IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO.9, SEPTEMBER 2005

1091

Improving Unstructured Peer-to-Peer Systems
by Adaptive Connection Establishment

Li Xiao, Member, IEEE, Yunhao Liu, Member, IEEE, and Lionel M. Ni, Fellow, |IEEE

Abstract—In unstructured peer-to-peer (P2P) systems, the mechanism of a peer randomly joining and leaving a P2P network causes a
topology mismatch between the P2P logical overlay network and the physical underlying network, incurring a large volume of redundant
traffic in the Internet. In order to alleviate the topology mismatch problem, we propose Adaptive Connection Establishment (ACE), an
algorithm for building an overlay multicast tree among each source node and the peers within a certain diameter from the source peer and
further optimizing the neighbor connections that are not on the tree while retaining the search scope. Our simulation study shows that this
approach can effectively solve the mismatch problem and significantly reduce P2P traffic. We further study the trade-offs between the
topology optimization rate and the information exchange overhead by changing the diameter used to build the tree.

Index Terms—Peer-to-peer systems, overlay, topology mismatch problem, distributed approach, Adaptive Connection Establishment.

1 INTRODUCTION

s an emerging model of communication and computa-

tion, peer-to-peer systems are under intensive study.
In unstructured P2P systems, queries are flooded among
peers (such as in Gnutella [2]) or among super-nodes (such
as in KaZaA [3]). In such systems, all participating peers
form a P2P network over a physical network. A P2P network
is an abstract, logical network called an overlay network.
When a new peer wants to join a P2P network, a
bootstrapping node provides the IP addresses of a list of
existing peers in the P2P network. The new peer then tries
to connect with these peers. If some attempts succeed, the
connected peers will be the new peer’s neighbors. Once this
peer connects into a P2P network, the new peer will
periodically ping the network connections and obtain the
IP addresses of some other peers in the network. These
IP addresses are cached by this new peer. When a peer
leaves the P2P network and then wants to join the
P2P network again (no longer the first time), the peer will
try to connect to the peers whose IP addresses have already
been cached. This mechanism of a peer joining a
P2P network and the fact of a peer randomly joining and
leaving causes an interesting matching problem between a
P2P overlay network topology and the underlying physical
network topology.

Studies in [23] show that only 2 to 5 percent of Gnutella
connections link peers within a single autonomous system
(AS), but more than 40 percent of all Gnutella peers are
located within the top 10 ASs. This means that most Gnutella-

generated traffic crosses AS borders so as to increase

e L. Xiao is with the Department of Computer Science and Engineering,
3115 Engineering Building, Michigan State University, East Lansing, MI
48824. E-mail: Ixino@cse.msu.edu.

e Y. Liu and L.M. Ni are with the Department of Computer Science, Hong
Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong. E-mail: {liu, ni}@cs.ust.hk.

Manuscript received 14 Mar. 2004; revised 28 Nov. 2004; accepted 30 Mar.
2005; published online 15 July 2005.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0089-0304.

0018-9340/05/$20.00 © 2005 IEEE

topology mismatch costs. The same message can traverse
the same physical link multiple times, causing a large
amount of unnecessary traffic.

The objective of this paper is to minimize the effect due
to topology mismatch. We propose the Adaptive Connection
Establishment (ACE) that builds an overlay multicast tree
among each source node and the peers within a certain
diameter from the source peer and further optimizes the
neighbor connections that are not on the tree while
retaining the search scope. ACE is scalable and completely
distributed in the sense that it does not require global
knowledge of the whole overlay network when each node is
optimizing the organization of its logical neighbors. Our
simulations show that ACE can significantly improve the
performance. We also show that a larger diameter leads to a
better topology optimization rate and a higher overhead
due to extra information exchanging. Our experiments and
discussions provide a guide on how to achieve a good
performance by considering the trade-offs between the
topology optimization rate and the information exchange
overhead in selecting the diameter to determine the peers to
form the multicast tree for a source peer.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 presents the adaptive
connection establishment (ACE) scheme. Section 4 describes
our simulation methodology. Performance evaluation of the
ACE is presented in Section 5 and we conclude the work in
Section 6.

2 RELATED WORK

In order to reduce unnecessary flooding traffic and improve
search performance, two approaches have typically been
proposed to improve from the flooding-based search
mechanism in unstructured P2P systems. Rather than flood-
ing a query to all neighbors, the first approach routes queries
to peers that are likely to have the requested items by some
heuristics based on maintained statistic information [17], [33],
[34]. In the second approach, a peer keeps indices of other

Published by the IEEE Computer Society

1092

peers’ sharing information or caches query responses in
hoping that subsequent queries can be satisfied quickly by the
cached indices or responses [11], [18], [19], [22], [26], [29], [33].
The performance gains of both approaches are seriously
limited by the topology mismatch problem.

The third approach is based on overlay topology
optimization that is closely related to what we are
presenting in this paper. Here, we briefly introduce three
types of solutions and their comparisons with our
approach. End system multicast, Narada, was proposed in
[10], which first constructs a rich connected graph on which
to further construct shortest path spanning trees. Each tree
rooted at the corresponding source using well-known
routing algorithms. This approach introduces a large
overhead of forming the graph and trees in a large scope
and does not consider the dynamic joining and leaving
characteristics of peers. The overhead of Narada is propor-
tional to the multicast group size. This approach is not
feasible for large-scale P2P systems.

Researchers have also considered clustering close peers
based on their IP addresses (e.g., [13], [21]) or probed
distances [20]. We believe there are two limitations to this
approach. First, the mapping accuracy is not guaranteed by
this approach. Second, this approach may affect the search
scope in P2P networks. In contrast, our technique is
measurement-based and can accurately and dynamically
connect the physically closer peers and disconnect physi-
cally distant peers. Furthermore, our scheme does not
shrink the search scope.

Researchers in [32] have proposed measuring the latency
between each peer to multiple stable Internet servers called
“landmarks.” The measured latency is used to determine
the distance between peers. This measurement is conducted
in a global P2P domain and needs the support of additional
landmarks. Similarly, this approach also affects the search
scope in P2P systems. In contrast, our measurement is
conducted in many small regions, significantly reducing the
network traffic.

Gia [8] introduced a topology adaptation algorithm to
ensure that high capacity nodes are indeed the ones with
high degree and low capacity nodes are within short reach
of high capacity nodes. It addresses a different matching
problem in overlay networks, but does not address the
topology mismatch problem between the overlay and
physical networks. Apocrypha [12] optimized the overlay
topology by swapping a number of selected pairs of peers.

A preliminary design of ACE [16], which is called
AOTO, has been discussed in [15]. We have also proposed a
location-aware topology match scheme [14] in which each
peer issues a detector in a small region so that the peers
receiving the detector can record relative delay information.
Based on the delay information, a receiver can detect and
cut most of the inefficient and redundant logical links and
add closer nodes as its direct neighbors. However, this
approach creates slightly more overhead and requires that
the clocks in all peers be synchronized.

3 ADAPTIVE CONNECTION ESTABLISHMENT

In unstructured P2P systems, the most popular search
mechanism in use is to blindly “flood” queries to the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO.9, SEPTEMBER 2005

Fig. 1. An example of P2P overlay.

network among peers or among super-nodes. A query is
broadcast and rebroadcast until a certain criterion is
satisfied. If a peer receiving the query can provide the
requested object, a response message will be sent back to
the source peer along the inverse of the query path. This
mechanism ensures that the query will be “flooded” to as
many peers as possible within a short period of time in a
P2P overlay network. A query message will also be
dropped if the query message has visited the peer before.
In this section, we first use examples to explain the
unnecessary traffic incurred by flooding-based search and
the topology mismatch problem. We then introduce the
design of proposed approach, ACE.

3.1 Unnecessary Message Duplications

3.1.1 Unnecessary Traffic by Flooding

Fig. 1 shows an example of a P2P overlay topology where
solid lines denote overlay connections among logical
P2P neighbors. Consider the case when node S sends a
query. A solid arrow represents a delivery of the query
message along one logical connection. The query is relayed
by many peers, which incurs a lot of unnecessary traffic. For
example, after node S sends the query to L and M, since it is
possible that none of L or M knows the other one will
receive the same query from S, they will forward the query
to each other. The pair of transmissions on the logical link
LM is unnecessary. In such a simple overlay, node M will
receive the same query message for up to 4 times. In this
case, it is clear that the search scope of the query from
node S will not shrink without logical connections of LM,
MQ, LQ, and MP.

3.1.2 Topology Mismatch Problem

As we have discussed, the stochastic peer connection and
peers” randomly joining and leaving a P2P network can
cause a topology mismatch between the P2P logical overlay
network and the physical underlying network. For example,
Fig. 2a and Fig. 2b are two overlay topologies on top of the
underlying physical topology shown in Fig. 2c. Suppose
nodes S and B are in the same autonomous system (AS) at
Michigan State University in the USA, while nodes A and C
are in another AS at Tsinghua University in China. We can
assume that the physical link delay between nodes S and C

XIAO ET AL.: IMPROVING UNSTRUCTURED PEER-TO-PEER SYSTEMS BY ADAPTIVE CONNECTION ESTABLISHMENT

S A B C
*———o——0——0
(a)
B S C A
L @ @ @
(b)
”S_‘ Tsinghua {;J

(c)

Fig. 2. Topology mismatch problem. (a) Mismatching overlay.
(b) Matching overlay. (c) Underlying physical topology.

is much longer than the link between nodes S and B or the
link between nodes A and C in Fig. 2c. Clearly, in the
inefficient mismatched overlay of Fig. 2a, the query
message from source S will traverse the longest link SC
three times to reach all other nodes (A, B, and C). This is a
scenario of topology mismatch problem. If we can construct
an efficient overlay, shown in Fig. 2b, the message needs to
traverse all the physical links in Fig. 2c only once.

To quantitatively evaluate how serious the topology
mismatch problem is in Gnutella-like networks, we simulate
1,000,000 queries on different Gnutella-like topologies with
an average number of neighbors being 4, 6, 8, and 10. Detailed
simulation methodology will be discussed in Section 4. In this
simulation, we track the response of each query message to
check if the response comes back along a mismatched path.
We count a path as a mismatched path if a peering node in the
path has been visited more than once. We plot the results in
Fig. 3, which shows more than 70 percent of the paths suffer
from the topology mismatch problem.

3.2 The Trade-Off between Traffic Cost and Query
Response Time
To measure the quality of a P2P overlay topology in terms
of search process, we introduce some popular metrics. A
well-designed search mechanism should seek to optimize
both system efficiency and Quality of Service (QoS) to users.
Efficiency focuses on better utilization of resources, such as
bandwidth and processing power, while QoS focuses on
user-perceived qualities, such as the number of returned
results and average response time of queries. In unstruc-
tured P2P systems, the QoS of a search mechanism
generally depends on the number of peers being explored
(queried), response time, and traffic cost overhead. If a
query reaches more peers, it is more likely that the
requested object can be found. So, we use two performance
metrics: average traffic cost and query response time.
Traffic cost is one of the parameters network administrators
are seriously concerned with. Heavy network traffic limits the

1093

100

90F 1

80} |

70; e
60 1
501 1
40 1

30
—=— 10 neighbors

20} —— 8 neighbors
- — 6 neighbors
—# 4 neighbors

% of responses along mismatch paths

[+] 2 4 =3 B 10
Queries t105}

Fig. 3. The percent of query responses along mismatched paths.

scalability of P2P networks [24] and is also a reason why a
network administrator may prohibit P2P applications. We
define the traffic cost as network resource used in an
information search process of P2P systems, which is mainly
a function of consumed network bandwidth and other related
expenses. Specifically, in this work, we assume all the
messages have the same length, so, when messages traverse
an overlay connection during the given time period, the
traffic cost (C) is givenby: C = M x L, where M is the number
of messages that traverse the overlay connection and L
represents the number of physical links in this overlay
connection.

The response time of a query is one of the parameters P2P
users are concerned with. We define the response time of a
query as the time period from when the query is issued
until when the source peer received a response result from
the first responder.

The trade-off between query traffic cost and response
time has been discussed in [34]. P2P systems with a large
number of average connections offer a faster search speed
while increasing query traffic. Therefore, it is meaningless
to merely optimize one metric without considering the
other. Our goal is to design a distributed approach which
reduces both traffic cost and response time.

3.3 Design of ACE

The proposed approach, Adaptive Connection Establish-
ment (ACE), includes three phases, which are neighbor cost
table construction and exchanging, selective flooding, and overlay
optimization.

3.3.1 Phase 1: Neighbor Cost Table Construction and
Exchanging

We use network delay between two peering nodes as a
metric for measuring the cost between peers. We modify the
Limewire implementation of Gnutella 0.6 P2P protocol by
adding one routing message type. Each peer probes the
costs with its immediate logical neighbors and forms a
neighbor cost table. Two neighboring peers exchange their
neighbor cost tables so that a peer can obtain the cost
between any pair of its logical neighbors. Thus, a small
overlay topology of a source peer and all its logical

1094

(c) (d)

Fig. 4. Selective flooding.

neighbors is known to the source peer. If we use N(S) to
denote the set of direct logical neighbors of peer S, each
peer S has the information to obtain the overlay topology
including S itself and N(S) as illustrated in Fig. 4a.

A critical issue to be examined in this phase is how often
peers exchange their neighbors’ cost table. In fact, there are
two basic operations in this phase: Peers first probe the cost
to their neighbors and construct the cost table; they then
exchange the table with direct neighbors. In this design,
there are two ways for each single peer to decide when to
conduct neighbor probing and reporting, namely, periodic
and event-driven. In the periodic approach, each peer
conducts neighbor distance probing at every certain period
of time, g. After probing the distances to all the neighbors, a
peer sends the cost table to its neighboring peers. The value
q is a critical factor for the performance of the periodic
approach. In the event-driven approach, a peer produces
and sends an updated cost table to its neighboring peers
when there is a change on its logical connections with its
neighbors, such as on a neighbor’s leaving or on a peer’s
joining as its new neighbor. We have investigated the
impact of the selection of the policies in ACE.

3.3.2 Phase 2: Selective Flooding (SF)

Based on the obtained neighbor cost tables, a minimum
spanning tree (MST) among each peer S and its immediate
logical neighbors (S U N(S)) can be built by simply using an
algorithm like PRIM, which has a computation complexity
of O(m?), where m is the number of logical neighbors of the
source node. A computed MST is shown in Fig. 4b. Now,
the message routing strategy of a peer is to select the peers
that are the direct neighbors in the MST to send its queries,
instead of flooding queries to all neighbors. We thus call
peer S’s direct neighbors in its MST flooding-neighbors of S
and call those who are not direct neighbors in S’s MST
nonflooding neighbors. The connections between S and its

IEEE TRANSACTIONS ON COMPUTERS,

VOL. 54, NO.9, SEPTEMBER 2005

Fig. 5. Overlay optimization. (a) S probes G’s neighbor H. (b) SH < SG,
replace G by H. (c) SH > SG, but SH < GH, S keeps H as a direct
neighbor. (d) SH > SG and SH > GH, S starts probing G’s next neighbor.

flooding neighbors are defined as forwarding connections. See
the example shown in Fig. 4. In Fig. 4c, the traffic incurred
by node 5’s flooding of messages to its direct neighbor E, F,
and G is: 4+ 14+ 14 + 15 + 6 + 20 + 20 = 93. After SF, the
forwarding connections are changed, as shown in Fig. 4d, and
the total traffic cost becomes: 6 + 4 4 14 = 24.

In Fig. 4d, peer S sends a message only to peers E and F
and expects that peer E will forward the message to peer G.
Note that, in this phase, even peer S does not flood its query
message to peer G any more, S still retains the connections
with G and keeps exchanging the neighbor cost tables with
G. In this example, peer G is a nonflooding neighbor of peer S,
which is the direct neighbor potentially to be replaced in
phase 3. Peers E and F are flooding neighbors of S.

3.3.3 Phase 3: Overlay Optimization

This phase reorganizes the overlay topology. Note that each
peer has a neighbor list which is further divided into
flooding neighbors and nonflooding neighbors in Phase 2. Each
peer also has the neighbor cost tables of all its neighbors. In
this phase, a peer tries to replace those physically far away
neighbors by physically close by neighbors, thus minimiz-
ing the topology mismatch traffic. An efficient method to
identify such a candidate peer to replace a far away
neighbor is critical to the system performance. Many
methods may be proposed. In ACE, a nonflooding neighbor
may be replaced by one of the nonflooding neighbor’s
neighbors.

The basic concept of phase 3 is illustrated in Fig. 5. In
Fig. 5a, peer S is probing the distance to one of its
nonflooding neighbor G’s neighbors, for example, H. If SH
is smaller than SG, as shown in Fig. 5b, connection SG will
be cut. If SG is smaller than SH, but S finds that the cost
between nodes G and H is even larger than the cost
between peers S and H, as shown in Fig. 5¢, S will keep H

XIAO ET AL.: IMPROVING UNSTRUCTURED PEER-TO-PEER SYSTEMS BY ADAPTIVE CONNECTION ESTABLISHMENT

as a new neighbor. Since the algorithm is executed in each
peer independently, S cannot let G remove H from its
neighbor list. However, as long as S keeps both G and H as
its logical neighbors, we may expect that peer H will
become a nonflooding neighbor to peer G after G’s Phase 2
since peer G expects S to forward messages to H to reduce
unnecessary traffic. Then, G will try to find another peer to
replace H as its direct neighbor. After knowing that H is no
longer a neighbor to G from periodically exchanged
neighbor cost tables from node G (or from node H), S will
cut connection SG, although S has already stopped sending
query messages to G for a period of time, ever since the
spanning tree was built for S. Obviously, if SH is larger
than SG and GH, as shown in Fig. 5d, this connection will
not be built and S will keep probing others of G’s direct
neighbors.

Let Cj; represent the cost from peer i to peer j. The
following pseudocode describes the algorithm of Phase 3:
overlay optimization for a given source peer i.

For each j in i’s nonflooding neighbors

Replaced = false;

List = all j's neighbors excluding i;

While List is not empty and Replaced = false
randomly remove a peer h from List;
measure Cj,;
if Cj, < Cj; {replace j by h in i’s neighbor list;

Replaced = true;}
else if Cy, < Cj, {add h to i’s neighbor list;
remove j from i’s neighbor list right after i
finds out jh is disconnected;
Replaced = true;}
End While;
End For;

Recall that there are two different problems with Gnutella,
which have been discussed in Section 3.1. The first one is the
message duplications on overlay connections due to the
flooding search. The second one is message duplications on
physical links because of the topology mismatch problem. In
fact, the second phase of ACE, selective flooding, focuses on
improving inefficient flooding by reducing message duplica-
tions on the overlay level since the spanning tree can avoid
short circles. The third phase of ACE, overlay optimization,
tackles the second problem by replacing nonflooding
neighbors (which are overlay neighbors but are far apart on
the physical topology) by nearby neighbors to reduce the
message duplications on physical links.

3.4 Property Analysis of ACE Operations

The strength of ACE optimization operation is that it reduces
the total search traffic cost and query response time without
shrinking the search scope of the queries. In other topology
optimization approaches, the topology mismatch problem is
attacked by simply letting all the peers keep replacing their
direct neighbors with physically closer peers without
considering the search scope issue. However, these types of
approach may destroy the connectivity of the overlay and
thus create many isolated islands in the P2P system.

Fig. 6 shows one such example in which peers A, B, C, D
locate in the same AS, peers E, F, and H, G, K belong to

1095
e
Fa 0
o !
—r) /
) J
-._‘_v__/
(a)
/’-,__‘-"“
< (a) \‘\
e T / o \ By
& ~ / e o \
£ i—k) | (o} —{(8) |
{ | L P
. , / —
N (G 3 . o / 27 A
-\“ // \\ \C] / (E) \
— >
/
\ O 5
S
(b)

Fig. 6. Some naive approaches may disconnect the overlay topology.

other ASs, respectively. It is safe to assume that the physical
distance between A and B or E and F'is much smaller than
that of K and A or C and F, as illustrated in Fig. 6. If the
optimization policy for each node is to connect the closest
peers while retaining the original number of logical
neighbors, a connected graph may be broken into three
components. As a result, all queries can only visit a small
group of live peers in the system and the search scope of
queries is significantly reduced, as shown in Fig. 6.

We prove that ACE operations will not increase the
number of components of a graph.

Theorem. Given a graph G = (V,E), the ACE optimization
operations will not increase G's component number.

Proof. We prove by contradiction. Suppose our claim is
false. Then, there exists at least one component C, where
C'is a subgraph of G, which could be disconnected by the
ACE operations. Suppose C is disconnected into two
parts, D and H, after ACE operations, as shown in Fig. 7.
Before the ACE optimization, there must be one or more
edges between D and H since C is connected. Let M
denote the set of the edges between D and H. Among all
these edges in M, we choose the shortest one, uv € M.
Here, we assume that there are no exact equal length
edges in the system, so uv is the only shortest edge in M.
The graph C'is disconnected after ACE operations means
that none of the edges in M, including uv, is selected as a
forwarding connection, either at peer u or peer w.
Without loss of generality, let us assume that uv is
disconnected by peer u. We know that peer v employs an
MST algorithm, such as the Kruskal algorithm, in
SF operation. Because v is u’s one hop neighbor, v must
be included in u’s MST. In the Kruskal algorithm, edges
are sorted from shortest to longest. That edge wv is not
selected by MST means that there is already another
path P (uv € P) between u and v and the length of each
edge in P is shorter than uv. As P is between D and H, at
least one of the edges in P, say edge e, belongs to M. We

1096

Path

Fig. 7. Proof of the property of ACE operations.

then have e < uv, which is a contradiction to our choice
that uv is the shortest edge in M and, thus, the theorem is
proven. a

3.5 Depth of Optimization

In the ACE described in Section 3.3, the optimization is
conducted among each source peer and all its direct logical
neighbors. We expect better performance if the optimization
can be done in a larger scope with more peers. We define
the h-neighbor closure of a source peer as the set of peers
within A hops from the source peer. For example, a
2-neighbor closure includes the source peer, all its direct
neighbors, and all the neighbors of the direct neighbors. The
optimization in the initial ACE (Section 3.3) is only
conducted within 1-neighbor closure. We can enlarge the
optimization scope by increasing the value of h, which is
also called as the depth of optimization. A larger value of h
leads to a better topology matching improvement, but a
higher overhead due to the extra information exchanging.
We will conduct further studies in this direction with the
aim of reaching a good performance level by considering
the trade-offs between the topology optimization improve-
ment and the information exchange overhead.

The optimization procedure in h-neighbor closure is
similar to that in 1-neighbor closure described in Section 3.3
except for the neighbor cost table exchanging. Each peer
builds a neighbor cost table. The difference is that each cost
table associates with a TTL value initialized as h. Each peer
sends out its own neighbor cost table and the cost tables it
received from other peers with TTL > 0. When a peer
receives one or more cost tables, the TTLs of the tables will
be decremented by 1. In such a way, each peer will have the
knowledge of the topology around it up to h hops. A
minimum spanning tree can be built among this source peer
and its h-neighbor closure. Phase 3 described in Section 3.3
can be used to replace nonflooding neighbors.

Fig. 8illustrates the overlay trees constructed for each peer
within 1-neighbor closures. In Fig. 8, peer A initiates a query.
The bold links denote the links on the tree and the arrows
indicate the query directions. The query is sent from peer A to

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO.9, SEPTEMBER 2005

A
AN,
10 15 10

P o 7 N

10/"‘\1 P
/ 5\ /,10 15\
B 20 D B 20— D
1:2\8\ }4 1|2\ !4
b ly Sal
(c) (d)
A A
Y % Pt
10 1 10 4
B/ 20—5\ 7 5\ -

Fig. 8. Overlay trees built in 1-neighbor closure. (a) Original topology.
(b) Overlay tree rooted at A. (c) Overlay tree rooted at B. (d) Overlay tree
rooted at C. (e) Overlay tree rooted at D. (f) Overlay tree rooted at E.

Band Dsinceboth Band D are directlogical neighbors of A on
the overlay tree. Peer B then forwards the query to E and D
forwards the query to E. Peer E finally forwards the query to D
and C. Peer C will not forward the query because only E is its
direct neighbor, but E is the peer which forwards the query to
C. So, the query process terminates. The query paths and
corresponding costs for this query are listed in Table 1. The
total cost for this query from peer A to be forwarded to all
other peers through the overlay trees built in 1-neighbor
closures is 68. The number of unnecessary messages is
reduced from three to one compared with blind flooding in
this example. In 1-neighbor closure, the query message
traverses one path twice, which is E-D. In blind flooding, the

TABLE 1
Query Paths and Costs on Overlay Trees Built in
1-Neighbor Closure

Query Path
From To Corresponding Cost
A B,D 10+15=25
B E 8
D E 14
E C.D T+14=21
Total Cost 68

XIAO ET AL.: IMPROVING UNSTRUCTURED PEER-TO-PEER SYSTEMS BY ADAPTIVE CONNECTION ESTABLISHMENT

Fig. 9. Overlay tree built in 2-neighbor closure.

same query message traverses 3 paths twice, which is B-D,
D-E, and C-E.

Fig. 9 and Table 2 illustrate the overlay tree built in
2-neighbor closure and the corresponding query direction
and cost. The total cost to forward a query from peer A to all
other peers is 39. No path is traversed twice by ACE with
h =2 in this example. We can see that the number of
unnecessary messages and the total traffic is decreased as
the value of h is increased.

4 SIMULATION METHODOLOGY

We describe the topology generation, performance metrics
used in our simulations, our simulation setup, and
parameter settings in this section.

4.1 Simulation Setup

Two types of topologies, physical topology and logical
topology, are generated in our simulation. The physical
topology should represent the real topology with Internet
characteristics. The logical topology represents the overlay
P2P topology built on top of the physical topology. All
P2P nodes are in a subset of nodes in the physical topology.
The communication cost between two logical neighbors is
calculated based on the physical shortest path between this
pair of nodes. To simulate the performance of different
search mechanisms in a more realistic environment, the two
topologies must accurately reflect the topological properties
of real networks in each layer.

Previous studies have shown that both large scale
Internet physical topologies [30] and P2P overlay topologies
[25] follow the small world and power law properties.
Power law describes the node degree, while small world
describes characteristics of path length and clustering
coefficient [7]. The study in [25] found that the topologies
generated using the AS Model have the properties of the
small world and power law. BRITE [1] is a topology
generation tool that provides the option to generate
topologies based on the AS Model. Using BRITE, we
generate three physical topologies, each with 27,000 nodes.
The logical topologies are generated with the number of
peers (nodes) ranging from 2,000 to 9,000. The average
number of neighbors of each node ranges from 4 to 10. We
simulate ACE for all the generated logical topologies on top
of each of the three generated physical topologies. We also
simulate this approach in a real-world P2P topology (based

1097

TABLE 2
Query Paths and Costs on the Overlay Tree Built in
2-Neighbor Closure

Query Path
From To Corresponding Cost
A B. 10
B E 8
E C.,D T+14=21
Total Cost 39

on DSS Clip2 trace). We obtained consistent results on the
real-world topology and the generated topologies.

The content popularity of a publisher follows a Zipf-like
distribution (aka Power Law) [4], [6], where the relative
probability of a request for the ith most popular page is
proportional to 1/:%, with « typically taking on some value
less than unity. The observed value of the exponent varies
from trace to trace. The request distribution does not follow
the strict Zipf’s law (for which a = 1), but instead follows a
more general Zipf-like distribution. Query word frequency
does not follow a Zipf distribution [31]. The user’s query
lexicon size does not follow a Zipf distribution [31] but with
a heavy tail. Both the overall traffic and the traffic from the
10 percent most popular nodes are heavy-tailed in terms of
the host connectivity, traffic volume, and average band-
width of the hosts [28]. Studies in [9] have suggested a log-
quadratic distribution (10~*") for stored file locality and
transfer file locality. The time length that nodes remain
available follows a log-quadratic curve [9], which could be
approximated by two Zipf distributions.

In our simulation, we simulate the flooding search used
in a Gnutella network by conducting the Breath First Search
algorithm from a specific node. A search operation is
simulated by randomly choosing a peer as the sender, and a
keyword according to Zipf distribution. TTLs are used to
propagate the queries.

4.2 Performance Metrics

As we discussed in Section 3.2, we should consider traffic
cost as well as query response time in P2P systems. To
evaluate the search efficiency of the systems, besides traffic
cost and response time, we also use the following metrics:

Search scope is defined as the number of peers that
queries have reached in an information search process.
Thus, with the same traffic cost, we aim to maximize the
search scope, while, with the same search scope, we aim to
minimize the traffic cost.

Optimization rate is defined as gain/penalty ratio, i.e., the
ratio of query traffic reduction and overhead traffic
increment in order to study the trade-offs between query
traffic and overhead traffic by changing the value of
optimization depth of h. One major factor to impact the
traffic overhead is the frequency of exchanging cost
information. We define frequency ratio, R, as the ratio of
query frequency to use the overlay trees to the frequency of
cost information changes. For a given P2P network
topology, if the frequency of the topology and cost changes
and query frequency can be measured so that R is
determined, we should be able to adjust the value of A to

1098

» 100F
£
E —=— Existing Approaches
£ o e
E oo —T % g o—0—=9
R LY
£ B0
o .
[vy A
ie] %
T
w 40 %
]
w
&
5]
g 20
s =
o
0 - L L il L -
0 2 4 6 8 10
Queries (10%)

Fig. 10. The percentage of query responses along mismatched paths of
existing schemes and ACE.

achieve optimal gain/penalty ratio. ACE is worth to use
only if the gain/penalty ratio is larger than 1.

4.3 A Dynamic P2P Environment

P2P networks are highly dynamic with peers joining and
leaving frequently. The observations in [28] have shown
that over 20 percent of the logical connections in a P2P last
1 minute or less and around 60 percent of the IP addresses
keep active in FastTrack for no more than 10 minutes each
time after they join the system. The measurement reported
in [25] indicated that the median up-time for a node in
Gnutella and Napster is 60 minutes. Studies in [5] have
argued that measurement according to host IP addresses
underestimates peer-to-peer host availability and have
shown that each host joins and leaves a P2P system 6.4 times
a day on average and over 20 percent of the hosts arrive and
depart every day. Although the numbers they provided are
different to some extent, they share the same point that the
peer population is quite transient. We simulate the joining
and leaving behavior of peers via turning on/off logical
peers. In our simulation, every node issues 0.3 queries per
minute, which is calculated from the observation data
shown in [29], ie., 12,805 unique IP addresses issued
1,146,782 queries in 5 hours. When a peer joins, a lifetime in
seconds will be assigned to the peer. The lifetime of a peer is
defined as the time period the peer will stay in the system.
The lifetime is generated according to the distribution
observed in [25]. The mean of the distribution is chosen to
be 10 minutes [28]. The value of the variance is chosen to be
half of the value of the mean. The lifetime will be decreased
by one after passing each second. A peer will leave in the
next second when its lifetime reaches zero. During each
second, there are a number of peers leaving the system. We
then randomly pick up (turn on) the same number of peers
from the physical network to join the overlay.

5 PERFORMANCE EVALUATION

We have simulated ACE for all the generated logical
topologies on top of each of the 10 generated physical
topologies with 27,000 nodes. We representatively present
the results in this section.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO.9, SEPTEMBER 2005

1 —+— 10 neighbors
s0f —#— 8 neighbors _|

Y —=— 6 neighbors
BO‘ . —&— 4 neighbors |

Traffic cost per query (1 05)
@
o
7/

50 \ -
40 “ﬁh S
g . = TR e
i \‘9-h ““a-hh e T
e ~—5. T g
20 i _——Q——LM__?: _—@
10
0 ; ; i i
0 2 4 & 8 10

ACE optimization steps

Fig. 11. Traffic reduction versus the optimization step.

5.1 ACE in Static Environments

In our first simulation, we study the effectiveness of ACE in
a static P2P environment where the peers do not join and
leave frequently.

In Fig. 10, we show the percentage of query responses
along mismatched paths of the other existing approaches and
ACE scheme. Recall the results in Fig. 3 show that 70 percent
of the queries are back along mismatched paths in Gnutella
like P2Ps. As most of the existing approaches did not deal
with the topology mismatch problem, the mismatch degree is
not changed under those advanced approaches. ACE is
proven an effective approach optimizing up to 60 percent out
of the 70 percent mismatched paths. As a result, system
performance is improved significantly.

The first goal of ACE schemes is to reduce traffic cost as
much as possible while retaining the same search scope.
Fig. 11 shows the traffic cost reduction of ACE, where the
curve of “c, neighbors” means the average traffic cost
incurred by a query to cover the search scope in the x-axis
and, in the system, the average number of logical neighbors
is ¢,,. We can see that the traffic cost decreases when ACE is
conducted multiple times, where the search scope is all of
the 9,000 peers. ACE may reduce traffic cost by around
65 percent and it converges in around 10 steps. One step
means one round of ACE optimization including the three
phases, i.e., neighbor cost table exchanging, selective flood-
ing, overlay optimization.

The simulation results in Fig. 12 show that ACE can
shorten the query response time by about 35 percent after
10 steps. One of the strengths of ACE schemes is that they
reduce both query traffic cost and response time without
decreasing the query success rate. We vary the size of the
overlay topology ranging from 1,000 to 9,000, and the
results are consistent. It is safe to say that ACE is completely
distributed and scalable and the size of P2P overlays has no
impact on the performance of ACE.

We also plot the node-degree’s pdf distribution before
and after ACE optimization in a 1,000 peer overlay in Fig. 13.
We can see that optimized logical topology keeps the
similar branching factor (i.e., the average number of logical
neighbors) property as the original logical topology and the
query coverage range can be guaranteed.

XIAO ET AL.: IMPROVING UNSTRUCTURED PEER-TO-PEER SYSTEMS BY ADAPTIVE CONNECTION ESTABLISHMENT

3

—#— 10 neighbors
—&— 8 neighbors |
—E— 6 neighbors
—&— 4 neighbors

®
o

8 B

Response time per query
e

ACE optimization steps

Fig. 12. Average response time versus the optimization step.

5.2 ACE in Dynamic Environments

We further evaluate the effectiveness of ACE in dynamic
P2P systems. In this simulation, we assume that peer
average lifetime in a P2P system is 10 minutes; 0.3 queries
are issued by each peer per minute. The overlay we are
using has 9,000 peers with each peer having six neighbors
on average.

The first key issue we examined in this simulation is how
each peer decides when to conduct the neighbor cost probing
and reporting operation. In our design, there are two ways,
namely, periodic and event-driven, as we mentioned in
Section 3.3.1. In the periodic approach, each peer conducts
neighbor distance probing at every certain period of time, g.
After probing the distances to all the neighbors, a peer sends
the cost table to its neighboring peers. The major advantage of
this policy is its simplicity. In the event-driven approach, a
peer produces and sends an updated cost table to its
neighboring peers only if there is a change in its logical
connections with its neighbors, such as on a neighbor’s
leaving or on a peer’s joining as its new neighbor.

The value ¢ is a critical factor for the performance of
periodic approach. We have investigated the impact of
different values of ¢ ranging from 30s to 300s. Figs. 14 and
15 show the results on some representative samples of ¢ at
60s, 120s, 180s, and 240s, respectively, where the x-axis
indicates the time elapsed since the first probing or event

0.07} —=— Grutella

~ ACE |

-

5

:

pdf of Node-Degree
B 8

o (=]
2 B
—_—
"
e ¥
I_ @-{;
< g

Node Degree

Fig. 13. Comparison of topology properties.

1099

=]
o

T T
~~ periodic g=240s
—% periodic g=180s
i - periodic g=120s
—#- penodic q=60s
Hy —— event-driven

& th th
oo o

o
(=]

w
i=]

average traffic cost per query (107)
n w
o o

n
o

5 10 15 20 25 30
time (minute)

Fig. 14. Traffic cost reduction of ACE in a dynamic P2P environment.

occurred. A small ¢ leads to a fast convergent speed.
However, if ¢ is too small, peers will conduct the
optimization operations too often, making the overhead
keep growing when the reduction of the traffic cost and
response time have already reached a threshold. On the
other hand, if ¢ is too large, e.g., ¢ = 240, the frequency of
the optimization operations will not be enough to catch the
changes of peers’ frequent joining and leaving. Thus, the
convergent speed is slow and the reduction of traffic cost
and response time is limited. Figs. 14 and 15 suggest that
q=60s and ¢ =120s make ACE have very close perfor-
mances, while, when ¢ = 180s and ¢ = 240s, ACE does not
work well. Considering there are other overheads of ACE
except traffic cost, we select ¢ = 120s, which means each
single peer will probe its neighbors and report the cost table
every two minutes. ACE has about 60 percent reduction on
traffic cost and 40 percent reduction on response time for
this simulation setup with the given physical topology,
average peer lifetime (10 minutes), and query frequency
(0.3/minute).

Figs. 14 and 15 also show that the event-driven policy
outperforms periodic policy in ACE. We did not select
event-driven policy as the first priority in ACE based on the
following observations: First, the overall performances of
these two policies are very close if we carefully choose the
g value for periodic policy. Second, compared with periodic

-+ periodic g=240s
ﬁ 2 oEee
-G periodic q= |
22!\ —% periodic g=60s |
o |k —— eventdriven
E |
@ 20]
BTk,
| b
AN —
by
>18 W a Y o e
% ‘l x\\', \,_‘/. i Bt e e b 1
@ \,‘Q % x
(=] W
g16r |, YA o 1
% @\ KT AH TN g W e T R e
A\ i
i G52690005p 50900000000 0000000
F 1
12 . ; i A
0 5 10 15 20 25 30
time {minute)

Fig. 15. Response time reduction in a dynamic P2P environment.

1100

60

"E{ 50 - - - Gnutella-like

b \ — Index Cache

> 40l \ —©— ACE enabled

"é \ale ACE + Index cache

’g- 3ot '*u—*——__/a__f—’"—\q_/‘___
2

é 2%@9&:@9@8@9@9@9%@%@%&%&
. bbbtk

G 'l 1 1 1
5 10 15 20 25 30
Queries (10%)

Fig. 16. The effectiveness of ACE plus the Response Index Caching
Scheme on reduction of traffic cost.

policy, to employ event-driven policy needs more opera-
tions. For example, peers must monitor all the neighboring
peers’ behaviors, which means extra overhead, especially
when some peers have a very short lifetime in the
P2P network. In contrast, to employ a periodic policy at a
peer is simple and straightforward: Do the probing and
reporting in a given frequency. However, if ACE is
employed among super-peers only, the event-driven policy
could be a good option because super-peers tend to have a
longer lifetime.

As we have done in static environments, we vary the size
of overlays from 2,000 to 9,000 peers and the optimization
rate of ACE remains consistent.

We claim the strength of ACE is that ACE is orthogonal
with existing advance search approaches. In a dynamic
P2P environment, we simulate strategies of combining ACE
with other approaches, such as response index caching
scheme [29] and Random Walk scheme [17].

In Figs. 16 and 17, we show a strategy of combining ACE
with the response index caching scheme [29] in which query
responses are cached in passing peers along the returning
path. Each peer keeps a local cache and a response index
cache. The size of a response index cache is bounded by
200 items. The average number of neighbors is six. We

25

o, N endeladike T T

g 2 \ — Index Cache

g —&— ACE enabled

Q 4 ->I% ACE + Index Cache

£ I Refeeees ;@E UE @@0&‘6@@@6

® % =

2 10} 4]

= o

o 1

g %*%*%WFH**H*H*%
5 .
0 5 10 15 20 25 30

Queries (109

Fig. 17. The effectiveness of ACE plus the Response Index Caching
Scheme on reduction of query response time.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO.9, SEPTEMBER 2005

—=— Re (Random Walk) -

80t
—»— Rt (Random Walk)

?0.. B
;@ B0+ o565 80868609090000000084
8 50
c
g 30 ¢ '
g 1/

20t¢

[
10f
© 5 10 15 20 25 80

Time (minute)

Fig. 18. Traffic cost and average response time reduction on the
Random Walk scheme when employing ACE.

compare the traffic cost and response time in a Gnutella-like
system without any optimization (Gnutella-like), with
response index caching only (Index Cache), with ACE
optimization only (ACE enabled), and with ACE optimiza-
tion plus response index caching (ACE + Index Cache). The
results in Figs. 16 and 17 show that, by combining ACE and
response index caching, the traffic cost is reduced by about
75 percent without shrinking the search scope, and the
average query response time is reduced by about 70 percent.
We then use the Random Walk scheme instead of blind
flooding during the search in ACE enabled P2Ps. In the
Random Walk scheme [17], a query is sent to k different
walkers (relay neighbors) from the source peer. For a peer
in each walker, it just randomly selects one neighbor to
relay the query. For each walker, the query processing is
done sequentially. In our simulation, 30 walks are issued for
each query. We repeat this simulation with different
random seeds for 20 times and plot the average. Here, we
use two metrics, traffic cost reduction rate (R.(x)) and
response time reduction rate (R;(*)). R.(x) is defined by

C(RandomWalk) — C(ACE)

Relx) = C(RandomW alk)

x 100%,

where C(RandomWalk) represents the traffic cost incurred
by searching all the peers using the Random Walk approach
in a Gnutella-like overlay. C(ACE) represents the traffic cost
incurred in ACE enabled P2P networks. R;(x) is given by

T(RandomWalk) — T(ACE)
T(RandomW alk)

Ri(x) = x 100%,

where T(RandomWalk) denotes the average response time
of queries using Random Walk approach in Gnutella-like
overlays and T(ACE) is that of ACE enabled systems.

We plot R;(RandomWalk) and R¢(RandomWalk) in
Fig. 18. As expected, ACE reduces the traffic cost and
response time of the Random Walk scheme by approxi-
mately 60 percent and 38 percent, respectively.

5.3 The Impact of Optimization Depth

Fig. 19 shows the query traffic reduction rate over blind
flooding versus the depths of neighbor closure to construct
overlay trees. Different curves correspond to the performance

XIAO ET AL.: IMPROVING UNSTRUCTURED PEER-TO-PEER SYSTEMS BY ADAPTIVE CONNECTION ESTABLISHMENT

Cuary Traffic Reduction Rate (36)

f P 3 ¥ 5 5 7 8
Deagpth of Neighbor Closurs (H)

Fig. 19. Query traffic reduction rate.

on different topologies with different values of £, where E
is the average number of neighbors. For a given depth of
neighbor closure, the reduction rate increases with in-
creased average number of neighbors. For a given average
number of neighbors, the reduction rate also increases as
the depths of neighbor closure increases. There is a
threshold of depth for each E, from which it is hard to
further reduce the query traffic.

Fig. 20 shows the overhead traffic versus the depth of
neighbor closure. The overhead traffic increases as the
depths of neighbor closure increases or as the average
number of neighbors increases.

Figs. 21 and 22 show the optimization rate versus the
depth of neighbor closure with E = 16 and E = 4, respec-
tively. Different curves in each figure correspond to
different values of R. Based on this figure, we can
determine, for a given value of R, the minimal value of h
to achieve performance gain in ACE. The minimal value of
h is defined as the value of h that leads to an optimization
rate of 1.

To achieve performance gain, we should choose the
depth values that can lead to optimization rates that are
greater than 1. When we increase R, the optimization rate
increases for a given depth value (h) and the minimal value
of h to achieve performance gain decreases. As h increases,
the optimization rate also increases. However, there is a
threshold of h from which the optimization rate is hard to

Fig. 20. Overhead traffic.

1101

Diapi of haighibor Closum ()

Fig. 21. Optimization rate versus h (E = 16).

increase anymore. Figs. 21 and 22 also show that, for a large
value of E, a small minimal value of h is needed to achieve
performance gain for a given value of R.

Figs. 23 and 24 show the optimization rate versus
frequency ratio with £ = 16 and E = 4, respectively. When
the value R increases, the optimization rate significantly
increases. A large value of R means that the query
frequency is high and the tree reconstruction frequency is
low. For a given network after a period of time, if we can
find a relatively stable value of R, we will be able to find a
minimal value of h to construct overlay trees and achieve
performance gain in ACE. We can see from Fig. 23 that, for
R =1, the optimization rate is always less than 1. Thus,
using ACE under an environment with R =1, the given
topology will not improve any performance. From Fig. 23,
the minimal value of h is 2 for R =1.5 and is 1 for R = 2.
Comparing Fig. 23 with Fig. 24, for the same value of R, the
minimal value of h is small for a large value of E. For
example, for R = 2, the minimal value of % is 1 for E = 16,
while the minimal value of h is 5 for £ = 4. Thus, ACE is
more effective in a topology with high connectivity density.

6 CONCLUSION

In this paper, we propose a distributed approach to solving
overlay topology mismatch problem. Our simulation shows
that the average cost of each query to reach the same scope
of nodes is reduced by about 65 percent when using our

Depth of Neighbor Closurs (H)

Fig. 22. Optimization rate versus h (E = 4).

1102

Frequency Ratio

Fig. 23. Optimization rate versus frequency rate (E = 16).

=
=1
r=2
1=
| o= het
| B
| hess
I_j [
g‘z}
s o
I
E i _/e’"_
B‘ o = /6/
QSI/"’// PR i
e
04F _'_,4—'—'_'_'_—4]—'_'_'-'_'_&_
e
nzr._d_‘ - - o e o
T s 2 25
Frecuency Ratic

Fig. 24. Optimization rate versus frequency rate (E = 4).

proposed ACE in a Gnutella-like P2P network, without
losing any autonomy feature, and the average response
time of each query can be reduced by about 35 percent. The
impacts of the frequency of exchanging neighbor cost tables
on ACE performance have also been studied. ACE'’s ability
to complement other advanced search approaches has been
shown by two combination strategies of ACE with query
response index caching and random walk. The proposed
ACE technique is fully distributed, easy to implement, and
adaptive to the dynamic nature of P2P systems. Further-
more, a larger diameter leads to a better topology
optimization rate and a higher overhead due to extra
information exchanging. ACE is more effective in a
topology with high connectivity density. It will make the
decentralized flooding-based P2P file sharing systems more
scalable and efficient.

It is very important for ACE to quickly identify the best
candidate from a nonflooding neighbor’s neighbor list to
minimize replacement overhead. In our simulations, we
only use random policy to replace a nonflooding neighbor
by a random selected candidate. We are studying several
alternatives to choose the candidate. For example, the naive
policy simply disconnects the source node’s most expensive
neighbor. The source node will probe the costs to some
other nodes and try to find a less expansive node as a
replacement of the disconnected neighbor. The second one
is the closest policy in which the source will probe the costs
to all of the nonflooding neighbor’s neighbors and select the
closest one.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO.9, SEPTEMBER 2005

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation under grant CCF-0325760, by Microsoft Research
Asia, and by Hong Kong RGC Grants DAG 04/ 05.EG01, and
HKUST6264/04E. Zhenyun Zhuang participated in the early
stage of the work.

REFERENCES

[1] BRITE, http://www.cs.bu.edu/brite/, 2003.

[2] Gnutella, http://gnutella.wego.com/, 2003.

[3] KaZaA, http://www.kazaa.com, 2003.

[4] V. Almeida, A. Bestavros, M. Crovella, and A.d. Olivera,
“Characterizing Reference Locality in the WWW,” Proc. IEEE
Conf. Parallel and Distributed Information Systems (PDIS), 1996.

[5] R. Bhagwan, S. Savage, and G.M. Voelker, “Understanding
Availability,” Proc. Second Int'l Workshop Peer-to-Peer Systems
(IPTPS "03), 2003.

[6] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. IEEE INFOCOM, 1999.

[71 T. Bu and D. Towsley, “On Distinguishing between Internet
Power Law Topology Generators,” Proc. IEEE INFOCOM, 2002.

[8] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S.
Shenker, “Making Gnutella-Like P2P Systems Scalable,” Proc.
ACM SIGCOMM, 2003.

[9] J. Chu, K. Labonte, and B. Levine, “Availability and Locality
Measurements of Peer-to-Peer File Systems,” Proc. ITCom:
Scalability and Traffic Control in IP Networks II Conf., 2002.

[10] Y. Chu, S.G. Rao, and H. Zhang, “A Case for End System
Multicast,” Proc. ACM SIGMETRICS, 2000.

[11] E. Cohen and S. Shenker, “Replication Strategies in Unstructured
Peer-to-Peer Networks,” Proc. ACM SIGCOMM, 2002.

[12] P. Ganesan, Q. Sun, and H. Garcia-Molina, “Apocrypha: Making
P2P Overlays Network-Aware,” technical report, Stanford Univ.,
2004.

[13] B. Krishnamurthy and]J. Wang, “Topology Modeling via Cluster
Graphs,” Proc. SIGCOMM Internet Measurement Workshop, 2001.

[14] Y. Liu, X. Liu, L. Xiao, L.M. Ni, and X. Zhang, “Location-Aware
Topology Matching in Unstructured P2P Systems,” Proc. IEEE
INFOCOM, 2004.

[15] Y. Liu, Z. Zhuang, L. Xiao, and L.M. Ni, “AOTO: Adaptive
Overlay Topology Optimization in Unstructured P2P Systems,”
Proc. IEEE GLOBECOM, 2003.

[16] Y. Liu, Z. Zhuang, L. Xiao, and L.M. Ni, “A Distributed Approach
to Solving Overlay Mismatch Problem,” Proc. 24th Int’l Conf.
Distributed Computing Systems (ICDCS), 2004.

[17] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
Replication in Unstructured Peer-to-Peer Networks,” Proc. 16th
ACM Int’l Conf. Supercomputing, 2002.

[18] E.P. Markatos, “Tracing A Large-Scale Peer-to-Peer System: An
Hour in the Life of Gnutella,” Proc. Second IEEE/ACM Int’l Symp.
Cluster Computing and the Grid, 2002.

[19] D.A. Menasce and L. Kanchanapalli, “Probabilistic Scalable P2P
Resource Location Services,” ACM SIGMETRICS Performance
Evaluation Rev., vol. 30, no. 2, pp. 48-58, 2002.

[20] A. Nakao, L. Peterson, and A. Bavier, “A Routing Underlay for
Overlay Networks,” Proc. ACM SIGCOMM, 2003.

[21] V.N. Padmanabhan and L. Subramanian, “An Investigation of
Geographic Mapping Techniques for Internet Hosts,” Proc. ACM
SIGCOMM, 2001.

[22] S.Patroand Y.C. Hu, “Transparent Query Caching in Peer-to-Peer
Overlay Networks,” Proc. 17th Int’l Parallel and Distributed
Processing Symp. (IPDPS), 2003.

[23] M. Ripeanu, A. Iamnitchi, and I. Foster, “Mapping the Gnutella
Network,” IEEE Internet Computing, 2002.

[24]]J. Ritter, “Why Gnutella Can’t Scale. No, Really,” http://
www.tch.org/gnutella.html, 2001.

[25] S. Saroiu, P. Gummadi, and S. Gribble, “A Measurement Study of
Peer-to-Peer File Sharing Systems,” Proc. Multimedia Computing
and Networking (MMCN), 2002.

[26] S.Saroiu, K.P. Gummadi, R.J. Dunn, S.D. Gribble, and H.M. Levy,
“An Analysis of Internet Content Delivery Systems,” Proc. Fifth
Symp. Operating Systems Design and Implementation, 2002.

XIAO ET AL.:

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

M.T. Schlosser and S.D. Kamvar, “Availability and Locality
Measurements of Peer-to-Peer File Systems,” Proc. ITCom:
Scalability and Traffic Control in IP Networks, 2002.

S. Sen and J. Wang, “Analyzing Peer-to-Peer Traffic across Large
Networks,” Proc. ACM SIGCOMM Internet Measurement Workshop,
2002.

K. Sripanidkulchai, “The Popularity of Gnutella Queries and Its
Implications on Scalability,” http://www2.cs.cmu.edu/kunwa
dee/research/p2p/gnutella.html, 2001.

H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W.
Willinger, “Network Topol-ogy Generators: Degree-Based vs.
Structural,” Proc. SIGCOMM 02, 2002.

Y. Xie and D. O’Hallaron, “Locality in Search Engine Queries and
Its Implications for Caching,” Proc. IEEE INFOCOM, 2002.

Z. Xu, C. Tang, and Z. Zhang, “Building Topology-Aware
Overlays Using Global Soft-State,” Proc. 23rd Int’l Conf. Distributed
Computing Systems (ICDCS), 2003.

B. Yang and H. Garcia-Molina, “Efficient Search in Peer-to-Peer
Networks,” Proc. 22nd Int’l Conf. Distributed Computing Systems
(ICDCS), 2002.

Z. Zhuang, Y. Liu, L. Xiao, and L.M. Ni, “Hybrid Periodical
Flooding in Unstructured Peer-to-Peer Networks,” Proc. Int’l Conf.
Parallel Processing (ICPP), 2003.

Li Xiao received the BS and MS degrees in
computer science from Northwestern Polytech-
nic University, China, and the PhD degree in
computer science from the College of William
and Mary in 2002. She is an assistant professor
of computer science and engineering at Michi-
gan State University. Her research interests are
in the areas of distributed and Internet systems,
overlay systems and applications, system re-
source management, and design and implemen-

tatlon of experimental algorithms. She is a member of the ACM, the
IEEE, the IEEE Computer Society, and IEEE Women in Engineering.

IMPROVING UNSTRUCTURED PEER-TO-PEER SYSTEMS BY ADAPTIVE CONNECTION ESTABLISHMENT 1103

Yunhao Liu received the BS degree in automa-
tion from Tsinghua University, China, in 1995,
the MA degree from Beijing Foreign Studies
University, China, in 1997, and the PhD degree
in computer science from Michigan State Uni-
versity in 2004. He is now an assistant professor
in the Department of Computer Science at the
Hong Kong University of Science and Technol-
ogy. His research interests are in the areas of

: peer-to-peer computing, pervasive computing,
distributed systems, network security, grid computing, and high-speed
networking. He is a member of the IEEE and the IEEE Computer
Society.

Lionel M. Ni received the PhD degree in
electrical and computer engineering from Pur-
due University, West Lafayette, Indiana, in
1980. He is a professor and head of the
Computer Science Department of the Hong
Kong University of Science and Technology. He
was a professor of computer science and
engineering at Michigan State University from
1981 to 2003, where he received the Distin-
guished Faculty Award in 1994. His research
interests include parallel architectures, distributed systems, high-speed
networks, and pervasive computing. A fellow of the IEEE, Dr. Ni has
chaired many professional conferences and has received a number of
awards for authoring outstanding papers.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

