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Abstract. Hydrodynamic models are useful tools for urban

water management. Unfortunately, it is still challenging to

obtain accurate results and plausible uncertainty estimates

when using these models. In particular, with the currently ap-

plied statistical techniques, flow predictions are usually over-

confident and biased. In this study, we present a flexible and

relatively efficient methodology (i) to obtain more reliable

hydrological simulations in terms of coverage of validation

data by the uncertainty bands and (ii) to separate prediction

uncertainty into its components. Our approach acknowledges

that urban drainage predictions are biased. This is mostly

due to input errors and structural deficits of the model. We

address this issue by describing model bias in a Bayesian

framework. The bias becomes an autoregressive term addi-

tional to white measurement noise, the only error type ac-

counted for in traditional uncertainty analysis. To allow for

bigger discrepancies during wet weather, we make the vari-

ance of bias dependent on the input (rainfall) or/and output

(runoff) of the system. Specifically, we present a structured

approach to select, among five variants, the optimal bias de-

scription for a given urban or natural case study. We tested

the methodology in a small monitored stormwater system

described with a parsimonious model. Our results clearly

show that flow simulations are much more reliable when

bias is accounted for than when it is neglected. Furthermore,

our probabilistic predictions can discriminate between three

uncertainty contributions: parametric uncertainty, bias, and

measurement errors. In our case study, the best performing

bias description is the output-dependent bias using a log-

sinh transformation of data and model results. The limita-

tions of the framework presented are some ambiguity due

to the subjective choice of priors for bias parameters and its

inability to address the causes of model discrepancies. Fur-

ther research should focus on quantifying and reducing the

causes of bias by improving the model structure and propa-

gating input uncertainty.

1 Introduction

Mathematical simulation models play an important role in

the design and assessment of urban drainage systems. On

the one hand, they are used to investigate the current sys-

tem, for example regarding the capacity for and likelihood of

flooding. On the other hand, engineers use them to predict

the consequences of future changes of boundary conditions

or control strategies (Gujer, 2008; Kleidorfer, 2009; Korvin

and Clemens, 2005). Traditionally, according to standards of

good engineering practice, such models were calibrated by

adjusting parameters to allow predicted flows to closely re-

flect field data. In recent years, it has been suggested that

predictions of urban drainage models are not of much practi-

cal use without an estimate of their uncertainty (Dotto et al.,

2011; Kleidorfer, 2009; Korvin and Clemens, 2005; Reichert

and Borsuk, 2005). Unfortunately, there are so far no es-

tablished methods available to assess prediction uncertainty

in sewer hydrology in a statistically satisfactory way (Freni

et al., 2009b; Breinholt et al., 2012).

In the context of design, operation and assessment of ur-

ban hydrosystems, it is important to obtain reliable predic-

tions from a calibrated model (Sikorska et al., 2012). This

means that random draws from the model should have similar

statistical properties (such as variance or autocorrelation) as

the data. Additionally, for reliable predictions, the observed

Published by Copernicus Publications on behalf of the European Geosciences Union.



4210 D. Del Giudice et al.: Improving uncertainty estimation in urban hydrology

coverage of the simulated uncertainty bounds should match,

or exceed, the nominal coverage. Ideally, this can be achieved

by representing the dominant sources of uncertainty explic-

itly in the model. This could be done by considering uncer-

tainty in (i) model parameters, (ii) measured outputs, (iii)

measured inputs and (iv) the model structure and by prop-

agating these uncertainties to the model output.

While there have been some attempts to formulate a

sound “total error analysis framework” in natural hydrol-

ogy (Kavetski et al., 2006; Vrugt et al., 2008; Reichert and

Mieleitner, 2009; Montanari and Koutsoyiannis, 2012), ap-

plications in urban hydrology are lacking, probably due to

the complexity of these approaches. Instead, it is usually (of-

ten implicitly) assumed, first, that the model is correct and,

second, that residuals, i.e., the differences between model

output and data, are only due to white measurement noise

(Breinholt et al., 2012; Dotto et al., 2011). Furthermore, these

observation errors are considered to be identically (usually

normally) and independently distributed (iid) around zero

(Willems, 2012). Unfortunately, these are very strong as-

sumptions in urban hydrology, where processes are faster

than in natural watersheds, the spatial heterogeneity of pre-

cipitation may have a bigger effect (Willems et al., 2012), and

rainfall runoff can increase by several orders of magnitude

within a few minutes. This “flashy” reaction can be challeng-

ing to reproduce correctly in time and magnitude with current

computer models and precipitation measurements (Schellart

et al., 2012). In addition, sewer flow data have a high res-

olution of a few minutes and are usually more precise than

those of natural channels. Having temporally dense and pre-

cise measurements exacerbate the effects of systematic dis-

crepancies between model outputs and data (Reichert and

Mieleitner, 2009). If such model bias, mainly induced by in-

put and structural errors, is not properly accounted for, au-

tocorrelated and heteroskedastic residual errors and overcon-

fident (i.e., too narrow) uncertainty intervals are generated

(Neumann and Gujer, 2008).

To better fulfill the statistical assumptions of homoskedas-

ticity and normality of calibration residuals, and so obtain

more reliable predictions, a commonly applied technique in

hydrology is to transform simulation results and output data.

The Box–Cox transformation (Box and Cox, 1964) has in-

deed been successfully used in several case studies, both ru-

ral (e.g., Kuczera, 1983; Bates and Campbell, 2001; Yang

et al., 2007b, a; Frey et al., 2011; Sikorska et al., 2012) and

urban (e.g., Freni et al., 2009b; Dotto et al., 2011; Breinholt

et al., 2012). Admittedly, transformation stabilizes the vari-

ance of the residual errors in the transformed space. Unfor-

tunately, it has almost no effect on the serial autocorrelation

of residuals and thus cannot capture model bias.

To account for systematic deviations of model results from

field data, it seems promising to apply autoregressive error

models that lump all uncertainty components into a single

process (Kuczera, 1983; Bates and Campbell, 2001; Yang

et al., 2007b; Evin et al., 2013). Such models are not only

relatively straightforward to apply, but also often help to

meet the underlying statistical assumptions. However, a dis-

advantage of such lumped error models is that only pa-

rameter uncertainty can be separated from the total predic-

tive uncertainty. By not distinguishing among error com-

ponents, they do not help to reduce predictive uncertainty.

To additionally separate bias from random measurement er-

rors, Kennedy and O’Hagan (2001), Higdon et al. (2005),

Bayarri et al. (2007) and others suggested using a Gaus-

sian stochastic process to describe the knowledge about the

bias, plus an independent error term for observation error.

This approach has been applied to environmental modeling

and linked to multi-objective model calibration by Reichert

and Schuwirth (2012). Recently, a more complex input-

dependent description of bias has been applied successfully

by Honti et al. (2013). In their study, this solved the problem

that model bias was greater during rainy periods than dur-

ing dry weather, a common situation in hydrology (Breinholt

et al., 2012). Going into a different direction of error sepa-

ration, Sikorska et al. (2012) combined the lumped autore-

gressive error model with rainfall multipliers to separate the

effect of input uncertainty from (lumped, remaining) bias and

flow measurement errors.

In summary, there are three major interrelated needs in (ur-

ban) hydrological modeling: (i) to obtain reliable predictions,

(ii) to disentangle prediction uncertainty into its components,

and (iii) to fulfill the statistical assumptions behind model

calibration. In particular, need (iii) is necessary to fulfill re-

quirements (i) and (ii) in a satisfying way.

To address these issues, here we adapt the framework of

Kennedy and O’Hagan (2001), as formulated by Reichert

and Schuwirth (2012), to assess model bias along with other

uncertainty components. This makes it possible to provide

reliable predictions of (urban) hydrological models while

improving the fulfillment of the underlying statistical as-

sumptions. At the same time, this approach considers three

different uncertainty components, namely output measure-

ment errors, parametric uncertainty and the effect of struc-

tural deficits and input measurement errors on model output.

With this approach all uncertainties are described in the out-

put. This does not allow separating input errors from struc-

tural deficits. However, a statistical bias description is sim-

pler and less computationally intensive than addressing the

causes of bias via mechanistic propagation of rainfall uncer-

tainty (Renard et al., 2011), stochastic time-dependent pa-

rameters (Reichert and Mieleitner, 2009), or by combining

filtering and data augmentation (Bulygina and Gupta, 2011).

Although focused on urban settings, our methodology is

also suitable in other contexts like natural watersheds, where

generally processes occur on longer timescales and output

measurements are more uncertain. In this paper, we do not

advocate an ideal error model that fits every situation. In our

view, although very desirable, such a model might be unre-

alistic because watershed behaviors, measurement strategies

and hydrodynamic models differ from case to case. Instead,
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we suggest a structured approach to find the most suitable

description of model bias for a given hydrosystem and a

given deterministic model.

Specifically, we investigate different strategies to parame-

terize the bias description, making it (i) input-dependent and

(ii) output-dependent by applying two different transforma-

tions. The innovations of our study are the following.

i. A formal investigation of model bias in urban hydrol-

ogy. This makes it possible to obtain reliable uncer-

tainty intervals of sewer flows, also because the under-

lying statistical assumptions are better fulfilled.

ii. An assessment of the importance of model bias by sep-

arating prediction uncertainty into the individual con-

tributions of bias, effect of model parameter uncer-

tainty and measurement errors.

iii. A systematic comparison of different bias formula-

tions and transformations. This is highly relevant for

both natural and urban hydrology because we can ac-

quire knowledge for potential future studies.

iv. An assessment of predictive uncertainties of flows for

past (calibration) and future (extrapolation) system

states. We find that considering bias not only produces

reliable prediction intervals. It also accounts for in-

creasing uncertainty when flow predictions move from

observed past into unknown future conditions. Further-

more, we discuss how the exploratory analysis of bias

and monitoring data can be used to improve the hydro-

dynamic model.

The remainder of this article is structured as follows: first,

we present the statistical description of model bias and com-

pare it to the classical approach. Second, we introduce two

different bias formulations and two transformations, and de-

scribe how we evaluate the performance of the resulting

runoff predictions. Third, we test our approach on a high-

quality data set from a real-world stormwater system in

Prague, Czech Republic, and present the results obtained

with the different error models. Fourth, we discuss these re-

sults as well as advantages and limitations of our approach

based on theoretical reflections and our practical experience.

In addition, we suggest how to select the most appropriate

error formulations for urban and also natural hydrological

studies and outline future research needs.

2 Methods

2.1 Likelihood function

To statistically estimate the predictive uncertainty of urban

drainage models, we need a likelihood function (a.k.a. sam-

pling model), f
(

yo|θ ,ψ,x
)

, which combines (in this partic-

ular case) a deterministic model (a.k.a. simulator), M , with

a probabilistic error term. f
(

yo|θ ,ψ,x
)

describes the joint

probability density of observed system outcomes, yo, given

the simulator and error model parameters (θ ,ψ), and external

driving forces, x, such as precipitation. The probability den-

sity, f
(

yo|θ ,ψ,x
)

, may have a frequentist or a Bayesian in-

terpretation. While the former considers probabilities as the

limiting distribution of a large number of observations, the

latter uses probabilities to describe knowledge or belief about

a quantity, e.g., output variable. Only frequentist elements in

a likelihood function can be empirically tested. To formu-

late such a likelihood function, we need (i) a simulator of the

system with parameters θ , and (ii) a stochastic model of the

errors with parameters ψ . A generic likelihood function as-

suming a multivariate Gaussian distribution with covariance

matrix 6(θ ,ψ,x) of output transformed by a function g()

can be written as

f (yo | θ ,ψ,x)=
(2π)−

n
2

√

det(6(ψ,x))

·exp

(

−
1

2

[

ỹo − ỹM(θ ,x)
]T
6(ψ,x)−1

[

ỹo − ỹM(θ ,x)
]

) n
∏

i=1

dg

dy

(

yo,i,ψ
)

, (1)

where n is the number of observations, i.e., the dimension of

yo, which could be, for instance, a sewer flow time series.

yM are the corresponding model predictions. The tilde de-

notes transformed quantities, i.e., ỹ = g(y). Note that Eq. (1)

assumes the residual errors to have 0 as expected value.

Uncertainty analysis for predictions is usually preceded

by model calibration, which requires that the statistical as-

sumptions underlying the likelihood function are approxi-

mately fulfilled. This means that the Bayesian part of the

likelihood function should correctly represent (conditional)

knowledge/belief of the analyst about the error distribution

(given the model parameters). This assumption is not testable

by frequentist techniques. Instead, the appropriateness of the

priors can be checked by carefully eliciting the knowledge

of the experts (O’Hagan et al., 2006). Additionally, frequen-

tist assumptions can be tested by comparing empirical dis-

tributions with model assumptions. In our error models, we

will have a frequentist interpretation of the observation er-

ror that can be tested, whereas the distributional assumption

of the bias cannot be tested. If frequentist assumptions are

violated, options are (i) to improve the structure of the deter-

ministic model, (ii) to modify the distributional assumptions,

or (iii) to improve the error model, e.g., by using a statistical

(Bayesian) bias description.

i. Regarding improving the model structure, e.g., by a

more detailed description of relevant processes or by

increasing the spatial resolution, bias can be reduced,

but not completely eliminated for environmental mod-

els. Natural systems are so complex that models will

always be a simplified abstraction of the physical real-

ity, unable to describe natural phenomena without bias.

In addition, increasing model complexity will increase

parametric uncertainty and computation time. Thus,

adequate model complexity must balance between bias
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and parametric uncertainty. Input errors are relevant

when dealing with highly variable forcing fields, as

it is the case for precipitation. Having a denser point

measurement network or combining different types of

input observations (e.g., from pluviometers, radar and

microwave links) can reduce this uncertainty. How-

ever, for practical reasons, input errors cannot be com-

pletely eliminated (Berne et al., 2004).

ii. Regarding improving the distributional assumptions, a

simple way is to transform data and model results and

applying the convenient distributional assumptions to

the transformed values. This technique is commonly

applied in hydrology to reduce heteroscedasticity and

skewness of (random observation) errors, while simul-

taneously accounting for increasing uncertainty dur-

ing high flow periods (Wang et al., 2012; Breinholt

et al., 2012). Alternatively, a similar effect can be

achieved through heteroscedastic error models with

error variance dependent on external forcings (Honti

et al., 2013) or simulated outputs (Schoups and Vrugt,

2010).

iii. Regarding accounting for difficult-to-reduce input and

structural errors responsible for autocorrelated residu-

als, it has been suggested to describe prior knowledge

of model bias by means of a stochastic process and to

update this knowledge through conditioning with the

data (Craig et al., 2001; Kennedy and O’Hagan, 2001;

Higdon et al., 2005; Bayarri et al., 2007).

To increase the reliability of our probabilistic predictions

and the fulfillment of the underlying assumptions for a given

model, we suggest to combine strategies (ii) and (iii).

In the following paragraphs, we consider nine differ-

ent likelihood functions by systematically modifying (i) the

variance–covariance matrix of the residuals 6 (Sects. 2.1.1,

2.1.2) and (ii) the transformation function g (Sect. 2.1.3).

Specifically, we take into account three forms of parame-

terization of the bias process: neglection of bias (traditional

error model with independent observation errors only), a

stationary bias process, and an input-dependent bias pro-

cess. Regarding output transformation, we compare the iden-

tity (no transformation), the Box–Cox transformation, and

a recently suggested log-sinh transformation (references are

given below).

2.1.1 Independent error model

In urban hydrology, the most commonly used statistical tech-

nique to estimate predictive uncertainty assumes an indepen-

dent error model (Dotto et al., 2011; Freni et al., 2009a;

Breinholt et al., 2012). Besides the absence of serial cor-

relation, this requires residual errors identically distributed

around zero.

The transformed observed system output, Ỹ o, is modeled

as the sum of a deterministic model output ỹM(x,θ) and an

error term representing the measurement noise of the system

response E:

Ỹ o(x,θ ,ψ)= ỹM(x,θ)+E(ψ), (2)

where variables in capitals represent random variables,

whereas those in lowercase are deterministic functions.

Assuming independent identically distributed normal er-

rors in the transformed space, E follows a multivariate nor-

mal distribution with mean 0 and a diagonal covariance

matrix,

6E = σ 2
E

❉
✐s❝✉

ss✐♦
♥
P
❛
♣
❡r

⑤
❉
✐s❝✉

ss✐♦
♥
P
❛
♣
❡r

⑤
❉
✐s❝✉

ss✐♦
♥
P
❛♣

❡r
⑤

❉
✐s❝✉

ss✐♦♥
P
❛♣

❡r
⑤

2

E1. (3)

We then have ψ = σE , and the covariance matrix of Eq. (1)

is given by 6 =6E . As E(ψ) is interpreted to represent

observation error, the distributional assumptions are testable

through residual analysis. Note that while in hydrology the

observation and measurement errors are used as synonyms,

in other environmental contexts observation errors can con-

tain additional sampling errors.

2.1.2 Autoregressive bias error model

In contrast to the independent error model, the autoregres-

sive bias error model explicitly acknowledges the fact that

simulators cannot describe the “true” behavior of a system.

This has been originally suggested in the statistical literature

(Craig et al., 2001; Kennedy and O’Hagan, 2001; Higdon

et al., 2005; Bayarri et al., 2007) and later adapted to envi-

ronmental modeling (Reichert and Schuwirth, 2012).

Technically, model inadequacy (also called bias or dis-

crepancy) is considered by augmenting the independent error

model with a bias term:

Ỹ o(x,θ ,ψ)= ỹM(x,θ)+BM(x,ψ)+E(ψ). (4)

On the one hand, this model bias BM can capture the ef-

fect of errors in input measurements and structural limita-

tions. On the other hand, it can also describe systematic out-

put measurement errors, e.g., from sensor failure, incorrectly

calibrated devices or erroneously estimated rating curves. In

its simplest form, the bias is modeled as an autocorrelated

stationary random process (Reichert and Schuwirth, 2012).

However, it can also have a more complex structure and,

for instance, be input-dependent (Honti et al., 2013). Strictly

speaking, BM represents a bias-correction whereas the bias

itself is its negative.

Conceptually, one difficulty is the identifiability problem

between model and bias, which is apparent in Eq. (4). As

both cannot be observed separately, this issue can only be

solved by considering prior knowledge on the bias in param-

eter estimation. This requires a Bayesian framework for in-

ference and prior distributions that favor the smallest possi-

ble bias. Indeed, we want output dynamics to be described

as accurately as possible by the simulator and only the re-

maining deviations by the bias. The distribution of the resid-

uals, BM(x,ψ)+E(ψ), is not testable due to the Bayesian

Hydrol. Earth Syst. Sci., 17, 4209–4225, 2013 www.hydrol-earth-syst-sci.net/17/4209/2013/
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interpretation of BM(x,ψ). However, when estimating both

BM(x,ψ) and E(ψ), the assumptions regarding the obser-

vation error, E(ψ), can be tested by frequentist tests.

Practically, the choice of an adequate bias formulation

is challenging. On the one hand, examples from urban hy-

drological applications are currently lacking. On the other

hand, the bias results from the complex interplay between the

drainage system, the simulator and the monitoring data. This

is not straightforward to assess a priori. In contrast, the auto-

correlated bias and the random observation errors are usually

well distinguishable due to their distinct statistical properties.

In the following, we investigate four different bias for-

mulations: (i) constant (i.e., input- and output-independent),

(ii) output-dependent, (iii) input-dependent, (iv) input- and

output-dependent. The constant bias is modeled via a

standard Ornstein–Uhlenbeck (OU) process. The input-

dependence uses a modified OU process, which is perturbed

by rainfall. The output-dependence is considered through

transformation of measured and simulated data.

Constant bias

The simplest bias formulation is a mean-reverting OU pro-

cess (Uhlenbeck and Ornstein, 1930), the discretization of

which would be a first-order autoregressive process (AR(1))

with Gaussian iid noise. The OU process is a stationary

Gauss–Markov process with a long-term equilibrium value

of zero (in our application) and a constant variance, either

in the original or transformed space. The one-dimensional

OU process BM is described by the stochastic differential

equation

dBM(t)= −
BM(t)

τ
dt +

√

2

τ
σBctdW(t), (5)

where τ is the correlation time and σBct is the asymptotic

standard deviation of the random fluctuations around the

equilibrium. dW(t) is a Wiener process, which is the same

as standard Brownian motion (random walk with indepen-

dent Gaussian increments). For an introduction to stochastic

processes see, e.g., Henderson and Plaschko (2006); Iacus

(2008); Kessler et al. (2012).

This stationary bias results in the likelihood function of

Eq. (1) with covariance matrix 6 =6E +6BM with

6BM,i,j (ψ)= σ 2
Bct

exp

(

−
1

τ
|ti − tj |

)

. (6)

In contrast to the formulation given by Eq. (6), the covari-

ance in the original formulation by Kennedy and O’Hagan

(2001) had an exponent α for the term |ti − tj |. To guaran-

tee differentiability, this exponent is often chosen to be equal

to two. For hydrological applications we prefer an exponent

of unity to be compatible with the OU process, which can

be assumed to be a simple description of underlying mecha-

nisms leading to a decay of correlation (Yang et al., 2007a;

Sikorska et al., 2012). Indeed, such a covariance structure

makes it possible to transfer the autoregressive error mod-

els (Kuczera, 1983; Bates and Campbell, 2001; Yang et al.,

2007b) to the bias description framework (Honti et al., 2013).

Input-dependent bias

A more complex bias description considers input-

dependency to mechanistically increase the uncertainty

of flow predictions during rainy periods. Following Honti

et al. (2013), we suggest an OU process whose variance

grows quadratically with the precipitation intensity, x,

shifted in time by a lag d. The equation for the rate of change

of the input-dependent bias is then given by

dBM(t)= −
BM(t)

τ
dt +

√

2

τ

(

σ 2
Bct

+ (κx(t − d))2
)

dW(t), (7)

where κ is a scaling factor and d denotes the response time

of the system to rainfall. For an equidistant time discretiza-

tion, with ti+1 − ti =1t , assuming that the lag is a constant

multiple of 1t , d = δ1t , and the input is constant between

time points, we derive from Eq. (7) the recursion formula for

the variance:

E
[

B2
M(ti)

]

= E
[

B2
M(ti−1)

]

exp

(

−
2

τ
1t

)

+
[

σ 2
Bct

+ (κxi−δ)
2
]

(

1 − exp

(

−
2

τ
1t

))

. (8)

The parameters ψ of this bias are given by

ψ = (σBct ,τ,κ,δ)
T . (9)

The resulting bias covariance matrix, 6BM , is given by

6BM,i,j (ψ,x)= E
[

B2
M

(

min(ti, tj )
)

]

exp

(

−
1

τ
|tj − ti |

)

. (10)

In comparison to the original bias formulation by Honti et al.

(2013), we modified two aspects. First, we consider the re-

sponse time of the system by introducing a time lag of the

input, which was necessary due to the high-frequent mon-

itoring data with a temporal resolution of 2 min. Indeed, in-

stead of working with daily discharge data used in Honti et al.

(2013), here we had output observations every two minutes.

Second, we omitted the fast bias component, which accounts

for additional noise coming into action during the rainy time

steps. In our experience, this component did not have a sig-

nificant effect at this short timescale and its elimination led

to a greater simplicity and robustness of the error model.

2.1.3 Output transformation

In hydrological modeling, it is common practice to apply a

transformation to account for increasing variance with in-

creasing discharge. The two variance stabilization techniques

which are, in our view, most promising for urban drainage

applications are: the Box–Cox transformation (Box and Cox,

1964) and the log-sinh transformation (Wang et al., 2012).

www.hydrol-earth-syst-sci.net/17/4209/2013/ Hydrol. Earth Syst. Sci., 17, 4209–4225, 2013



4214 D. Del Giudice et al.: Improving uncertainty estimation in urban hydrology

Box–Cox

The Box–Cox transformation has been successfully used in

many hydrological studies to reduce the output-dependence

of the residual variance in the transformed space (e.g.,

Kuczera, 1983; Bates and Campbell, 2001; Yang et al.,

2007a; Reichert and Mieleitner, 2009; Dotto et al., 2011;

Sikorska et al., 2013).

The one-parameter Box–Cox transformation can be writ-

ten as

g(y)=

{

yλ−1
λ

if λ 6= 0

log(y) if λ= 0,
(11)

g−1(z)=

{

(λz+ 1)1/λ if λ 6= 0

exp(z) if λ= 0,
(12)

dg

dy
= yλ−1, (13)

where g indicates the forward and g−1 the backward trans-

formation, whereas
dg
dy

is the transformation derivative. ỹ,

g(y), and z represent the transformed output. λ is a param-

eter that determines how strong the transformation is. It is

chosen from the interval (0,1), with the extreme cases of 1

leading to the (shifted) identity transformation, and 0 to a

log transformation. We choose a λ= 0.35, which has lead to

satisfactory results in many similar investigations (Willems,

2012; Honti et al., 2013; Yang et al., 2007b, a; Wang et al.,

2012; Frey et al., 2011). Assuming a constant variance in the

transformed space, this value yields a moderate increase of

variance in non-transformed output. This accounts for an ob-

served increase in residual variance while keeping the weight

of high discharge observations sufficiently high for calibra-

tion. In other words, this moderate λ assures a good compro-

mise between the performances of the error model and the fit

of the simulator. The behavior of the Box–Cox transforma-

tion and its derivative for the stormwater runoff in our study

are shown in Figs. 1 and S1.

Log-sinh

The log-sinh transformation has recently shown very promis-

ing results for hydrological applications (Wang et al., 2012).

In contrast to the original notation, we prefer a reparam-

eterized form with parameters that have a more intuitive

meaning:

g(y)= β log
(

sinh
(α+ y

β

)

)

, (14)

g−1(z)=
(

arcsinh
(

exp(
z

β
)
)

−
α

β

)

β, (15)

dg

dy
= coth

(α+ y

β

)

, (16)

where α (originally a/b) and β (originally 1/b) are lower and

upper reference outputs, respectively. α controls how the rel-

ative error increases for low flows. For outputs larger than β,
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Fig. 1. Behavior of the Box–Cox (solid line) and log-sinh (dashed

line) transformation as a function of the output variable (e.g., dis-

charge in L s−1) with parameters used in this study.

instead, the absolute error gradually stops increasing and the

scaling of the error (derivative of g) becomes approximately

equal to unity. In our study, we chose α to be a runoff in the

range of the smallest measured flow and β to be an interme-

diately high discharge above which uncertainty was assumed

not to significantly increase. These considerations are also in

agreement with the transformation parameter values deter-

mined by Wang et al. (2012). Given the characteristics of our

catchment and model we set α = 5 L s−1 and β = 100 L s−1.

The graphs of the transformation function and its derivative

with these parameter values are provided in Figs. 1 and S1.

Both transformations are able to reduce the heteroscedas-

ticity of residuals, which represents the fact that flowmeters

and rating curves are more inaccurate during high flows and

systematic errors lead to a higher uncertainty during high

flows. Another positive characteristic is that these transfor-

mations make error distributions asymmetric, substantially

reducing the proportion of negative flow predictions, which

can otherwise occur during error propagation.

2.2 Inference and predictions

The following steps are needed to calibrate a deterministic

model M with a statistical bias description and observation

error and to analyze the resulting prediction uncertainties:

(i) definition of the prior distribution of the parameters, (ii)

obtaining the posterior distribution with Bayesian inference,

(iii) probabilistic predictions for the temporal points (in the

following called layout) used in calibration, and (iv) proba-

bilistic predictions for the extrapolation period. In these last

two phases credible intervals are estimated by uncertainty

propagation via Monte Carlo simulations. Finally, one has

to assess the quality of the predictions and verify the statis-

tical assumptions. We highly recommended an exploratory

analysis of the bias, which can help to improve the structure

of the simulator.
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2.2.1 Prior definition

First, one has to define the joint prior distribution of the

parameters of the hydrological model, θ , and of the error

model, ψ . In particular, this requires an informative prior of

the covariance matrix of the flow measurements. Although

a first guess can be obtained from manufacturer’s specifica-

tions, it is recommended to assess it separately with redun-

dant measurements (see Dürrenmatt et al., 2013). As stated in

Sect. 2.1.2, it is important that the prior of the bias reflects the

desire to avoid model inadequacy as much as possible. This is

obtained by a probability density decreasing with increasing

values of σBct and κ (e.g., an exponential distribution). This

helps to reduce the identifiability problem between the deter-

ministic model and the bias. For the prior for σBct , one could

take into account that the maximum bias scatter is unlikely

to be higher than the observed discharge variability. On the

other hand, the maximum value of κ is in the same order of

magnitude as the maximum discharge divided by the corre-

sponding maximum precipitation of a previously monitored

storm event. Additionally, τ should represent the character-

istic correlation length of the residuals and could be approx-

imately set to 1/3 of the hydrograph recession time. More

prior information may be available from previous model ap-

plications to the same or a similar hydrological system. Fi-

nally, the parameters of the chosen transformation have to be

specified. These parameters influence the priors of σE , σBct ,

and κ , which are defined in the transformed space.

We recognize that assigning priors for bias parameters

might be challenging. Therefore we suggest testing a pos-

teriori the sensitivity of the updated parameter distributions

to the priors. We advise against using uninformative uniform

priors for two reasons. First, as discussed above, our igno-

rance about bias parameters is not total. Second, if one lacks

knowledge about ψ one should also lack knowledge about

ψ2, but no distribution exists that is uniform on both ψ and

ψ2 (Christensen et al., 2010).

2.2.2 Bayesian inference

Second, the posterior distribution of the simulator and the er-

ror model parameters f (θ ,ψ | yo,x) is calculated using the

prior distribution, f (θ ,ψ), the likelihood function, f (yo |

θ ,ψ,x), and the observed data, yo, according to Bayes’

theorem:

f (θ ,ψ | yo,x)=
f (θ ,ψ)f (yo | θ ,ψ,x)

∫∫

f (θ ′,ψ ′)f (yo | θ ′,ψ ′,x)dθ ′dψ ′
. (17)

In other words, during a Bayesian calibration, the joint

probability density of parameter and model results, the prod-

uct of the prior of the parameters and the likelihood, is con-

ditioned on the data.

In order to cope with analytically intractable multi-

dimensional integrals, such as the ones in the denominator

of Eq. (17) or those raising when marginalizing the joint

posterior, numerical techniques have to be applied. In this

context, Markov Chain Monte Carlo (MCMC) simulations

are useful for approximating properties of the posterior dis-

tribution based on a sample, even if the normalization con-

stant in Eq. (17) is unknown. Details are given in Sect. 3.2.

2.2.3 Predictions for the calibration layout L1

Third, one has to compute posterior predictive distributions

for the observations that have been used for parameter esti-

mation. The experimental layout of this data set (here: cali-

bration layout), L1, specifies which output variables are ob-

served, where and when. Here, the model output at calibra-

tion layout L1 is given by the vector yL1 = (yst1 , . . .,y
s
tn1
),

where ys denotes the discharge at the location, s, of the mea-

surements and ti , for i = 1, . . . ,n1, the time points of the

measurements.

In order to separate different uncertainty components, we

compute predictions from (i) the simulator y
L1
M , which only

contains uncertainty from hydrological model parameters;

(ii) our best knowledge about the system response g−1(ỹ
L1
M +

B
L1
M ), which comprehends additional uncertainty from input

errors and structural deficits; and (iii) observations of the sys-

tem response, g−1(ỹ
L1
M +B

L1
M +EL1), which, in addition, in-

cludes random flow measurement errors (note that we mean

here the application of the scalar function g−1 to all compo-

nents of the vector specified as its argument). Usually, hy-

drological “predictions” describe simulation results for time

points or locations where we do not have measurements.

Here, consistent with Higdon et al. (2005) and Reichert and

Schuwirth (2012), “predictions” designate the generation of

model outputs (with uncertainty bounds) in general.

To obtain probabilistic predictions for multivariate nor-

mal distributions involved in the evaluation of these random

variables, the reader is referred to Kendall et al. (1994) and

Kollo and von Rosen (2005). Taking as an example the pos-

terior knowledge of the true system output without obser-

vation error conditional on model parameters, the expected

transformed values are given by

E
[

ỹ
L1
M +B

L1
M | ỸL1

o ,θ ,ψ
]

=

ỹ
L1
M +6

B
L1
M

(

6EL1 +6
B
L1
M

)−1

·
(

ỹL1
o − ỹ

L1
M

)

(18)

and their covariance matrix by

Var
[

ỹ
L1
M +B

L1
M | ỸL1

o ,θ ,ψ
]

=6
B
L1
M

(

6EL1 +6
B
L1
M

)−1
6EL1 . (19)

To obtain the posterior predictive distribution of the bias-

corrected output, ỹ
L1
M +B

L1
M , first, we have to propagate a

large sample from the posterior distribution through the sim-

ulator, y
L1
M , and draw realizations of ỹ

L1
M +B

L1
M by using

Eqs. (18) and (19). Then, we transform these results back to

the original observation scale by applying the inverse trans-

formation g−1. Finally, to visualize the best knowledge and
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uncertainty intervals of this distribution, we compute the

sample quantile intervals (e.g., 0.025, 0.5, and 0.975 quan-

tiles). A similar procedure has to be applied to derive the

predictive distributions of y
L1
M and ỹ

L1
M +B

L1
M +EL1 .

Besides calculating the posterior predictive distribution, it

is important to check the assumptions of the likelihood func-

tion. As our posterior represents our knowledge of system

outcomes, bias and observation errors, of which not all have

a frequentist interpretation, we cannot apply a frequentist test

to the residuals of the deterministic model at the best guess of

the model parameters. However, we can perform a frequen-

tist test based on our knowledge of the observation errors.

This makes it necessary to split the residuals into bias and

observation errors and to derive the posterior of the observa-

tion errors alone. A numerical sample of this posterior can

be gained by substituting the sample for the random variable

ỹ
L1
M +B

L1
M in

EL1 = ỹL1
o −

(

ỹ
L1

M (x,θ)+B
L1

)

. (20)

In this equation ỹ
L1
o refers to the field data. The medians of

the components of this sample represent our best point esti-

mates of the observation errors that we will use to test the

statistical assumptions as described in Sect. 2.2.5.

2.2.4 Predictions for the validation layout L2

Fourth, one computes posterior predictive distributions for

the extrapolation layout, L2, where data are not available or

not used for calibration. If data are available, they can be

used for validation. In our study, L2 denotes the location and

the time points of the extrapolation range, and the associated

model output is given by yL2 = (ystn1+1
, . . .,ystn2

). This lay-

out, however, could also contain interpolation points between

calibration data.

A sample for layout L2 could be calculated similarly to

the one for L1 by using Eqs. (35) and (36) of Reichert and

Schuwirth (2012) instead of Eqs. (18) and (19). However,

the specific form of our bias formulation as an Ornstein–

Uhlenbeck process (Eqs. 5, 7) offers a potentially more ef-

ficient alternative. As the OU process is a Gauss–Markov

process, we can draw a realization for the entire period by

iteratively drawing the realization for the next time step at

time tj from that of the previous time step at time tj−1 from

a normal distribution. The expected value and variance of the

normal distribution of the bias given the model parameters is

given by

E
[

B
L2

M,j | B
L2

M,j−1 = bj−1,θ ,ψ
]

= bj−1·exp

(

−
1t

τ

)

, (21)

Var
[

B
L2

M,j | B
L2

M,j−1,θ ,ψ
]

=

(

σ 2
Bct

+
(

κxj−d
)2

)

·

(

1 − exp
(

− 2
1t

τ

)

)

. (22)

The sample of the bias for L2 can be generated by drawing

iteratively from these distributions for all required values of

j starting from the last result of each sample point from lay-

out L1. By calculating the results of the deterministic model

and drawing from the observation error distribution, samples

for y
L2
M , g−1(ỹ

L2
M +B

L2
M ), and g−1(ỹ

L2
M +B

L2
M +EL2) can be

constructed similarly as for layout L1.

2.2.5 Performance analysis

Fifth, the quality of the predictions is evaluated by assessing

(i) the coverage of prediction for the validation layout and

(ii) whether the statistical assumptions underlying the error

model are met for the calibration layout.

Checking the predictive capabilities

The predictive capability of the model can be assessed by

two metrics, the “reliability” and the “average bandwidth”

(Breinholt et al., 2012). The reliability measures what per-

centage of the validation data are included in the 95 % credi-

bility intervals of g−1(ỹM +BM +E). When this percentage

is larger than or equal to 95 %, the predictions are reliable.

In general we expect this percentage to be larger than 95 %

as our uncertainty bands describe our (lack of) knowledge

about future predictions. This combines Bayesian paramet-

ric and bias uncertainty with the uncertainty due to the ob-

servation error. These three components of predictive inter-

vals are thus systematically more uncertain than the obser-

vation error alone. The limiting case of an exact coverage is

only expected to occur if parameter uncertainty and bias is

small compared to the observation error. In contrast, the av-

erage bandwidth (ABW) measures the average span of the

95 % credibility intervals. Ideally, we seek the narrowest re-

liable bands. Besides these two criteria, the Nash–Sutcliffe

efficiency index (Nash and Sutcliffe, 1970), a metric often

used in hydrology, is applied to evaluate goodness of fit of

the deterministic model to the data.

As a side note, it has been suggested to check the pre-

diction performance of a model by examining the number of

data points included in the prediction uncertainty intervals re-

sulting only from parameter uncertainty (Dotto et al., 2011).

Unfortunately, this is not conclusive because the field obser-

vations are not realizations of the deterministic model but of

the model plus the errors.

Checking the underlying statistical assumptions

The underlying statistical assumptions of the error model are

usually verified by residual analysis (Reichert, 2012). This,

however, is only meaningful for frequentist quantities. In a

Bayesian framework probabilities express beliefs, which can

differ from one data analyst to another and thus cannot be

tested in a frequentist way. In our error model (Eq. 4), the ob-

servation error is the frequentist part of the likelihood func-

tion and frequentist tests can thus only be applied to this
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term. As outlined in Sect. 2.2.3, we can use the median of

the posterior of the observation error at layout L1 to do such

a frequentist test. One should test whether these observation

errors are (i) normally distributed, (ii) have constant variance

and (iii) are not autocorrelated. As the observation errors may

only represent a small share of the residuals of the determin-

istic model, posterior predictive analysis based on indepen-

dent data, as outlined in the previous paragraph, remains an

important performance measure.

As a side note, it is conceptually incorrect to check fre-

quentist assumptions by using the full (Bayesian) posterior

distribution (e.g., Renard et al., 2010). Using the full pos-

terior instead of the best point estimate of the observation

errors adds additional uncertainty from the imprecise prior

knowledge of parameter values. In our view, this distorts the

interpretation of frequentist tests.

2.2.6 Improving the simulator

Finally, after performance checking, one should evaluate the

opportunity to improve the simulator and/or the measure-

ment design for the model’s input. Hints for improvement

can be obtained by exploratory analysis of the bias, for exam-

ple by investigating the relation between its median and out-

put variables or input. On the one hand, systematic patterns

in the relation of the bias to model input or output would

suggest the presence of model structural deficits that could

be corrected. On the other hand, increasing variance of the

bias with increasing discharge could be a sign of excessive

uncertainty in rainfall data. This could be improved by more

reliable rainfall information.

3 Material

To demonstrate the applicability and usefulness of our ap-

proach, we evaluate the performance of nine different error

models in a real-world urban drainage modeling study. In the

following we will briefly describe the case study and details

on the numerical implementation of the bias framework.

3.1 Case study

We tested the uncertainty analysis techniques on a small ur-

ban catchment in Sadová, Hostivice, in the vicinity of Prague

(CZ). The system has an area of 11.2 ha and is drained by a

separate sewer system. It is a green residential area with an

average slope of circa 2 %.

The monitoring data of rainfall and runoff were collected

in summer 2010 (Bareš et al., 2010). Flow was measured

at the outlet of the stormwater system in a circular PVC

pipe with a diameter of 0.6 m. A PCM Nivus area-velocity

flowmeter was used to record water level and mean velocity

every 2 min. These output data show that the hydrosystem is

extremely dynamic, with a response ranging approximately

Fig. 2. Aerial photo of our Sadová case study catchment. The map

shows the layout of the main stormwater conduits and the location

of the rain gauges and the flowmeter.

from 2 L s−1 during dry weather to 600 L s−1 during strong

rainfall.

Rainfall intensities were measured with two tipping bucket

rain gauges that were installed only a few hundred meters

from the catchment (Fig. 2). These two input temporal data

sets have been aggregated to 2 min time steps using inverse

distance weighting.

For model calibration, we selected two periods with 6 ma-

jor rainfall events. One on 27 August between 01:52 LT and

12:58, and the second in July between 22 July at 23:32 and

23 July at 19:00. For validation, a single period from 23 July

at 19:02 to the next day at 07:00 was selected. Calibration

and validation storms had a maximum rain rate ranging from

13 to 65 mm h−1 and from 8 to 34 mm h−1, respectively. The

monitored rainstorms had a duration of 0.5–4 h with a cumu-

lative height varying from 2.3 to 33 mm. The calibration and

validation data of July 2010 are illustrated in Fig. 4.

3.2 Model implementation

We modeled runoff in the stormwater system using the

SWMM software (Rossman and Supply, 2010). The model

was set to a simple configuration, namely a nonlinear reser-

voir representing the catchment connected to a pipe with a

constant groundwater inflow. Lumped modeling is particu-

larly appropriate when a study focuses on outlet discharge

and computation can be a limiting factor (Coutu et al., 2012).

The parameters that we inferred during calibration were the

imperviousness, the width, the dry weather inflow, the length

of the conduit and the slope of the catchment.

The procedure outlined in Sect. 2.2 to compute the poste-

rior predictive distributions was implemented in R (R Core

Team, 2013). For a simulation, an input file with parame-

ters and rainfall series was read. The input file was iteratively

modified to update the parameters by using awk (Aho et al.,

www.hydrol-earth-syst-sci.net/17/4209/2013/ Hydrol. Earth Syst. Sci., 17, 4209–4225, 2013
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Fig. 3. The 95 % credible intervals for flow predictions for the transition phase obtained with different assumptions on error distribution. The

vertical dotted line divides the calibration layout (past) from the validation layout (future). The solid line is the deterministic model output

with the optimized parameter set, whereas the dashed line is the bias-corrected output representing our best estimation of the true system

response. Observed output of the system is represented by circles and triangles. Triangles were only used to validate the model. Colors of

the credibility intervals: deterministic model predictions (light gray), predictions of the real system output (intermediate gray), predictions

of new observations (dark gray). When considering bias, the contribution of uncorrelated observation errors E to total uncertainty becomes

very small (. 1 L s−1) and therefore is not visible at this scale. Consequently, the credibility intervals for the system output (g−1(ỹM+BM))

and the observations (g−1(ỹM +BM +E)) are almost identical and overlap.

1987). awk was also used to extract the runoff time series

from the output file.

From a numerical viewpoint, we solved the “inverse prob-

lem” described in Sect. 2.2.2 by using a Metropolis–Hastings

MCMC algorithm (Hastings, 1970). Before sampling from

f (θ ,ψ | yo,x), we obtained a suitable jump distribution

(a.k.a. transition function or proposal density) by using a

stochastic adaptive technique to draw from the posterior

(Haario et al., 2001). For better performance we added a size-

scaling step, which depends on the target acceptance rate. For

our inference problem, this algorithm proved to be more ro-

bust than others, such as Vihola (2012). However, research

on efficient techniques for posterior sampling is evolving

rapidly and other approaches could also be used. See Liang

et al. (2011) and Laloy and Vrugt (2012) for recent develop-

ments in Bayesian computation.

4 Results

In general, accounting for model bias produced substantially

wider prediction uncertainty bands in the extrapolation do-

main and separated them in three components. The bias

error models also substantially reduced the magnitude of the

identified independent observation errors and decreased their

autocorrelation. The different formulations of model inade-

quacy, however, show a considerable variability in terms of

predictive distributions and behavior of the identified obser-

vation errors.

4.1 Evaluating the performance of probabilistic sewer

flow predictions

As expected, the different assumptions underlying the nine

error models lead to different credibility intervals for

stormwater runoff at the monitoring point (Fig. 3, Table 1).

Predictions did not exhibit considerable sensitivity to the

prior for the bias (results not shown).

For our case study, the best error model clearly was the

constant bias model with log-sinh transformation (Fig. 4).

It leads to a high reliability, Nash–Sutcliffe index and sharp

total uncertainty intervals.

Although the deterministic model reproduced the mea-

sured discharge dynamics well, the total uncertainty during

strong rain events in the validation period is still rather large.

Indeed, as illustrated in Fig. 4, even the best performing
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error model has a 95 % interquantile range up to ∼ 140 L s−1,

which is about 32 % of the maximum runoff modeled in the

extrapolation phase.

In general, we found that most of the error formulations

with model bias produced reliable predictions and around

95 % or more of validation data fell within the 95 % predic-

tion interval range for new observations (Table 1). In addi-

tion, the bias framework separated the total uncertainty into

parametric uncertainty, effect of input plus structural deficits,

and observation errors (Figs. 3, 4). All the autoregressive er-

ror models indicated that most of the predictive uncertainty

is due to model bias. Interestingly, uncertainty due to random

measurement noise is generally so small that it is not visible

in the plots.

In contrast, all error models that ignore model bias, with or

without transformation, generated overconfident predictions

with too narrow uncertainty bands. As previously stated, they

also could not separate the total uncertainty into the individ-

ual error contributions.

Besides providing reliable estimates of the total predic-

tive uncertainty, a second advantage of the bias framework

is that it takes into account the different knowledge within

the calibration and validation layouts. As shown in Fig. 3,

the predictions obtained with bias description for the calibra-

tion layout, to the left of the dotted line, included most of

the observations while being, at the same time, very narrow.

This takes into account that in the calibration range, where

data are available, our knowledge on stormwater runoff is

rather accurate and precise. In contrast, for the extrapolation

domain where no observations are available, the uncertainty

intervals are much larger.

In addition, we found that the conditioning on the monitor-

ing data became increasingly weak the further the model pre-

dicts into the future. This gradually increases the uncertainty

in the transition phase as the prediction horizon moves from

the past into the future. Again, this is not possible with the

traditional error models. Indeed, models with uncorrelated

error terms cannot describe the propagation of information

obtained from calibration data to nearby time points. There-

fore, their prediction intervals are equally wide for both the

calibration and validation layouts.

A third advantage of bias description is that it provides

an estimate of the most probable system response g−1(ỹM +

BM), which is depicted by the dashed line in Fig. 3. In the

calibration layout it closely follows the observations, which

are comparably precise and therefore contain the best infor-

mation on the state of the system. For the extrapolation lay-

out, this information is lacking. However, instead of abruptly

reverting to the simulator, the transition is gradual because

the autocorrelated bias carries the information from the last

monitoring data into the future. This “de-correlation” typi-

cally takes a few correlation lengths (here circa 30–50 min).

As can be seen in Table 1 and Fig. 3, even though the

uncertainty intervals are more reliable when bias is consid-

ered, the deterministic model performs best when residual
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Fig. 4. Probabilistic runoff predictions for part of the calibration

(left) and the validation period (right) with the constant bias model

and log-sinh transformation. The input time series (hyetograph) is

shown on the top. The observed hydrograph is represented by dots,

with the triangular data points being used only for validation. The

95 % credible intervals are interpreted as follows: parametric uncer-

tainty due to yM (light gray), parametric plus input and structural

uncertainty due to g−1(ỹM +BM) (intermediate), total uncertainty

due to g−1(ỹM+BM+E) (dark gray). Validation data not included

in this dark gray region are marked in red. The prediction intervals

for the system output and the observations are almost indistinguish-

able and therefore only the intermediate gray band is visible at this

scale.

autocorrelation and heteroscedasticity are not taken into ac-

count. This is not surprising since maximizing the posterior

with the simple iid error model with no transformation cor-

responds to minimizing the sum of the squares of the errors

and therefore produces the best fit.

Comparing the input-independent and dependent bias for-

mulations, two important points are observed. First, the con-

stant bias description produced on average narrower uncer-

tainty bands than the input-dependent version. The latter,

in particular, produced huge uncertainties during rain events

and very narrow intervals during dry weather. Second, as ex-

pressed in Table 1, the constant bias almost produced the

same simulator fit as the simple error model, whereas the

input-dependent bias formulation performed on average less

satisfactorily.

The transformation created skewed predictive distributions

and, as expected, increased the wet weather uncertainty in

the “real” space. This substantially reduced occurrence of

negative predicted flows with the Box–Cox transformation,

and avoided them altogether with log-sinh. The most notice-

able observation about transformation is that combining the

input-dependent bias with the Box–Cox transformation we

obtained the largest uncertainty bands and among the poor-

est deterministic model performances.

www.hydrol-earth-syst-sci.net/17/4209/2013/ Hydrol. Earth Syst. Sci., 17, 4209–4225, 2013
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Table 1. Prediction performance metrics for the different error models: iid untransformed error model (iidE), Box–Cox transformed

(iidE.BC), and log-sinh transformed (iidE.ls), constant untransformed bias (CtB), Box–Cox transformed (CtB.BC), and log-sinh transformed

(CtB.ls), input-dependent untransformed bias (IDB), Box–Cox transformed (IDB.BC), and log-sinh transformed (IDB.ls). The criteria on the

left represent the Nash–Sutcliffe index in calibration (NS.cal) and validation (NS.val) phases in the non-transformed space, the percentage

of validation data points falling into 95 % prediction interval (Cover.val), and the average bound width [L s−1] in the extrapolation domain

(ABW.val).

iidE iidE.BC iidE.ls CtB CtB.BC CtB.ls IDB IDB.BC IDB.ls

NS.cal 0.948 0.924 0.936 0.885 0.921 0.876 0.847 0.839 0.904

NS.val 0.839 0.782 0.806 0.821 0.796 0.817 0.729 0.731 0.827

Cover.val 89.2 58.1 66.1 95.3 74.7 97.5 95 88.3 90

ABW.val 44.4 21.2 22.9 85 25.8 53.2 81.5 134 55.6
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Fig. 5. Time series of median of E, the part of residuals assumed to come from random observation errors. The range illustrated is the same

part of the calibration period as shown in Fig. 4. The ordinate axis is in transformed flow units.

4.2 Analysis of estimated observation errors

In general, the analysis of the measurement errors is con-

sistent with the predictive performance analysis. Again, the

error model with a constant bias and the log-sinh transfor-

mation is among the ones that best fulfills the statistical as-

sumptions (Fig. 5). The estimate of the observation errors has

almost no autocorrelation and relatively low heteroskedastic-

ity. Diagnostic plots on E are only shown as “Supplement”

since the usefulness of formal statistical tests can be ques-

tioned when the testable errors are much smaller than the

bias.

In contrast, the residuals of the iid error models are het-

eroskedastic and heavily autocorrelated and thus strongly vi-

olate the statistical assumptions. They are also several orders

of magnitude larger than observation errors estimated with a

bias description. Such huge residuals clearly lose their mean-

ing as random measurement errors of the flow.

Finally, besides frequentist analyses of the white measure-

ment noise, one should check what can be learned from an

exploratory analysis of the model bias. Plotting the model

bias against flow data (Fig. 6) shows an almost constant scat-

ter with only weak trends. In general, we observed a negative

bias in the intermediate flow range and a positive bias during

severe storms. While the first systematic deviation is caused

by slightly overestimating the runoff in the decreasing limb

of the hydrograph, the second reveals that the model sys-

tematically underestimates the highest peak discharges (see

Fig. 4).
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Fig. 6. Median of model inadequacy versus transformed observed

runoff for the calibration period shown in Fig. 4. Results are shown

for the best solution: the constant bias log-sinh transformed error

model.

5 Discussion

The outcomes of this study, in agreement with theoretical

considerations, confirmed that describing bias by means of

a stochastic process produces much more reliable and inter-

pretable hydrological predictions than the overly simplistic

traditional error model. Additionally, the bias error model

naturally describes the increase in uncertainty about the sys-

tem response when passing from the calibration to the ex-

trapolation range. In the following, we will interpret the re-

sults obtained for our system, assess the differences among

the proposed bias description formulations, analyze the dis-

similarities between natural and urban hydrology, and finally

provide guidelines on how to describe model discrepancies

in future studies.

5.1 Bias analysis in the case study

The analysis of the uncertainties in our stormwater sys-

tem demonstrated that our parsimonious deterministic model

captures most of the hydrograph dynamics. Nevertheless,

it produced partially biased simulations. By accounting for

these systematic deviations with the most plausible error

model, we observed almost a constant variance of the esti-

mated observation errors in the transformed space. Further-

more, the bias tended to be negative during intermediate rain

events and positive at very high discharges. These findings

indicate that a part of the predictive uncertainty stems from

structural deficits due to oversimplification of the simulator,

which produce systematic trends in the residuals (Frey et al.,

2011). Another part of prediction uncertainty, instead, stems

from imprecise precipitation measurements, which increase

the scatter of the residuals.

If the study’s goal is to reduce prediction uncertainty, one

should, after detecting structural deficiencies, improve the

model. This can be done by modifying process formulations

or increasing the model complexity. In our case, analyzing

how model discrepancies depend on the measured discharge

gave us the necessary information to improve the simulator.

Increasing the number of calibration parameters from prelim-

inary simulations reduced a strong positive bias (results not

shown) to some mild remaining systematic trends (Fig. 6).

5.2 Comparison of different bias descriptions

In this paper we proposed 5 different descriptions of model

inadequacy. The bias description where the variance quadrat-

ically increases with precipitation is the conceptually most

appealing form since it mechanistically accounts for higher

uncertainty during rainy periods. Furthermore, in contrast

to the empirical output-dependence via data transformation,

input-dependence acknowledges that the rising limb of the

hydrograph is more uncertain than the recessive limb.

Notwithstanding its theoretical appeal, the input-

dependent bias has several drawbacks. First, it has two

parameters more than the constant bias, which potentially

reduces the robustness of this approach. In particular, during

estimation, the proportionality constant κ tends to reach

very high posterior values (see Supplement for priors and

posteriors) and, in this way, leads to inflated variances

during rainfall and too small variances during dry weather.

Second, since we always assume a normal distribution

of the bias, the input-dependent description frequently

requires a transformation anyway in order to avoid negative

predictions that are physically meaningless. Third, linked

to the two previous considerations, the input and output

dependent error model has the tendency to include too many

mechanisms to describe model inadequacy. This complex

representation reproduces data dynamics “excessively well”

and therefore motivates the deterministic model less to fit

the observations.

It is interesting to notice that the input-dependent error

model never reverted back to a constant bias (i.e., κ never cal-

ibrated to 0), even in cases where all performance indicators

favored the simpler error description. This can be explained

considering that the input-dependent bias has a basic vari-

ance plus a variance induced by precipitation. In our case, the

posterior basic variance for the input-dependent bias was, ir-

respective of the transformation, smaller than for the constant

bias. This is caused by three combined phenomena: first, an

error distribution with smaller variance has generally higher

likelihood, second, our simulator could match the baseflow

almost exactly, and third, a large part of the calibration pe-

riod had an output equal to the baseflow. Since the input-

dependent error model still had to account for big errors dur-

ing wet weather, it did so by increasing the precipitation-

induced error variance, producing sometimes too wide un-

certainty intervals for the future storm events.
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5.3 Bias assessment in urban and natural hydrology

Interestingly, for Honti et al. (2013) the input-dependent

Box–Cox transformed error model produced the best pre-

dictions. This different outcome, however, is not necessarily

in contrast with our findings. First, as mentioned in the in-

troduction, different case studies can display extremely dis-

similar error properties. Our urban catchment had a much

stronger difference in the hydrologic response between dry

and wet periods than Honti et al.’s natural watershed, which

additionally presented fewer points of constant minimal dis-

charge. Second, their formulation presented an additional

precipitation-dependent bias component, while neglecting

the delay between precipitation occurrence and uncertainty

increase. Third, in Honti et al. (2013) the log-sinh transfor-

mation was not implemented.

Comparing urban to natural catchments, an important as-

pect is, first, that urban hydrosystems react much more

rapidly and strongly and therefore require much more fre-

quent measurements of the hydrologic response (typically at

minute scale instead of daily scale). Furthermore, the dis-

charge in sewers can be ascertained with much higher pre-

cision and accuracy than in the case of rivers. Indeed, in

drainage conduits the area-velocity sensors can measure the

velocity directly, without requiring a rating curve, which is an

additional source of uncertainty in streamflow observations

(Sikorska et al., 2013; Montanari and Di Baldassarre, 2013).

The elevated temporal density and precision of the mea-

surements, as discussed by Reichert and Mieleitner (2009),

leads to an even higher need to address model discrepancies

explicitly.

Second, in natural watersheds the high flow can be asso-

ciated with floodplain inundations, which dramatically in-

crease the uncertainty of flow measurements. In sewer sys-

tems, by contrast, the well-defined geometry of the pipes

and the reliable flow measurement devices lead to a much

smaller increase in observation uncertainty with increasing

discharge. This situation underlines the advantage of a log-

sinh transformation in urban hydrology instead of the tra-

ditional Box–Cox. Indeed, the former assumes that residual

scatter in high streamflow ranges is limited.

Regarding uncertainty estimation, it seems that a formu-

lation where the standard deviation of the input-dependent

bias component linearly increases with precipitation is sub-

optimal for urban systems. Indeed, most urban water basins,

especially those only draining stormwater and having low

groundwater infiltration, exhibit extremely high contrasts be-

tween low and high flows. Such strong dynamics and lin-

ear input dependence can result in unnecessarily wide uncer-

tainty intervals.

5.4 Recommendations

As our results demonstrate, hydrological predictions are

more reliable when model deficiencies are considered

explicitly, especially for urbanized areas. This is in agree-

ment with many other studies (Breinholt et al., 2012; Yang

et al., 2007b; Schoups and Vrugt, 2010; Reichert and

Mieleitner, 2009). If the modeler is not interested in sepa-

rating predictive uncertainty into its contributing sources be-

cause data collection or model building processes are fixed,

we suggest using a lumped autoregressive error model (Bates

and Campbell, 2001; Yang et al., 2007b; Evin et al., 2013).

Such formulations are usually sufficient to reliably estimate

total output uncertainty. However, it is often useful to assess

how far the prediction uncertainty can be reduced by min-

imizing a particular error source (Sikorska et al., 2012). In

these cases, we recommend applying our five-variant bias

description in order to disentangle the effects of model dis-

crepancies and random measurement errors. In particular, we

suggest starting with a constant log-sinh transformed bias

and setting priors of the error model parameters using the rec-

ommendations given in Sect. 2.2.1. This likelihood formula-

tion is simple and robust and proved to perform extremely

well in our case study. Then, if the efficiency of this error de-

scription is unsatisfactory, the Box–Cox transformation and

eventually the input-dependent bias description in its three

variants can be applied. Finally, we propose selecting among

the error description providing the best validation coverage

with the narrowest bands and the most iid transformed ob-

servation errors, and applying this likelihood formulation to

subsequent predictions.

If the input-dependence is of particular interest though

providing dubious predictions, considering what we dis-

cussed above, we suggest adapting this dependence on pre-

cipitation as a function of the system’s dynamics. One pos-

sibility could be to modify Eq. (7) and, instead of a lin-

ear increase of uncertainty with the precipitation, one could

adopt a power relationship with the exponent as calibration

parameter.

6 Conclusions

In this study, we proposed different strategies for obtaining

reliable flow predictions and quantifying different error con-

tributions. We adapted a Bayesian description of model dis-

crepancy to urban hydrology, making the bias variance in-

crease during wet weather in five different ways. From the

experience gained in this modeling study and theoretical con-

siderations, we conclude the following.

i. Due to input uncertainty, structural deficits, and (pos-

sibly) systematic errors in flow measurements, urban

hydrological simulations are biased. When using pre-

cise and high-frequency output measurements to cali-

brate and analyze the uncertainties of these simulators

by means of traditional iid error models, we obtain im-

plausible predictions.
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ii. We can obtain much sounder predictions and signifi-

cantly improve the fulfillment of the assumptions by

adding a model discrepancy function to the classical

error model. Such a bias term should have a variance

that increases during storm events as a function of rain-

fall and/or runoff. Finally, the results demonstrate that

random output observation errors are much smaller

than uncertainty due to bias.

iii. In our study, a rather simple constant autoregressive

bias with a log-sinh transformation outperformed an

input-dependent bias description. Although the latter

is conceptually superior, the simpler formulation ap-

peared more suitable for systems with alternating long

low flow periods and short high discharge pulses, such

as urban watersheds. Indeed, it is apparently less sus-

ceptible to producing excessively wide error bands and

suboptimal fit. Therefore, we suggest to test this first

and then try the other bias descriptions, if necessary.

iv. Although it generally outperforms the traditional er-

ror assumptions, we are aware of the limitations of our

approach. The presence of bias, to which we have to

assign a weight in the form of priors, inevitably intro-

duces subjectivity in the uncertainty analysis. More-

over, this statistical method can “only” describe the

different types of output uncertainties, but cannot ad-

dress directly the causes of bias nor can it straightfor-

wardly lead to an uncertainty reduction.

v. Despite remaining challenges, our approach has fur-

ther advantages besides providing separated and plau-

sible prediction intervals. First, a bias description can

be associated with a fully fledged framework that prop-

agates the uncertainty sources and supports bias re-

duction, to describe “remnant” errors. So far, this re-

maining bias due to imperfect description of the uncer-

tainty sources has been modeled as white noise (e.g.,

Renard et al., 2010). Second, the exploratory analy-

sis of model bias, for example investigating its de-

pendence on the output, can provide valuable insight

into whether model discrepancy is dominated by input

uncertainty or inadequate model formulation. Third,

this statistically sound approach is computationally

not more intensive than the classical methods. Indeed,

it is cheaper than the mechanistic error propagation

frameworks.

vi. Open questions that require further research include

how the bias description can be applied to quantify

the structural errors of complex hydrodynamic mod-

els with multiple outputs. Moreover, it is unclear how

input errors can be separated from structural deficits

as this requires a probabilistic formulation and prop-

agation through the simulator. A further challenge is

that complex sewer models are prohibitively slow for

many iterative simulations. This can be possibly over-

come by statistical approximations, such as emulators

(Reichert et al., 2011).

Supplementary material related to this article is

available online at http://www.hydrol-earth-syst-sci.net/

17/4209/2013/hess-17-4209-2013-supplement.pdf.
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