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ABSTRACT

Advances in FPGA-based reconfigurable computers have ma-

de them a viable computing platform for a vast variety of

computation demanding areas such as bioinformatics, speech

recognition, and high-end digital signal processing. The

lack of common, intuitive operating system support, how-

ever, hinders their wide deployment.

This paper presents BORPH, an operating system frame-

work for FPGA-based reconfigurable computers with a goal

to ease and accelerate development of high-level applica-

tions to run on these computers. It provides kernel support

for FPGA resources by extending a standard Linux operat-

ing system. Users therefore compile and execute hardware

processes on FPGA resources the same way they run soft-

ware processes on conventional processor-based systems.

The operating system offers run-time general file system

support to hardware processes as if they were software. Fur-

thermore, a virtual file system is built to allow access to

memories and registers defined in the FPGA, which pro-

vides communication links with running hardware processes.

Increased productivities have been observed for high-level

application developers, who have few previous experiences

in hardware design, to implement complex mixed software/

hardware designs on a FPGA-based reconfigurable computer

running BORPH.

1. INTRODUCTION

Advances in FPGA technologies have made FPGA-based

reconfigurable computers (RC) a promising architecture to

meet the increasing computational demand in research ar-

eas such as bioinformatics[1], speech recognition[2], and

high-end digital signal processing[3]. However, despite the

promising computing power, many high level application

developers remain disinclined to develop their applications

on these machines because of the substantial difficulties in-

volved.

This work was funded in part by C2S2, the MARCO Focus Center for

Circuit & System Solutions, under MARCO contract 2003-CT-888.

Many high-level application developers are not experi-

enced FPGA hardware designers themselves. In addition

to the inherent different computational model between soft-

ware and hardware, we have observed the following three

categories of difficulties commonly faced by them while de-

veloping applications on reconfigurable computers:

1. The lack of a high level design language and develop-

ment environment that is both easy to learn and use,

yet is able to retain high performance and high con-

trollability.

2. The lack of a common and intuitive communication

interface to and from FPGA fabrics.

3. The lack of a central management scheme that man-

ages and coordinates among concurrent users and ap-

plications on a running RC system.

The need for a high level design language and methodol-

ogy for RC is a well acknowledged issue that have drawn nu-

merous research interests[4, 5, 6]. In this paper, we present

BORPH, the Berkeley Operating system for ReProgrammable

Hardware. The primary goal of this work is to improve

usability of high performance FPGA-based reconfigurable

computers by systematically addressing the remaining two

issues through a common and intuitive OS framework.

The issue with data I/O capability includes a wide range

of problems, from simply sending a single byte to a running

FPGA, to transfer and synchronize data between software-

hardware components, to capture and transfer gigabytes of

sampled data for offline analyses. Most RC’s have their own

ad hoc mechanisms for transferring data in and out of FPGA,

such as through a shared memory, or serial terminal connec-

tion. However, because of this ad hoc nature, each newly

built RC must reengineer these I/O interfaces, wasting pre-

cious engineering resources. BORPH abstracts data I/O in

standardized OS interfaces that are portable across multi-

ple platforms. Consequently, application designers and RC

users need not to readjust to different interfaces when exper-

imenting with different RC’s.
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The lack of a central management unit in RC is a subtle

but significant problem that deserves attention. As simple

as it might seem, tasks such as querying the availability of

FPGA resources, reserving FPGA resources atomically, and

relocating designs to any available FPGA resource, are crit-

ical for mass deployment of RC in a concurrent multi-user

environment. BORPH addresses these issues through cen-

tralized OS management of all FPGA resources of a system.

Most early FPGA systems use FPGA as a coprocessor

to a host processing system[7]. In these systems, “operating

system” took the role of a FPGA configuration loader. None

of the run-time I/O support proposed in this paper was pres-

ence. While recent systems use the term operating system

to describe a load-time configuration modifier[8], or a run-

time dynamic resource scheduler[9, 10], BORPH differenti-

ates itself by focusing on improving usability of RC’s. We

believe a common and intuitive OS framework is essential

to warrant wide deployment of RC and foster collaborative

community involvements in RC researches.

We will give an overview of BORPH in Sect. 2. In

Sect. 3, we present key features of BORPH, with emphasis

on how BORPH increases usability of our RC system. The

implementation detail of BORPH is presented in Sect. 4.

We report our experiences in using BORPH to facilitate a

software-hardware codesign process in Sect. 5. Finally, we

conclude this paper in Sect. 6.

2. BORPH OVERVIEW

BORPH is an operating system that extends a standard Linux

system with integrated kernel support for FPGA resources.

It treats FPGA resources as first-class computing resource

in the same way a traditional OS treats a CPU. As a result, a

user may spawn a process either as a software program run-

ning on a CPU, or as a hardware design running on a FPGA,

or both. BORPH provides services to FPGA processes as if

they were software, such as access to the general file system,

stdin and stdout support. With the help of stdout, for

example, a FPGA process can easily be debugged by per-

forming “printf” to the console.

BORPH uses regions of FPGA fabric as computation

unit to spawn hardware processes, similar to the way soft-

ware processes are spawned to a processor. Each reconfig-

urable region is defined as a hardware region (hwr). Log-

ically, it is the smallest unit of a RC that is managed by

BORPH. Physically, it can be implemented as an entire FPGA

in a multi-FPGA system, or a partially reconfigurable region

within a FPGA.

Because of its close tie to the Linux OS, all Linux soft-

ware can run in a BORPH system unmodified. Further-

more, since BORPH treats software and hardware processes

equally, the two can communicate with each other naturally

under BORPH via standard Linux services such as file pipe,

socket, or signals with helps of standard library functions.

Users can interact with FPGA fabric the same way they in-

teract with software processes, which has shown to have

made our FPGA-based reconfigurable computer more ac-

cessible to novel users.

Some of the system service semantics are changed slightly

from standard Linux implementations to accommodate the

added FPGA support. For example, in standard Linux, the

command “./prog1 | ./prog2” creates a software pipe

that connects stdout of prog1 to stdin of prog2, pass-

ing byte stream between them through system memory. In

BORPH, if one of the two programs is a hardware process,

the byte stream is buffered by the kernel and sent to the cor-

rect FPGA through a predefined packet network. If both pro-

grams are hardware processes, BORPH will attempt to cre-

ate a direct connection between the two in hardware, such

that no further OS intervention is needed for data transfer,

thus eliminating the slowness of a processor.

In general, all OS services that cross user-kernel bound-

ary for hardware processes are implemented by passing mes-

sages on this predefined packet network. As part of BORPH

OS, this packet network is abstracted entirely from the user.

As long as this message format is preserved, it is possible to

extend BORPH, or port BORPH to another platform. This

message passing system can be thought as a hardware sys-

tem call interface.

3. KEY FEATURES OF BORPH

In this section, we will describe key features of BORPH

from a user perspective to illustrate how BORPH improves

usability of FPGA-based RC’s.

3.1. High-Level Design Flow

As previously reported[5], we have developed a high level

design capturing system based on Simulink [11] and Xil-

inx System Generator [12]. Together with a rich in-house

library and wrapper scripts, most detail about the hardware

platform is abstracted from the user. For example, we have

created a register block, sw register, that users can incor-

porate in their Simulink designs. This block allows simple

single word transfer to and from a user design the same way

traditional memory mapped I/O registers behave on a pro-

cessor system.

We have further enhanced this design flow to integrate

with BORPH. We have extended our wrapper scripts to pro-

duce a BORPH Object File (BOF) instead of the usual FPGA

configuration .bit file as final output. BOF files can be ex-

ecuted by users directly in BORPH. Besides FPGA config-

uration information, a BOF file encapsulates high level in-

formation about a user design such as locations and names

of user defined registers or memory blocks. This informa-

tion is used by the kernel when the BOF file is executed.



counter.bof

reg_outsim_in

cnt_en cnt_val

reg_in sim_outen out

Counter

bash% ./counter.bof &

[1] 1234

bash% cd /proc/1234/hw/ioreg

bash% ls

cnt_en cnt_val

bash% echo 1 > cnt_en

bash% cat cnt_val

bash% kill 1234 

Process

Spawning

00001A2B

BEE_XPS

Fig. 1. From high-level Simulink design to a running

BORPH process.

Through OS support, such as theioreg interface described

later, users can access these blocks at run time with mini-

mum effort.

This integration between high-level design flow and the

run time OS provides an environment that hides most hard-

ware implementation details, leaving users focus in their

high-level hardware/software designs. Fig. 1 shows the three

major steps of getting a simple hardware design to run on a

RC.

3.2. FPGA Design as a User Hardware Process

One of the key concept introduced by BORPH is its treat-

ment of running FPGA designs as normal Linux processes.

A user starts a hardware process by executing a BOF file

as if it is any other Linux executable, such as ELF. When

a BOF file is run, the kernel examines hardware configura-

tions encapsulated in that file. Based on this information, the

kernel chooses and configures one or more suitable hwr’s in

the system for this BOF file. Updating necessary bookkeep-

ing information, such as the kernel process table, and popu-

lating the ioreg file system is then performed. Finally, the

user FPGA system is allowed to start running.

A running hardware process behaves almost identically

to any other software process in a Linux system. Users can,

for example, check the status of hardware processes using

command such as ps. A hardware process can be terminated

by command like kill or by simply pressing Ctrl-C. Fig. 2

shows a simple session of executing a BOF file, checking

the value of an ioreg, and terminating the process.

With kernel support, hardware processes can be started

by standard fork and exec system calls by software pro-

cesses. Similarly, hardware processes can spawn software

processes by passing messages to the kernel. To implement

conventional software-centric designs, hardware accelera-

tors can thus be started as needed by software. Moreover,

BORPH allows hardware-centric designs, which launch soft-

ware processes to handle exceptional conditions as needed.

1:bash% ./counter.bof &

[1] 2458

2:bash% ps

PID TTY TIME CMD

2456 pts/4 00:00:00 bash

2458 pts/4 00:00:00 counter.bof

2507 pts/4 00:00:00 ps

3:bash% cat /proc/2458/hw/ioreg/cntval

A3B498E0

4:bash% cat /proc/2458/hw/ioreg/cntval

B289E906

5:bash% kill -9 2458

[1]+ Killed counter.bof

6:bash%

Fig. 2. Executing a BOF file containing a free run-

ning counter in BORPH. FPGA hardware is configured at

prompt 1 and is unconfigured at prompt 5.

Alternatively, software and hardware can communicate in a

client-server mode: A hardware process may process real-

time signal continuously while software queries its result

occasionally as needed.

In our experience, this simple hardware process abstrac-

tion has significantly lower the entry barrier for novel RC

users.

3.3. Communicating with a Running FPGA Process

BORPH extends the /proc directory of Linux to include

information about hardware processes. A directory called

/proc/<pid>/hw is populated for each running hardware

process with pid <pid>. There are currently two files and

one subdirectory in this directory:

• hw region— a file containing information about phys-

ical hwr locations a hardware process uses.

• ioreg mode — a file containing the operating mode

for ioreg, which can be binary or ASCII.

• ioreg— a subdirectory containing one virtual file for

each I/O register (sw register in Simulink), mem-

ory block (BRAM), off-chip memory or FIFO defined

in a user design.

Reads and writes to virtual files in the ioreg directory are

translated by the OS into actual readings and writings to the

corresponding components in user designs. Each ioreg is

defined with 4 properties: name, access mode, size and a

physical location identifier. Access mode is a flag that spec-

ifies if it is readable, writable and/or seekable.

The design of this virtual file system shares a similar

concept of [13] as a way for a user to interact with the run-

ning hardware design. For example, a simple command

echo 0 > /proc/1234/hw/ioreg/cnt_en



Type Read/Write Seekable Size

Register rw no 4 bytes

On/Off Chip Memory rw yes any

FIFO (from user) read only no width×depth

FIFO (to user) write only no width×depth

Table 1. Different types of ioreg

is adequate to disable the counter in Fig. 1. Besides sin-

gle word registers, memories, both on-chip (BRAM) and

off-chip (DRAM), are also supported through this interface.

Virtual ioreg files map the entire content of their corre-

sponding memories. It serves as a mechanism to share mem-

ory between software and hardware. User defined FIFO’s

are represented by virtual files that map all possible FIFO

locations. They are not seekable, forcing each access to be

from the beginning of the file, which corresponds to the head

of FIFO’s. Table 1 shows a summary of supported ioreg.

3.4. Access to Standard Input and Output

Conventional software programmer enjoys the ease of in-

teracting with a computer user or other running processes

through the system standard input (stdin) and output (std-

out) file streams. BORPH extends this feature to allow hard-

ware processes to have the same access to stdin and stdout

by defining a standard message passing system between a

user FPGA design and the main kernel. A hardware process

can therefore perform simple, yet effective, debugging by

printing messages to the screen. Also, user can effectively

interact with the FPGA process through typing in the shell

or piping from a file.

This support for standard I/O is our first step towards

providing full general file system support for hardware pro-

cesses, such that hardware processes can use standard Linux

file system for general data input and storage.

Currently, we utilize this feature to implement a sim-

ple shell interface for all our hardware designs generated

through our design flow. It complements the generic ioreg

interface described in previous subsection by offering direct

and application specific access to a running hardware pro-

cess from within the FPGA.

4. IMPLEMENTATION

Currently, the BORPH system is implemented on a BEE2

hardware platform[14]. Briefly, each BEE2 board consists

of 5 Xilinx Virtex-II pro xc2vp70 FPGA’s. The center con-

trol FPGA, is connected to the 4 user FPGA’s via both a

shared 8-bit SelectMap bus and individually through a 50-

bits direct connection. The 4 user FPGA’s are connected in

a ring with a 120-bits direct connection to its neighbor.

BOF Header

Embedded ELF file data

ELF Header

Hardware Region 0

Hardware Region 1

Hardware Region Header

ioreg Definition

Open File Descriptor

FPGA Configuration Data

Fig. 3. BOF file format

4.1. The BORPH software kernel

The software kernel of BORPH is a modified version of

Linux 2.4.30 kernel running on the left PowerPC core in the

control FPGA. A standard Debian PowerPC root file system

provides familiar Linux applications to the user. To provide

kernel support for FPGA fabric, there are currently 4 major

modifications made to the standard Linux kernel:

BOF file support. In order to encapsulate hardware configu-

ration information in an executable file, we have developed a

new Linux binary file format kernel module, binfmt bof,

to support BORPH Object Files (BOF). When a BOF file

is executed, information in the file is parsed by this kernel

module. This information is used for task such as config-

uring FPGA and populating ioreg interface. Fig. 3 shows

basic definition of a BOF file.

Hardware Region (hwr). We have defined a set of kernel

API to allow different hardware region types be loaded to

BORPH as kernel modules. For example, each hwr kernel

modules must implement a configure function that han-

dles detail about configuring a particular hwr type. The rest

of the kernel will then call the corresponding configure

function based on hwr requirements embedded in a BOF

file. This abstract hwr definition and the extensible kernel

API allows BORPH to be ported to different RC relatively

easily. In our first implementation, we have defined a hwr

type, b2fpga, that corresponds to a user FPGA on BEE2.

We are currently developing another type, b2prmod, that al-

lows partial reconfiguration of a user FPGA.

Hardware Configuration and Resource Allocation. A new

kernel thread bkexecd is defined to handle all hwr config-

urations. It is responsible for performing simple resource

allocation by bookkeeping hwr usages. When a new BOF

file is executed by the user, as long as the BOF file is relo-

catable, as in the case for b2fpga, it will only be spawned

to a free FPGA. A user can override the behavior by pre-

placing a BOF to only be run on a specific FPGA. In case

the requested FPGA is not available, a device busy error is

returned to the user with standard Linux semantics.

Software/Hardware Communication. All communications

between software and hardware are handled by the BORPH
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Fig. 4. Block diagram of a user FPGA. The processor sys-

tem on the left of dotted line is inserted automatically by our

design flow.

kernel through a standardized message passing network. Data

transfers are initiated when (1) processes read/write virtual

ioreg files; and (2) when hardware processes read/write

standard I/O file streams. A kernel thread (mkd) is respon-

sible for handling all read/write messages from hardware

processes. These hardware requests are translated into ker-

nel file reads/writes to the corresponding files. Similarly,

user read/write requests to virtual ioreg files are translated

automatically into packet messages that communicate with

hardware processes.

4.2. The BORPH Hardware Kernel

In BEE2, the control FPGA and the parts of user FPGA’s

that communicate with the control FPGA are solely respon-

sible for infrastructural support. They can thus be thought

as part of BORPH’s hardware kernel. The part of BORPH

that runs on control FPGA is called mk, while the part that

runs on user FPGA is called uk.

Fig. 4 illustrates our current implementation of a user

FPGA. The processor system, uk, on the left hand side of

the figure, is automatically inserted by our design flow when

generating the corresponding BOF file from Simulink de-

sign sources. All user defined ioreg’s are connected to uk

through standard bus connections. The software running in

this processor system then coordinates the communication

between mk and the user FPGA.

In this first implementation, since the entire user FPGA

is reconfigured for each loaded user hardware process, uk

is compiled with the user design statically into a BOF file.

In the future, with help of dynamic reconfiguration, uk may

be implemented as static module within user FPGA’s, while

new user designs are reconfigured as partial reconfigurable

modules. This will eliminates the need for recompiling BOF

files when the OS is updated.

Resource Type Avail OS User OS/Avail

Slice 33088 2969 11587 8.9%

RAMB16 328 34 96 10.3%

PowerPC 2 1 0 50.0%

Table 2. User FPGA resource used by OS vs. user.
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Fig. 5. Latency of accessing BRAM on a user FPGA via

ioreg interface. Latency for each access size is measured

by averaging 1000 standard C library read and write func-

tion calls from the control FPGA to a 8192 bytes BRAM

located on a user FPGA.

4.3. Resource Utilization and Performance

Incorporating BORPH into our system inevitably consumes

precious FPGA resources on user FPGAs. Table 2 shows

the current utilization of uk on a user FPGA. On average,

BORPH consumes only 10% of FPGA slices and RAMB16

blocks. With positive feedback from our users, this kind of

utilization is acceptable as a first implementation.

Fig. 5 shows the latency of accessing an on-chip BRAM

via BORPH’s ioreg interface. When the access size is

smaller than 128 bytes, read/write time is level at around

160 µs, which is a result of OS kernel crossing overhead. As

read/write size increases beyond 128 bytes, the access time

increases linearly accordingly as a result of packetization.

In our current implementation, user FPGA’s communicate

with control FPGA via a shared 8-bit bus running at 50MHz,

which provides a theoretical bandwidth of 50 MB/s. The

current ioreg performance of about 1.5 MB/s is using only

a fraction of this theoretical maximum bandwidth.

5. EXPERIENCE WITH SOFTWARE/HARDWARE

CO-DESIGN USING BORPH

This section describes our experience with implementing

and testing a software-defined radio testbed design on BEE2

that runs BORPH. Like most FPGA system designs, this

system consist of a hardware and software component. In



our case, our software team is physically located remotely in

Germany, while the hardware team is located in the United

States which presents unique challenges to us. Our sw/hw

codesign methodology takes advantage of BORPH in the

following ways:

• Independent software and hardware testing. The soft-

ware and hardware components of the design commu-

nicate via ioreg interface of BORPH. Before sw/hw

integration, we take advantage of the Linux file ab-

straction layer such that our software team can em-

ulate responses from hardware by using “fifo files”.

Our software team can therefore test their designs in-

dependently on their own Linux machines.

• Remote log in. To start the sw/hw integration process,

our software team needs to access physical hardware

on BEE2 remotely. The fact that BORPH is backward

compatible with Linux allows it to run all standard

Linux networking software. It allows simple ssh lo-

gin through internet from Germany.

• Seamless integration between sw/hw components. The

use of ioreg service as a standardized I/O interface

eliminates the need for our software team to develop

additional device drivers for sake of integration. The

software code developed can start communicating with

our hardware by simply changing ioreg file names in

the code.

• In-system debugging. Software bugs that only show

up during the sw/hw integration are difficult to locate

and fix independently by either team. Since BORPH

supports running standard software development tools

such as gdb and gcc, we can debug the software with

actual running hardware in-system.

The synergy between software and hardware in BORPH has

shown to be invaluable in our experiences.

6. CONCLUSIONS AND FUTURE EXTENSIONS

In this paper, we have presented BORPH, an operating sys-

tem framework for FPGA-based reconfigurable computers.

It increases usability of RC by providing a systematic and

intuitive OS interface for running and communicating with

FPGA fabrics. The kernel level synergies between hardware

and software processes have provided natural semantics for

sw/hw codesign. Early feedback from users have indicated

encouraging prospect of this abstraction.

Currently we are incorporating the use of dynamic re-

configuration in BORPH, which provides a natural kernel/user

partition on user FPGA’s. A more elaborated general file

system support is being developed. We are also investigating

the possibility of incorporating hardware process switching

into BORPH. Finally, we are trying to improve performance

by using direct connections among user and control FPGA’s.
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