real world engineering application 

associated with the mechanical property prediction of 

hot rolled steels. Specialist heat treatments are used to 

develop the required mechanical properties in a range 

of alloy steels. The mechanical properties of the alloy 

steels rest with many factors of which the followings 

are believed to be the major ones (refer to Table 3): 

tempering temperature, quench type, chemical 

compositions of the steel, geometry of the bar, test 

sample location on the bar, batch distribution in the 

furnace, measurement tolerances and variations in the 

process equipment and operators.46 Traditionally, a heat 

treatment metallurgist would try to balance these 

factors using their metallurgical knowledge and 

experience in a bid to obtain the desired mechanical 

properties. However, due to the increasing complexity 

of the underlying system, it becomes more difficult 

even for the metallurgists to tune these parameters. 

Given the lack of the mathematical models which can 

account for these complex systems and a large amount 

of available industrial process data associated with the 

systems, data-driven modeling becomes more vital for 

assisting the metallurgist to predict the mechanical test 

results without actually doing it and to understand the 

underlying process. Based on these models, further 

optimisations of the heat treatment process can also be 

developed, which is envisaged to be able to automate 

 

Fig. 16.  The effects of sfs on the number of Pareto FRBSs. 

 

Fig. 15.  (a) 5-rule FRBS; (b) 4-rule FRBS; (c) 3-rule FRBS; 
(d) 2-rule FRBS. 

Table 3. The inputs and output of UTS data set. 

    Inputs Test Depth Size Site %C %Si %Mn %S %Cr 
Max. 140 381 6 0.62 0.35 1.72 0.21 3.46 
Min. 4 8 1 0.12 0.11 0.35 5e-4 0.05 

Inputs %Mo %Ni %Al %V 
Hardening 

Temperature 
Cooling 
Medium 

Tempering 
Temperature 

/ 

Max. 1 4.16 1.08 0.27 980 3 730 / 
Min. 0.01 0.02 5e-3 1e-3 820 1 170 / 

Outputs Tensile Strength (Max.: 1842; Min.: 516.2)  
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the steel design process and reduce the experimental 

cost. 

In this part, the problem of predicting Ultimate 

Tensile Strength (UTS) of heat-treated steel is used as a 

case study, which involves knowledge acquisition from 

real industrial data. UTS data set consists of 3760 data 

samples and includes 15 inputs and one output as 

shown in Table 3. In order to compare with the work in 

Ref. 39, the UTS data set is randomly divided into two 

parts: 75% of the data are used for training and the 

remaining data are used for testing. Another 12 more 

recent samples are used as the unseen data set to 

validate the generalisation properties of the model. The 

maximum number of rules is set to 12. The number of 

iterations for the third modeling stages is set to 1200.  

The results presented in Table 4 include the average 

values of 10 independent runs and only a few ‘Pareto’ 
FRBSs are presented due to the constraint on space. 

The problem of over-fitting specifically related to the 

second modeling stage under unseen situations is 

revealed in Table 4. Such over-fitting is mainly 

attributed to the complex structures involved in the first 

two modeling stages. However, the simplified fuzzy 

models can predict well even under unknown scenarios.  

Fig. 17 shows the predictive performance of a 7-

rule simplified Mamdani FRBS. Fig. 18 compares the 

membership functions on a few selected inputs and 

output from the refined FRBS and the simplified 7-rule 

Mamdani FRBS. A much improved transparency has 

been achieved. Fig. 19 shows the snapshot of the 

obtained approximate Pareto fronts at different 

iterations. The evolution starts from the most accurate 

FRBS and expands the Pareto front during the course of 

the optimization. Due to the constraints of the space, 

only 3 selected rules from the 7-rule simplified 

mamdani FRBS are shown in Appendix A. 

 

Fig. 17.  The predictive performance of a 7-rule simplified 
FRBS (left to right: training, testing and validation). 

 

Fig. 18.  The fuzzy sets of input 13 (hardening tempature), 5 
(Si) and output (UTS) from the second (left) and the third 
modeling stage (right). 

 

Fig. 19.  The Pareto FRBSs at different iterations. 

Table 4. Comparisons of the predictive performance of 
different modeling methods using UTS data. 

    
Modeling 

Methods 

First Stage (clustering 
algorithm) 

Second Stage (single objective 
refining) 

Training 
(RMSE) 

Testing 
(RMSE) 

Training 
(RMSE) 

Testing 
(RMSE) 

Validation 
(RMSE) 

Ref. 34 100.54 108.26 37.45 43.07 - 
IMOFM_S 113.54 112.32 30.93 35.65 53.61 
IMOFM_M 120.43 123.44 31.21 35.49 37.23 

Third Stage (multi-objective fuzzy modeling) 

Modeling 

Methods 

No. of 

rules 

No. of Fuzzy sets in inputs 

 

Modeling performance 

Training 
(RMSE) 

Testing/ 
Validation 

Ref. 39 

Pareto 
FRBS1 

 
12 

 
  
Inputs: [9 11 10 12 8 10 8 9 10 
10 6 11 10 10 10 10]  
Output: 10 

 
37.45 

 
 

43.07/- 
 

Pareto 
FRBS2 

     9 
Inputs: [9 7 8 7 5 6 4 6 8 8 2 6 
7 8 7], Output: 9 

42.82 43.90/- 

IMOFM_S 

Pareto 
FRBS1 

 
10 

 
Inputs: [4 7 8 8 4 7 3 8 7 7 3 4 
4 7 7], Outputs: 10 
 

32.38 34.82/41.01 

Pareto 
FRBS2 

8 
Inputs: [2 4 4 7 3 3 3 5 4 5 2 2 
3 6 6], Output: 8 
 

36.43 37.63/31.54 

Pareto 
FRBS3 

7 
Inputs: [3 4 4 4 1 3 3 4 3 4 1 1 
2 6 5], Output: 7 

42.91 43.87/46.34 

IMOFM_M 

Pareto 
FRBS1 

 
    10 

 
Inputs: [8 9 10 10 6 10 6 9 9 7 
4 7 6 10 9], Output: 10 

 
31.21 35.32/35.65 

 
Pareto 
FRBS2 

 
7 

 
Inputs: [5 7 7 7 2 4 3 6 6 6 2 3 
1 7 7], Output: 5 

34.70 36.44/37.80 

 
Pareto 
FRBS3 

6 
Inputs: [2 2 2 5 2 2 1 4 3 3 0 2 
1 2 4], Output: 5 

45.83 44.30/49.87 

Average execution time (Intel® Core(TM)2 Duo CPU, 2.27 GHz) 
IMOFM_S: 1st stage: 1 min.; 2nd stage: 25 min.; 3rd stage: 3.7 hrs 

IMOFM_M: 1st stage: 1 min.; 2nd stage: 30 min.; 3rd stage: 4 hrs 
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Table 5 summarizes the results of the UTS 

modeling problem using IMOFM_S with and without 

the variable length coding and the new distance index. 

Much bigger improvements have been registered for the 

FRBS with fewer rules since they are more prone to 

suffering from the problem of ‘unordered set of rules’. 

7. Conclusions 

In the paper, a systematic immune inspired multi-

objective fuzzy modeling framework, namely IMOFM, 

is introduced. The main novel contributions of the 

proposed modeling framework are considered as 

follows: (1) the proposed modeling approach is not 

sensitive to the initial starting points due to the 

evolutionary based clustering algorithm used in the first 

stage; (2) Only the maximum allowable number of rules 

is required a priori since in the third stage a set of 

Pareto FRBS with different structure are elicited.; (3) 

due to the first two stages, the efficiency and predictive 

accuracy of the modeling are improved; (4) by using 

the variable length coding scheme and a new distance 

index, the problem of the so-called ‘unordered set of 
rules’ is resolved, which leads to a more efficient 

parameter optimization.  

The similarity measures described in Eqs. 23~24 

will be checked for each fuzzy set, and only the ones 

with the maximum similarity values will be deleted or 

merged during each iteration step. For this reason and 

because of the elitism which records any non-

dominated solution found at each iteration step during 

the experiments these parameters were found not to be 

critical to the final outcome as long as they are kept 

within the recommended ranges. 
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Appendix A  

If    
Test Depth is 

small

And   Size is 

small

And   %C is 

less medium

And   %Si is 

more 
medium

And   %Mn is  

less medium

And   %S is 

small

And   %Cr is 

less medium

And   %Mo is 

slightly small

And   %Ni is 

more or less 
mediuml

And   %Al is 

small

And   %V is 

small

Then UTS is Large

(a)

If    
Test Depth is 

slightly small

And   Size is 

medium

And Site 

number is more 
or less medium

And   %C is 

less medium

And   %Si is  

medium

And   %Mn is  

small

And   %S is 

slightly small

And   %Cr is  

slightly small

And   %Mo is 

small

And   %Ni is 

small

And   %Al is 

small

And   %V is 

small

And  Tempering 

Temperature is 

slightly large

Then  UTS is 

small

And   Hardening 

Temperature is 

more or less small

And  Cooling 

Medium is slightly 
large

Then  UTS is 

large

And   Size is 

less medium

And   %Cr is  

less medium

And   %Mo is 

less medium

And   %Ni is 

small

And   %Al is 

small

If    
Test Depth is 

slightly small

And   %C is 

slightly large

And   %Si is 

medium

And   %Mn is  

less medium

And   %S is 

small

And   %V is 

small

Then  UTS is 

slightly large

And  Tempering 

Temperature is 

slightly large

And  Cooling 

Medium is medium

And   Hardening 

Temperature is  
more or less small

And Site 

number is large
And   Site 

number is large

And   Hardening 

Temperature is 

slightly small

And  Cooling 

Medium is more or 
less medium

And  Tempering 

Temperature is 

slightly small

(a) (b) (c)

 

Appendix A: 3 selected rules from a 7-rule simplified Mamdani FRBS 
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