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Abstract.  In this paper, we propose approaches to improve the pixel-based support vector 
machine (SVM) classification for urban land use and land cover (LULC) mapping from 
airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood 
relationship is used to correct the misclassified class pairs, such as roof and trail, road and 
roof. These classes may be difficult to be separated because they may have similar spectral 
signatures and their spatial features are not distinct enough to help their discrimination. In 
addition, misclassification incurred from within-class trivial spectral variation can be 
corrected by using pixel connectivity information in a local window so that spectrally 
homogeneous regions can be well preserved. Our experimental results demonstrate the 
efficiency of the proposed approaches in classification accuracy improvement. The overall 
performance is competitive to the object-based SVM classification. 

Keywords: urban land use land cover mapping, hyperspectral imaging, support vector 
machine, pixel-based classification, object-based classification. 

 

1 INTRODUCTION 
As the most dynamic region on the earth, urban areas are of great interest to researchers and 
practitioners on planning and environmental management. The information on urban surface, 
such as land use and land cover (LULC) patterns, is critical to a range of themes in earth 
sciences including climatology, environmental change, and human-environment interactions. 
As remote sensing providing a synoptic overview for large regions, it becomes a very useful 
tool in urban monitoring [1].  

In this paper, we will focus on LULC classification, which is often the basic step in more 
advanced applications. Many approaches have been developed to achieve classification, such 
as maximum likelihood classifier (MLC), neural-fuzzy method [2], etc. Recently, the support 
vector machine (SVM) becomes very popular, which is reported as one of the most powerful 
classifiers [3-5]. It is a supervised learning method, which constructs a hyperplane or set of 
hyperplanes in a high or infinite dimensional space where class separability is improved. In 
our research, we adopt SVM for LULC classification. 

Hyperspectral imagery has been very useful for urban monitoring because its high spectral 
resolution provides more diagnostic power in detecting, classifying, and quantifying the 
materials on the earth than the traditional multispectral imagery with only several wide-band 
spectral channels [6]. Due to the advanced sensor technology, the spatial resolution of 
hyperspectral imagery is also greatly improved. Hyperspectral images with high spatial and 
spectral resolution can provide a large amount of detailed class information. Under this 
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circumstance, both spatial and spectral information can be utilized to improve the accuracy of 
LULC classification [7-10]. 

One of the challenges of classifying a hyperspectral image is that the within-class spectral 
variation may lead to overall classification of spectrally homogeneous areas, resulting in salt-
and-pepper noise in the classification map of these areas [11-12]. One way to alleviating the 
impact from trivial spectral variations is to employ object-based classification, where image 
segmentation is conducted first, followed by the classification of segmented objects [11-15]. 
Obviously, the key step in object-based classification is segmentation. The fractal net evolution 
approach (FNEA) [16], available in the eCognition software, is considered as a very successful 
approach in object segmentation. Basically, it treats image information as fractal, extracts the 
objects at a scale of interest based on fuzzy set theory, and combines the global and local 
mutual best fittings to generate image segments [17-18]. After segmentation, objects, as the 
basic processing units, can be classified using different methods, such as SVM [19]. 

In summary, we will investigate urban LULC classification from hyperspectral imagery 
with high spatial resolution using SVM in this paper. We will include class spatial information 
to correct the pixel-based SVM classification result in a post-processing step. The object-based 
classification, i.e., FNEA-based segmentation followed by SVM, will be used for comparison 
purpose. The experimental results will demonstrate that the proposed approaches will 
significantly improve classification accuracy. 
   

2 METHODS 
As mentioned earlier, spatial information can be used to improve classification accuracy when 
dealing with a hyperspectral image with high spatial resolution. The frequently used spatial 
features include texture, class shape, and size. There features are concrete and can be 
extracted directly from raw data, which are called "low-level" spatial features in this paper. 
On the contrary, "high-level" spatial features are more abstract and defined based on human 
understanding, such as class neighborhood relationships, the correlation between a certain 
class presence and geographical location. In some cases, it may be still difficult to separate 
different classes based on low-level spatial features. For instance, it is usually necessary to 
classify road, grass, tree, trails, shadow, water, and roof in an urban area. The initial 
classification result may include some misclassified pairs, such as roof-road and trail-roof, 
because their spectral features are similar and extracted spatial features such as texture are not 
effective in separating them from each other. Thus, in this paper, we propose to use high-level 
spatial information including class neighborhood relationship to correct misclassified class 
pairs. To further remove salt-and-pepper noise for any class in a homogeneous area, we also 
propose a simple filtering method based pixel connectivity.  

The overall classification diagram is shown in Fig. 1, where a two-stage correction 
procedure is deployed on the SVM result. For SVM classification, principal component 
analysis (PCA) is used for dimensionality reduction and the first several principal components 
(PCs) actually participate in classification. Here, the number of PCs chosen is equal to the 
number of classes. In general, using dimensionality-reduced data, SVM can provide better 
performance. The radial basis function (RBF) kernel is employed for the SVM classifier. 
 
 
 

 

Fig.1. The overall classification diagram. 
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2.1 Correction based on class neighborhood relationship 
In general, an urban area is well designed and organized, and this hidden nature is the high-
level spatial information which can be utilized to improve classification accuracy. One kind of 
information is about the neighborhood relationship among different classes. Even when their 
low-level feature vectors (i.e., texture-based features) are similar, the high-level features 
"embedded" in their class neighborhood relationship may provide some "error-correction" 
capability. Here we focus on two class pairs prone to be misclassified, i.e., trail-roof and roof-
road. In the urban environment, a trail is usually built among trees and grass; although it may 
be close to a building (roof), a trail pixel should have more other trail pixels than roof pixels 
as its immediate neighbors. Such information is presented in Fig. 2 as possible patterns for a 
trail pixel centered in a 3 × 3 window. Thus, for the trail-roof pair, we may have the following 
rule for correction. 
 
 1) When the central pixel in a local window is pre-classified as trail pixel: 
• Pattern 1: A trail pixel has one or more grass or tree pixels as neighbors. 
• Pattern 2: A trail pixel has more trail neighbors than non-trails neighbors. 
• Roof-trail error pattern: If not belonging to the above two patterns, the pixel is most likely a 

roof pixel rather than a trail pixel. 
2) When the central pixel is pre-classified as roof pixel: 
• Trail-roof error pattern: If it has grass/tree neighboring pixels and has more trail neighbors 

than roof neighbors, the pixel is most likely a trail pixel rather than a roof pixel. 
 
For the roof-road pair, the situation is more complicated due to the fact that their neighbors 

are highly variable and can be quite similar. Therefore, as shown in Fig. 2, the correction is 
simply based on the majority rule. 
 

 
 

Fig.2. The proposed correction schemes for the pairs of trail-roof and roof-road. 
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Fig. 3. Pseudocode for the class neighborhood-based correction algorithm. 

 
The pseudocode for the correction algorithm based on class neighborhood relationship is 

summarized in Fig. 3, where the classes prone to be misclassified are assumed to be the pairs 
of trail- roof and roof- road. Several points are noteworthy. 
• The correction procedure will automatically start from the boundary of each class, and 

gradually move to the inner part. This is because boundary pixels are prone to be 
misclassified and newly corrected pixels will provide new spatial information which can be 
used in the following correction process. 

• The correction procedure should be done one class after another. This is because the 
previously corrected pixels may be critical in correcting the misclassified pixels in other 
classes. The procedure should start from a class that does not rely on the correction results 
from other classes. 

• For different classes, the chance for their misclassified pixels to be corrected is different. 
For instance, the neighbor of a tree pixel or a grass pixel is highly variable, so it is very 
difficult to correct a misclassified tree or grass pixel based on class neighborhood 
information. Hence, other correction rule, such as the one based on pixel connectivity, is 
proposed. 

2.2 Correction based on connectivity 
To remove the effect of salt-and-pepper noise in a classification map, a post-filter such as 
morphological filter, can be applied. Here, we propose a simpler method based on 
connectivity for this purpose. For a given 3 × 3 window, the connectivity of the central pixel’s 
neighboring pixels is analyzed. Instead of counting the number of pixels belonging to the 
same class in the eight neighboring pixel, we count the number of pixels belonging to the 
same class and the same connected component. If the number exceeds a threshold, the center 
pixel is reclassified to the class of this connected component. In this way, the isolated salt-
and-pepper noise in a classified homogeneous area can be further reduced. As illustrated in 
Fig. 4(b), there are four connected regions: region I, region II, region III, and region IV. 
Although there are four pixels belonging to the same class represented in red color, these four 
pixels are separated into region I and region III. Then we count the number of connected 
pixels in each region: 2 pixels in region I, 1 in region II, 2 in region III, and 3 in region IV. 
The maximum number is 3, which is for the class in blue, so the central pixel is reclassified 
into the class in blue.  

Input: SVM-based classification map 
do (in a sliding window) 
      if  (central pixel is trail)  and  (not (pattern I or pattern II)) 
       change central pixel to roof 
      if  (central pixel is roof)  and (trail-roof error pattern )  
       change central pixel to trail 
while (number of changed pixels > 0)  
do 
      if (central pixel is roof) and (roof neighbor < 2 and road neighbor > 5)   
      change central pixel to road 
      if (central pixel is road) and (road neighbor < 2 and roof neighbor > 5) 
      change central pixel to roof 
while (number of changed pixels > 0)  
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The corresponding pseudocode is shown in Fig. 5. Note that this correction is for any 
class, not limited to trail- roof and roof- road pairs as discussed in Section 2.1. 

 

  
(a) without considering connectivity                                           (b) with considering connectivity 

Fig.4. Illustration of the connectivity-based correction. 
 
 
 

 
Fig.5. Pseudocode for the connectivity-based correction algorithm. 

3 RESULTS 

3.1 HYDICE data experiment I 
The hyperspectral data used in the experiments was taken by the airborne Hyperspectral 
Digital Imagery Collection Experiment (HYDICE) sensor. It was collected for the Mall in 
Washington, DC with 210 bands covering 0.4-2.4 µm spectral region. The spatial resolution is 
about 2.8m. The low signal-to-noise ratio (SNR) and water-absorption bands were deleted, 
resulting in 191 bands. The original data has 1280 × 307 pixels. The original image was 
cropped into a subimage of size 304 × 301 pixels. The image in pseudocolor was shown in 
Fig. 6, which includes six classes: {road, grass, shadow, trail, tree, roof}. From Fig. 6, we can 
see that roof areas exhibit obviously different spectral signatures. The number of samples for 
each class was listed in Table 1 with total 309 training samples and 4772 test samples. 

The classification map from SVM was shown in Fig. 7(a), where many roof areas 
(displayed in orange) were classified as trail (displayed in yellow). There were also some 
misclassification between roof and road. The classification map after the proposed two-stage 
correction was shown in Fig. 7(b), where the misclassified roof areas were corrected, showing 

Input: SVM-based classification map after the class  
           neighborhood-based correction. 
do:  Generate the connected component label for each class 
        for a center pixel in a local window 
              count the number of its neighboring pixels in the same   
              connected component 
          if  (this number is greater than the threshold) 
          then set the central pixel’s class label to that of the most     
                    connected neighboring pixels 
        end 
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larger areas in orange. The road class in gray was also cleaned up. Table 2 listed the 
classification accuracy of each class and the overall accuracy (OA) and average accuracy 
(AA) for SVM before correction, SVM after correction, and FNEA segmentation followed by 
SVM. From Table 2, we can see that the improvement on roof classification was significant. 
The OA value was increased from 93.6% to 97.4% after correction, and AA value from 
94.0% to 97.2%. The object-based classification provided a little lower OA and AA than the 
original SVM. 
 
 

 
 

Fig. 6. The image scene used in HYDICE experiment 1. 
 
 

Table 1. Training and test samples used in HYDICE experiment 1. 

 

 Training Test 
Road 55 892 

Grass 57 910 

Trail 50 567 

Tree 46 624 

Shadow 49 656 

Roof 52 1123 

Total 309 4772 
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(a) before correction                                               (b) after correction 

 
Fig. 7. Classification map using SVM for Fig. 6. 

 
Table 2. Classification accuracy from different methods in HYDICE experiment 1. 

SVM 
(before correction) 

SVM 
(after correction) 

FNEA 

Road 96.4% 99.6% 95.2% 

Grass 97.3% 97.3% 86.7% 

Shadow 88.2% 91.4% 97.4% 

Trail 97.0% 98.1% 88.0% 

Tree 98.9% 99.4% 86.1% 

Roof 86.3% 97.5% 89.7% 

OA 93.6% 97.4% 89.6% 

AA 94.0% 97.2% 90.5% 

3.2 HYDICE data experiment II 

The HYDICE Washington DC Mall image was cropped into a small subimage with 266 × 304 
pixels as shown in Fig. 8 in pseduocolor. It includes seven classes: {road, grass, water, 
shadow, trail, tree, roof}. Again, the spectral difference within the roof class was obvious. In 
addition, due to low spectral reflectance, water body and shadow classes may be difficult to 
be separated; they may not have concrete spatial features, making their separation more 
difficult. The number of training and test samples in each class was tabulated in Table 3. 

The classification map from SVM was shown in Fig. 9(a), where many roof areas (in 
orange) were misclassified as trail (in yellow). The classification map after the proposed two-
stage correction was shown in Fig. 9(b), where the misclassified roof areas were successfully 
corrected and displayed in larger orange regions. Meanwhile, road classification was also 
improved, resulting in less orange spots in the gray regions. Table 3 listed the classification 
accuracy of the three SVM-based approaches. From Table 3, we can see that the improvement 
on roof classification was significant, while the classification accuracy of grass, tree, shadow, 
and water classes were almost intact due to the difficulty of further improvement. The OA 
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value was increased from 87.9% to 97.4% after correction, and AA value from 90.2% to 
96.1%. In this experiment, the object-based classification provided similar accuracy as the 
original SVM. 

 
Fig. 8. The image scene used in HYDICE experiment 2. 

 
Table 3. Training and test samples used in HYDICE experiment 2. 

 Training Test 
Road 63 1090 

Grass 62 1082 

Water 59 403 

Trail 59 469 

Tree 60 734 

Shadow 61 461 

Roof 60 1292 

Total 424 5531 
 

        
(a) before correction                                               (b) after correction 

 
Fig. 9. Classification map using SVM for Fig. 8. 
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Table 4. Classification accuracy from different methods in HYDICE experiment 2. 
 

SVM 
(before correction) 

SVM 
(after correction) 

FNEA 

Road 98.8% 100.0% 94.6% 

Grass 99.8% 100.0% 100% 

Water 87.6% 87.4% 88.3% 

Trail 99.7% 100.0% 73.2% 

Tree 99.0% 99.3% 99.9% 

Shadow 87.6% 87.4% 84.6% 

Roof 58.9% 98.3% 79.6% 

OA 87.9% 97.4% 87.6% 

AA 90.2% 96.1% 88.6% 

3.3 HyMap data experiment 
Fig. 10 shows a 126-band HyMap data about a residential area near the campus of Purdue 
University. The image size is 377 × 512. The spatial resolution is 3.5m. The image scene 
includes six classes: {road, grass, shadow, soil, tree, roof}. As listed in Table 5, 404 training 
samples and 5463 test samples were available. Compared to the previous two experiments, 
roof class in this image was more spectrally homogeneous. Instead, the road class seemed to 
have within-class spectral variation; it also had different spatial shapes in different areas, 
which made it difficult to employ an effective "low-level" spatial feature.  

The classification map from SVM was shown in Fig. 11(a), where the majority of 
misclassifications happened within the road-soil pair due to the spectral similarity between 
soil and road paving materials. The correction rule for road-trail in the previous two 
experiments was employed here. The classification map after the proposed two-stage 
correction was shown in Fig. 11(b), where larger and smoother homogeneous areas were 
displayed. For instance, the road regions in gray had less spot noise after correction; the tree 
regions in dark green were more homogeneous. Table 6 listed the classification accuracy of 
the three SVM-based approaches, where the improvement on road, soil, tree, and grass 
classification was significant. Both values of OA and AA were approximately improved by 
2% using the two-stage correction. The FNEA provided slightly less accurate result than the 
original SVM. 

 
Fig. 10. The image scene used in HyMap experiment. 

Journal of Applied Remote Sensing, Vol. 4, 041890 (2010)                                                                                                                                    Page 9

Downloaded from SPIE Digital Library on 02 Sep 2010 to 130.18.64.144. Terms of Use:  http://spiedl.org/terms



Table 5. Training and test samples used in HyMap experiment. 

 Training Test 
Road 73 1231 

Grass 72 1072 

Shadow 49 215 

Soil 69 380 

Tree 67 1321 

Roof 74 1244 

Total 404 5463 
 

 
(a) before correction                                                

 
(b) after correction 

 
Fig. 11. Classification map using SVM for Fig. 10. 
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Table 6. Classification accuracy from different methods in HyMap experiment. 

SVM 
(before correction) 

SVM 
(after correction) 

FNEA 

Road 93.6% 97.2% 87.5% 

Grass 98.9% 99.9% 96.5% 

Shadow 97.2% 97.2% 80.0% 

Soil 91.1% 94.6% 87.7% 

Tree 96.6% 99.0% 97.3% 

Roof 81.3% 82.2% 84.7% 

OA 92.5% 94.6% 90.6% 

AA 93.1% 95.0% 89.0% 

4 CONCLUSION 
In this paper, we propose approaches to improve the pixel-based SVM classification using 
class spatial neighborhood relationship and pixel connectivity. The class spatial neighborhood 
relationship can help correct the misclassified class pairs, such as roof and trail, road and roof. 
These classes may be difficult to be separated because they may have similar spectral 
signatures and their spatial features are not distinct enough. Based on pixel connectivity, 
misclassification incurred from within-class trivial spectral variation can be corrected so that 
spectrally homogeneous regions can be well preserved. Our experimental results demonstrate 
the efficiency of the proposed approaches in classification accuracy improvement. The overall 
performance is competitive to the object-based SVM classification. 

To ensure classification improvement using the proposed approaches, it is required to have 
a deep understanding about the image scene and different class patterns in order to abstract 
the useful high-level spatial relationship for correction. 
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