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Hybrid quantum/classical variational al-
gorithms can be implemented on noisy
intermediate-scale quantum computers
and can be used to find solutions for
combinatorial optimization problems. Ap-
proaches discussed in the literature min-
imize the expectation of the problem
Hamiltonian for a parameterized trial
quantum state. The expectation is esti-
mated as the sample mean of a set of mea-
surement outcomes, while the parameters
of the trial state are optimized classically.
This procedure is fully justified for quan-
tum mechanical observables such as molec-
ular energies. In the case of classical op-
timization problems, which yield diagonal
Hamiltonians, we argue that aggregating
the samples in a different way than the ex-
pected value is more natural. In this pa-
per we propose the Conditional Value-at-
Risk as an aggregation function. We em-
pirically show – using classical simulation
as well as quantum hardware – that this
leads to faster convergence to better so-
lutions for all combinatorial optimization
problems tested in our study. We also pro-
vide analytical results to explain the ob-
served difference in performance between
different variational algorithms.

1 Introduction

Combinatorial optimization (CO) has been ex-
tensively studied, because it is applied in many
areas of business and science, and it is a source
of interesting mathematical problems [18]. Even
if many CO problems are NP-hard, they are rou-
tinely solved (possibly not to provable optimal-
ity) in industrial applications. It is widely be-

Stefan Woerner: wor@zurich.ibm.com

lieved that quantum computers cannot solve such
problems in polynomial time (i.e., NP 6⊆ BQP
[5]), but there is significant effort toward design-
ing quantum algorithms that could be practically
useful by quickly finding near-optimal solutions
to these hard problems. Among these algorithms,
two candidates are more likely to be efficiently
implementable on noisy quantum computers: the
Variational Quantum Eigensolver (VQE) [10, 16],
and the Quantum Approximate Optimization Al-
gorithm (QAOA) [6, 7, 9]. Both VQE and QAOA
use a parametrized quantum circuit U(θ) (also
called variational form) to generate trial wave
functions |ψ(θ)〉 = U(θ) |0〉, guided by a classi-
cal optimization algorithm that aims to solve:

min
θ

〈ψ(θ)|H |ψ(θ)〉 . (1)

This expression encodes the total energy of a sys-
tem through its HamiltonianH, and more specifi-
cally its expected value 〈ψ(θ)|H |ψ(θ)〉. There is
a well-known transformation to map CO prob-
lems into a Hamiltonian, see e.g., [15]; this will
also be discussed subsequently in this paper. Em-
pirical evaluations indicate that VQE’s perfor-
mance suffers from some key weaknesses in the
context of CO problems, and there is significant
room for improvement [17]. At the same time, the
literature on QAOA paints a mixed picture: while
some work concludes that QAOA has promise
[6, 19], other papers indicate that it may not per-
form better than classical algorithms [12].

In this paper, we propose a modification to
the problem (1) that is given to the classical
optimization algorithm: rather than minimizing
the expected value 〈ψ(θ)|H |ψ(θ)〉, we minimize
its Conditional Value-at-Risk (CVaR) – a mea-
sure that takes into account only the tail of the
probability distribution and is widely used in fi-
nance [3]. We argue that CVaR more closely
matches the practical goal of heuristic solution
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methods for CO problems. We provide an an-
alytical and numerical study, showing that the
proposed methodology significantly improves per-
formance and robustness of VQE and QAOA in
the context of CO. As a byproduct of this analy-
sis, we find that for small-depth circuits it is im-
portant to use variational forms with a sufficient
number of parameters, e.g., at least linear in the
number of qubits. QAOA for fixed (small) depth
does not satisfy this requirement, and produces
“flat” quantum states that yield low probability
of sampling the optimal solution. Thus, not only
does our paper introduce a simple way to improve
the performance of the two most prominent can-
didates for CO on noisy quantum computers, but
it also sheds some light on their behavior with
small-depth circuits. While we do not claim that
this brings their performance on par with state-
of-the-art classical heuristics, our results indicate
a marked improvement as compared to what is
proposed in the literature. The numerical experi-
ments discussed in this paper are implemented in
the open-source library Qiskit [2], and executed
on classical quantum simulators as well as IBM’s
quantum hardware.

The rest of this paper is divided as follows. The
next two sections set the context for this paper by
giving an overview of key concepts from the liter-
ature: the mapping of CO problems as a Hamil-
tonian, VQE (Section 2), and QAOA (Section 3).
Section 4 formally introduces our main contri-
bution, CVaR optimization. An analysis of the
method is given in Section 5. Section 6 provides
an empirical evaluation of the proposed method
on classically simulated quantum circuits, and us-
ing quantum hardware. Section 7 provides a for-
mal analysis of certain aspects of QAOA to ex-
plain the experimentally observed behavior. Fi-
nally, Section 8 concludes the paper.

2 Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) is
a hybrid quantum/classical algorithm originally
proposed to approximate the ground state of a
quantum chemical system, i.e., the state attain-
ing the minimum energy [20]. This is achieved by
solving a problem of the form (1), with H encod-
ing the total energy of the quantum chemical sys-
tem. The same approach can be used to attempt
to solve CO problems. Consider a quadratic un-

constrained binary optimization (QUBO) prob-
lem on n variables:

min
x∈{0,1}n

bTx+ xTAx, (2)

for given b ∈ R
n and A ∈ R

n×n. Using the
variable transformation xi = (1 − zi)/2 for zi ∈
{−1,+1}, problem (2) can be expressed as an
Ising spin glass model:

min
z∈{−1,+1}n

cT z + zTQz, (3)

where c and Q are easily computed from (2).
These two equivalent problems encompass binary
optimization problems, i.e., CO problems, and
they are NP-hard [4].

Problem (3) can be translated into a Hamilto-
nian for an n-qubit system: we replace zi by the
Pauli Z-matrix

σi
Z =

(

1 0
0 −1

)

(4)

acting on the i-th qubit, and each term of the
form zizj by σi

Z ⊗ σj
Z . The summation of (tensor

products of) Pauli terms obtained this way is the
desired Hamiltonian. The eigenvalues ±1 of σi

Z

correspond to the positive and negative spin of
(3). After constructing H, we can apply VQE
to attempt to determine the ground state, from
which an optimal solution to (3) can be sampled
with probability 1.

The choice of the variational form U(θ) is im-
portant. In this paper we follow a standard ap-
proach, see e.g., [14, 17]. Assuming n qubits, we
start by applying single-qubit Y-rotations to ev-
ery qubit, parametrized by an angle θ0,i for qubit
i. We then repeat the following p times: we
apply controlled Z-gates to all qubit pairs (i, j)
satisfying i < j, where i denotes the control
qubit and j the target qubit; and we add another
layer of single-qubit Y-rotations to every qubit,
parametrized by θk,i for qubit i and repetition
k ∈ {1, . . . , p}. Fig. 1 illustrates such a varia-
tional form for n = 3 and p = 2. Notice that this
variational form span all basis states. Overall,
this leads to n(1 + p) parametrized Y-rotations,
and n(n−1)

2 p controlled Z-gates. Since the con-
trolled Z-gates commute with each other, the to-
tal circuit depth is O(np), although the number
of gates is quadratic in n. This variational form
is used in our numerical simulations. When ex-
perimenting on quantum hardware we use near-
est neighbor controlled Z-gates rather than all-
to-all, i.e., we follow the connectivity provided
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|0〉 Y (θ1) • • Y (θ4) • • Y (θ7)

|0〉 Y (θ2) Z • Y (θ5) Z • Y (θ8)

|0〉 Y (θ3) Z Z Y (θ6) Z Z Y (θ9)

Figure 1: VQE variational form for n = 3 qubits and
depth parameter p = 2.

by the hardware to reduce the number of two-
qubit gates. We remark that these variational
forms span any basis state (and thus the ground
state of a diagonal Hamiltonian) already with the
first layer of Y-rotations. The purpose of sub-
sequent layers is to hopefully facilitate the task
for the classical optimization algorithm used to
choose the variational parameters. The above
variational form with just one layer of Y-rotations
can be efficiently simulated classically; for a dis-
cussion on the effect of entangling gates, we refer
to [17].

The classical optimization algorithm that at-
tempts to solve (1) must be able to (at least)
compute the objective function, i.e., the expected
value in (1). This is difficult to compute directly,
but it can be estimated as follows. First, we
prepare the trial wavefunction |ψ(θ)〉 on a quan-
tum processor. Then, we measure the qubits, re-
sulting in an n-bit string x0 . . . xn−1. Each ob-
served string easily translates into a sample from
〈ψ(θ)|H |ψ(θ)〉, because H is a weighted summa-
tion of tensor products of Pauli Z-matrices, and
each such term can be computed with a simple
parity check. We denote these samples by Hk(θ),
k = 1, . . . ,K, where K ∈ N is the number of
samples. The sample mean

1

K

K
∑

k=1

Hk(θ) (5)

is an estimator for 〈ψ(θ)|H |ψ(θ)〉, and is used as
the objective function for the classical optimiza-
tion algorithm. The solution returned by the al-
gorithm is then given by the bitstring that leads
to the smallest Hk among all observed bitstrings
and all θ that have been evaluated.

3 Quantum Approximate Optimiza-

tion Algorithm

The Quantum Approximate Optimization Algo-
rithm (QAOA) is a hybrid quantum/classical al-
gorithm specifically developed for CO problems.

In the context of this paper, QAOA can be seen
as a form of VQE with a specific choice of the
variational form that is derived from the problem
Hamiltonian H [7]. QAOA enjoys stronger con-
vergence properties than VQE. For some prob-
lems, it can be shown that QAOA determines a
quantum state with a guaranteed approximation
ratio with respect to the ground state [7, 8]; fur-
thermore, QAOA applies adiabatic evolution as
the circuit depth goes to ∞, implying that it will
determine the optimal solution of the CO prob-
lem if the depth of the variational form is large
enough and we can find the optimal circuit pa-
rameters.

Given a problem Hamiltonian corresponding to
a QUBO as defined in (3), the variational form of
QAOA is constructed with a layer of Hadamard
gates, followed by two alternating unitaries:

UC(γ) = e
−iγ

(

∑n

i=1
ciσ

i
Z

+
∑n

i,j=1
Qijσi

Z
⊗σ

j

Z

)

, (6)

UB(β) = e−iβ
∑n

i=1
σi

X , (7)

where σi
X denotes the Pauli X-matrix

σi
X =

(

0 1
1 0

)

(8)

acting on the i-th qubit. For a given depth p ∈ N,
the variational form is thus defined as:

U(β, γ) =

[

p
∏

i=1

UB(βi)UC(γi)

]

H⊗n, (9)

where β, γ ∈ R
p are vectors of variational pa-

rameters, and here, H denotes a Hadamard gate.
(The symbol H is overloaded in the quantum
computing literature; in this paper it generally
denotes the Hamiltonian, and in the few occasions
where it indicates a Hadamard gate, we note it
explicitly.) This yields the trial wave function:

|ψ(β, γ)〉 = U(β, γ) |0〉 , (10)

which replaces |ψ(θ)〉 in (1). As in VQE, the ex-
pected value is computed as the sample mean over
multiple observations from the quantum state,
and the algorithm returns the bitstring that leads
to the smallest Hk among all observed bitstrings
and choices of β, γ.

The number of variational parameters for
QAOA is thus 2p, compared to n(1+p) for VQE.
The circuit depth of the QAOA variational form
depends on n, p, and the number of clauses in the
problem Hamiltonian, which is a difference with
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respect to VQE. Every UB requires n single-qubit
X-rotations. One way to construct UC requires
a single-qubit Z-rotation for each ci 6= 0, and a
single-qubit Z-rotation plus two CNOT-gates for
each Qij 6= 0, yielding the term e−iγσi

Z
⊗σ

j

Z up to a
global phase. The circuits used in our implemen-
tation are described in Appendix A. In total, this
leads to O(n2p) single-qubit rotations and O(n2p)
CNOT-gates, but the scaling may be better than
the worst case if Q is sparse (i.e., there are few
two-qubit interactions).

4 CVaR Optimization

In quantum mechanics observables are defined as
expected values 〈ψ|H |ψ〉. This leads to the nat-
ural choice of the sample mean (5) as the objec-
tive function for the classical optimization prob-
lems embedded in VQE and QAOA. We argue
that for problems with a diagonal Hamiltonian,
such as CO problems, the sample mean may be
a poor choice in practice. This is because when
H is diagonal, there exists a ground state which
is a basis state. If determining the value Hj,j of
a basis state |j〉 is classically easy, the state with
the minimum eigenvalue computed by an algo-
rithm is simply the best measurement outcome
among all measurements performed. It is there-
fore reasonable to focus on improving the prop-
erties of the best measurement outcome, rather
than the average. We illustrate this intuition with
a simple example. Consider two algorithms A1

and A2 applied to a problem with Hamiltonian
H, minimum eigenvalue λmin and ground state
|j〉. Suppose A1 produces a state |ψ1〉 and A2

produces a state |ψ2〉, with the following prop-
erties: 〈ψ1|H |ψ1〉 /λmin = 1.1 and 〈j|ψ1〉 = 0;
〈ψ2|H |ψ2〉 /λmin = 2.0 and 〈j|ψ2〉 = 0.1. We ar-
gue that from a practical point of view, algorithm
A2 is likely to be more useful than A1. This is
because even if A1 leads to samples with a better
objective function value on average, A1 will never
yield the ground state |j〉; whereas A2, which is
much worse on average, has a positive and suf-
ficiently high probability of yielding the ground
state, so that with enough repetitions we can be
almost certain of determining |j〉.

In light of this discussion, one way to attain
our goal would be to choose, as the objective
function, the minimum observed outcome over a
set of measurements: min{H1, ...,HK}. However,

for finite K this typically leads to a non-smooth,
ill-behaved objective function that is difficult to
handle for classical optimization algorithms.

To help smooth the objective function, while
still focusing on improving the best measured out-
comes rather than the average, we propose the
Conditional Value at Risk (CVaR, also called Ex-
pected Shortfall) as the objective function. For-
mally, the CVaR of a random variable X for a
confidence level α ∈ (0, 1] is defined as

CVaRα(X) = E[X|X ≤ F−1
X (α)] (11)

where FX denotes the cumulative density func-
tion of X. In other words, CVaR is the expected
value of the lower α-tail of the distribution of X.
Without loss of generality, assume that the sam-
ples Hk are sorted in nondecreasing order, i.e.
Hk+1 ≥ Hk. Then, for a given set of samples
{Hk}k=1,...,K and value of α, the CVaRα is de-
fined as

1

⌈αK⌉

⌈αK⌉
∑

k=0

Hk. (12)

Note that the limit α ց 0 corresponds to the
minimum, and α = 1 corresponds to the ex-
pected value of X. In this sense, CVaR is a
generalization of both the sample mean (5), and
the best observed sample min{H1, ...,HK}. For
small, nonzero values of α, CVaR still puts em-
phasis on the best observed samples, but it leads
to a smoother and easier to handle objective func-
tion. It is clear that this can be applied to both
VQE and QAOA, simply by replacing the sample
mean (5) with CVaRα in the classical optimiza-
tion algorithm. We call the resulting algorithms
CVaR-VQE and CVaR-QAOA, respectively.

5 Analysis of CVaR Optimization

The optimization of CVaRα with α < 1 modifies
the landscape of the objective function of VQE
and QAOA as compared to the expected value,
i.e., α = 1. This is formalized next.

We need to define a random variable that en-
codes the classical objective function value of a
measurement outcome, i.e., the value of a bi-
nary string in the QUBO problem. Let X(θ)
be the random variable with outcomes Hj,j for
j ∈ {0, 1}n, i.e., the diagonal elements of the
Hamiltonian, and Prob(X(θ) = Hj,j) = |αj(θ)|2
where |ψ(θ)〉 =

∑

j αj(θ) |j〉. In other words,
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H •

RY (θ)

Figure 2: Variational form for the first part of Prop. 5.1.
Here, H indicates a Hadamard gate.

X(θ) represents the QUBO objective function as-
sociated with a single measurement taken on the
quantum state |ψ(θ)〉. Then the CVaR-version of
(1) can be written as:

min
θ

CVaRα(X(θ)). (13)

As it turns out, there is no well-defined mapping
between local minima of (1) and (13).

Proposition 5.1 A local minimum of (1) does
not necessarily correspond to a local minimum of
(13), and vice versa.

To show this, we first exhibit a local minimum of
(1) that is not a local minimum of (13). Consider
a two-qubit Hamiltonian H = diag(0, 1, 1, 2),
and variational form depicted in Fig. 2. It
is easy to verify that the quantum state con-
structed by this variational form is |ψ(θ)〉 =

1√
2
(cos θ

2 , sin
θ
2 ,− sin θ

2 , cos θ
2). Given the Hamil-

tonian, we have CVaR1(X(θ)) = E[X(θ)] =
cos2 θ

2 + sin2 θ
2 = 1 independent of θ, so every

value of θ is a local (in fact, global) minimum.
On the other hand, it is clear that for α < 1
there are values of θ that are not local minima:
for example, with α = 0.5 doing the calculations
shows that CVaR0.5(X(θ)) = sin2 θ

2 . Hence, the
only local minima are at θ = 2kπ for k integer.

The converse, i.e., a local minimum of (13) that
is not a local minimum of (1), is trivial: for any
problem (1) and parameters θ∗ such that |ψ(θ∗)〉
has overlap ρ > 0 with the ground state, θ∗ is
a global minimum of CVaRα(X(θ∗)) for α ≤ ρ,
even if θ∗ is not a local minimum of (1).

It is easy to see from the above discussion on
local minima that, in fact, we cannot even map
global minima of problems (1) and (13) to each
other. In fact, suppose a certain trial state |ψ(θ)〉
has overlap ρ with the ground state, then it is
a global optimum of (13) for any α ≤ ρ. On
the other hand, it is clear that it may not be a
global optimum of (1), depending on the varia-
tional form chosen. However, a specific case of
interest for this paper is that, in which the vari-
ational form is capable of reaching the ground

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

CV
aR

(
)

= 100%

=50% =1%

Figure 3: Objective function for different values of θ and
α: the top line corresponds to α = 1, the remaining lines
show decreasing values of α down to α = 0.01 for the
line in the bottom right.

state, and the Hamiltonian is diagonal; then the
above discussion implies that a global optimum
of Eq.(1) is also a global optimum of Eq.(13) for
any α.

Even if Prop. 5.1 indicates that mapping prop-
erties of the optimization problems (1) and (13)
is not trivial, the two-qubit example exhibiting a
local minimum of (1) that is not a local minimum
of (13) showcases a situation in which CVaR op-
timization is clearly preferrable. Indeed, using
(1) yields a constant objective function on which
no optimization can be performed. However,
CVaR with 0 < α < 1 yields a smooth objective
function that is optimized by decreasing θ. This
has a positive effect on the probability of sam-
pling the ground state |00〉, which is maximized
at θ = 0 in the interval [0, π]. The objective func-
tion (13) in this example for different values of α
is illustrated in Fig. 3.

It is important to remark that the natural em-
pirical estimator of CVaRα considers a subset of
the measurements only. This raises the question
of how to choose the number of samples for a par-
ticular value of α to achieve a certain accuracy.
The variance of the empirical CVaRα estimator
using K samples is O(1/(Kα2)) (see e.g., [13]),
implying that the resulting standard error in-
creases as 1/α. Thus, for a fixed number of sam-
ples K, to achieve the same accuracy as for the
expected value we need to increase the number of
samples to K/α. (We remark that although [13]
only shows this dependency for continuous distri-
butions, we expect it to be a good approximation
as the number of qubits increases.) As our nu-
merical experiments show, α can be chosen as a
constant, independent of the number of qubits,
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resulting in a constant increase of the number
of samples for fixed accuracy. A discussion on
the accuracy of the estimation from an empirical
point of view is given in Sec. 6.

6 Computational experiments

The preceding analysis shows that CVaR opti-
mization may improve certain properties of the
classical optimization problem solved in VQE and
QAOA. To verify if this is the case from an empir-
ical point of view, we test the proposed on multi-
ple random instances of six CO problems: max-
imum stable set, maximum 3-satisfiability, num-
ber partitioning, maximum cut, market split, and
portfolio optimization. Below, we give a brief de-
scription of these problems. A more detailed dis-
cussion of the instance generation and the map-
ping to a Hamiltonian can be found in [17] for all
problems except portfolio optimization, which is
discussed in Appendix B.

Maximum stable set Given an undirected
graph G = (V,E), a stable set (also called
independent set) is a set of mutually non-
adjacent vertices. The objective of the
maximum stable set problem is to find a
stable set of maximum cardinality.

Maximum 3-satisfiability The objective of
the maximum 3-satisfiability problem is to
find an assignment of boolean variables that
satisfies the largest number of clauses of a
boolean formula in conjunctive normal form,
where each clause has exactly three literals.

Number partitioning Given a set of numbers
S = {a1, ..., an}, the problem of num-
ber partitioning asks to determine disjoint
sets P1, P2 ⊂ {1, ..., n} with P1 ∪ P2 =

{1, ..., n}, such that
∣

∣

∣

∑

i∈P1
ai −∑

j∈P2
aj

∣

∣

∣ is
minimized.

Maximum cut Given a weighted undirected
graph G = (V,E) with edge weights wij , the
maximum cut problem aims to determine a
partition of V into two disjoint sets V1, V2

such that the sum of weights of edges that
connect V1 and V2 is maximized.

Market split The market split problem can be
described as the problem of assigning n cus-
tomers of a firm that sells m products to

two subdivisions of the same firm, such that
the two subdivisions retain roughly an equal
share of the market.

Portfolio optimization Given a set of n assets
{1, ..., n}, corresponding expected returns µi

and covariances σij , a risk factor q > 0 and a
budget B ∈ {1, ..., n}, the considered portfo-
lio optimization problem tries to find a sub-
set of assets P ⊂ {1, ..., n} with |P | = B such
that the resulting q-weighted mean-variance,
i.e.

∑

i∈P µi − q
∑

i,j∈P σij , is maximized.

For each problem except Max3Sat, we gen-
erate ten random instances on 6, 8, 10, 12, 14, and
16 qubits. Our formulation of Max3Sat requires
the number of qubits to be a multiple of three,
thus we use 6, 9, 12, and 15 qubits. For every
instance, we run CVaR-VQE and CVaR-QAOA
for α ∈ {1%, 5%, 10%, 25%, 50%, 75%, 100%} and
p = 0, 1, 2 for VQE and p = 1, 2, 3 for QAOA. In
total, this leads to 340 random problem instances
and 14, 280 test cases. Following [17], we use the
classical optimizer COBYLA to determine the pa-
rameters of the trial wave function.

In the first part of our experimental evaluation
(Sec. 6.1), we analyze the performance of the dif-
ferent algorithms using the exact quantum state
resulting from simulation. This allows us to pre-
cisely characterize the performance metrics that
we use. In the second part (Sec. 6.2), we study
the performance of the proposed approach using
existing quantum hardware.

6.1 Results I: Simulation

We compare the different algorithms by plotting
the resulting probability of sampling an optimal
solution versus the number of iterations of the
classical optimization algorithm. To make the
number of iterations comparable for problems of
different sizes, we normalize it dividing by the
number of qubits. We choose the probability of
sampling an optimal solution, rather than some
aggregate measure of the objective function value,
because all our algorithms use different metrics
in this respect: comparing algorithms with re-
spect to the average objective function value (or
CVaR with a different α) would not be informa-
tive. The probability of sampling an optimal so-
lution (i.e., the overlap with ground state) is a
reasonable metric that provides valuable informa-
tion across different values of α.
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Fig. 4 shows the fraction of instances that
achieve at least a certain probability of sampling
an optimal state (≥ 1% and ≥ 10%) with re-
spect to the number of normalized iterations for
CVaR-VQE / CVaR-QAOA (using all-to-all en-
tanglement). This fraction is shown for each con-
sidered variational form depth, p, and value of α.
The plots show that increasing p and decreasing
α has a positive impact on the performance.

For CVaR-VQE, using p = 2 and α = 1%,
within 50 normalized iterations we achieve at
least 1% probability of sampling an optimal state
for almost all instances. In contrast, with α =
100% (i.e., the expected value), we reach the same
probability of sampling an optimum only for 60%
of the test problems. Notice that the value of α
introduces a soft cap on the maximum probabil-
ity of sampling a ground state: for example, for
α = 10% we reach 10% probability to sample an
optimal solution for most of the test problems
in less than 50 normalized iterations, but with
α = 1% we reach 10% probability only in a small
fraction of problems. This is expected, because
the CVaR objective function with α = 1% does
not reward increasing the overlap with the ground
state beyond 1% probability.

For CVaR-QAOA, we observe improved per-
formance as p increases and α decreases (up to a
certain level). Comparing VQE and QAOA, we
observe that QAOA’s performance appears sig-
nificantly worse than that of VQE for equivalent
depth (where we compare depth p for VQE to
depth p+1 for QAOA). We conjecture that this is
due to the limited number of variational param-
eters in QAOA: only 2p, compared to n(1 + p)
for VQE. An intuitive explanation is that the
state vector obtained with QAOA is thus rela-
tively “flat”, and never reaches a large overlap
with the ground state. This intuitive explana-
tion is formalized in Sec. 7. In the context of
this paper, one of QAOA’s characteristics, i.e.,
the concentration around the mean [7], may be-
come a weakness in the practical context of sam-
pling the optimum (or a near-optimal solution)
with sufficiently large probability. To improve
QAOA’s performance we would have to increase
the depth. Since the current generation of quan-
tum hardware is affected by non-negligible gate
errors and decoherence, successfully implement-
ing circuits with large depth may be out of reach
for the moment.

To ensure that the positive effect of CVaR op-
timization is not lost when the problem size in-
creases, we look at the results across different
number of qubits and values of α. The corre-
sponding plots are given in Fig. 5 for a proba-
bility of sampling the optimum of 10%; a simi-
lar figure for 1% probability is available in Ap-
pendix C. Fig. 5 shows that for a small number
of qubits there is a ceiling effect, i.e., all meth-
ods perform similarly because the problem is easy
for all methods, but as soon as problem size in-
creases, the benefits of CVaR optimization (with
α ∈ [0.01, 0.25]) are obvious in the plots.

6.2 Results II: Quantum Device

To test CVaR optimization on quantum hard-
ware, we consider an instance of the portfolio op-
timization problem with 6 assets mapped to 6
qubits, see Appendix B. We choose portfolio op-
timization because the problems of this class are
some of the most difficult of our testbed.

We test CVaR-VQE on the IBM Q Poughkeep-
sie 20-qubit quantum computer, with COBYLA
as the classical optimizer. In this section we ap-
ply nearest neighbor entanglement instead of all-
to-all entanglement. We choose 6 qubits on the
device that are connected in a ring (qubits 5, 6,
7, 10, 11, and 12), thus achieving a cyclic entan-
glement without additional swap operations; see
Appendix B for more detail. We use CVaR-VQE
rather than CVaR-QAOA because for the same
circuit depth it leads to better solutions, as dis-
cussed in Sec. 6.1.

We run CVaR-VQE with depth p = 1 and
α = 10%, 25%, 100%, repeating each experiment
five times. We gather 8,192 samples from each
trial wavefunction, studying the probability of
measuring a ground state with respect to the
number of iterations of the classical optimization
algorithm. To illustrate the convergence of the al-
gorithm, we also plot the progress in the objective
function value. Note that the reported objective
function values for different values of α are incom-
parable. To reduce variance in the experiments,
we fix the initial variational parameters to θ = 0.
Results are reported in Fig. 6. Similar plots for
depth p = 0 and p = 2 are given in Appendix B.

We see that the smaller the α, the earlier the
probability of sampling an optimal solution in-
creases. For α = 100%, the probability stays al-
most flat and makes little progress. The plots
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Figure 4: Summary of the results with VQE (left) / QAOA (right) using quantum states resulting from classical
simulation. On the x-axis we plot the normalized number of iterations, on the y-axis the fraction of the instances
that attain a certain probability of sampling an optimal basis state. Each plot contains results for different levels of
α (reported as aX% in the legend), and the depth increases from top to bottom.

of the objective function also show that α <
100% speeds up the convergence of the objec-
tive function values to a (local) optimum. For
α = 10%, 25% the probability of finding the op-
timal solution attains the corresponding α-level
in all 5 experiments, whereas for α = 100% the
probability remains very small. Recall that the
CVaR objective function does not provide any in-
centive to increase the overlap with the optimal
solution beyond α.

In addition to the improved convergence behav-
ior already demonstrated in Sec. 6.1 using classi-
cal simulation, the CVaR objective function also
seems to be able to cope with the noise and er-
rors introduced by the quantum hardware. In-

deed, on quantum hardware we observe the same
beneficial effect on the speed of convergence that
was observed in the noiseless simulation results.
A possible explanation is that the CVaR objec-
tive function allows us to ignore some of the low-
quality samples from the quantum state. In other
words, even if we do not reach the ground state
(which may be difficult to detect in the presence
of noise), CVaR focuses on ensuring that at least
some of the samples have a low objective func-
tion value, which may be a more attainable goal
and seems to drive the classical optimization al-
gorithm in the right direction. This effect makes
the CVaR objective particularly well-suited for
experiments on noisy quantum computers.
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Figure 5: Summary of the results with VQE (left) / QAOA (right) using quantum states resulting from classical
simulation, after 50 normalized iterations of the classical optimization algorithm. On the vertical z-axis we plot the
fraction of instances that attain 10% probability of sampling the optimal solution, on the xy-plane we indicate the
number of qubits and the value of α.

We end this section with a discussion on the
impact of α on the number of samples. As dis-
cussed in Sec. 5, to obtain the same accuracy
as the expected value we would need to increase
the number of samples by a factor 1

α
. Results

in this paper suggest choosing α ∈ [0.1, 0.25] as
a good empirical choice, implying that the num-
ber of samples should be increased by a factor
[4, 10] to attain the same accuracy. However, our
empirical evaluation uses the same, fixed num-
ber of samples across all α, and still shows sig-
nificant benefits of CVaR optimization. A pos-
sible explanation is that as long as the number
of samples allows a reasonable estimation of the
CVaR objective function, the loss in estimation
accuracy (as compared to the expected value) is
counterbalanced by the fact that the CVaR ob-
jective is more effective at guiding the classical

optimization algorithm toward a quantum state
that overlaps with the optimal solution. Thus, in
our empirical evaluation even a noisy CVaR esti-
mate yields better results than a more accurate
expected value estimate.

7 On the performance of QAOA

In this section we formalize our intuition that,
due to the small number of variational parame-
ters, QAOA may produce relatively “flat” state
vectors, i.e., with amplitudes of similar magni-
tude. We initially observed this behavior empir-
ically, and it can be made precise under some
additional conditions.

Proposition 7.1 Assume that we apply QAOA
to a problem on n qubits with objective function
encoded in a diagonal Hamiltonian H with di-
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Figure 6: Quantum hardware results for portfolio op-
timization problem with six assets/qubits. CVaR-
VQE results are shown for depth p = 1 and α =
10%, 25%, 100% (from top to bottom) and five runs
with 8,192 samples for each α. Plots on the left: re-
sulting objective values per iteration; plots on the right:
resulting probability of sampling an optimal solution.
Since COBYLA converges after a different number of
iterations in each run, we assume that the contribution
of each run to the average value after termination of that
run is its last reported value. The α-levels 10% and 25%
are indicated by the gray dashed lines in all probability
plots.

agonal elements Hj,j , j = 1, . . . , 2n. Let δ :=
maxℓ |{j ∈ {0, 1}n : Hj,j = ℓ}|/2n, i.e., the
maximum fraction of basis states having the same
eigenvalue. Let |ψp〉 =

∑

z αp,z |z〉 be the quantum
state produced by QAOA with depth p. Let ∆p be
a lower bound on the maximum fraction of am-
plitudes that are equal after iteration p of QAOA,
i.e., ∆p := mint≤p maxu∈C |{j ∈ {0, 1}n : αt,j =
u}|/2n. Then |αp,z| ≤ (2n+1(2 − ∆p−1 − δ) +
1)p 1√

2n
for all z ∈ {0, 1}n. Furthermore, ∆0 = 1,

but the value of ∆p may decrease exponentially
fast in p.

The proof of the above proposition is given in
Appendix D. While the statement is technical,
we discuss some special cases that provide an
intuition. When p = 1 and most of the diag-

onal values of the Hamiltonian are equal, say,
δ ≥ 1 − 2−n( 1

2
+ǫ), ǫ > 0, then the resulting

state vector is necessarily flat: all the amplitudes
are exponentially small O( 1

2ǫn ). This situation is
easy to envision: when the Hamiltonian does not
provide enough information on the distribution
of objective function values, QAOA with small
depth cannot transfer enough probability mass
to any basis state. This is the case, for instance,
in the Grover “needle in a haystack” problem [11]
where a unique z∗ has objective function value
Hz∗,z∗ = 1 and Hz,z = 0 for all other z ∈ {0, 1}n.
Another example is given by the feasibility ver-
sion of the market split problems, see the analysis
on the number of solutions in [1]. The Hamiltoni-
ans that necessarily lead to flat state vectors are
those with δ,∆p ≥ 1 − 2−n( 1

2
+ǫ); notice that in-

tuitively, δ ≈ 1 is more likely to lead to ∆p ≈ 1,
although our proof in Appendix D shows a very
loose lower bound on ∆p that is exponentially de-
creasing in p. Another way to interpret Prop. 7.1
is that QAOA requires the diagonal elements of
the Hamiltonian (i.e., objective function values)
to be well-distributed to effectively “mix” and in-
crease the amplitudes. This can also be achieved
increasing p, say, linearly in n, but for fixed p
there is the risk that the amplitudes remain flat.
While this may still lead to a good average ob-
jective function value, it may not put enough em-
phasis on the tail of the distribution of objective
function values to sample an optimal or a near-
optimal solution. Notice that examples of this are
also discussed in the seminal paper [7]: the pa-
per shows that for MaxCut on 2-regular graphs,
QAOA produces a state with approximation ra-
tio 3/4 but exponentially small overlap with the
optimal solution.

8 Conclusions

We introduce improved versions of the hybrid
quantum/classical algorithms VQE and QAOA
for CO, based on the CVaR aggregation func-
tion for the samples obtained from trial wave-
functions. We provide theoretical and empirical
results, showing an increase in performance com-
pared to approaches in the literature. This in-
cludes a demonstration on IBM’s quantum hard-
ware, where the algorithm that we propose shows
the ability to reach an optimal solution much
faster.
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Code Availability

A notebook providing the code to run
CVaR-VQE is available open source at
https://github.com/stefan-woerner/cvar_

quantum_optimization/
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A Implementation of QAOA

As discussed in the main text, implementing the
blocks UB and UC of QAOA requires both single-
qubit rotations and CNOT-gates. The implemen-
tation of UB is trivial in Qiskit, as X-rotations RX

are natively supported, we can apply RX(−2β)
to each qubit to implement UB. For UC , a possi-
ble implementation for e−iγσi

Z
⊗σ

j

Z up to a global
phase is depicted in Fig. 7 using two CNOT-gates
and one single-qubit Z-rotation RZ (both also na-
tively supported in Qiskit).

• •
RZ(−2γ)

Figure 7: Implementation of e−iγσi
Z ⊗σ

j

Z up to a global
phase.

B Portfolio Optimization on Quantum

Device

The portfolio optimization problem considered in
Sec. 6.2 is given by

max
x∈{0,1}n

n
∑

i=1

µixi − q
n
∑

i,j=1

σijxixj − λ

(

B −
n
∑

i=1

xi

)2

,

where we subtract a penalty term weighted by λ
to enforce the budget constraint

∑n
i=1 xi = B.

We choose n = 6, q = 0.5, B = 3, and λ = 12.

Figure 8: Connectivity of IBM Q Poughkeepsie. We
use qubits 5, 6, 7, 10, 11, and 12, and entangle near-
est neighbors, i.e., we achieve a cyclic entanglement for
every layer in the considered variational form.

The used return vector µ and positive semidef-
inite covariance matrix σ were generated ran-
domly and are given by:

µ = ( 0.7313 0.9893 0.2725 0.8750 0.7667 0.3622 )

σ =






0.7312 −0.6233 0.4689 −0.5452 −0.0082 −0.3809

−0.6233 2.4732 −0.7538 2.4659 −0.0733 0.8945

0.4689 −0.7538 1.1543 −1.4095 0.0007 −0.4301

−0.5452 2.4659 −1.4095 3.5067 0.2012 1.0922

−0.0082 −0.0733 0.0007 0.2012 0.6231 0.1509

−0.3809 0.8945 −0.4301 1.0922 0.1509 0.8992







The corresponding Hamiltonian can be con-
structed as described e.g. in Sec. 2 and the refer-
ences mentioned therein.

The variational form is constructed as de-
scribed in Sec. 2 with nearest neighbor entangle-
ment. The topology of IBM Q Poughkeepsie, the
selected qubits and the entanglement are illus-
trated in Fig. 8.

In the remainder of this section, we report re-
sults for depth p = 0 and p = 2; for the overall
setup, as well as results for p = 1, see Section 6.2.

For p = 0, Fig. 9 shows that results for α =
10% and α = 25% are similar to those for p = 1.
However, for α = 100% the probability of sam-
pling a ground state first increases to 5% on aver-
age, then it drops close to zero, even though the
objective function improves. This is an exam-
ple where improving the objective value does not
necessarily imply getting a better overall solution
(i.e., binary string), and highlights our motiva-
tion of using CVaR as the objective in contrast
to the expected value.
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Figure 9: Quantum hardware results for portfolio op-
timization problem with six assets/qubits. CVaR-
VQE results are shown for depth p = 0 and α =
10%, 25%, 100% (from top to bottom) and five runs
with 8,192 samples for each α. Plots on the left: re-
sulting objective values per iteration; plots on the right:
resulting probability of sampling an optimal solution.
Since COBYLA converges after a different number of
iterations in each run, we assume that the contribution
of each run to the average value after termination of that
run is its last reported value. The α-levels 10% and 25%
are indicated by the gray dashed lines in all probability
plots.

For p = 2, Fig. 10 again shows that results
for α = 10% are similar to those for p = 0, 1. Al-
though the probability of sampling a ground state
is not always exceeding α as before, it reaches
that level on average. However, for α = 25% the
probability of sampling a ground state does not
reach α anymore, but plateaus slightly below. For
the expected value, i.e., α = 100%, we again see
a probability of the ground state which is close
to zero and that decreases after an initial small
increase.

C Additional plots

Fig. 11 shows additional results for VQE and
QAOA for different values of α, different num-
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Figure 10: Quantum hardware results for portfolio
optimization problem with six assets/qubits. CVaR-
VQE results are shown for depth p = 2 and α =
10%, 25%, 100% (from top to bottom) and five runs
with 8,192 samples for each α. Plots on the left: re-
sulting objective values per iteration; plots on the right:
resulting probability of sampling an optimal solution.
Since COBYLA converges after a different number of
iterations in each run, we assume that the contribution
of each run to the average value after termination of that
run is its last reported value. The α-levels 10% and 25%
are indicated by the gray dashed lines in all probability
plots.

bers of qubits, and an overlap with the optimal
solution of 1%.

D Proof of Proposition 7.1

We show this by induction on p. Let up be the
arg max in the definition of ∆p for t = p. With
p = 0, QAOA only applies a layer of Hadamard
gates, therefore it is obvious that |α0,z| = 1√

2n
.

We now show the induction step. Recall that
the p+ 1-th layer of QAOA applies two unitaries
UC(γ), UB(β) to the state |ψp〉, in the given or-
der. Here, the objective function value of a basis
state |z〉 is denoted Hz,z for consistency with the
rest of the paper. In classical QAOA notation,
it is typically denoted C(z) :=

∑m
k=1Ck(z), with
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Figure 11: Summary of the results with VQE (left) / QAOA (right) using quantum states resulting from classical
simulation, after 50 normalized iterations of the classical optimization algorithm. On the vertical z-axis we plot the
fraction of instances that attain 1% probability of sampling the optimal solution, on the xy-plane we indicate the
number of qubits and the value of α.

Ck(z) = 0 if string z does not satisfy the k-th
clause, Ck(z) = 1 otherwise, and the goal is to
maximize C(z). We can simply think of H as en-
coding C, i.e., Hz,z = C(z). Let |φ〉 be the state
obtained after applying UC(γ). We have:

|φ〉 = UC(γ) |φp〉 =
∑

z

αp,ze
−iγHz,z |z〉 .

Finally we apply UB(β) = (e−iβX)⊗n to obtain
the state |ψ〉 =

∑

z αp+1,z |z〉. Let e−iβX =
(

a00 a01

a10 a11

)

. By definition, for every basis state

|j〉, we have:

αp+1,j =
∑

z

n
∏

h=1

ajhzh
αp,ze

−iγHz,z (14)

=
∑

z

n
∏

h=1

ajhzh
αp,ze

−iγℓ+

∑

z

n
∏

h=1

ajhzh
αp,ze

−iγℓ
(

e−iγ(Hz,z−ℓ) − 1
)

=
∑

z

n
∏

h=1

ajhzh
upe

−iγℓ+

∑

z

n
∏

h=1

ajhzh
(αp,z − up)e−iγℓ+

∑

z

n
∏

h=1

ajhzh
αp,ze

−iγℓ
(

e−iγ(Hz,z−ℓ) − 1
)

=
(

(a00 + a01)
∑

h
jh(a10 + a11)n−

∑

h
jh

upe
−iγℓ

)

+

∑

z

n
∏

h=1

ajhzh
(αp,z − up)e−iγℓ+

∑

z

n
∏

h=1

ajhzh
αp,ze

−iγℓ
(

e−iγ(Hz,z−ℓ) − 1
)

.
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So

|αp+1,j | ≤
∣

∣

∣(a00 + a01)
∑

h
jh(a10 + a11)n−

∑

h
jhupe

−iγℓ
∣

∣

∣+
∣

∣

∣

∣

∣

∑

z

n
∏

h=1

ajhzh
(αp,z − up)e−iγℓ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

z

n
∏

h=1

ajhzh
αp,ze

−iγℓ
(

e−iγ(Hz,z−ℓ) − 1
)

∣

∣

∣

∣

∣

.

Recalling that a00 = a11 = cosβ, a01 = a10 =
−i sin β, and |up| ≤ max |αp,z|, it follows that
∣

∣

∣(a00 + a01)
∑

h
jh(a10 + a11)n−

∑

h
jhupe

−iγℓ
∣

∣

∣ ≤
max

z
|αp,z|.

We also have:
∣

∣

∣

∣

∣

∑

z

n
∏

h=1

ajhzh
(αp,z − up)e−iγℓ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

z:αp,z 6=up

n
∏

h=1

ajhzh
(αp,z − up)e−iγℓ

∣

∣

∣

∣

∣

∣

≤

2n(1 − ∆p)

∣

∣

∣

∣

∣

n
∏

h=1

ajhzh

∣

∣

∣

∣

∣

|(αp,z − up)|
∣

∣

∣e−iγℓ
∣

∣

∣ ≤

2n(1 − ∆p)(|αp,z| + |up|) ≤
2n(1 − ∆p)(2 max

z
|αp,z|).

We now need to find an upper bound to the term
∣

∣

∣

∑

z

∏n
h=1 ajhzh

αp,ze
−iγℓ(e−iγ(Hz,z−ℓ) − 1)

∣

∣

∣. We
obtain:

∣

∣

∣

∣

∣

∑

z

n
∏

h=1

ajhzh
αp,ze

−iγℓ(e−iγ(Hz,z−ℓ) − 1)

∣

∣

∣

∣

∣

≤

∑

z

n
∏

h=1

∣

∣

∣ajhzh
αp,ze

−iγℓ
∣

∣

∣

∣

∣

∣(e−iγ(Hz,z−ℓ) − 1)
∣

∣

∣ ≤
∑

z

|αp,z|
∣

∣

∣(e−iγ(Hz,z−ℓ) − 1)
∣

∣

∣ ≤

max
z

|αp,z|
∑

z:Hz,z=ℓ

∣

∣

∣(e−iγ(ℓ−ℓ) − 1)
∣

∣

∣+

max
z

|αp,z|
∑

z:Hz,z 6=ℓ

∣

∣

∣e−iγ(Hz,z−ℓ) − 1
∣

∣

∣ ≤

2 max
z

|αp,z|2n(1 − δ)

Thus, we have

|αp+1,j | ≤ (2n+1(2 − ∆p − δ) + 1) max
z

|αp,z|

≤ (2n+1(2 − ∆p − δ) + 1)p+1 1√
2n
,

where we used the fact that ∆p is decreasing in
p by definition. It is also useful to determine a
lower bound on ∆p. It is clear that ∆0 = 1 be-
cause for p = 0 all amplitudes are equal. To find
a lower bound on ∆p+1 based on ∆p, we look
at the last line of (14), which decomposes αp+1,j

into three summations. The first summation has
n possible different values. The second summa-
tion has at most n2

4 possible coefficient values for
each z: this is because

∏n
h=1 ajhzh

can be com-
puted by looking at which zh are 1 and count-
ing how many corresponding jh are 1, then do-
ing the same for zeros. The largest number of
combinations is obtained when z has n/2 bits
equal to 1, yielding (n/2)2 combinations. Since
there are (1 − ∆p)2n nonzero terms in the sum-
mation, in total we obtain at most (n2/4)(1−∆p)2n

different values. The third summation is simi-
lar: n2

4 possible coefficient values for each z, and
(1 − δ)2n nonzero terms, for a total of at most
(n2/4)(1−δ)2n

different values. In total, there are
at most n(n2/4)(2−δ−∆p)2n

different values of αj .
Hence, ∆p+1 ≥ 1/(n(n2/4)(2−δ−∆p)2n

). With
algebraic manipulations, we obtain a (possibly

very loose) bound ∆p ≥ ( 1
n3 )

2n(1−δ+ p−1

p
) when-

ever p ≥ 1.
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