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ABSTRACT

Many recommenders aim to provide relevant recommendations to
users by building personal topic interest profiles and then using
these profiles to find interesting contents for the user. In social me-
dia, recommender systems build user profiles by directly combin-
ing users’ topic interest signals from a wide variety of consumption
and publishing behaviors, such as social media posts they authored,
commented on, +1’d or liked. Here we propose to separately model
users’ topical interests that come from these various behavioral sig-
nals in order to construct better user profiles.

Intuitively, since publishing a post requires more effort, the topic
interests coming from publishing signals should be more accurate
of a user’s central interest than, say, a simple gesture such as a +1.
By separating a single user’s interest profile into several behavioral
profiles, we obtain better and cleaner topic interest signals, as well
as enabling topic prediction for different types of behavior, such as
topics that the user might +1 or comment on, but might never write
a post on that topic.

To do this at large scales in Google+, we employed matrix fac-

torization techniques to model each user’s behaviors as a separate

example entry in the input user-by-topic matrix. Using this tech-

nique, which we call "behavioral factorization", we implemented

and built a topic recommender predicting user’s topical interests us-

ing their actions within Google+. We experimentally showed that

we obtained better and cleaner signals than baseline methods, and

are able to more accurately predict topic interests as well as achieve

better coverage.

Categories and Subject Descriptors

H.2.8 [Database applications]: Data Mining

Keywords

Personalization, Behavior Factorization, User Profiles

1. INTRODUCTION
An important aspect of building content recommenders is the

construction of personalized user profiles, which consists of two

important sub-problems. One is feature engineering, which is the

gathering of signals that indicate users’ long-term and short-term

interests. The other is the proper utilization of these signals using
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data mining and machine learning approaches. Due to the scale of

today’s social media platforms, we have a great number of users

as well as topics/items. To build a user profile, signals are gener-

ally gathered and then aggregated directly to feed into topic model-

ing algorithms such as Latent Dirichlet Allocation (LDA) or matrix

factorization.

Intuitively, different behavioral signals should be weighed dif-

ferently in building user profiles. For example, users typically

only publish posts or comment on topics that are more important

to them, while a +1 on a post might also involve topics that are

only somewhat interesting. As a concrete example, an academic

research user might typically post about her research interests, and

also comment on the latest politics and current events. However,

she might tend to only +1 posts about bicycling, gardening, and

parenting, preferring to keep her hobbies somewhat private. In fact,

we might think of her as having multiple personalities, expressed

through these actions.

Perhaps more importantly, different behavioral actions represent

users’ different publication and consumption interests. Since writ-

ing a post and resharing posts means the user is distributing infor-

mation to her followers, these publishing acts can also be thought

of as actions that curate a particular image to her audiences. Com-

menting and +1 actions are much more like reactions to others in

a conversation, so these actions more likely represent topics that

the user is interested in consuming from others. Obviously, there

should be overlaps between the two sets of topic interests. These

actions parallel ideas from a well-known social scientist Erving

Goffman, whose seminal book called "The Presentation of Self in

Everyday Life[5]" emphasizes how people are ’performing’ for oth-

ers like on a stage when they are in contact with others. Applied to

social media, one can think of users as putting on a performance for

her followers in order to control or guide the impression that others

will form of her as a person.

Motivated by these ideas, we first performed an analysis on be-

havioral actions on Google+ social network. We will describe this

analysis in more detail later in the paper, but in short, for each user,

we gathered the two set of topics that she publishes and consumes

separately. We found that the average Jaccard Index between the

two sets is only 0.122, which suggests that users do tend to publish

and consume information on somewhat different topics.

Because user have different topic interests depending on the be-

haviors, we wish to build different user profiles and make different

topic interest predictions for different behaviors. As usual, we care

most about recommending content for user to consume, but there

are instances where we might want to recommend content that the

user would want to reshare instead, for instance.

Here the main task is to predict the preferences of a user for a

particular topical item, using observed implicit or explicit topical

preferences. We model this recommendation task as a matrix com-

pletion problem, which can be solved using matrix factorization
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([16]) in three steps: 1. Learn a latent embedding space from the

user-item matrix; 2. Represent both user and items in embedding

space; 3. Compute the similarity of user to items as the preferences.

Current state-of-the-art recommenders typically model user-item

preferences using a single rating score for each observed user-item

pair, due to scalability reasons.

Instead, in our approach, for each user, we use the embeddings

built from factorization techniques to separately model the topic

interests for different behaviors. We then use the embeddings to

predict user preferences for different topics under different behav-

ioral contexts. We call our approach "Behavioral Factorization".

To be precise, we first build a embedding model by separating

each user’s preferences into several preferences in different behav-

ior contexts. This separation is key to getting a clean topic interest

signals to train the embedding model. We then combine a user’s

topic preferences across different behaviors to make predictions of

topical interests for, as an example, consumption. That is, our ap-

proach provides different recommendations for different behavioral

engagement types. For example, given a user’s activities on content

topics such as creating post about “data mining”, or +1 post about

“video games”, our prediction framework will recommend topics

for different behavioral actions, e.g., recommend “minecraft” posts

to consume, but "machine learning" posts to reshare.

The contributions of this work are:

• We introduce the general notion of separating the behavioral

engagement types in the construction of an latent embedding

model for user interest profiles.

• We develop a method to perform "behavioral factorization",

in which we apply matrix factorization to the user-behavior

by item matrix directly to construct an embedding space,

which is used in the prediction of future topic interests.

• We evaluate behavioral factorization on a large-scale data set

and show the amount of improvement obtained in building

user profiles.

2. RELATED WORK

2.1 Building User Profiles
The diversity and volume of information shared on social me-

dia is overwhelming for many users. Therefore, the construction of

topic interest profiles is an important part of personalized recom-

menders in social media systems. We are inspired by a wide variety

of past personalization research that utilize behavioral signals.

Search engine researchers have utilized user profiles to provide

personalized search results [9], [11], [4], [30], [35]. Usually user

profiles are represented as vectors in a high dimensional space [1],

[23], with vectors denoting users’ preferences on different items,

(e.g., web pages, movies, or social media posts.) or users’ prefer-

ences on various topics (e.g., keywords representing topics, or topic

categories from a taxonomy.)

2.1.1 Matrix Factorization & Embedding Models

In one family of recommender approach called Collaborative Fil-

tering (CF) [26], systems typically model user preferences using a

user-by-item matrix, with each entry representing a user’s rating on

a corresponding item. Therefore, a row in the input matrix is a par-

ticular user’s expressed preferences of the items in the system. A

user’s unknown preference on a certain item is inferred using ma-

trix completion and researchers have made great progress in using

matrix factorization methods effectively for this problem [16], [17].

In our paper, instead of representing user profile by preferences

of items (posts), we focus on inferring user’s topical interests, and

topics are represented as entities in Google Knowledge Graph [29],

such as ’basketball’ or ’video games’. Researchers have utilized

matrix factorization to create embedding models, as well as gener-

ative models such as Latent Dirichlet Allocation (LDA) [2] to build

user profiles [21]. Matrix factorization as well as generative models

learn latent embedding spaces, where preferences can be calculated

by similarity between user and item’s latent embedding factors.

Compared to item-based approach, topic-based approach should

be more scalable for applications in social media, where the number

of actual items (posts) is large. Instead, we can make predictions

of a user’s interest in an item by calculating the relevance between

the user’s topic interests and the post’s topics.

2.2 Personalized User Profiles in Social Media
Just as in other recommendation problem, social media researcher

often treat building a user profile as the first task in building a per-

sonalized recommender. Researchers have applied matrix factor-

ization and generative models such as LDA to modeling the user-

topic matrix in social media and to building user profiles in par-

ticular [8], [7], [34], [3], [6], [15], [33], [27]. For example, Guy

et al. built user profiles based on content and item preferences,

and then provided personalized recommendations for social media

items such as bookmarks and social software [7], [8]. Chen et al.

built user topic profiles and provided personalized recommendation

of conversations on Twitter. User profiles are also used to provide

recommendations of friends [6], communities [33], and activities

such as mentioning [33] and commenting [27], etc.

For a user profile, user preferences can be inferred using implicit

feedback such as user’s activities [8]. In contrast, in traditional rec-

ommender systems, CF usually requires user to have some explicit

input on rating some items, e.g., movies and books, etc., which

brings extra burden for users. For example, Hu et al. proposed a

matrix factorization approach that leverages implicit feedback and

was shown to be efficient with large-scale sparse data sets [13].

Extending on this idea, Noel et al. proposed a novel objective func-

tion in matrix factorization that considers feature-based similarity

as well as user-user information in social media [24].

2.3 Contextual Personalization
Social media platforms also provide us rich contextual informa-

tion such as who comments on who’s post on what topic and when.

Many recent works discussed how to make use of the rich context to

learn better user profiles. Collective Matrix Factorization has been

proposed by Singh et al. to provide recommendation in heteroge-

neous network where context information is used [28], [19]. Prob-

ably closest to our work are: (a) Liu et al. propose a social-aided

context-aware recommender systems for books and movies, which

makes use of rich context to partition user-item matrix into multiple

matrices [20]; (b) Jamali et al. propose a context-dependent matrix

factorization model to create user profiles for recommendation in

social network [14].

Beyond matrix factorization techniques, context-aware genera-

tive models have been proposed by researchers to help creating user

profiles and latent semantic models in social media platforms such

as Twitter [25], [32], [36]. For example, Zhang et al. proposed a

two-step framework that first discover different topic domains us-

ing generative models, and then provide recommendation within

each domain using matrix factorization methods [37]. Their idea

that different users may be interested in different domains is rele-

vant to our work in differentiating user’s behaviors. But we focus

instead on how each user’s topical interests are separated by differ-

ent types of behaviors.

1407



Researchers have also used content from a two or more different

social media platform to build improved user profiles. Li et al. pro-

posed a transfer learning approach that can factorize two matrices

from two domains together using information from each other [18].

Hu et al. propose a triadic-factorization-based approach to factorize

user-item-domain tensor to provide personalized recommendation

across domains [12].

2.4 Behavioral Factorization

"If we see perception as a form of contact and com-

munion, then control over what is perceived is control

over contact that is made, and the limitation and reg-

ulation of what is shown is a limitation and regulation

of contact." — Erving Goffman, The Presentation of

Self in Everyday Life [5].

Recent works have shown us that differentiating various contexts

can improve the quality of user profiles. In our paper, we show

that because social media users interact with different topics using

different types of behaviors, we should use behavior types as an

important context. We should also build multiple user profiles for

different behavior types, then use these different profiles flexibly in

different behavioral-dependent recommendation, e.g., recommend

content to read, or recommend content to reshare, etc.

Sociologists have shown that people present different images to

others in their everyday life and their everyday conversations en-

gage in different topics with different audiences [5]. The emer-

gence of social media has also drawn sociologists’ interests to study

this phenomenon in online communities. For instance, sociologists

theorize that, because users do not have a clear idea of the exact

audiences in public social media, they end up with blurred context

boundaries [22]. However, because different types of behaviors,

such as posting or commenting, affect very different audiences, our

analysis below suggest that users still show different ’identities’,

exhibiting different types of behaviors around different topics in

social media. By conducting qualitative study, Zhao et al. point out

that users experience social media platforms such as Facebook as

multiple different functional regions, similar to their multiple iden-

tities in real life [38]. To the best of our knowledge, our paper is

the first work that utilizes users’ different online presentations on a

real-world social media platform.

3. GOOGLE+ BEHAVIORAL ANALYSIS
To motivate our work further, here we analyze users’ online be-

haviors in Google+ using an anonymized data set. We first extract

the topic entities in posts as our features to construct feature vec-

tors for each post. For each users’ behavioral actions on posts, we

aggregate the corresponding post feature vectors to build an en-

tity vector for each user-behavior combination. Then we coarsely

measure the differences of topical interests represented by these

user-behavior entity vectors. We show that there exists significant

differences between these vectors, which motivates our approach to

utilize behavioral factorization to model different behavioral types.

3.1 Dataset Description
We use anonymized Google+ users’ public behaviors in May

2014 to conduct our analysis. We analyzed all user actions on all

public posts, and each record is represented as a tuple: (u, b, E),
where a user u (with an anonymized id) used behavior b to engage

with a post containing E set of entities. There are four types of

behaviors in our data: Create Post, Reshare, Comment, and +1.

Instead of using low-level features such as word tokens, we ex-

tract higher-level semantic concept from the post in the form of

Behavior Comment Plus One Reshare Create Post

Comment 1 0.092 0.050 0.102
+1 0.092 1 0.048 0.071

Reshare 0.050 0.048 1 0.012
Create Post 0.102 0.071 0.012 1

Table 1: Average Jaccard similarity between pairs of behavior
types

entities using Google’s Knowledge Graph [29], which contains en-

tities that represent concepts such as computer algorithms, land-

marks, celebrities, cities, or movies. It currently contains more than

500 million entities, which provides both wide and deep coverage

of topics.

Entity extraction is an open research problem and not a focus

of our work here, but in a nutshell, we utilized an entity extractor

based on standard entity recognition approaches that utilize prior

co-occurrences between entities, likelihood of relatedness between

entities, entities’ positions within the text, and then finally ranking

the topicality of the entity for the text.

Given a post, we use its corresponding Knowledge Graph enti-

ties as features to represent its topics. Therefore, each E in input

tuple (u, b, E) is a set of Knowledge Graph entities. For exam-

ple, if a user u1 created a post with his dog’s picture, this behavior

might correspond to (u1, CreatePost, {“Dog′′, “Pet′′, . . . }). If

another user u2 commented on a post with a YouTube video about

Minecraft on Xbox, this behavior might correspond to the tuple

(u2, Comment, {“Minecraft′′, “Xbox′′, . . . }).

3.2 Measuring differences among behaviors
For each user, we aggregate the entities from the posts she inter-

acted with using a particular type of behavior. In the end, for each

user, we obtain four sets of topic entities corresponding to the four

behavior types mentioned above.

We then use the Jaccard similarity index to measure the differ-

ences between the sets. Jaccard similarity index is a common met-

ric for measuring the similarity between two sets and is calculated

as follows given sets A and B: J(A,B) = A∩B
A∪B

.

After we calculate Jaccard similarity scores of different behav-

iors for each user, we then average the scores across all users. We

filter out users who have less than 10 entities as non-active. Table 1

shows the results of the average Jaccard similarities. We can see

that the Average Jaccard Index between any two types of behaviors

is low. Take user’s commenting and +1 behaviors as an example,

only 9% of the topics overlapped between these two behaviors. We

also measure the difference between user’s publishing and consum-

ing behaviors. We combine the entities of user commenting and +1

behaviors as a set of entities of consuming, and we combine the

entities of user creating post and resharing behaviors as a set of en-

tities of publishing. The average Jaccard Index is 0.122. The low

overlap rate of these Jaccard scores suggests that user acts differ-

ently in different behaviors.

3.3 Discussion
The results of the analysis show that, for each user, she typi-

cally have different topic interests with each behavior. That is, she

will often create posts on topics that are different from the topics

she comments on. The results suggest that general non-behavior-

specific user profiles might not perform well in applications that

emphasize different behavior types.

Content recommenders usually targets predicting contents for

user to consume, which might be better reflected by behaviors such
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as commenting and +1. In other contexts, we might instead predict

what topics users would create posts about. Therefore, by creat-

ing topic preferences for each behavior type separately, behavior-

specific user profile might have better performance in different rec-

ommendation contexts.

In summary, users’ various behaviors in social media contain im-

portant contextual information, which might help us improve the

performance of user personalization profiles. We showed that users

have significantly different topical interests reflected by their differ-

ent behavior types in G+, and that building multiple profiles with

separate behavior types allows us to tailor our content recommen-

dation systems for various behavioral contexts.

4. PROBLEM DEFINITION

4.1 Input Behavioral Signals
Instead of building one single profile per user, we propose to

build multiple profiles for a user to represent her different behavior

types. Specifically, here we take users’ behaviors on social media

posts as input, and output a set of topic interest vectors to represent

each user’s different types of profiles.

Given a set of users U, a set of different behaviors types B, and a

set of features that can represent social media content E, the input

data can be represented as a set of tuples:

T = {ti = (ui, bi, Ei), i = 1, . . . , N}

where ui ∈ U, bi ∈ B, and Ei ⊂ E. Each ti represents a user’s

action on a particular piece of social media content. For example,

a ti can be creating a post, or commenting on one. Ei is the set of

features of that post. Here since we are building user topic profiles,

we use entities from Google Knowledge Graph as our feature set.

However, in general, E can be any low-level (i.e., words) or high-

level features (i.e., other entities, or even demographic features).

4.2 User Profiles
We define user profiles as sets of vectors in the feature space E:

P = {Pu = {VuB
}}

where u ∈ U, B ⊂ B, and Pu is the user profile for user u, and

VuB
is a vector of user u’s preferences on features corresponding

to her behavior types B. Pu can be thought of as a user tensor.

B can be either a single behavior type (e.g., creating a post),

or a combination of behavior types (e.g., both creating a post and

resharing a post). To be precise:

VuB
= (pe1uB

, p
e2
uB

, . . . , p
ek
uB

), ej ∈ E

where p
ej
uB

is user u’s behavior types B’s preference on feature ej ,

for j = 1, . . . , k.

In the following sections, we propose our behavioral factoriza-

tion approach to build user profiles, and compare the quality of the

profiles with profiles built using the traditional matrix factorization

technique.

5. OUR APPROACH
Here we introduce our behavior factorization approach to build

user profiles for personalized recommendation, which includes three

steps, as shown in Figure 1 and 2.

• Step 1: Given input user action tuples T defined in Section

4, we first build matrices of different behavior types. This

corresponds to the left part in Figure 1.

• Step 2: We factorize the matrices generated in step 1 to learn

the latent embedding space. This corresponds to the right

part in Figure 1

• Step 3: At last we build user profiles by making predictions

of topics of interest utilizing the learned latent space. This

creates profiles Pu = {VuB
} for each user u. This corre-

sponds to Figure 2.

We introduce each of these steps in turn below.

5.1 Step 1: Building matrices of different be-
havior types

In typical matrix factorization techniques, input user-item matrix

R is represented as a N × K matrix, in which N is the number

of users and K is the number of items. R is factorized into the

product of two matrices, matrix X of N ×L, and matrix Y of K×
L. In other words, both row vector and column vector in R have

been mapped into a L-dimensional latent embedding space. With

this learned latent space, for any observed row vector in user-item

matrix, the learned embedding space can be used to help complete

the particular row vector to get complete estimated preferences of

a user on items.

Since we are building user-topic-based profiles, instead users’

interests on items (N×K user-item matrix) as input, we use users’

interests on topics (N ×K user-topic matrix) as input.

In addition, instead of using only one N×K matrix as input, we

build and factorize multiple matrices as described below, including:

(a) The traditional N × K matrix – referred to as Behavior Non-

specific User-topic Matrix (BNUM); (b) Single Behavior-Specific

User-topic Matrix (SBSUM); (c) Combined Behavior-Specific User-

topic Matrix (CBSUM).

5.1.1 Behavior Non-specific User-topic Matrix BNUM

Here each entry indicates a user’s implicit interests on a partic-

ular topic. Given input user tuples T = {ti = (ui, bi, Ei), i =
1, 2, . . . }, we first pull out the tuples Tu involving user u:

Tu = {tj = (uj , bj , Ej)}, tj ∈ T ∧ uj = u

Then we generate observed value for each user and topic pair:

rui = r(Tu, i)

That is, we first extract out all tuples Tu involving user u and apply

the function r to calculate implicit interests, given user u’s tuples

involving topic i. There are many possible forms of this function,

and different weights can be trained for different behaviors. We use

the following equation here in baseline methods as well as in later

sections to calculate implicit interests:

rui =
(
∑

Tu

∑

e∈Ej
σi(e)) + 1

(
∑

Tu
‖Ej‖) + (‖ ∪Tu Ej‖)

(1)

where σi(e) is 1 if i = e and 0 otherwise. That is, the implicit inter-

est of topic i from user u is calculated by the number of occurrences

of i in all user u’s behaviors, divided by the sum of occurrences of

all items. We smooth the value using additive smoothing.

5.1.2 Single Behavior-Specific User-topic Matrix SB-

SUM

Both SBSUM and CBSUM separate behavior types to generate

separate user-topic matrices. Given a specific set of behavior types

B ⊂ B, we want to build matrix RB = {rBui}, in which each entry

represents the implicit interest only from behavior types in B.
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Figure 1: Framework of generating matrices and factorization.

Figure 2: Building user profiles using latent embedding space.

We use the same method as in Equation 1, but add constraints to

filter out behavior types not in B:

r
B
ui =

(
∑

Tu∧bj∈B

∑

e∈Ej
σi(e)) + 1

(
∑

Tu∧bj∈B ‖Ej‖) + (‖ ∪Tu∧bj∈B Ej‖)
(2)

Using this equation, for each B, we can build a matrix that rep-

resents users’ observed implicit feedback with behavior types in

B, which can be set as either a single behavior type, or a set of

multiple behavior types. Therefore, based on the choices of B, we

can build two types of behavior-specific user-topic matrices: Sin-

gle Behavior-Specific User-topic Matrix SBSUM, and Combined

Behavior Specific User-topic Matrix CBSUM.

First, we build one user-topic matrix for each behavior type, such

as creating post, resharing, commenting or +1. The entry of each

matrix is the observation value rBui calculated by Equation 2, where

B is a single behavior. Given B = {b1, b2, . . . , bM} as a set of

all behavior types, we generate the following M single behavior-

specific user-topic matrices (SBSUM):














Rb1 = {rBui}, B = {b1, b1 ∈ B}
Rb2 = {rBui}, B = {b2, b2 ∈ B}
. . .

RbM = {rBui}, B = {bM , bM ∈ B}

(3)

5.1.3 Combined Behavior Specific User-topic Matrix
CBSUM

In building SBSUM, we create M matrices, each of which rep-

resents a single behavior type. However, we also want to capture

topic interests of combinations of more than one related behavior

types. For example, in G+, both creating and resharing posts gen-

erate content that is broadcast to followers, and these two behavior

types can be combined together to represent the user’s publication.

Meanwhile, commenting and +1’ing posts both indicate user’s

consumption of post. Combining them together can represent top-

ics of interests in the user consumption. Therefore, given sets of be-

havior types, with each set being a subset of B, {B1, B2, . . . , BP },

we build P matrices, each of which represent user’s combined be-
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haviors in each set of behavior types.






RB1
= {rBui}, B = {B1, B1 ⊂ B}

. . .

RBP
= {rBui}, B = {BP , BP ⊂ B}

(4)

5.2 Step 2: Learning latent embedding space
Here we introduce a matrix factorization technique for building

user topic profile as the baseline method. In addition, we intro-

duce our proposed method that extends the baseline algorithm to

behavior factorization.

5.2.1 Baseline model: Matrix factorization

After building Behavior Non-specific User-topic Matrix (BNUM),

we learn a latent embedding space that can be used to complete

observed user-topic matrix to get predicted user-topic preferences.

In recommender research, there are many efforts trying to improve

matrix factorization techniques in both academia and industry. Here

we use the factorization techniques as proposed in Hu et al. [13].

There is a very specific reason why we adopted Hu et al.’s ap-

proach. In social media platforms, implicit interest signals are eas-

ier to obtain for most users than explicit interest signals. There are

just more implicit interest signals in the system. However, many

recommender algorithms do not consider the potential differences

between using explicit interest vs. implicit interest signals. Hu

et al. [13] proposed a matrix factorization method that addressed

this difference. It is worth noting that all other matrix factorization

methods that work on user-item matrix can also be applied in our

framework to build user profiles using behavior factorization. Note

that ’topic’ in user-topic matrix is the same as item in user-item

matrix in the discussion below.

Given observation of the user-item matrix obtained from implicit

interests from rui, Hu et al. splits observations into two variables:

preference pui and confidence cui. Here pui is a binary variable

that represents whether user u has interests in item i:

pui =

{

1 rui > 0
0 rui = 0

Confidence cui represents the confidence level of the preference

pui. It indicates how confident we are in the interest value. It can

be calculated in the following way: cui = 1 + αrui.

Then the algorithm learns a latent embedding space and maps

every user u and item i into that space (to xu and yi respectively).

To learn that space, the algorithm tries to solve the following opti-

mization equation:

min
x∗,y∗

∑

u,i

cui(pui − x
T

uyi)
2 + λ(

∑

u

‖xu‖
2 +

∑

i

‖yi‖
2) (5)

The results xu and yi will be used to complete the user-item

matrix that estimates how likely a user will like an item. The pro-

posed algorithm works well for implicit feedback/interest datasets

as mentioned in Hu et al. [13].

At this point, we have built user-topic matrix using Equation 1,

have adopted matrix factorization to learn a latent embedding space.

Furthermore, we can model any user u’s interests by estimating her

preferences on all topics. For any new users who do not appear in

the original user-topic matrix for training of the embedding space,

we can still map them to the embedding space by using learned

topic embedding vectors yi. We will discuss this in Section 5.3.

5.2.2 Behavior Factorization model (BF)

Different from the matrix factorization model introduced above,

we want to separate user’s different behavior types and generate

topic preference for each user for different behaviors. So instead of

factorizing one user-topic matrix, we factorize multiple user-topic

matrices (BNUM, SBSUM, and CBSUM) generated in Step 1.

There are some early exploration on context-aware matrix factor-

ization and tensor factorization techniques such as a social-network-

aided context-aware recommender system proposed by Liu et al. [20],

which creates multiple matrices and learns a latent space simulta-

neously. However, these techniques cannot be used directly in our

behavior factorization problem, because we are building multiple

user-topic matrices having the same column/topic space but having

different rows/users. They build matrices having different items for

different context, instead we use an implicit modeling approach,

and also consider relations among behavioral contexts, i.e., such as

combining publication behaviors and consumption behaviors.

Figure 1 shows the differences of our proposed Behavior Fac-

torization (BF) approach as compared to the baseline model. In the

first step of constructing matrix from user behaviors, instead of only

constructing the Behavior Non-specific User-topic Matrix BNUM,

we also construct two more types of matrices: Single Behavior Spe-

cific User-topic Matrix SBSUM and Combined Behavior Specific

User-topic Matrix CBSUM.

Here in the second step, we factorize all generated matrices into

the same latent embedding space. We learn a latent embedding

space and map every user of each specific behavior types and ev-

ery item into this space. Each entry in each matrix is the implicit

interest value from user’s behaviors, so we can extend the Baseline

matrix factorization model as follows.

Here pBui and cBui represent the preference and confidence value

for each matrix. Given all specific behavior types we used Γ =
{B1, B2, . . . } in Equation 3 and 4, we learn the embedding space

by optimizing the following equation:

min
x∗,y∗

∑

B∈Γ

∑

u,i

c
B
ui(p

B
ui−x

B

u

T

yi)
2+λ(

∑

B∈Γ

∑

u

‖xB

u ‖
2+

∑

i

‖yi‖
2)

(6)

By writing out the summation on Γ, we use a similar solution

of the original Equation 5 to solve this optimization problem and

learn embedding space for user-behavior and topics.

Compared to the original user-topic matrix, the embedding space

learned by our approach might be better at measuring semantic sim-

ilarity, because from previous analysis (Section 3), we know that

the observed values in user-topic matrix are mixtures of multiple

different interests from different behaviors. Separating the signals

should therefore result in a cleaner topic model. This is also sug-

gested by a recent paper studying how to learn generative graphi-

cal models such as LDA in social media [31]. In that work, they

explored how to aggregate documents into corpus that represent a

particular context. Since generative graphical model and matrix

factorization both tries to learn latent space from data, this intuition

can be shared in both techniques. Here our hypothesis is that build-

ing matrix at user-behavior level instead of user level can help us

identify cleaner semantic alliances across topics, without increas-

ing too much sparsity.

5.3 Step 3: Building user profiles
Finally, we introduce how we build user profiles using learned la-

tent embedding spaces from previous steps. As shown in Figure 2,

we introduce two methods: (i) direct profile building from input

row vectors of profile matrices, and (ii) weighted profile building

by merging different direct profiles using a set of weights learned

from a regression model.

As defined in Section 4, for each user u, we will build Pu =
{VuB

}. Each VuB
is a vector of topic preferences of user u on
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specific behavior types B. We build three types of user profiles,

corresponding to the three types of input matrices:

• Behavior Non-specific User Profile (BNUP): By setting B =
B, we build a single Vu = VuB

for user u as her profile.

This profile does not differentiate behavior types. This pro-

file is used in existing approaches for building user profile

and personalized recommendation. Each user will have one

preference on each topic of user-topic matrix.

• Single Behavior-Specific User Profile (SBSUP): Setting B

to only one behavior type, VuB
represents users’ preferences

of topics with only behavior types in B.

• Combined Behavior-Specific User Profile (CBSUP): By

setting B to contain more than one behavior types, VuB

that represents users’ preferences of topics with the behav-

ior types in B. In our paper, for example, we construct both

the Publishing and Consumption CBSUP.

5.3.1 Direct Profile Building (DPB)

We use a user’s embedding factors (i.e., vector xu for user u

in learned latent embedding space) to generate her complete user

profiles of VuB
∈ Pu. In DPB, the input will be observed row

vectors in matrix RB for any B in Γ, and we build user profile for

each B.

Given a user u and B, we obtain embedding factor xB

u and then

use this embedding factor and topic embedding factors Y = {yi}
to generate preference list of user u’s behavior B by computing the

dot product: xB

u

T

Y . Then for each user u, her output user profile

can be represented as:

Pu = {VuB
= x

B

u

T

Y }, B ∈ Γ (7)

Specifically, given any B that is a subset of B, we use the fol-

lowing equation to generate user’s SBSUP and CBSUP:

VuB
= (pe1uB

, p
e2
uB

, . . . , p
eK
uB

), p
ei
uB

= x
B

u

T

yi (8)

where xB
u is the embedding factor of user u on behavior types B.

In summary, in DPB, different profiles are generated from dif-

ferent input row vectors, row vector of BNUM generates BNUP,

row vector of SBSUM generates SBSUP, row vectors of CBSUM

generates CBSUP. For example, to build BNUP for each user u,

we set B = B, and use all her observed topic interest values to

generate her embedding factor xu in the embedding space. Then

by calculating xuyi with every topic i, we get her BNUP.

Vu = (pe1u , p
e2
u , . . . , p

eK
u ), p

ei
u = x

T

uyi (9)

For new users who are not in the learned embedding model, we can

still generate their row input vectors using Equation 2, and then

project the vector to an embedding factor.

5.3.2 Weighted Profile Building (WPB)

DPB generates a behavior profile for a user only if that user have

exhibited that behavior in the past. By separating user’s behav-

ior types, we can generate profile for user u’s behavior B using

DPB, but this requires user u to have non-zero observed values

with behavior B. For some users who do not have behaviors in B,

VuB
will be empty, which means that a user who do not exhibit

the required behavior type actions will not have a user profile. This

somewhat corresponds to the cold-start problem in recommender

systems.

However, we can solve this by using user’s profiles on other be-

havior types. We combine them to generate a combined preference

vector on topics using weighted sum. This corresponds to a transfer

learning problem.

Here, to generate preference vector VuB
of user u’s behavior

types B, instead of directly using results of Equation 7, we use

weighted sum of all preference vectors we generated for any be-

havior types in Γ using Equation 10:

VuB
=

∑

Bt∈Γ

wBtx
Bt

u

T

Y (10)

The weights for different behavior types in Γ are model-level

parameters, i.e., we learn one weight for each Bt ∈ Γ for the entire

dataset. Therefore, these weights can be learned using a supervised

method from all users who have multiple types of behaviors in our

dataset. Therefore, for users who have no Bt in their history, we

can still build those profiles for them.

In our implementation, we use linear regression with stochastic

gradient descent to learn these parameters. Therefore, WPB can be

used to generate either BNUP, SBSUP or CBSUP, depending on

particular applications. In most content recommendation applica-

tions, usually information consumption behaviors are most impor-

tant, and thus, we use users’ observed consumption behaviors to

learn weights to build consumption profile.

Having described the steps in our modeling method, we now turn

our attention to an evaluation of this method.

6. EVALUATION
In previous sections, we proposed the behavior factorization ap-

proach which can both learn a powerful latent space and build user

profiles for multiple behavior types. In this experimental study sec-

tion, we want to verify the following two hypotheses:

H1: The latent embedding model learned from our behavior fac-

torization approach is better in building user profiles than the

baseline matrix factorization model.

H2: By combining preference vectors from multiple behavior types,

we improve the coverage of user profiles on specific behavior

types.

In the rest of this section, we first describe how we set up our

experiment, i.e., what datasets we use, and how we evaluate the

performance of the output user profiles. Then we compare our Be-

havior Factorization model with baseline model. We also compare

our two proposed methods in building user profiles to show that,

by combining behavior types, we can improve user coverage with

good quality.

6.1 Experiment Setup
To evaluate the performance of building user profiles, we exam-

ine how well different approaches do in predicting users’ topical

interests. We separate our dataset into two parts: training set and

testing set. We train and build user profiles using only training set,

and compare the performance of different models with the testing

set. We consider an approach to be a better one if it completes the

user-behavior-topic matrix more accurately.

6.1.1 Dataset

Our dataset contains public Google+ user behaviors in May and

June 2014. How we generate the dataset is described in section

3.1. We train both baseline and our approach’s matrix factorization

model using Google+ user behaviors in May 2014. We use 20%

randomly sampled behaviors in June 2014 to learn weights used in
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Weighted Profile Building (WPB) of Section 5.3.2. We use the re-

maining 80% behaviors in June 2014 to evaluate the performances

of different methods.

Input Matrices: In our dataset, we include all public posts cre-

ated in May and June 2014. There are four types of behaviors on

those posts: Creating post, Resharing, Commenting, and +1. We

build different user-behavior-topic matrices by making sets of be-

havior types Γ contain the following behavior types:

• We directly use four behavior types in our dataset to build

Single Behavior Specific User-topic Matrix (SBSUM).

• We want to capture users’ interests in publishing informa-

tion, so we group creating post and resharing together to

build a publication Combined Behavior Specific User-topic

Matrix (Publication CBSUM).

• We also want to understand users’ interests in consuming in-

formation, so we group commenting and +1 to build a Con-

sumption CBSUM.

• We also group all four behavior types together to generate a

Behavior Non-specific User-topic Matrix (BNUM).

6.1.2 Evaluation Metrics

The user profile we built for a given behavior type Bt is a vector

of preferences on topics, VuBt
. The values in this vector estimate

whether user u would like each topic with behavior Bt. This can

be evaluated using implicit interests of RBt
u = {rBt

ui , i ∈ E} in

testing set calculated using Equation 2.

Although the actual values in VuBt
and RBt

u do not need to be

identical, a good user profile of Bt should have the ranking order

of topics in VuBt
similar to what we have observed in testing set.

To compare the orders of these two vectors, we transfer vectors

VuBt
and RBt

u into two ranked lists of topics in E: Lmethod =

(er1 , er2 , . . . , erN ) is the rank list of top N topics generated by

profile building method, and Lobserved =(eo1 , eo2 , . . . , eoN′
) is a

rank list of all the observed topics. We use the following as evalu-

ation metrics:

• Recall@N: indicates how many topics appearing in top N

of Lmethod also appear in Lobserved, divided by the actual

number of observed topics.

• NDCG@N: Normalized Discounted Cumulative Gain (NDCG)

is a widely used metric to evaluate two ranked lists. It is the

discounted cumulative gain of current ranked list normalized

by the ideal discounted cumulative gain1.

• Average Percentile@N: Percentile denotes where each erj
in Lmethod appears in Lobserved. Similar metric has been

used in evaluating matrix completion tasks [13]. Here we

use 100% to represent when erj is at the top of Lobserved

and 0% to represent when erj is at the bottom of Lobserved.

Average percentile@N is the averaged position across all erj
in Lmethod.

6.1.3 Comparison Methods

Next we show our experiment results to verify our two hypothe-

ses at the beginning of this section. The methods used are shown in

Table 2.

For our first hypothesis H1, to evaluate the performance of the

latent embedding model learned from our Behavior Factorization

1http://en.wikipedia.org/wiki/Discounted_
cumulative_gain

Methods Latent Model Training Profile Building

Baseline + DPB Baseline Direct (DPB)
BF + DPB Behavior Factorization Direct (DPB)
BF + WPB Behavior Factorization Weighted (WPB)

Table 2: Method combinations used in our experiments.

model (BF) against the one learned with traditional matrix factor-

ization model (Baseline), we compare them on building user pro-

files using the Direct Profile Building (DPB) method. To do this,

we generate user profiles (BNUP, SBSUP, or CBSUP) using Direct

Profile Building (DPB) with input matrices of BNUM, SBSUM, or

CBSUM, respectively. We then evaluate the profiles’ performances

with three evaluation metrics introduced above.

Subsequently, to verify our second hypothesis H2, we evalu-

ate our proposed WPB by comparing its coverage and quality of

user profiles against DPB. To do this, we use latent space of BF

to build user profile for the specific behavior type of consumption

(i.e., Commenting & +1), using both the Direct Profile Building

DPB and Weighted Profile Building WPB.

6.2 Evaluation Results

6.2.1 H1: Baseline v.s. Behavior Factorization

To compare BF with Baseline matrix factorization approach, we

first use the two latent embedding model learned from these two

methods to build different user profiles (BNUP, SBSUP and CB-

SUP). Then, we compare their performances using our evaluation

metrics. Since we are only comparing learned latent embedding

models, we use DPB to build behavior-specific user profiles.

Performance of building BNUP.
Here we compare two approaches in building BNUP. Baseline

model is learned using the method discussed in Section 5.2.1, and

BF model is learned using the method discussed in Section 5.2.2.

The comparison results are shown in Figure 3. From the figure we

can see that our approach achieves significant improvement on all

evaluation metrics. Compared to Baseline, Our BNUP has 89%

improvement on NDCG, 93% improvement on Average Percentile

and 82% improvement on Recall.

Figure 3: Comparison of BNUP outputs between Baseline and
BF methods, given BNUM as input.

Performance of building CBSUP.
Next we evaluate the performance in building user’s behavior spe-

cific profile, i.e., CBSUP for combined behavior types of Con-

sumption and Publication. Results are shown in Figure 4(a) and

Figure 4(b). We see significant improvement of our approach. We

see that more improvement (about 100%) is on publication pro-
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(a) Consumption profile output w/ CBSUM
as input.

(b) Publication profile output w/ CBSUM as
input.

Figure 4: Comparison of CBSUP between Baseline and BF.

file than consumption profile. This aligns somewhat well with

Goffman’s work [5], because users usually have clearer idea about

their audiences when they are publishing information. As a result,

clearer personal topic interest representation appears in publication

behaviors than consumption behaviors.

Performance of building SBSUP.
We build users’ SBSUP for four single behavior types, and com-

pare the performance between Baseline and our BF method. The

results are shown in Figure 5. On average, our approach is about

80% better than Baseline. The greatest improvement is on creating

post, followed by commenting. In these two behaviors, users usu-

ally know better about their audiences and have clearer goals, i.e.,

talking to his followers or creators of posts, as compared to reshar-

ing and +1. We can see that our approach learns better latent em-

bedding models to build Single Behavior Specific User-topic Pro-

files. The improvement of using BF compared to using Baseline

method passed paired-sample t-test with significant level p < 0.01.

6.2.2 H2: Direct Profile Building (DPB) v.s. Weighted
Profile Building (WPB)

Next we verify our second hypothesis that Weighted Profile Build-

ing (WPB) improves coverage. We show that, compared to Direct

Profile Building (DPB), generating user profile using WPB over all

behavior types in Γ improves coverage for users without specific

behavior types and with reasonable performance.

The left side of Figure 6 shows the user coverage of Consump-

tion CBSUP built by DPB vs. WPB. Using DPB , we can only

provide consumption profile for 30% of users in the testing set, be-

cause it requires users in the testing set to have comment and +1

histories in our training set. By using WPB, we improve the cover-

age to 49.7%, which is a 65.8% improvement.

The right side of Figure 6 shows the performance of user con-

sumption profile of DPB and WPB for new and existing users: Ex-

(a) Create post profile given SBSUM.

(b) Reshare profile given SBSUM.

(c) Comment profile given SBSUM.

(d) +1 profile given SBSUM.

Figure 5: Comparison of SBSUP between Baseline and BF.

isting users: For users who have comment and +1 behavior his-

tories, WPB further improves the quality of their user consump-

tion profiles by 6.7% on average on all three evaluation metrics,

suggesting the interests of one types of behaviors can transfer to

interests of another using behavioral factorization.

New Users: For users who have none of those behaviors in his-

tory, WPB still provides consumption profiles with reasonable per-

formance, i.e., 79.2% of the performance of DPB on existing users,

and 74.1% of the performance of WPB on existing users.

All Covered Users: We also calculated the average quality of

profiles built by WPB on all 49.7% covered users who have or do
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Figure 6: Comparison of consumption profile between DPB and WPB

not have consumption behaviors. The average percentile and recall

are still slightly higher than profiles built by DPB on existing users.

Due to the limited space, here we only show our results on build-

ing profile for one specific set of behavior types—consumption of

information, because, compared to other behavior types, the con-

sumption topical interests of users is the most important.

However, besides consumption profile, we also tested WPB on

building user profiles for other behavior types that we have exam-

ined in above experiments, such as SBSUP on commenting and +1,

and we observed similar results. We can improve user coverage

more than 70% for commenting and +1, while slightly improving

the profile quality on average. The improvement of using WPB on

existing users compared to DPB passed paired-sample t-test with

significant level p < 0.01.

7. DISCUSSION
We have conducted experiments to evaluate our proposed Behav-

ior Factorization approach to build either Behavior Non-specific

user topic profiles or Behavior Specific user topic profiles. We

demonstrated that it is important to build user profiles by separating

types of behaviors. We also showed how this enables applications

that target recommendations for different behaviors types.

7.1 Potential Applications
There are many applications can use the user profiles built by

our method. Since we can map user’s behaviors as well as different

sets of items, e.g., posts, communities, or other users, into the same

embedding model, the similarity between user’s behavior and items

can be used to generate rank lists for recommendation. Compared

to conventional user profiles which don’t separate user behaviors,

our user profiles not only considers the content similarity between

users and items, but also considers the context of different recom-

mendation tasks. For example, consumption profile can be used

to recommend relevant posts when a user is reading a post, publi-

cation profile can be used to recommend new friends after a user

creates a post, etc.

7.2 Limitations and Future Work
As our results show, the proposed behavior factorization frame-

work indeed improves the performance building users’ interest pro-

files, however there are still some limitations. One limitation is

that the framework depends on the fact that users’ various behav-

ior types inherently reveal users’ different interests. It works well

in building users’ interest profiles in social media platforms (e.g.,

Google+), but may not generalize well for other domains where

different behavior types do not necessarily reflect different user in-

terests.

In addition, the results have shown that our method does not

work as well when users have very sparse or no data for the tar-

get behavior type we are trying to predict. One reason is that these

users may be less active than other users. The other reason is that

our method optimizes multiple matrices which could lose the cor-

relation across behavior types for the same user. To solve this prob-

lem, we are interested in applying tensor factorization techniques

such as PARAFAC [10] on behavioral matrices. Our method can

be thought of as an extension of an unfolding-based approach to

tensor factorization, but a full Tucker3 decomposition might bring

improvements in some modeling situations.

Furthermore, we would like to directly deploy the behavior fac-

torization framework in real world recommendation systems and

evaluate it via online live experiments.

8. CONCLUSION
In this paper, we proposed Behavior Factorization (BF) as a way

to build user topic interest profiles in social media. To motivate our

work, by analyzing a large quantity of behavior data from users in

Google+, we showed that, for each user, topic interests exhibited

by one type of behavior is different from other types.

To model users, we separate users’ topic interests by their behav-

iors around those topics, and then constructing various combina-

tions of novel user-behavior by topic matrices. Behavior Factoriza-

tion first learns a latent embedding model by factorizing matrices

separated by behaviors, then builds user topic profiles for different

types of behaviors using this embedding model.

We verified our approach using large-scale Google+ data. Ex-

periment results showed that BF improved our latent embedding

model by about 80% in predicting user topic preferences, and by

using Weighted Profile Building (WPB), we can improve coverage

of consumption profile by 60%. Finally, it is our hope that our be-

havioral factorization approach might inspire other researchers to

deeply think about how to model user context in topic modeling

and recommender systems.
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