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Abstract

We take a fresh look at Web page load performance

from the point of view of user experience. Our user

study shows that perceptual performance, defined as

user-perceived page load time (uPLT) poorly correlates

with traditional page load time (PLT) metrics. However,

most page load optimizations are designed to improve

the traditional PLT metrics, rendering their impact on

user experience uncertain. Instead, we present WebGaze,

a system that specifically optimizes for the uPLT metric.

The key insight in WebGaze is that user attention and in-

terest can be captured using a user’s eye gaze and can in-

turn be used to improve uPLT. We collect eye gaze data

from 50 users across 45 Web pages and find that there is

commonality in user attention across users. Specifically,

users are drawn to certain regions on the page, that we

call regions of high collective fixation. WebGaze prior-

itizes loading objects that exhibit a high degree of col-

lective fixation to improve user-perceived latencies. We

compare WebGaze with three alternate strategies, one of

which is the state-of-the-art system that also uses prioriti-

zation to improve user experience. Our evaluation based

on a user study shows that WebGaze improves median

uPLT for 73% of the Web pages compared to all three

alternate strategies.

1 Introduction

Web performance has long been crucial to the Internet

ecosystem since a significant fraction of Internet con-

tent is consumed as Web pages. As a result, there has

been a tremendous effort towards optimizing Web per-

formance [21, 39, 60]. In fact, studies show that even

a modest improvement in Web performance can have

significant impact in terms of revenue and customer

base [15, 16, 34].

The goal of our work is to improve page load perfor-

mance, also called the Page Load Time (PLT), from the

perspective of the user. PLT is typically measured us-

ing objective metrics such as OnLoad [11], and more re-

cently Speed Index [32]. However, there is a growing

concern that these objective metrics do not adequately

capture the user experience [2, 5, 42, 49].

As a first step, we define a perceptual variation of page

load time that we call user-perceived PLT, or uPLT. We

conduct a systematic user study to show what was anec-

dotally known, i.e., uPLT does not correlates well with

the OnLoad or Speed Index metrics. However, almost all

current Web optimization techniques attempt to optimize

for the OnLoad metric [10, 39, 47, 52, 62] rendering their

impact on user experience uncertain. The problem is that

improving uPLT is non-trivial since it requires informa-

tion about user’s attention and interest.

Our key intuition is to leverage recent advances in eye

gaze tracking. It is well known that user eye gaze – in

terms of fixation, dwell time, and search patterns – cor-

relate well with user attention [17, 55]. In the human vi-

sual system only a tiny portion (about 2◦) at the center of

the visual field is perceived with the highest visual acuity

and the acuity sharply falls off as we go away from the

center [57]. Thus the eye must move when a user is view-

ing different parts of the screen. This makes eye gaze a

good proxy for user’s attention. Further, the commoditi-

zation of gaze trackers allow accurate tracking using low

cost trackers [35,37,41,51], without the need for custom

imaging hardware.

We design WebGaze, a system that uses gaze track-

ing to significantly improve uPLT. WebGaze prioritizes

objects on the Web page that are more visually interest-

ing to the user as indicated by the user’s gaze. In ef-

fect, WebGaze encodes the intuition that loading “impor-

tant” objects sooner improves user experience. The de-

sign of WebGaze has two main challenges: (i) Scalabil-

ity: personalizing the page load for each user according

to their gaze does not scale to a large number of users,

and (ii) Deployability: performing on-the-fly optimiza-

tions based on eye gaze is infeasible since page loads

are short-lived and the gaze tracker hardware may not be

available with every user.

WebGaze addresses these challenges by first distill-

ing gaze similarities across users. Our gaze user study

shows that most users are drawn to similar objects on a

page. We divide the page into visually distinctive areas

that we call regions and define the collective fixation of

a region as the fraction of users who fixate their gaze

on the region. Our study with 50 users across 45 Web

pages shows that a small fraction of the Web page has

extremely high collective fixation. For example, of the

Web pages in our study, at least 20% of the regions were

viewed by 90% of the users. Whereas, at least a quarter

of the regions of the page are looked at by less than 30%

of the users.

WebGaze then uses the HTTP/2 Server Push [13, 30]

mechanism to prioritize loading objects on the page
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that exhibit high degree of collective fixation. In fact,

WebGaze provides a content-aware means of using the

HTTP/2 Server Push mechanism. WebGaze does not re-

quire gaze tracking on-the-fly or require that every user

participates in gaze tracking, as long as enough users par-

ticipate to estimate the collective fixation. WebGaze’s

algorithm not only pushes the objects of interest, but

also all dependent objects as obtained using the WProf

tool [60].

The goal of WebGaze is to improve uPLT, a subjective

metric that depends on real users. Therefore, to evalu-

ate WebGaze, we conduct an extensive crowd-sourced

user study to compare the performance of WebGaze’s

optimization with three alternatives: Default, Push-All,

and Klotski [21]. Default refers to no prioritization. The

Push-All strategy indiscriminately prioritizes all objects.

Klotski is the state-of-the-art system whose goal is to im-

prove Web user experience: Klotski works by prioritiz-

ing objects that can be delivered within the user’s toler-

ance limit (5 seconds). We conduct user studies across

100 users each to compare WebGaze with each alterna-

tive.

The results show that WebGaze improves the median

uPLT over the three alternatives for 73% of the 45 Web

pages. In some cases, the improvement of WebGaze over

the default is 64%. While the gains over the default case

come from prioritizing objects in general, the gains over

Push-All and Klotski come from prioritizing the right set

of objects. All user study data and videos of Web page

loads under WebGaze and each alternative strategy can

be found at http://gaze.cs.stonybrook.edu.

2 Page Load Metrics

To study the perceptual performance of Web page loads,

we define a perceptual variation of the PLT metric, that

we call uPLT or user-perceived Page Load Time. uPLT

is the time between the page request until the time the

user ‘perceives’ that the page is loaded. In this sec-

tion, we provide a background on traditional PLT metrics

and qualitatively describe why they are different from

uPLT. In the next section, we use a well posed user

study to quantitatively compare traditional PLT metrics

and uPLT.

OnLoad: PLT is typically estimated as the time be-

tween when the page is requested and when the On-

Load event is fired by the browser. The OnLoad event is

fired when all objects on the page are loaded [8]. There

is a growing understanding that measuring PLT using

the OnLoad event is insufficient to capture user experi-

ence [2, 5, 49]. One reason is that users are often only

interested in Above-the-Fold (AFT) content, but the On-

Load event is fired only when the entire page is loaded,

even when parts of the page are not visible to the user.

This leads to the OnLoad measure over-estimating the

user-perceived latency. But in some cases, OnLoad can

underestimate uPLT. For example, several Web pages

load additional objects after the OnLoad event is fired.

If the additional loads are critical to user experience, the

PLT estimated based on the OnLoad event will under-

estimate uPLT. Variants of the OnLoad metric such as

DOMContentLoaded [8, 60], are similarly disjoint from

user experience.

Speed Index: Recently, Speed Index [32] was pro-

posed as an alternate PLT measure to better capture user

experience. Speed Index is defined as the average time

for all AFT content to appear on the screen. It is esti-

mated by first calculating the visual completeness of a

page, defined as the pixel distance between the current

frame and the “last” frame of the Web page. The last

frame is when the Web page content no longer changes.

Speed Index is the weighted average of visual complete-

ness over time. The Speed Index value is lower (and bet-

ter) if the browser shows more visual content earlier.

The problem with the visual completeness measure

(and therefore Speed Index) is that it does not take into

account the relative importance of the content. This leads

to over- or under-estimation of user-perceived latency. If

during the page load, a majority of visual components

are loaded quickly, Speed Index estimates the page load

time to be a small value. However, if the component crit-

ical to the user has not yet been loaded, the user will not

perceive the page to be loaded. In other cases, Speed In-

dex overestimates. For example, if a large portion of the

page has visual content that is not interesting to the user,

Speed Index will take into account the time for loading

all the visual content, even though the user may perceive

the page to be loaded much earlier.

Motivating Example: Figure 1 shows the

energystar.gov page, and the three snapshots

taken when the page was considered to be loaded ac-

cording to the Speed Index, uPLT, and OnLoad metrics.

In the case of uPLT, we choose the median uPLT value

across 100 users who gave feedback on their perceived

page load time (§3).

Speed Index considers the page to be loaded much ear-

lier, at 3.2 seconds, even though the banner image is not

loaded. For the users, the page is not perceived to be

completely loaded unless the banner is loaded, leading to

Speed Index under-estimating uPLT. On the other hand,

the OnLoad metric estimates the page to be loaded 4 sec-

onds after the user perceives the page to be loaded, even

though their snapshots are the same visually. This is be-

cause the OnLoad event fires only when the entire page,

including the non-visible parts, are loaded. This illustra-

tive example shows one case when the traditional PLT

metrics do not accurately capture user experience.
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(a) Speed Index = 3.7 seconds  (b) Median uPLT = 8.2 seconds  (c) OnLoad = 12 seconds  

Figure 1: Snapshots of the page load of energystar.

gov shown at the Speed Index, the median uPLT across

100 users, and OnLoad values.

3 uPLT User Study

We conduct a user study to systematically compare uPLT

with traditional PLT metrics, with the goal of verifying

our observations presented in §2.

3.1 Set Up

Our user study was conducted (1) in the lab, and (2) on-

line using crowd-sourcing. For the lab-based study we

recruit subjects from our university. The user subjects

belong to the age group of 25 to 40, both male and fe-

male. The online study is conducted on the Microwork-

ers [9] platform. We present results from 100 users, 50

from each study. All user studies presented in this paper

were approved by the Institutional Review Board of our

institution.

3.2 User Study Set Up and Task

A key challenge of conducting Web page user studies

in-the-wild is that the Web page load timings experience

high variance [61]. The uPLT feedback from two users

for a given page may not be comparable under such high

variance. To conduct repeatable experiments we capture

videos of the page load process. The videos are captured

via ffmpeg at 10 fps with 1920x1080 resolution as the

page loads. The users see the video instead of experienc-

ing an actual page load on their computers. This way,

each user views exactly the same page load process.

The primary task of the user is to report their perceived

page load time when they are browsing the page. We ask

the user to view the Web page loading process and give

feedback (by pressing a key on the keyboard) when they

perceive that the page is loaded. There is an inevitable

reaction time between when a user perceives the page to

be loaded and when they enter the key. For all measure-

ments, we correct for the user’s reaction time using cal-

ibration techniques commonly used in user-interaction

studies [6]. To ensure high quality data from the user

study, we remove abnormally early or late responses. To

do so we utilize the First Paint and Last Visual

Change PLT metrics [31]. The First Paint is the time be-

tween when the URL begins to load and the first pixel is

rendered, and the Last Visual Change is the time when

the final pixel changes on the user’s screen. Any re-

sponses before the First Paint and after the Last Visual

Change events are rejected.

3.2.1 Web Pages

In the default case, we choose 45 Web pages from 15

of the 17 categories of Alexa [3], ignoring Adult pages

and pages in a language other than English. From each

category, we randomly choose three Web pages; one

from Alexa ranking 1–1000, another from Alexa rank-

ing 10k–20k, and the other from Alexa ranking 30k+.

This selection provides wide diversity in the Web pages.

The network is standardized to the accepted DSL condi-

tions [63], 50ms RTT, 1.3Mbps downlink and 384Kbps

uplink, using the Linux traffic controller ‘tc’ [18].

We conduct additional user studies by varying network

conditions using the tc tool [18] to emulate: i) WiFi-like

conditions: a 12 ms RTT link with 20 Mbps download

bandwidth and ii) 3G-like conditions: a 150 ms RTT link

with a 1.6 Mbps download bandwidth. We conduct these

additional user studies across 30 users and 23 Web pages,

half from the top 100 and remaining from between 10k–

20k Web pages from Alexa’s list [3].

3.2.2 Measurement Methodology

We load the Web page using Google Chrome version

52.0.2743.116 for all loads. We do not change the Web

load process, and all the objects, including dynamic ob-

jects and ads, are loaded without any changes.

When the Web page load finishes, we query Chrome’s

Navigation Timeline API remotely through its Remote

Debugging Protocol [22]. Similar interfaces exist on

most other modern browsers [38]. From the API we are

able to obtain timing information including the OnLoad

measure. To estimate Speed Index, we first record the

videos of the pages loading, recorded at 10 frames-per-

second. The videos are fed through the WebPageTest

Tool [63] that calculates the Speed Index.

3.3 Comparing uPLT with OnLoad and

Speed Index

First, we compare the uPLT variations across lab-based

and crowd-sourced studies for the same set of Web pages.

Figure 2 shows the uPLT box plots for each Web page

across the two different studies. Visually from the plot,

we find that the lab and crowd-sourced users report sim-

ilar distributions of uPLT. The standard deviation of the

median uPLT difference between the lab and the crowd-

sourced study for the same Web page is small, about

1.1 seconds. This same measure across Web pages is

much larger, at about 4.5 seconds. This increases our
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Figure 2: Comparing the uPLT box plot between the 50

lab and 50 crowd-sourced users. Although the uPLT val-

ues vary across users, the distributions are similar for the

two data sets.

confidence in the results from the crowd-sourced user

study; we leverage a similar crowd-sourced study to eval-

uate WebGaze.

Figure 3 shows median uPLT compared to the OnLoad

and Speed Index metrics across the 45 pages and 100

users, combining the crowd-sourced online study and

the lab study. The Speed Index and OnLoad values are

calculated from the same Web page load in which was

recorded and shown to the users.

We observe that uPLT is not well correlated with the

Onload and Speed Index metrics: the Correlation Coef-

ficient between median uPLT and the OnLoad metric is

≈ 0.46 while the correlation between median uPLT and

the Speed Index is ≈ 0.44. We also find the correlation

between uPLT and the DomContentLoaded to be ≈ 0.21.

The OnLoad metric is about 6.4 seconds higher than

the median uPLT on an average, for close to 50% of the

pages. For 50% of Web pages, the OnLoad is lower than

the median uPLT by an average of about 2.1 seconds.

On the other hand, Speed Index, estimated over visible

AFT content, is about 3.5 seconds lower than uPLT for

over 87% of the Web pages. In Section 2 we discussed

the cases in which the OnLoad and Speed Index can over

and underestimate the user perceived page loads. From

our results we see that while cases of uPLT over and un-

derestimation occur in equal proportion for the OnLoad,

the case of uPLT underestimation, as shown in Figure 1,

occurs more for the Speed Index.

3.4 uPLT Across Categories

The 45 Webpages used in the study have diverse charac-

teristics. In Figure 4, we study how uPLT differs from

traditional PLT metrics for different categories. Each

point in the plot is the median uPLT across 100 users.

We divide the Web pages across four (4) categories:

0 10 20 30 40
Web pages

0

10

20

30

tim
e 

(s
)

43.7 100.3 56.3

OnLoad uPLT(median) SpeedIndex

Figure 3: Comparing median uPLT with OnLoad and

Speed Index across 45 Web pages and 100 users. The

median uPLT is lower than OnLoad for 50% of the Web-

pages, and higher than Speed Index for 87% of Web-

pages.

(i) Light html: landing pages such as google.com, (ii)

CSS-heavy; (iii) Javascript-heavy; and (iv) Image-heavy.

To categorize the page into the latter three categories, we

look at the types of objects downloaded for each page

and count the number of CSS, Javascript, and images.

The categories are based on the type of object that is

fetched most when the page is loaded.

Light html and CSS-heavy pages are simple and see

little difference between the uPLT and the OnLoad and

Speed Index metrics. However, for pages with a lot of

dynamic Javascript, the median difference between uPLT

and OnLoad is 9.3 seconds. Similarly, for image-heavy

pages, the difference between uPLT and OnLoad is high.

This is largely because, as the number of images and dy-

namic content increases, the order in which the objects

are rendered becomes important. As we show in the next

section, users typically only focus on certain regions of

the page and find other regions unimportant, making it

critical that the important objects are loaded first.

3.5 Varying Network Conditions

Finally, to verify the robustness of our results, we analyze

the differences between uPLT OnLoad, and Speed Index

under varying network conditions.

Under the slower 3G-like network conditions across

30 lab users and 23 Web pages, median uPLT poorly

correlates with OnLoad and Speed Index with a corre-

lation coefficient of 0.55 and 0.51 respectively. The me-

dian uPLT was greater than Onload 46% of times, with

a median difference of 4.7 seconds. The uPLT was less

than Speed Index 72% of the time with the median dif-

ference of 1.86 seconds. When we evaluate under WiFi-

Like conditions we find the correlation between between
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Figure 4: OnLoad, SpeedIndex and uPLT for different

categories of Web pages

OnLoad and uPLT is much higher at .74. This result is

likely because in faster networks, more pages load in-

stantaneously causing the user perceived latency to not

differ much from the OnLoad.

4 Gaze Tracking

Existing Web page optimizations focus on improving tra-

ditional PLT metrics. However, our analysis shows that

traditional PLT metrics do not correlate well with uPLT,

rendering the effect of existing optimizations on user ex-

perience unclear. Instead, we propose to leverage users’

eye gaze to explicitly improve uPLT.

4.1 Inferring User Interest Using Gaze

Gaze tracking has been widely used in many disciplines

such as cognitive science and computer vision to under-

stand visual attention [23, 40]. Recently, advances in

computer vision and machine learning have also enabled

low cost gaze tracking [35,37,41,51]. The low cost track-

ers do not require custom hardware and take into account

facial features, user movements, a user’s distance from

the screen, and other user differences.

WebGaze leverages the low cost gaze trackers to cap-

ture visual attention of users. As a first step, we conduct

a user study to collect eye gaze from a large number of

users across Web pages. Using gaze data collected using

both a low cost gaze tracker and an expensive custom

gaze tracker, we show that the tracking accuracy of the

low cost tracker is sufficient for our task.

Next, we analyze the collected gaze data to infer user

patterns when viewing the same Web page. Specifically,

we identify the collective fixation of a region on the Web

page, which presents a measure to represent how much

a broad group of users attention is fixated on the specific

region. WebGaze uses collective fixation as a proxy for

user interest, and leverages it to improve uPLT.

Figure 5: Segmentation of the Web page of fcc.gov into

visual regions. The visual regions are named ”A”, ”B”,

”C”, etc.

4.2 Gaze User Study Set Up

The gaze user study set up is similar to the lab user study

described in §3.1. Recall that in our lab user study, we

collect uPLT feedback from 50 users as they browse 45

Web pages. In addition to obtaining the uPLT feedback,

we also also capture the user’s eye gaze.

The gaze tracking is done using an off-the-shelf

webcam-based software gaze tracker called Gaze-

Pointer [27]. GazePointer tracks gaze at 30 frames/sec

and does not require significant computational load be-

cause it uses simple linear regression and filtering tech-

niques [37, 56] unlike gaze trackers that require more

complicated machine learning [25]. We use a 1920 x

1080 resolution 24 inch monitor with a webcam mounted

on top. The screen is placed at a reading distance

(≈ 50cm) from the participant. We perform a random

point test, where we ask the users to look at 100 pre-

determined points on the screen. We find the error of

tracker to be less than 5◦ at the 95th percentile.

The user study requires gaze calibration for each user;

we perform this calibration multiple times during the

study to account for users shifting positions, shifting

directions, and other changes. We can potentially re-

place this calibration requirement using recent advances

in gaze tracking that utilize mouse clicks for calibra-

tion [41]. These recent calibration techniques are based

on the assumption that the user’s gaze will follow their

mouse clicks which can then be used as ground truth for

calibration.

We augment the gaze study with an auxiliary study us-

ing a custom gaze tracker with 23 users. The study set up

is similar to above, except we use a state-of-the-art Eye

Tracking Glasses 2 Wireless gaze tracker manufactured

by SMI [48]. The gaze tracker uses a custom eyeglass,

tracks gaze at 120 frames/sec, and has a very high accu-

racy (≈ 0.5◦ is typical).
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Figure 6: A heatmap of the collective fixation of Web page visual regions. Rows correspond to Web pages and the

columns correspond to visual regions. For example, for Web site 1, visual region “A” has a collective fixation of 0.98

which means 98% of the users fixated on region “A” during gaze tracking.

4.3 Gaze Tracking Methodology

When a human views a visual medium, his/her eyes ex-

hibit quick jerky movements known as saccades inter-

spersed with relatively long (≈ .5 second) stops known

as fixations that define the his/her interest [33].

Web pages are designed for visual interaction, and

thus contain many visually distinct elements, or visual

regions [12], such as headers, footers, and main content

sections, that help guide a user when viewing the page.

Rather than track each fixation point, we segment a Web

pages into its set of visual regions and track only the re-

gions associated with the user’s fixation points [24]. Fig-

ure 5 shows an example segmentation of fcc.gov into

its visual regions. It is from this representation that we

estimate the collective fixation of a visual region as the

fraction of all users’ gaze tracks that contain a fixation on

the visual region. As part of future work, we will explore

other signals of a user’s gaze, including fixation duration

and fixation order.

4.4 Collective Fixation Results

Figure 6 shows the collective fixation across each visual

region of each Web page. The rows correspond to the

Web page and the columns correspond to the visual re-

gions in the Web page labeled ’A’, ’B’, etc (see example

in Figure 5). Note that different Web pages may have

different visual regions, since region creation depends on

the overall page structure.

Figure 6 shows that for the first Web page, 5 regions

have a collective fixation of over 0.9. In other words,

90% of the users fixated on these 5 regions in gaze track-

ing. But the remaining 75% of the regions have a collec-

tive fixation of less than 0.5.

In general, we find that across the Web pages, at least

20% of the regions have a collective fixation of 0.9 or

more. We also find that on an average, 25% of the regions

have a collective fixation of less than 0.3; i.e., 25% of the

regions are viewed by less than 30% of the users.

Figure 7 shows the data in Figure 6 from a different

perspective. Figure 7 is the median of the CCDF’s of

collective fixations for each site. Each point in the graph

shows the percentage of regions with at least a certain

collective fixation value. For example, the graph shows

that 55% of the regions have a collective fixation of at

least 0.7 in the median case. Our key takeaways are:

(i) several regions have high collective fixation, and (ii)

there is a significant number of regions that are relatively

unimportant to the users. These points suggest that a sub-

set of regions are relevant to the users’ interests, an ob-

servation that can be exploited to improve uPLT (§6).

Figure 8 shows a visualization of the gaze tracks on

fcc.gov across all users. The combined gaze fixations

show a high degree of gaze overlap. The thicker lines

show the regions on the Web page where the users’ gaze

exhibit a high degree of collective fixation. The thinner

lines show the regions that only a few users look at.
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Figure 7: The median of the CCDF’s of collective fixa-

tions across regions. Each point in the graph shows the

fraction of regions with at least a certain collective fixa-

tion value in the median case.

4.5 Auxiliary Studies

In our auxiliary studies, we track gaze using a state-of-

the-art gaze tracker as users viewed Web page loads un-

der slow 3G and fast WiFi-like network conditions (net-

work set up discussed in §3.1). The collective fixation

results using the custom gaze tracker are quantitatively

similar to the results when tracking gaze using the low

cost tracker. For instance, 30% of the regions have a

collective fixation of more than 0.8, and 30% of regions

have a collective fixation of less than 0.1 under slow net-

work conditions. The results under fast network condi-

tions are similar.

We also conducted an additional set of experiments

to study the effects personalized Web pages have on the

user’s gaze. Web pages such as Facebook customize

their page to a given user, even though the overall struc-

ture of the page remains the same. This customization

may result in different users focusing on different parts of

the page. We choose five personalized Web pages where

the users login to the site: Facebook, Amazon, YouTube,

NYTimes, CNN. We conduct a user study with 20 users

who gave us permission to track their gaze while they

were browsing the logged-in Web pages. Despite cus-

tomized content, we see similar patterns in collective fix-

ation. All sites see a collective fixation of 0.8 or above

for 30% of regions while still having at least 30% of re-

gions with collective fixations below 0.1. In addition,

on average these sites have 20% of their regions with a

collective fixation above 0.9 and 33% below 0.3. Thus,

even for pages where specific contents of the page vary

across users, we observe there exist regions of high and

low collective fixation.

5 WebGaze Design and Architecture

The previous section establishes that for each Web page,

there exists several regions with high collective fixation.

WebGaze is based on the intuition that prioritizing the

Figure 8: A visualization of the gaze of all users when

viewing fcc.gov. Certain regions on the page have

more gaze fixations than others (as evidenced by the

thicker lines).

loading of these regions can improve uPLT. This intuition

is derived from existing systems and metrics, including

Klotski [21] and the Speed Index. The goal of the Klot-

ski system is to maximize the number of objected ren-

dered within 3–5 seconds, with the intuition that loading

more objects earlier improves user experience. Similarly,

Speed Index uses the visual loading progress of a page as

a proxy for the user’s perception. The Speed Index value

improves when more objects are rendered earlier on the

screen. Similar to these works, our goal is also to render

more objects earlier, but WebGaze chooses objects that

are more important to the users as determined by their

gaze feedback.

5.1 Architecture

Figure 9 shows the architecture of WebGaze. WebGaze

is designed: (i) to have no expectations that all users will

provide gaze feedback, (ii) to not require that pages be

optimized based on real time gaze feedback. We note

that existing gaze approaches for video optimization do

rely on real time gaze feedback for prioritization [43].

However, Web page loads are transient; the short time

scales makes it infeasible to optimize the Web page based

on real time gaze feedback.

The WebGaze architecture collects gaze feedback

from a subset of users as they perform the browsing task.

WebGaze collects the gaze feedback at the granularity

of visual regions. When sufficient gaze feedback is col-

lected, the WebGaze server estimates the collective fixa-

tion across regions. The server periodically collects more

gaze information and updates its fixation estimations as

the nature of the Web page and users’ interests change.

Based on the collective fixation values, WebGaze, (1)

identifies the objects in regions of high collective fixa-

tion, (2) extracts the dependencies for the identified ob-

jects, (3) uses HTTP/2 Server Push to prioritize the iden-

tified objects along with the objects that depend on them.

Below, we describe these steps in detail.
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Figure 9: WebGaze architecture.

5.2 Identifying Objects to Prioritize

To identify which Web objects to prioritize, we use a sim-

ple heuristic: if a region has a collective fixation of over

a prioritization threshold, then the objects in the region

will be prioritized. In our evaluation, we set the prioriti-

zation threshold to be 0.7, thus any objects within a vi-

sual region that has a collective fixation of 0.7 or higher

are prioritized. Recall from Figure 7 that this value iden-

tifies 55% of regions as candidates for prioritization in

the median case.

Moving this threshold in either direction incurs dif-

ferent trade-offs. When the prioritization threshold is

increased (moving right in Figure 7) we become more

conservative in identifying objects to prioritize. How-

ever, in being more conservative we may miss prioritiz-

ing regions of which are important to some significant

minority of users, which can in-turn negatively affect the

aggregate uPLT. When the prioritization threshold is de-

creased, more regions are prioritized. The problem is that

prioritizing too many objects leads to data contention for

bandwidth that in turn affects uPLT [14] (in §6 we show

the effect of prioritizing too many objects.) Empirically,

we find that the prioritization threshold we chose works

well in most cases (§6), through it can be further tuned.

Since each region may have multiple objects, We-

bGaze extracts the objects that are embedded within a re-

gion. To do this, we query the Document Object Model

(DOM) [4], which is an intermediate representation of

the Web page created by the browser. From the DOM

we obtain the CSS bounding rectangles for all objects

visible in the 1920x1080 viewport. An object is said to

be in a given region if its bounding rectangle is within the

region. If an object is said to belong to multiple regions,

we assign the maximum of the collective fixation of the

regions to the object.

5.3 Extracting Dependent Objects

Web page objects are often dependent on each other and

these dependencies dictate the order in which the ob-

jects are processed. Figure 10 shows an example de-

Figure 10: A dependency graph for an example page.

If the first.jpg needs to be prioritized based on the

collective fixation measure, then first.js also needs

to be prioritized since first.jpg depends on it.

pendency graph. If first.jpg belongs to a region with

high collective fixation and is considered for prioritiza-

tion, then first.js also needs to be prioritized, be-

cause first.jpg depends on first.js. If not, then

prioritizing first.jpg is not likely to be useful since

the browser needs to fetch and process first.js before

processing the image.

Our system identifies dependencies of each object to

be prioritized, and considers these dependent objects for

prioritization as well. Our current implementation uses

WProf [60] to extract dependencies, but other depen-

dency tools [21, 39] can also be used. While the con-

tents of sites are dynamic, the dependency information

has shown to be temporally stable [21,39]. Thus, depen-

dencies can be gathered offline.

5.4 Server Push and Object Sizes

WebGaze, like other prioritization strategies [21], uses

HTTP/2’s Server Push functionality to implement the

prioritization. Server Push decouples the traditional

browser architecture in which Web objects are fetched in

the order in which the browser parses the page. Instead,

Server Push allows the server to preemptively push ob-

jects to the browser, even when the browser did not ex-

plicitly request these objects. Server Push helps (i) by

avoiding a round trip required to fetch an object, (ii)

by breaking dependencies between client side parsing

and network fetching [39], and (iii) by better leveraging

HTTP/2’s multiplexing [14].

Of course, Server Push is still an experimental tech-

nique and is not without problems. Google’s studies find

that using Server Push can, in some cases, result in a

reordering of critical resources that leads to pathologi-

cally long delays [14]. To avoid such pathological cases,

we check for a simple condition: if the FirstPaint of the

page loaded with WebGaze takes longer than the LastVi-

sualChange in the default case, we revert back to the

default case without optimization (recall the definitions

of FirstPaint and LastVisualChange from §3.1). In our

evaluation, we found that for 2 out of the 45 pages, We-

bGaze’s use of Server Push resulted in such delays.
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Another problem is that Server Push can incur perfor-

mance penalties when used without restraint. Pushing

too many objects splits the bandwidth among the objects,

potentially delaying critical content, and in-turn, wors-

ening performance. To address this, Klotski avoids pri-

oritizing large objects or objects with large dependency

chains [21]. Although we do not consider object sizes in

our current implementation, we plan to do so as part of

future work.

Finally, Server Push can use exclusive priorities [13] to

further specify the order in which the prioritized objects

are pushed as to respect page dependencies. However,

existing HTTP/2 implementations do not support fully

this feature. With a full implementation of HTTP/2’s ex-

clusive priorities, WebGaze’s mechanism can potentially

be tuned even further.

6 WebGaze Evaluation

We conduct user studies to evaluate WebGaze and com-

pare its performance with three alternative techniques

which are:

• Default: The page loads as-is, without prioritization

• Push-All: Push all the objects on the Web page us-

ing Server Push. This strategy helps us study the

effect of Server Push at its extreme.

• Klotski: Uses Klotski’s [21] algorithm to push ob-

jects. The algorithm pushes objects and dependen-

cies with the objective of maximizing the amount of

ATF content that can delivered within 5 seconds.

As before (§3.1), we record videos of the Web page as

it is loaded using WebGaze and each alternate technique.

The users provide feedback on when they perceive the

page to be loaded as they watch the video. We conduct

the user study across 100 users to compare WebGaze

and each alternative technique. Videos of the Web page

loads, under each technique, are available on our project

Web page, http://gaze.cs.stonybrook.edu.

6.1 Methodology

Web pages: We evaluate over the same set of 45 Web-

pages as our uPLT and gaze studies (§3.1). Recall, from

the WebGaze architecture, that the Web server corre-

sponding to each Web page prioritizes content based on

input from WebGaze. For evaluation purposes, we run

our own Web server instead and download the contents

of each site locally. We assume that all cross-origin con-

tent is available in one server. We note that HTTP/2

best practices suggest that sites should be designed such

that as much content as possible is delivered from one

server [14]. Nondeterministic dynamic content, such as

ads, are still loaded from the remote servers.

Server and client: The Web pages are hosted on an
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Figure 11: CDF of improvement in uPLT over Default,

Push-All, and Klotski across the 100 users and 45 Web

pages.

Ubunbu 14.04 server running version 2.4.23 of Apache

httpd which supports HTTP/2 protocol and Server

Push functionality. The Web client is Chrome version

52.0.2743.116, which supports both the HTTP/2 proto-

col and Server Push, that is also run on an Ubuntu 14.04

machine. Traffic on the client machine is controlled us-

ing tc [18] to replicate standard DSL conditions (§3.1).

When using push, we use default HTTP/2 priorities. Due

to the standardized conditions of our network, the aver-

age variance in OnLoad is less than 1%. So we are able

to compare the uPLT values across different page loads.

User study: We conduct pairwise comparisons of

uPLT. To this end, we show the users randomized Web

page loads that are loaded using WebGaze and using one

of the three alternatives. The users provide feedback on

uPLT. For each set of 45 comparisons, we recruit 100

users, for a total of 300 users. An alternative design

would be to conduct a user study where a single user

provides feedback for Web page loads under all four al-

ternatives; but this requires users to give feedback on 180

Web pages which becomes tedious.

6.2 Comparing WebGaze with Alterna-

tives

Figure 11 shows the CDF of the percentage improve-

ment in uPLT compared to alternatives. On an average,

WebGaze improves uPLT 17%, 12% and 9% over De-

fault, Push-All, and Klotski respectively. At the 95th

percentile, WebGaze improves uPLT by 64%, 44%, and

39% compared to Default, Push-All, and Klotski respec-

tively. In terms of absolute improvement, when We-

bGaze improves uPLT the improvement is by an average

of 2 seconds over Default and Push-All, and by an aver-

age of 1.5 seconds over Klotski. At the 90th percentile,

WebGaze improves uPLT by over 4 seconds.

In about 10% of the cases WebGaze does worse than

Default and Push All in terms of uPLT and in about 17%
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Alternative # WebGaze # WebGaze # WebGaze

better same worse

Default 37 4 4

Push-All 35 4 6

Klotski 33 4 8

Table 1: Number of Web pages for which WebGaze per-

forms better, same, and worse, in terms of uPLT in the

median case compared to the alternatives.

of the cases, WebGaze performs worse than Klotski. Of

these cases where the competing strategies outperform

WebGaze, the average reduction in performance is 13%.

Table 1 shows the number of Web pages for which We-

bGaze performs better, the same, and worse in terms of

uPLT for the median case, as compared to the alterna-

tives. Next we analyze the reasons for the observed per-

formance differences.

6.3 Case Study: When WebGaze Performs

Better

It is not surprising that WebGaze improves uPLT over

the default case. Recall our intuition based on prior

work [21, 32] that prioritizing regions with high col-

lective fixation can improve uPLT. In addition, pushing

objects with adherence to their dependencies has been

shown to improve page load performance [39, 60].

Push-All is an extreme strategy, but it lets us study

the possible negative effects of pushing too many ob-

jects. We find that Push-All delays critical object loads

and users see long delays for even the First Paint [31].

In our study, Push-All increases First Paint by an aver-

age of 14% compared to WebGaze. Push-All, in-turn,

tends to increase uPLT. The problem with pushing too

many objects is that each object only gets a fraction of

the available bandwidth, in spite of techniques such as

HTTP/2 priorities [14].

Different from uPLT, for OnLoad, it is more critical

that all objects are loaded even if objects critical to the

user are delayed. We see this tendency in our results: the

Push-All strategy in fact improves OnLoad for 11 of the

45 pages, whilst hurting uPLT. This example shows that

optimizations can help OnLoad, but hurt uPLT.

The uPLT improvement compared to Klotski comes

from content-aware prioritization. In the case of Klot-

ski, ATF objects are pushed based on whether they will

be delivered within 5 seconds. This may not correlate

with the objects that the user is interested in. For ex-

ample, the Webpage www.nysparks.com, Klotski pri-

oritizes the logo.jpg image which is in a region of low

collective fixation. This essentially delays other more

critical resources that are observed by a large number of

users.
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Figure 12: The total size of pushed objects under We-

bGaze, Klotski, and Push-All.

6.4 Case Study: When WebGaze Performs

Worse

WebGaze performs worse than Klotski in 17% of the

cases with a median performance difference of 5.5% and

a maximum difference of 15.4%. In each of these cases,

we find that Klotski sends less data compared to We-

bGaze and is more conservative. Figure 12 shows the

relative size of objects pushed by WebGaze and Klotski

across the Web pages. This suggests that we need to per-

form more analysis on determining the right amount of

data that can be pushed without affecting performance.

Similarly, when compared to Default, WebGaze per-

forms worse for 4 of the 45 Webpages. In each of these

cases, WebGaze pushed too much data causing band-

width contention.

In all cases when WebGaze performs worse compared

to Push-All, we find that the Web pages were smaller,

less than 1.2 MB. We speculate that pushing all objects

for pages of small sizes does not force as much con-

tention for bandwidth.

6.5 Case Study: When WebGaze Performs

the Same

For a fraction of less than 10% of the pages we find that

WebGaze performs similar to the other alternatives. For

two of the Web pages, the uPLT values are similar across

the four alternatives. In other words, Server Push did not

change performance. This could be because the default

page itself is well optimized. For the other two pages,

WebGaze’s Server Push resulted in pathologically de-

lays, and therefore the pages were not optimized (§5.4).

Although they are not the metrics WebGaze intends to

optimize, for completeness we briefly discuss the perfor-

mance of WebGaze in terms of the OnLoad, Speed Index,

and First Paint. In terms of all three metrics, WebGaze

and Klotski show comparable performance. In compar-

ison to Default and Push-All, WebGaze shows only 1–

3% improvement in the OnLoad. WebGaze improves the
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Speed Index metric by an average of 18% compared to

the Push-All strategy. However, there is no difference in

the average Speed Index measure between WebGaze and

Default. Lastly, as discussed earlier, WebGaze improves

the average First Paint metric by 14% compared to Push-

All. However WebGaze does increase the time to First

Paint by 19% on average compared to Default, thus im-

proving uPLT despite increasing the First Paint overall.

This result loops back to our intuition (§5) that loading

more objects important to the user sooner is critical to

uPLT.

7 Related Work

We discuss three related lines of research that are relevant

to our work: Web performance, page load measurements,

and modeling user attention for Web pages.

7.1 Improving Web Performance

Given the importance of Web performance, significant

research effort has gone into improving Web page loads.

These efforts include designing new network proto-

cols [10, 52], new Web architectures [39, 47, 62], best

practices [1], and tools to help developers write better

Web pages [29]. However, most of these efforts target

the traditional OnLoad metric.

More recently, systems such as Klotski [21] are tar-

geting the user quality of experience rather than optimiz-

ing traditional PLT metrics. As discussed earlier, Klot-

ski uses HTTP/2’s Server Push functionality to push high

utility and visible objects to the browser. WebGaze uses

a similar prioritization technique, but prioritizes objects

based on user interest. Our evaluations show that We-

bGaze improves uPLT compared to Klotski across 100

users (§6).

7.2 Page Load Measurements

The research community has reported on a broad spec-

trum of Web page user studies. On the one end, there

are controlled user study experiments [53], where the re-

searchers create specific tasks for the subjects to com-

plete. However, to create repeatable user studies and to

control the Web page load times, the authors create fake

Web pages. On the other end, there are large scale, less

controlled studies [20] that measure performance of hun-

dreds of real Web pages. But these studies only measure

objective metrics such as the OnLoad metric.

Around the same time as the design and develop-

ment of WebGaze, researchers have developed a similar

testbed called eyeorg to crowd-source Web user experi-

ence [54]. The eyeorg study also uses a user-perceived

PLT metric to measure user experience, and records the

Web pages to obtain standardized feedback from the

users as to when they feel the page is loaded. Their

methodology in obtaining feedback is slightly different

from our study in that they allow the users to transition

frame by frame before providing their uPLT. The eye-

org study finds high correlation between the OnLoad and

uPLT metrics, similar to our findings in the WiFi-like

environment. Different from the eyeorg study, we vary

the network conditions when loading the page and show

that the correlation results depend on the underlying net-

work (§3). On slow networks, OnLoad and uPLT are

poorly correlated, while in faster networks, OnLoad and

uPLT are better correlated; the later corroborating more

with the results of eyeorg. Going beyond crowd-sourcing

uPLT feedback, our work also shows how uPLT can be

improved by leveraging eye gaze.

7.3 Web Saliency

The computer vision community has widely studied how

eye gaze data can be used as ground truth to build

saliency models [28,59]. Saliency defines the features on

the screen that attract more visual attention than others.

Saliency models predict the user’s fixation on different

regions of the screen and can be used to capture user at-

tention without requiring gaze data (beyond building the

model). While most of the research in this space focuses

on images [44, 64], researchers have also built saliency

models for Web pages.

Buscher et al. [19] map the user’s visual attention to

the DOM elements on the page. Still and Mascioc-

chi [50] build a saliency model and evaluate for the first

ten (10) fixations by the user. Shen et al. [46] build

a computational model to predict Web saliency using a

multi-scale feature map, facial maps, and positional bias.

Ersalan et al. [24] study the scan path when the user is

browsing the Web. Others have looked at saliency mod-

els for Web search [45] and text [26, 58].

However, existing Web saliency techniques have rela-

tively poor accuracy [19, 46]. This is because predicting

fixations on Web pages is inherently different and more

challenging compared to images: Web pages, unlike im-

ages, are a mix of text and figures. Web page loading is

an iterative process where all objects are not rendered on

the screen at the same time, and there is a strong prior

when viewing familiar Web pages.

Our work is orthogonal to the research on Web

saliency. WebGaze can leverage better Web saliency

models to predict user interest. This will considerably re-

duce the amount of gaze data that needs to be collected,

since it will only be used to provide ground truth. We

believe that our findings on how gaze data can improve

user-perceived page load times can potentially spur re-

search on Web saliency.
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8 Discussions

There are several technical issues that will need a close

look before a gaze feedback-based Web optimization can

be widely useful.

Mobile Devices: It is expected that more and more Web

content will be consumed from mobiles. Mobile devices

bring in two concerns. First, errors in gaze tracking may

be exaggerated in mobiles as the screen could be too

small, or the performance of gaze tracking on mobile

could be too poor. Significant advances are being made

on camera-based gaze tracking for mobile smartphone

class devices [7]. But, accuracy is also as not critical to

our approach as we require the gaze to be tracked at the

granularity of large visual regions.

A second concern is that gaze tracking on mobile de-

vices may consume additional amounts of energy [43].

This is due to the energy consumed in the imaging sys-

tem and on image analysis in the CPU/GPU. While this

can be a concern, a number of new developments are

pushing for continuous vision applications on mobiles

and very low power imaging sensors are emerging (see,

e.g., [36]). Also, lower resolution tracking may still pro-

vide sufficient accuracy for our application, while reduc-

ing energy burden. Therefore, we expect that gaze track-

ing can be leveraged to improve uPLT in mobile devices.

Exploiting Saliency Models: Saliency models have

been discussed in the previous section. A powerful ap-

proach could be to decrease reliance on actual gaze track-

ing, but rely instead on saliency models. In other words,

inspecting Web pages via suitable modeling techniques

could discover potential regions of user attention that

could be a good proxy for gaze tracks. This approach

is more scalable and would even apply to pages where

gaze tracking data is not available. The challenge is that

research on saliency models for Web pages is not yet ma-

ture. Our initial results show promise in leveraging gaze

for improving uPLT; exploiting Web saliency models can

significantly increase the deployability of our approach.

Systems Issues: There are a number of systems issues

that need to be addressed to build a useful Web optimiza-

tion based on gaze feedback. For example, a standard-

ized gaze interface needs to be developed that integrates

with the browser. The gaze support service (Figure 9)

needs to adapt to changing nature of the Web contents

and user interests. For example, a major event may sud-

denly change users’ gaze behaviors on a news Web site

even when the structure of the page remains the same.

Security and Privacy: There are additional security and

privacy related concerns if gaze feedback is collected by

Web sites or third party services. For example, it is cer-

tainly possible that gaze tracking could provide a signif-

icant piece of information needed to uniquely identify

the user, even across devices. The use of eye tracking

on the end-user’s device exposes the user to hacks that

could misuse the tracking data. Note that course-grained

tracking information is sufficient for our task, but guar-

anteeing that only course-grain information is collected

requires a hardened system design.

Gaze Tracking Methodology: Web page loads are a dy-

namic process. Therefore, collecting gaze data when the

user looks only at the loaded Web page is not represen-

tative of the Web viewing experience. Instead, in this

work, we collect gaze data as the page is being loaded.

However, one problem is that, the gaze fixation is influ-

enced by the Web object ordering. For instance, if ob-

jects that are important to the user are rendered later, a

user may direct her gaze towards unimportant, but ren-

dered objects. Our methodology partially alleviates the

problem by capturing gaze only after the First Paint (§6)

and even after OnLoad. As part of future work, we pro-

pose to track user gaze when the Web objects are loaded

in different orders. By analyzing gaze under different

object orderings, we hope to alleviate the problem of the

Web page loading order influencing gaze tracks.

9 Conclusions

There has been a recent interest in making user experi-

ence the central issue in Web optimizations. Currently,

user experience is divorced from Web page performance

metrics. We systematically study the user-perceived page

load time metric, or uPLT, to characterize user experi-

ence with respect to traditional metrics. We then make a

case for using users’ eye gaze as feedback to improve the

uPLT. The core idea revolves around the hypothesis that

Web pages exhibit high and low regions of collective in-

terest, where a user may be interested in certain parts of

the page and not interested in certain other parts. We de-

sign a system called WebGaze that exploits the regions

of collective interest to improve uPLT. Our user study

across 100 users and 45 Web pages shows that WebGaze

improves uPLT compared to three alternate strategies for

73% of the Web pages.
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AND HOSSFELD, T. QoE in the Web: A dance

of design and performance. In 7th International

Workshop on Quality of Multimedia Experience,

QoMEX ’15, pp. 1–7.

[54] VARVELLO, M., BLACKBURN, J., NAYLOR, D.,

AND PAPAGIANNAKI, K. Eyeorg: A platform for

crowdsourcing web quality of experience measure-

ments. In Proceedings of the 12th International on

Conference on Emerging Networking EXperiments

and Technologies, CoNEXT ’16, ACM, pp. 399–

412.

[55] VICK, R. M., AND IKEHARA, C. S. Methodolog-

ical issues of real time data acquisition from multi-

ple sources of physiological data. In Proceedings of

the 36th Annual Hawaii International Conference

on System Sciences, HICSS ’03, pp. 1–7.

[56] VIOLA, P., AND JONES, M. J. Robust real-time

face detection. International Journal of Computer

Vision vol. 57, No. 2 (2004), 137–154.

[57] Peripheral vision. https://en.wikipedia.org/

wiki/Peripheral_vision.

[58] WANG, H.-C., AND POMPLUN, M. The attrac-

tion of visual attention to texts in real-world scenes.

Journal of Vision vol. 12, issue 6 (2012), 26–26.

[59] WANG, P., WANG, J., ZENG, G., FENG, J.,

ZHA, H., AND LI, S. Salient object detection for

searched web images via global saliency. In Con-

ference on Computer Vision and Pattern Recogni-

tion, CVPR ’12, IEEE, pp. 3194–3201.

[60] WANG, X. S., BALASUBRAMANIAN, A., KRISH-

NAMURTHY, A., AND WETHERALL, D. Demysti-

fying page load performance with WProf. In Pro-

ceedings of the 10th USENIX Conference on Net-

worked Systems Design and Implementation, NSDI

’13, USENIX Association, pp. 473–486.

[61] WANG, X. S., BALASUBRAMANIAN, A., KRISH-

NAMURTHY, A., AND WETHERALL, D. How

speedy is SPDY? In Proceedings of the 11th

USENIX Conference on Networked Systems Design

and Implementation, NSDI ’14, USENIX Associa-

tion, pp. 387–399.

[62] WANG, X. S., KRISHNAMURTHY, A., AND

WETHERALL, D. Speeding up web page loads

with shandian. In Proceedings of the 13th USENIX

Conference on Networked Systems Design and Im-

plementation, NSDI ’16, USENIX Association,

pp. 109–122.

[63] WebPagetest: website performance testing service.

http://www.webpagetest.org/.

[64] YANG, J., AND YANG, M.-H. Top-down vi-

sual saliency via joint CRF and dictionary learn-

ing. In Conference on Computer Vision and Pattern

Recognition, CVPR ’12, IEEE, pp. 2296–2303.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation    559




