
Improving Understandability In Teaching Of Software
Engineering And Connectivity With The Industry

Izzat Alsmadi and Bilal Abul-Huda

Department of Computer Science and Information Technology
Yarmouk University

Irbid, Jordan
ialsmadi@yu.edu.jo , abul-huda@yu.edu.jo

ABSTRACT— As a new field of study, software engineering
teaching and subjects vary from one textbook to another. Despite
the fact that most of the books cover similar subjects, however,
students’ view of the subject is mixed. Some students have
problems understanding the entire picture. Other students have
problems connecting concepts with each other. In this research,
an overall view of software engineering knowledge is presented.
The knowledge is presented from four perspectives: Process,
Project, People and Product. Those four are usually referred to
as the 4Ps in literature. The goal is to make a distinction between
the progresses in each area and explore the opportunities in
finding windows for more research in any of those four views.

Researches in this field in many published articles appear to
ignore the state of the studied field in the industry and focuses on
its state in the academic arenas. Related work in research papers
focus on those research papers published and do not look in
company websites, web logs, discussion boards, etc.

Teaching software engineering should combine interactive
methods of teaching besides the traditional class room teaching.
Without such methods, the majority of the sought benefits and
expected skills to learn may not be practical. Academic
curriculums and research papers should give more attention to
the industry and its current technologies. This can help students
in their future jobs. It also helps the industry utilizing such
researches once they become more realistic or relevant.

Keywords- Software engineering, ontology, separation of
concerns, project, product, process and people, CASE tools,
software development methodology.

I. INTRODUCTION

In teaching software engineering courses to students, it is
noticed that some students complain from the lots of models
that they need to know without having to

know the overall picture first. The same problem existed in
another related field; formal methods. There are several

formal method tools and sectors to learn without having an
overall ontology that illustrates the connections between those
tools or methods.

An ontological study simplifies the structure of
understanding domain knowledge. It includes abstraction,
representations, and assumptions. An ontology or a conceptual
model facilitates communication or knowledge sharing on
common grounds. In any ontology, abstractions are selected to
focus on necessary components and eliminate irrelevant
details. By large, software engineering field of study is lacking
a comprehensive ontology that covers the overall knowledge
body.

There are some other alternative views for the subject:
software engineering development methodologies that usually
get the main focus and concern. Other concerns can be divided
into the dimensions; data; that focuses on entities, functional;
which is concerned with functions or services, user and
environmental views. This separation of views is important for
many areas. For example, in software project planning and
evaluation, managers need to plan and evaluate for each one
of those dimensions separately. Similarly, in software design,
designers draw different diagrams for the different views:
class, activity, use case and sequence diagrams.

Out of the four views listed above, the software process
and project views are the two that have the major focus,
documentation and models in literature. Nevertheless, they are
tightly coupled that makes it hard to distinguish whether this
is a process or project attribute. Part of this confusion is
understood since the software project management can be
seen as a software process or activity. However, we should
differentiate between software processes that are product
oriented such as requirements, design and coding or
development, and the processes that are people oriented such
as the project management, personnel selections, and tasks
distribution.

There are numerous software process models proposed to
adopt while building a software. Those models can be
classified according to the aspects and properties that
distinguish each view. The software process is the set of
activities and methods employed in the production of a
software. The software project is how we manage and
organize the process, the people and the product. This view
makes the software project the main view that includes the

978-1-61284-643-9/11/$26.00 ©2011 IEEE
2011 IEEE Global Engineering Education Conference (EDUCON) – "Learning Environments and Ecosystems in Engineering Education"

April 4 - 6, 2010, Amman, Jordan

Page 20

three other views. The software product is the ultimate goal
for the project, process and product. Software project success
is measured through the product success. A successful project,
people and process should result in a successful product. The
people are the real and main resources in software projects.
Without talented and dedicated people, we can’t have a
successful project and product. This shows that the four views
are highly coupled and depending on each other and that we
have to guarantee each ones success to guarantee the overall
success. Figure 1 shows an overall ontology for software
engineering concerns.

Figure 1. An ontology for software project concerns
In the following sections, the four dimensions are

considered separately.

II. LITERATURE REVIEW

There are currently several known books that are usually
used as textbooks in teaching software engineering [1,2,
4,5,6,7,8,9,10,11,12]. Those books vary in their presentation
of the subject. There are some subjects such as formal
methods or agile developments that get more focus on some
books relative to others. Those two subjects usually divide
teaching software engineering into two schools. A school that
focuses more on traditional methods of teaching with
presenting techniques that improve the correctness of the
requirements and design in early stages of development. The
other school following agile methodologies and their focus on
the time and the flexibility factors relative to other factors
such as correctness and quality.

The other part of the literature review are papers who
discussed the issue of teaching software engineering and its
different views [3,13,14,15,16,17,18]. Habra proposed two
software engineering modules for an undergraduate education
with focus on separation of concerns [3]. He defined the
following software project dimensions to be considered by
students: data, functional, user, reusing, and distribution.
Hawker presented a model that combines: product, process
and people elements [13]. He drew several UML diagrams

presenting the different elements in the model along with their
interaction with each other.

Several papers discussed problems, issues and difficulties
in software engineering education [25,26,27,28,29,30, 31, 32,
33, and 34]. The majority of the subjects discussed in those
papers will be investigated in this paper. To utilize effectively
space in this paper, those issues will be discussed throughout
the paper without further details in this section.

III. SOFTWARE PROCESSES; ACTIVITIES AND MODELS

As mentioned earlier, out of the 4P dimensions, the
process is the one that has most of the existed literature or
documentation. Software processes are the activities involved
in producing and evolving the software. Examples of some of
those major activities include; requirements gathering and
specifications, software architectural and design, software
implementation, testing and maintenance or evolution. We
have to differentiate between software processes and software
process models. Software process models are abstract
representations for the models and their interaction. Similar to
abstractions, models involve focus on particular concerns or
perspectives. As a result, each model has certain scenarios that
can be best used in. For example, the water fall process model
is used when we have fixed and stable requirements. On the
contrary, agile methods are better when we have uncertainties
in the project.

The difference between the different models is largely
depending on how the processes interact with each other
(that’s why they are process models). There are two
possibilities on how processes can interact with each other.

A. Straight forward processes. In those models, each
major software activity is completed first before moving to the
next process. Once a process is completed, we can’t go back
and modify it. The largely known and used model in this type
is the Waterfall model. Waterfall is used when we have stable
and fixed requirements as it can hardly deal with or
accommodate changes.

B. Iterative or evolutionary processes. In those
models, major activities are completed partially in cycles and
evolve to reach the final product. The goal is to deal with the
instability of requirements and the need to accept and
accommodate changes. With the exception of the waterfall
model, all other software process models, such as the
incremental model, spiral model, prototyping, and agile
models, are examples of the Iterative models. Some models
iterate through all process activities, others gather all
requirements, then iterate through the rest of the activities.
Spiral models make explicit risk assessments in every cycle,
agile models combine iterations with project and people
techniques to include abilities to deal with evolution and
accept changes.

There are some software engineering books who consider
some other software process models such as formal
specification or Commercial Off-The shelf Software (COTS)
as process models. The usage of formal specification or off-

978-1-61284-643-9/11/$26.00 ©2011 IEEE
2011 IEEE Global Engineering Education Conference (EDUCON) – "Learning Environments and Ecosystems in Engineering Education"

April 4 - 6, 2010, Amman, Jordan

Page 21

shelf software can be in any of the previously mentioned
models and need not to be a separate model. For example,
formal methods are used to verify requirements formally
before starting the construction process. This is a specific
extra activity that is added to the requirement stage.

IV. PEOPLE, THE SOFTWARE PROJECT RESOURCES.

A software process model is an explicit description of the

process through which software artifacts (or products) are
implemented. Most of those process models focus on the
products, time or goals as the factors that control the tasks for
each stage of the model. In real environment the employees
are the main resource and in each stage each employee, should
have a specific task. Many of those current software process
models do not consider some scenarios where a company may
start a new project and each team or team member, whether
from the business analysis’s team, from the development,
testers or from the document writers, is expected to do some
work at any development stage.

Humans play an important role in the success of software
projects. Communication is very important to ensure all team
collaborations and contributions. Some methods, such as agile
development models are customer oriented where the
customer suggestions and concerns are always considered.

In most of the traditional software development models,
the focus is in achieving the goals or the requirements that the
application is expected to fulfill. In agile methodologies, the
time is more sensitive giving the fact that requirements and/or
many other factors may change with a relatively short time.

Although those models target most of business scenarios
in developing projects, in some cases we may have all
company employees required to work simultaneously.
Following for example a traditional approach in that case,
requires developers to wait or take a vacation if they don’t
have other projects to work on till business analysis’s team
finish colleting the requirements. Testers are also expected to
wait longer time waiting for developers to design or
implement the product or part of it. In a small business
environment, this is expected to happen specially when there
are no earlier versions of the application that those testers or
document writers can work on through early stages.

 Software project managers define tasks by roles, or
individuals. It is better, however, to define project tasks by
roles only. If the individual got busy in any other task, any
other individual in the same class or role can be assigned the
task. New software process methodologies such as Scrum,
tries to mix software engineering roles to make all individuals
capable of working in the different roles in different times. In
reality, few people can perform all types of tasks
professionally.

V. TOOLS, THE PEOPLE HELPERS

Tools play a major role in software engineering processes
and development. In several cost estimation models such as
COCOMO, the amount of assistance tools gave to developers

is an important information needed to estimate the
development time. They can noticeably improve the overall
productivity of the team members.

Tools (also called Computer Aided Software Engineering,
CASE) can be classified in several ways. They can be
classified according to the software process stage they are
working on (e.g. requirement tools, design tools, coding tools,
etc). They can also be classified according to the number of
stages they are working into tools, workbenches and
environments that start from an individual stage to tools that
support all software engineering activities.

VI. THE SOFTWARE PRODUCT, THE GOAL OF THE SOFTWARE
PROJECT.

The software product is the ultimate deliverable or output

that the team will produce. Any project’s ultimate goal is to
provide a product with the right functionalities and qualities.
However, some projects may not have a deliverable product;
instead, they will have objectives to fulfill. No matter how
much successful the team was, or what tools, or techniques
they used, if the product fails, all will be considered so. This
means that logically successful project, process and people
should produce a successful product. However, this is not
always the case.

In the product teaching section, COTS can be introduced
as a subject, quality assurance and software metrics are two
other main subjects to be covered. This section will also focus
on classifying products according to their business domain.
Products that share same domain are expected to have several
common characteristics.

VII. THE SOFTWARE PROJECT; THE UMBRELLA THAT COVERS

ALL VIEWS

The software project is the umbrella that holds all the

earlier concerns together. Project management takes care not
only of the people, or resources of a project, but it also deals
with the process and the product management. Project
management major activities include: preparing the feasibility
study, tasks’ planning, allocating and scheduling, cost
estimation, evaluation and measurements, risk assessment, and
management, etc.

VIII. SOFTWARE ENGINEERING EDUCATION WITH INDUSTRY
ORIENTATION

One of the early papers that discussed software
engineering education is that of Mills in the early 80s [20]. He
discussed some of those early challenges and requirements
that faced education in the new field. Later on, in a paper he
published in 1988 [21] he acknowledged that the software
engineering education may vary depending on the degree and
university requirements, industry needs and expectations, and
many other factors that may eventually route the software
engineering education to its ultimate destiny. He indicated that
(even in the late 80s), the problem is not with the lack of

978-1-61284-643-9/11/$26.00 ©2011 IEEE
2011 IEEE Global Engineering Education Conference (EDUCON) – "Learning Environments and Ecosystems in Engineering Education"

April 4 - 6, 2010, Amman, Jordan

Page 22

technologies, but with the difficulties or problems of
education management.

Software Engineering Body Of Knowledge (SWEBOK) is
a general manual or guide from IEEE Software Engineering
experts started in the late 90s on the general knowledge and
information about this field [22]. In 2004, SWEBOK define
the following knowledge areas in the software engineering
field: Software requirements, Software design, Software
construction, Software testing, Software maintenance,
Software configuration management, Software engineering
management, Software engineering process, Software
engineering tools and methods, and Software quality. This
work was an important document that contributed to the
knowledge and education in this field, however, known
researchers such as Cem Kaner and Grady Booch believed
that such document needs a thorough reevaluation process.

The compromise between the theoretical and the practical
teaching or education was always an issue of difference
between curriculum or course contents. Another related issue
is the ability to bridge the gap between the academia and the
industry. Many progresses in this field are out of synch if we
compare it between the academia and the industry.
Universities are then in a challenge whether to produce good
work force members or good researchers.

Sjoberg et al suggested several proposals to improve the
coordination between the industry and the academia in the
computer science field [23]. An example of those suggestions
is the increasing research funding from industry and training
software engineers in conducting more empirical studies with
organization-specific goals and high quality.

Another related proposal to improve the connectivity
between the academia and the industry is in the possibility of
using the industry as a laboratory, instead of studying
inexperienced students performing small programming tasks
[24]. This is applied in many universities and proved to be
beneficial for all parties; students, universities and the industry.

The major problem for computer and IT major graduates is
always to find a job once graduated and to relate what they
studied with the industry needs. Students understand that the
degree itself is nothing but an initial requirement to a good job
in the market.

In order for a computer student graduate to have a
successful career, he/she needs to train themselves with
different types of skills that they may not get them
professionally depending solely on course contents. Examples
of such skills include: databases, programming, technical
support, networking, web design and graphic design.

IT fields are continuously evolving areas of knowledge.
University curriculum in some cases lags behind the industry
and the current technologies used by software companies. The
research advancement in the industry is usually ignored by the
people in academia. Related work in research papers focus on

those research papers published and do not look in company
websites, technical reports, web logs, discussion boards, etc.

 A more proactive partnership is proposed between
the Information Technology (IT) faculties and the IT industry.
This is a summary of the sought benefits from having such
partnership:

1. For students:
As students are the most important element in the proposal,

and as the improvement of their skills and readiness to the
industry is the ultimate goal of this project, the sought benefits
for students from this partnership can be summarized by:

� Rather than working on hypothetical projects through
their courses, students can work on actual projects from IT
companies in the market. This give them more interest in the
project they are working and encourage them to put more time
and effort on those projects.

� As students will work on actual projects, they can
relate the theoretical knowledge they learned through courses
with the practical knowledge they learned through those
projects.

� Students through those projects will be able to build
professional relations with local IT companies. This is a major
benefit fresh graduate students will need to be able to enter the
highly qualification demanding industry. Through working
hard on those projects, students can prove themselves and
build their own relationships which will make it easier for
them to enter the IT industry whether with this specific
company or anyone else.

� Students can have professional experience and projects
in their resume to include. An empty resume that has nothing
but a degree and probably some courses, will be very hard to
compete in a very high competitive market.

2. For IT faculties Universities:
� For instructors, an enthusiastic student will give them

more interest on teaching and will allow them to show the
students the benefits of the theoretical knowledge.

� Instructors don’t needs to keep creating hypothetical
projects. Projects will come from the industry partners. The
selected partners will assist in the evaluating and grading of
the project as their feedback on the student performance on
the project.

� The IT faculty using this new trend is expected to raise
its stake among other IT faculties and promote better position
for it in comparison with its competitors. IT graduates like to
have a mix knowledge in their university study and like a
faculty or a university that can accelerate their ability to gain
skills.

� Through partnership with industrial companies, the
IT faculties will ensure its continuation to be at the edge of
current trends and technologies in the industrial IT fields.

3. For the IT companies in the private industry:
� Usually, companies will not pay students for working

on those projects. As such, the main benefit for companies is
that they are getting work on their projects for free. The only
overhead on this is the communication with students.

978-1-61284-643-9/11/$26.00 ©2011 IEEE
2011 IEEE Global Engineering Education Conference (EDUCON) – "Learning Environments and Ecosystems in Engineering Education"

April 4 - 6, 2010, Amman, Jordan

Page 23

Companies usually assign a tech support coordinator to follow
up with students regarding their enquiries about the project.

� Companies will have the chance to meet and know
students for better future employment candidates. They can
have a period and evaluation period without the need to hire
those students for sometime and see how they will be doing.
Usually companies lose money for incorrect selections of new
employees. In those projects, companies can have the time to
evaluate and select best students who performed well in their
assigned projects to give them job offers in future.

Software engineering courses such as those of requirement,
design, construction and testing should have practical or
projects parts where students will be asked to select a project
from a candidate company.

IX. TEACHING METHODOLOGIES

Class traditional teaching methods may not be effective

enough to be used in software engineering subjects’ education.
It should be combined with several other methods such as:
interactive discussions, lab presentations and experiments,
experimental projects or projects through actual business
partners, etc. Several universities around the world due to
several reasons , largely convenience, are focusing teaching
methods on traditional class education.

The previously described proactive partnership with the IT
industry can be an important contributor in improving
software engineering teaching methodologies. Accreditation
of a degree in software engineering should enforce the need to
add methods other than those traditional ones. Through 3
years of teaching software engineering to undergraduate and
graduate students, we noticed the positive effects in education
and understanding as a result of injecting interactive lab
sessions and experimental and practical projects. However,
there are several types of obstacles and difficulties. Students
usually have problems working in a team and learning how to
evenly distribute tasks. On the other hand, some students may
have problems accepting other team members’ opinion.
Students also tend to complain from working in projects in
general due to the fact that they require extra efforts and
usually learning new skills. Instructors may also tend to avoid
projects’ and labs’ sessions especially in universities where
they are not giving teaching assistants for supporting. On the
other hand, grading lab and project homework assignments are
not simple as they are unstructured. Those are all difficulties
or obstacles that should be tackled subjectively when planning
for software engineering courses.

X. CONCLUSION AND FUTURE WORK

The goal of this separation of concerns is to organize the

software engineering project into smaller manageable parts
that can be easy to understand. It should reduce complexity
and improve clarity. This concept is at the core of software
engineering. The 4Ps concerns have some overlapping and
distinct features. Concepts such as; ontology, abstraction,

modeling and views or separation of concerns always include
some sort of abstraction or focus. The goal is to draw a better
image or understanding for the problem. The goal of the
separation of the concerns in software engineering projects is
to improve the understandability and consider only relevant
properties for each perspective.

In another goal, we hope that the separation of concerns
will help software engineering students better understand the
large number of modeling and terminology concepts that may
overlap and hence seem ambiguous.

This paper suggests a methodology to teach software
engineering on the basis of the different perspectives or view.
Such views are expected to develop and overall conceptual
understanding that seems to be missing for many students who
learn introductory software engineering courses. We described
those different views in brief to proof the concept. As this is a
suggestion for a book or a course, it should include more
details and elaborations. We will introduce all software
engineering terms, and concepts in terms of this view. In
software project managements, managers need to separate
their planning and evaluation among those four perspectives.
Students should also differentiate between tools, concepts and
standards used for each one of those views.

Academic curriculums and research papers should give
more attention to the industry and its current technologies.
This can help students in their future jobs by training them on
the tools used by the industry to obtain the needed skills. It
also helps the industry in utilizing such researches once they
become more realistic or relevant.

XI. REFERENCES

[1]. Ian Sommerville. Software Engineering (Seventh Edition). Addison-

Wesley, 2004
[2]. Roger S. Pressman. Software Engineering: A Practioner's Approach (Sixth

Edition, International Edition). McGraw-Hill, 2005.
[3]. Habra, Naji. Separation of concerns in software engineering education.

ICSE 2001.
[4]. Jessica Keyes. Software Engineering Handbook. Auerbach Publications

(CRC Press), 2003.
[5]. Hans van Vliet. Software Engineering: Principles and Practice (Second

Edition). Wiley, 1999.
[6]. Timothy C. Lethbridge & Robert Laganière. Object-Oriented Software

Engineering: Practical Software Development using UML and Java (Second
Edition). McGraw-Hill, 2005.

[7]. Andrew Hunt, David Thomas. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley Pub Co, 1999.

[8]. Barry Boehm. Software Engineering Economics. Prentice Hall, 1982.
[9]. J. Fairclough (Ed.). Software Engineering Guides. Prentice Hall, 1996.

[10]. C. Mazza. Software Engineering Standard. Prentice Hall, January 1995.
[11]. Alan M. Davis. 201 Principles of Software Development. McGraw-Hill,

1995.
[12]. I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software

Development Process, Addison-Wesley, Reading, MA, 1998.
[13]. J. Scott Hawker. Integrating Process, Product, and People Models

to Improve Software Engineering Capability. <http://cs.ua.edu/research/-
TechnicalReports/TR-2002-05.pdf>. 2002.2010.

[14]. C. Wille, A. Abran, J-M Desharnais, R. Dumke, The Quality concepts and
sub concepts in SWEBOK: An ontology challenge, in International Workshop
on Software Measurement (IWSM) , Montreal , 2003 , pp. 18,

[15]. C. Wille, R. Dumke, A. Abran, J-M, Desharnais, E-learning Infrastructure
for Software Engineering Education: Steps in Ontology Modeling for

978-1-61284-643-9/11/$26.00 ©2011 IEEE
2011 IEEE Global Engineering Education Conference (EDUCON) – "Learning Environments and Ecosystems in Engineering Education"

April 4 - 6, 2010, Amman, Jordan

Page 24

SWEBOK, in Ontology Modeling for SWEBOK , in Software Measurement
European Forum , Rome, Italy , 2004

[16]. Software Engineering Research Laboratory. Institute of Electrical and
Electronics Engineers, Inc. <www.swebok.org>. 2008. 2010.

[17]. Framework and Tool for Modelling and Assessing Software Development
Processes. J. G. Doheny and I. M. Filby AIAI-TR-204. August 1996.

[18]. Goldberg, A., and Pope, S. T. 1989. Object-oriented is not enough!
American Programmer: Ed Yourdon's Software Journal 2(7): 46-59.

[19]. Dongsun Kim, Suntae Kim, Seokhwan Kim, and Sooyong Park. Software
Engineering Education Toolkit for Embedded Software Architecture Design
Methodology Using Robotic Systems. 15th Asia-Pacific Software
Engineering Conference. 2008.

[20]. Software Engineering Education. Harland D Mills. Proceedings of the
IEEE, Vol. 68, NO. 9. 1980.

[21]. Strategic Imperatives in Software Engineering Education. Harland D Mills.
Proceedings of the SEI Conference on Software Engineering Education. 1988.

[22]. Guide to SWEBOK, 2004 version. Alain Abran, James W. Moore. IEEE
Computer Society. 2004.

[23]. Sjoberg, Dag, Tore Dyba, and Magne Jorgensen. The future of empirical
methods in software engineering research. Future of Software Engineering,
2007. FOSE '07. 2007. Page(s): 358-378.

[24]. Sjøberg, D.I.K., Anda, B., Arisholm, E., Dybå, T., Jørgensen, M.,
Karahasanovic, A. and Vokac M. Challenges and Recommendations when
Increasing the Realism of Controlled Software Engineering Experiments. In:
Conradi and Wang (eds.) Empirical Methods and Studies in Software
Engineering: Experiences. Springer-Verlag LNCS 2765, Pages: 24-38, 2003.

[25]. Anthony Finkelstein, Student Pmblems in Software Engineering Education,
IEE Colloquium on Teaching of Software Engineering-Progress Reports,
1991.

[26]. C J Theaker. D C Evans, Croup Projects in Software Engineering Degrees,
IEE Colloquium on Teaching of Software Engineering-Progress Reports,
1991.

[27]. P A Grubb, Follow up to Undergraduate Software Engineering Projects,
IEE Colloquium on Teaching of Software Engineering-Progress Reports,
1991.

[28]. Francis Tam, Fred Pran, Duncan Shonland, Engineering Software with
Software Engineering: Formal Design to implementation, IEE Colloquium on
Teaching of Software Engineering-Progress Reports, 1991.

[29]. Juliet Brown and Martin Loomes, Humane Mathematics for Software
Engineers, IEE Colloquium on Teaching of Software Engineering-Progress
Reports, 1991.

[30]. John Barrie Thompson, The use of a quality assurance tool in the teaching
of software engineering principles. IEE Colloquium on Teaching of Software
Engineering-Progress Reports, 1991.

[31]. Carlo Ghezzi, and Dino Mandrioli, The challenges of Software
Engineering Education, ICSE05, 2005.

[32]. Melody Moore and Colin Potts, Learning by doing: Goals and experiences
of two software engineering project courses, Software Engineering Education
Lecture Notes in Computer Science, 1994, Volume 750/1994.

[33]. David Evans, Teaching Software Engineering Using Lightweight Analysis,
CCLI01, 2001.

[34]. Pankaj Jalote, Teaching an Introductory Software Engineering Course in a
Computer Science Program, ASEET09, 2009.

978-1-61284-643-9/11/$26.00 ©2011 IEEE
2011 IEEE Global Engineering Education Conference (EDUCON) – "Learning Environments and Ecosystems in Engineering Education"

April 4 - 6, 2010, Amman, Jordan

Page 25

