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ABSTRACT In visual reasoning, the achievement of deep learning significantly improved the accuracy

of results. Image features are primarily used as input to get answers. However, the image features are too

redundant to learn accurate characterizations within a limited complexity and time. While in the process

of human reasoning, abstract description of an image is usually to avoid irrelevant details. Inspired by this,

a higher-level representation named semantic representation is introduced. In this paper, a detailed visual

reasoning model is proposed. This new model contains an image understanding model based on semantic

representation, feature extraction and process model refined with watershed and u-distance method, a feature

vector learning model using pyramidal pooling and residual network, and a question understanding model

combining problem embedding codingmethod andmachine translation decodingmethod. The feature vector

could better represent the whole image instead of overly focused on specific characteristics. The model

using semantic representation as input verifies that more accurate results can be obtained by introducing

a high-level semantic representation. The result also shows that it is feasible and effective to introduce

high-level and abstract forms of knowledge representation into deep learning tasks. This study lays a

theoretical and experimental foundation for introducing different levels of knowledge representation into

deep learning in the future.

INDEX TERMS VQA, the semantic net, visual reasoning, deep learning.

I. INTRODUCTION

Visual Question Answering (VQA) combines natural lan-

guage processing with digital image processing. The general

process for solving a VQA problem is to take the image

and the corresponding question as input and finally get the

answer [1]. The problems which are similar to VQA require

more interdependent inference steps to solve.

The research is mainly divided into the non-deep learn-

ing model and deep learning model. Most non-deep

learning models are based on Bayesian theory. Some

researchers [2]–[13] proposed a Bayesian framework, pre-

dicting the type of answer to a question and generating an

answer. Mateusz et al. proposed the multi-world question and

answer model in 2014, proposed the DAQUAR data set, and

modeled visual question and answer as SWQA model [14].

Kafle et al. proposed a Bayesian framework for solving

The associate editor coordinating the review of this manuscript and

approving it for publication was Seifedine Kadry .

visual Q&A in 2016. The framework generates the answer

based on the prediction of the answer type [2]. As shown

from the introduction above, those non-deep learning models

performed poorly.

With the improvement of deep learning research, its

research on the VQA field is becoming more mature.

Aishwarya et al. proposed a production of the drestm

Q + Norm I model in 2015 [15]. In the same year,

Mengye et al. [16] proposed the VIS+LSTM model.

Based on this, three variant models were constructed

2-VIS+BLSTM, IMG+BOW, and FULL. In 2015,

Mateusz et al. proposed a neural-image-QA model, which is

also known as the Neural query model [6], [17]. The feature

of this model is that it can generate answers of variable length.

Shih’s work attempts to introduce attention mechanisms into

VQA tasks [18].

The model’s input is an image feature of a question,

possible answers, and a series of automatically selected

candidate areas. The work of Noh et al. USES the parameter
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prediction network to generate dynamic parameters.

Change VGG-16 [19] into A CNN network with three fully

connected layers. This paper’s main contribution is the com-

bination of CNN and Dual Path Networks (DPN) to process

ImageQA tasks. Jiasen Lu et al. proposed a multi-mode

attentionmodel of co-attention+QuestionHierarchy to solve

VQA tasks [5], [20]. The basic idea of co-attention is to

use the image to get the problem’s attention weight and use

it to get the image area’s weight. Question Hierarchy is a

three-layer hierarchical structure of questions.

The first layer is the word level, which is used to represent

each word as a word vector. The second layer is the phrase

level, which adopts one-dimensional CNN to extract features.

The third layer is question level, and RNN is used to encode

the whole question. Andreas et al. proposed a modular neural

network model in 2016 [21]. The model first USES a syn-

tactic parser to split questions into corresponding linguistic

substructures. The modularized neural network is selected

automatically according to the structure. They validated the

model on the VQA dataset [15], and the results reached a

leading level at that time. On this basis, the inference and

execution procedure for visual reasoning was proposed by

William Li et al. [22].

DeepMind came up with relational networks for rela-

tional reasoning in 2017. The whole model has only two

types of network, CNN and the full connection layer, with a

straightforward structure. However, the experimental results

are outstanding, reaching the leading level in the CLVER

data set [23]. Although deep learning models have made

significant progress, it still has a large gap. Current visual rea-

soningmodels aremainly to take pictures or image features as

input. The difference is that humans use high-level, abstract

information to describe the relationship. In the latest research,

it was found that other researchers have also realized this

problem and tried to use semantic information as input [24].

Therefore, in this research, we use the semantic represen-

tation of the image as input to explore whether introducing

high-level semantic representation can be better. If better

results can be gained, this idea can be introduced to other

computer vision areas, even deep learning.

This research’s primary goal is to replae image features and

explore whether this replacement can lead to a better result.

Semantic representation is readable and straightforward and

can be further processed. Finally, the split semantic represen-

tation was combined with a particular rule to observe. The

primary process of our research is as follows

A method of replacing the visual features of images with

the semantic representation of images as a visual reason-

ing model input is proposed in this paper. This paper’s

method is based on the baseline model prosed in previous

works [1]. We combine the parts and techniques involved

in the method and construct weakened image processing

and natural language processing. Based on the previous

point [1], we improve the general method of extracting the

general image’s semantic representation. After extracting the

image’s semantic representation, two understanding modules

are combined to form a high accuracy coding and decoding

model of the representation vectors. Finally, we can test the

final model and compare it with existing works by others.

II. DATASET

The Feifei Li team proposed the CLEVR data set used as the

main data source of this study [25]. The data set contains

three-dimensional images rendered with Blender and ques-

tions that require multiple steps of reasoning to get answers.

The scene of CLEVR is completely generated by the pro-

gram, and every detail is controllable, so there is a minimal

bias. At the same time, the data set also provides a reasoning

process, which is convenient for researchers to construct a

reasoning system close to human logic [25]. This data set is

used to analyze a variety of modern visual reasoning systems

and is currently the mainstream data set in the field of visual

reasoning.

CLEVR dataset contains 100,000 rendered 3D images and

approximately 1 million auto-generated questions, of which

853,000 are different [10], [25].

III. METHOD

A. OBJECT DETECTION AND RECOGNITION

The main task of object detection and recognition is a com-

puter vision task to distinguish the objects and irrelevant

parts of the image, determine whether there are potential

targets in the region, identify target types and determine the

location of the target. There are some mainstream methods

of target detection and recognition, such as R-CNN [26],

Fast R-CNN [27], Faster R-CNN [27], Mask R-CNN [28],

etc. which are all combined with the deep learning model

with the region and high-performance classifier to complete

the detection and recognition task. The advantage of this

model is that it can obtain high detection and recognition

accuracy, while the disadvantage is that the implementation of

the whole model needs a lot of computation, which requires

a high demand on hardware, and it is difficult to achieve

real-time processing and has a long delay. After considering

these, Liu et al. proposed a regression-based target detection

and recognition method SSD similar to YOLO [29].SSDS are

end-to-end models, so all identification and detection models

can be trained and executed over a network. SSD made some

improvements on the basis of YOLO. First, SSD introduced

the anchor mechanism in Fast R-CNN [27], adding the idea

of regional Suggestions on the basis of regression. Secondly,

instead of using the global features of images, SSD uses

the deep features around each target to detect and identify

the target, extracts features from the feature maps of differ-

ent depths of the deep neural network, and then uses these

features to predict the target by regression. Therefore, SSD

can make more judgments on a target by using multi-scale

information and improve the accuracy without affecting the

speed. The disadvantage of SSD is that it is sensitive to

the size of the target object, and it is not as effective as

the mainstream region-based recommendation method when

making boundary box predictions for small objects.
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FIGURE 1. SSD Network [30], [31].

SSD algorithm can be divided into four parts: firstly,

the depth features of the input images are obtained through

the deep neural network; Then, according to the depth feature

graph of different scales, different sizes of feature capture

boxes are constructed to train with the real target frame as

ground-truth. Then the features of the depth feature graph

corresponding to the feature capture box are extracted to

predict the target category and the real frame of the target in

the capture box. At last, non-maximum Suppression (NMS)

is used to filter the best prediction results. During training,

SSD only receives images as input, and the categories and

positions of objects in the images are used as training labels.

No other information is needed. The structure of the model is

shown in Fig. 1.

The input of the SSD model is an RGB image in the size

of 300px × 300px, and then the feature of the whole image is

extracted by vgg-16. In order to extract multi-scale features,

multiple CNN layers with different scales were added after

VGG-16. As shown in Fig. 1, the subsequent featuremap used

for identification and detection includes conv4_3, conv7,

conv8_2, conv9_2, conv10_2, and conv11_2, which are used

for multi-scale feature extraction and result prediction. The

loss function of the model is:

L(x, c, l, g) =
1

N
· (Lconf (x, c) + α · Lloc(x, l, g)) (1)

N represents the number of matching boxes. The function

of x is to mark whether the corresponding feature fetching

box contains the corresponding target, and x
p
ij = Error! Book-

mark not defined. indicates whether the ith box matches the

boundary box of the jth target of the p type object. The x

sets as 1 when matches, and as 0 when not match. So if the
∑

i x
p
ij ≥ 1 shows the target bounding box have more than or

equal to 1 box to match.

SSD requires the training set to have a label for each image

and each object in the image. The tag includes the type of

object and its mask. Usually, this part needs to be manually

marked, which requires a lot of labor and time. In this study,

we introduced the watershed and u-net method to reduce the

labor and time cost.

1) WATERSHED

Considering the small number of training samples for target

detection, most mainstream target detection and recognition

models [26]–[30] need to learn a lot of relevant representa-

tions, including but not limited to classification representa-

tion and location regression representation. Therefore, these

deep learning exercises need to rely on a large number of

training samples. When the sample size is small, the training

results are poor. In this case, deep learning combined with

traditional image processing is used to detect the target in

this study. Firstly, a deep learning model is used to obtain an

intermediate result according to the original image, and then a

traditional image processing algorithm is used to process the

intermediate result to obtain the final target detection result.

In addition, the work of object recognition is transferred to

object attribute extraction, which reduces the representation

of the object detection model.

In traditional computer vision, watershed segmentation is

one of the standard methods to separate overlapping objects

from images. The watershed algorithm is an image region

segmentation algorithm whose essence is morphological seg-

mentation method based on topology theory. The basic prin-

ciple is to connect the points with similar positions and

grayscale to form a closed interval. The basic steps of image

segmentation using a watershed segmentation algorithm can

be divided into three parts. Firstly, the color image needs to

be converted into a grayscale image, and then the gradient

of the grayscale image is calculated. Finally, the watershed

algorithm is applied according to the gradient image.

2) U-NET

The more direct idea is to change the distribution of the

DistanceMap to improve the over-segmentation phenomenon

in watershed segmentation. The traditional solution is to esti-

mate the location of tags to guide the segmentation of sub-

sets [32], [33], but it is not a good operation in practice [34].

91478 VOLUME 9, 2021



W. Zheng et al.: Improving Visual Reasoning Through Semantic Representation

FIGURE 2. Maximum pooling of space pyramid.

The idea [34] is to train a neural network to learn the direc-

tion from the point inside each entity to the boundary, and

then train a neural network to learn the energy level of the

point inside the entity according to the direction diagram and

finally apply the energy level to the watershed algorithm.

Based on this idea, in this experiment, there can be only

one marker inside each entity, and the Distance Map value of

the pixel inside each entity is the Distance from this point to

the marker point. After that, the Distance Map value inside

each entity is normalized to ensure that the center Distance

of the entity is the largest and the edge is the smallest.

In this way, we can ensure that the dividing watershed is the

boundary of the entity. In the previous section, u-net was first

used to obtain the mask of the original picture, and then the

Distance Map of the mask was calculated. Finally, watershed

segmentation was applied. The U-net will be directly used to

learn the above construction method of Distance Map, and

then the U-net results will be directly applied to watershed

segmentation.

B. FEATURE VECTOR LEARNING

1) PYRAMIDAL POOLING OF SPACE

Since the picture of CLEVR is a 3D scene, the size of

the bounding box, which is detected by the target, is not

fixed because of the perspective; that is, the image size of

each object that is cropped is different. In the study of this

section, the models used to extract the properties of objects

are mostly multi-layer CNNs plus multi-layer fully connected

layer neural networks. For the convolutional layer, only one

convolution kernel is slid on the image during operation. The

parameters of the model are independent of the size of the

input. For any size image, it can be treated as input, but

the size of the output feature image will follow The size of

the input image changes. The fully connected layer needs

to connect each input pixel, so the parameters of the fully

connected layer are related to the size of the input. Therefore,

for a general classification model, it is necessary to scale or

crop the object detected by the target to the same size in order

to fix the number of parameters of the entire fully connected

layer. However, scaling or cropping the image will result

in loss and distortion of the image information to a certain

extent, which limits the final recognition accuracy. Therefore,

in this section, we will use the Spatial Pyramid Pooling (SPP)

in SPP-Net of He et al. [35] tomake the neural network accept

images of different sizes as input.

As shown in Fig. 2, when inputs a picture, the method

divides a picture with different scales. In the figure, the input

featuremap is divided into three different scales of 1×1, 2×2,

and 4×4, and finally, a total of 4×4+2×2+1×1 = 21 blocks

are obtained. A feature is then extracted from each block for

a total of 21 dimensions. After the pooling operation, there

are various pooling operations, including but not limited to

average pooling and maximum pooling [36]. The maximum

pooling of the space pyramid is to use the maximum pooling

operation for these 21 feature blocks. SPP can convert an

image of any size into a fixed-size feature block. Each of the

divided scales is called a layer of a gold tower, and a feature

block size is called a window size. For a layer of the pyramid,

it is necessary to pool with a window size of size (w/n, h/n)

to output a feature of n × n.

When the input of the multi-layer neural network is an

image of any size, the conventional convolution and pooling

can be performed until the network is down to several layers,

and the SPP layer can be used when the connection layer is

to be connected. Thereby, feature maps of any size can be

converted into feature vectors of fixed dimensions.

2) RESIDUAL NETWORK

The residual network was proposed by He Kaiming et al.

in ‘‘Deep Residual Learning for Image Recognition’’

in 2015 [37]. The residual network belongs to the deep con-

volutional network and won the championship in the three

images of ImageNet’s image classification, detection, and

positioning. The advantage of the residual network is that it

is easier to optimize than the traditional convolutional neural

network, and the residual network solves the degradation

problem caused by the increased depth of the neural network,
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FIGURE 3. Generic property extraction model that can be used to extract the shape, color, and material of an
object.

so the performance of the model can be further improved by

simply increasing the depth of the network.

The first problem that may arise with increasing the depth

of the neural network is the gradient disappearance or gra-

dient explosion. This problem was solved smoothly by the

Batch Normalization (BN) structure proposed by Ioffe and

Szegedy [38] The reasonwhyBN is useful is that the BN layer

can normalize the output of each layer so that the gradient can

remain dimensionally stable after backpropagation. However,

when the number of network layers is increased to a certain

extent, the training accuracy will reach saturation, which is

called the problem of accuracy degradation. This decline is

not due to the disappearance of the gradient or over-fitting,

but because the network is too complex, it is difficult to

achieve the ideal error rate with unconstrained training. Cur-

rently, widely used training methods such as SGD, AdaGrad,

and RMSProp are challenging to achieve theoretical optimal

convergence results after the network depth becomes more

extensive than before. However, at the same time, it can be

proved that in the case of an ideal training method, a deeper

network will have a better effect on a shallower network.

Assume that an additional layer of the network is added

behind network A to form a new network B. If the additional

network only performs an identity mapping on the output of

A, then the error rates of network A and network B are equal,

that is, the depth of the network will not be deepened. Make

the results worse.

In order to achieve such an identity mapping, He Kaiming

proposed a residual structure. The entire module has a branch

that connects the input and output in addition to the normal

network layer so that the final output is the sum of the output

of the network layer and the input of the network layer, where

H(x) = F(x) + x. Where x is the input, F(x) is the output of

the network layer, called the residual term, and H(x) is the

output of the entire structure. When F(x) = 0,H(x) = x is

an identity map. The reason why such a structure is designed

is that if it is difficult to learn H(x) = x directly from the

network, the parameter initialization in each layer network

is generally biased to 0 so that the redundant layer learns

F(x) = 0. The updated parameters can converge faster, and

learning F(x) = 0 is much simpler than learning H(x) = x.

The residual structure converges the entire redundant net-

work towards the direction of the identity map through an

artificially constructed structure so that the final accuracy

does not decrease due to the increase of the network depth.

3) THE ATTRIBUTE EXTRACTION

The attribute extractor needs to be able to extract from each

object, segmented the attributes that each object is useful

for answering the current question. In order to facilitate the

addition or deletion of requirements, the final consideration

is to design a discrete test attribute extractor, design a cor-

responding extraction module for each attribute, and use a

unified API call. This allows hot-swapping without retraining

the network when the data set changes or new attributes need

to be added. For the CLEVR dataset, the attributes that are

good for solving the problem are shape, color, size, position,

and material. In this study, the training set of the attribute

extractor is constructed by using the generated code of the

CLEVR data set. Each sample of the training set contains a

single object clipped from the graph and its corresponding

information.

The same network detection can be used for shapes, colors,

and materials. In general, a simple classification model can

be used to achieve the goal, that is, a multi-layer CNN plus

a multi-layer fully connected layer neural network to per-

form classification tasks. Here, in order to improve the final

recognition accuracy and the training convergence speed,

multiple residual blocks are used as the feature extraction

layer, and the full connection layer and the LogSoftmax layer

are connected later to obtain the classification result. The

model structure is shown in Fig. 3. After the input object

image is convolved through a layer, it passes through three

Layers, and each Layer contains two residual blocks. Then,

through the spatial pyramid pooling layer, the influence of

different input image sizes on the input dimensions of the

subsequent fully connected layer is avoided. The output is

finally obtained through the fully connected layer and the

LogSoftmax layer.

For the size of the target object, considering the perspective

rule of the near and far, it is difficult to judge the size of the

object from a single picture. It is necessary to consider the

size of the object in the figure and its position. Therefore,

the input to the model for judging the size of the object is

a 4-dimensional vector, which includes the ratio of the row

coordinates of the object to the height of the image, the ratio
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FIGURE 4. Structure of dimension extraction module.

of the column coordinates of the object to the width of the

image, the ratio of the height of the object to the height of the

image, and the ratio of the width to the width of the image.

The structure of the model is straightforward and consists

of three layers of fully connected layers. Except for the last

fully connected layer followed by the LogSoftmax layer,

the remaining fully connected layers are followed by the

ReLU activation function. The structure is shown in Fig. 4.

For the position of the target object, since the outer bound-

ing box of each object output by the target detection model

already contains the coordinate information of the object, this

part can be directly obtained without an additional training

model.

C. QUESTION UNDERSTANDING

1) ENCODING MODEL BASED ON PROBLEM EMBEDDING

The basic design idea of the problem-solving module based

on problem embedding is to embed a sequence of natural

language questions into a vector space using an encoder. The

semantic representation and problem of the scene can then be

embedded and stitched to obtain the answer as the input of the

multi-layer fully connected neural network. The advantage of

this method is that it does not require additional reasoning

annotation data and the neural network adaptive learning to

effective representation through the joint training of semantic

representation and problem representation.

This paper has introduced the basic idea of RNN and

the LSTM network commonly used in the field of natural

language processing. In the actual model construction of this

paper, the LSTM variant Gated Recurrent Unit (GRU) is used

because the structure of the GRU ismore straightforward than

the LSTM [39]–[41]. By combining the forgotten gate and

the input gate into a single update gate, the number of gates

is one less than the LSTM. A few matrix multiplications.

GRU can save much time when the training data is large.

GRU is different in implementation details from LSTM, but

the basic idea and deployment process is similar. The main

difference between GRU and LSTM lies in the decision of

GRU to control both the forgetting gate and the update status

unit. The update formula is as (2):

h
(t)
i = u

(t-1)
i h

(t-1)
i +

(

1 − u
(t-1)
i

)

σ



bi +
∑

j

Ui,jx
(t)
j +

∑

j

Wi,jr
(t-1)
j h

(t-1)
j



 (2)

where u represents the update gate, which can be used to

linearly control any dimension, changing the influence of the

FIGURE 5. The basic units of the encoder.

FIGURE 6. The process of encodin.

previous moment state and the current moment input on the

current state is as (3):

u
(t)
i σ



bui +
∑

j

Uu
i,jx

(t)
j +

∑

j

Wu
i,jh

(t)
j



 (3)

r represents the reset gate, which controls which parts of

the current state are used to calculate the next target state,

and introduces additional nonlinear effects between the past

state and the future state as (4).

r
(t)
i σ



bri +
∑

j

Uu
i,jx

(t)
j +

∑

j

Wu
i,jh

(t)
j



 (4)

The basic unit of the Encoder constructed in this study is

shown in Fig. 5. The number of hidden layers in the GRU is

one, and the number of hidden layer units is 256. The word

embedding layer has an input size of 93 and an output size

of 256.

The encoding process of the Encoder is shown in Fig. 6.

The initial hidden vector is h0. Each word in the input

sequence is first embedded in a word embedding layer and

then embedded in the word and GRU unit. A hidden layer

output is used as input to the current GRU unit. The GRU gets

output and an output of the hidden layer and then proceeds to

the next round of input until all elements in the sequence have

been entered. The hidden layer output h of the last time series

is the embedding of the problem.

2) DECODING MODEL BASED ON MACHINE TRANSLATION

The work in this section is to construct a learnable reasoning

model-based inference model [22]. The essential requirement

is to make the reasoning process transparent and use the

semantic representation of the image as the model’s input.

From a global perspective, the model receives the semantic

representation s of an image and a question q as input to

answer a. Unlike Johnson’s model, the final result of the

model of this study is based on the semantic network [22].

The language is directly obtained, similar to the operation of

the database query. In the middle process, the model predicts

a reasoning step z needed to solve the current problem accord-

ing to the problem, and then takes the semantic representation
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TABLE 1. The network structure of the Inference layer.

of the image as the input of s and finally obtains the corre-

sponding answer.

The whole system is divided into three parts: the image

semantic representation extraction module extracting the

image’s semantic representations from the image x; a pro-

gram generator for predicting the program z that may be

involved according to the problem q; and an execution The

engine, α = ϕ(s, z), executes the program z on the image

semantic representation s to predict the answer a. The pro-

gram generator is trained using an encoding-decoding model.

In our research, the input to the execution engine is an

abstract, interpretable semantic representation. We can man-

ually design deterministic functions directly based on the

semantic network to achieve specific functions.

After extracting the semantic representation of the image

represented by the semantic network, since the programs

included in the execution engine are deterministic programs,

there is no need to convert the semantic network into a vector

form, but directly use three the original form representation

of the tuple, the content can be expressed in natural language.

For example, the semantic representation of the scenario can

be described as:
































[′object1′
,
′ shape′,′ sphere′]

.

.

.

[′object1′
,
′ position′

, [0.49, 0.24]]







.

.

.






[′object3′
,
′ shape′,′ cylinder ′]

.

.

.

[′object3′
,
′ position′

, [0.7, 0.57]]

































(5)

In the CLEVR data set, each question is represented by

natural language and functional programs. The functional

program representation can accurately determine the basic

reasoning skills required to answer each question and is

ultimately stored in the text in the form of a pre-order traversal

of the program tree.

The example of the problem-to-program mapping and the

inference skills included in CLEVR are shown in Fig. 7.

FIGURE 7. CLEVR data sets required basic reasoning skills. (a) basic
reasoning skills. (b) examples of natural language mapping to program
trees.

Fig. 7(a) is the basic reasoning skills involved in this study.

The scene refers to the semantic representation of the scene,

and only it can be used as the leaf node of the program tree.

We can more accurately recover the final program structure

by limiting each reasoning skill’s input and output types.

Fig. 7(b) shows an example of a natural language mapping

to a program tree.

The program generator z = π (q) function is to predict the

function z involved in the problem from the natural language

question q. Specifically, the natural language sequence is

converted into a pre-order traversal sequence of the program.

Such problems are very similar to machine translation, that

is, translation from one language to another. This way, we can

implement the program generator using the standard LSTM

sequence pair sequence model [42]. Cyclic neural networks

are characterized by memory so that they can predict the state

after the previous state in the sequence. Memory is vital to

the language model because different words have different

meanings in different contexts. So cyclic neural networks are

very suitable for use in language models.

The attention mechanism proposed by Bahdanau et al.

utilizes the output information of each step in the encoding

process [43]. The attention mechanism allows the network

to have different input weights for each part of the input

sequence during decoding, rather than relying solely on the

content vector. During the decoding process, each output

depends on each of the previous hidden state and each cor-

responding hidden state of the output sequence, that is as the

following (6) and (7):

si = f (yi−1, si−1, ci) (6)

p(yi|y1, y2, . . . , yi−1) = g(yi−1, si−1, ci) (7)

where ci is a context vector, which is a weighted sum of all

hidden states h1, h2, · · · , hT of the input sequence in (8)

ci =

T
∑

j=1

αijhj (8)

The attention weight parameter αij in (8) is not a fixed

value but is calculated by a neural network in (9) and (10).

αij =
exp(eij)

∑T
k=1 exp(eik )

(9)
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TABLE 2. Accuracy of different models on the CLEVR dataset.

FIGURE 8. A decoder structure with an attention mechanis.

eij = a(si−1, hj) (10)

The neural network A receives the previous output hidden

states (i-1), and the input is hidden state hj as an output to

obtain eij, and then obtains the weight aij by normalization.

Focus mechanisms are added to build a more complex

model based on the underlying decoder. The network input

is first converted into a word vector. The word vector and

the hidden state are stitched together. Then a fixed-length

sequence is output through the linear layer plus the Softmax

activation layer. This sequence is the attention sequence. Each

number size indicates the importance of attention. Then the

output of the encoding process and the attention weight are

obtained by batch matrix multiplication. Finally, the result is

spliced together with the network input through a linear. The

layer transforms the dimension into a dimension accepted

by the recurrent neural network, takes it as an input to the

network, and finally gets the final output through the network.

The model structure of the decoder with the attention mech-

anism added is shown in Fig. 8.

IV. RESULT

Experimental results of the strongly supervised reasoning

model based on the reasoning process are shown in Table 2.

In this experiment, the program generator was trained using

all samples in CLEVR’s official dataset. It was 99.7% accu-

rate in the test set. Training samples that train image seg-

mentation for Distance u-net were not provided in CLEVR’s

official dataset. This part of the dataset was generated

by remodeling the source code of the CLEVR dataset.

Due to the time-consuming rendering of the scene, only

the dataset with a sample size of 1000 was built at the

beginning of the experiment. It was found that the aver-

age accuracy rate of the model’s final answer was only

82.94% when the program generator was 99.7% accurate.

The bottleneck of the model lies in the accuracy of image

segmentation.

To this end, the sample size of the image segmentation

training set was further expanded in subsequent experi-

ments. Finally, image segmentation data sets with a sample

size of 1000 (1K), 5000 (5K), and 10000 (10K) were con-

structed, respectively. The Distance, the u-net segmentation

model, was trained respectively. The final results are shown

in Table 2. Notably, CLEVR’s original dataset contains

70,000 images. In this study, the image interpretation section

used at most 1/7 of the original dataset. In Fig. 9, when the

semantic representation of the training scene of the 1K data

set is used to extract the model, the final result is still about

14% different from the current leading results [23] and [22].

However, it is ahead of all existing models [22], [25], [45],

and 9% more accurate than the results of the best existing

model. When training the image understanding model with

5K data sets, the final accuracy is 92%, only 4.9% behind the

current leading result [22], and close to the human test level

of 92.6%. When 10K data sets are used to train the image

understanding model, the final result is further improved,

reaching 96.14%. This result exceeds the final result of [23]

by 0.64%, which is only 0.76% different from that of [22] and

exceeds the human test level by 3.54%. After that, we tried

to increase the training amount of the image understanding

model but found that the final result did not change sig-

nificantly. It can be considered that the performance of the

model has reached a bottleneck under the current design

details.
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FIGURE 9. The proposed model’s accuracy of different question types
under 1k train set, 5k train set, and 10k train se.

V. DISCUSSION

The visual realization of the model is mainly aimed at the

visual reasoning model based on the inference process. The

model can visualize the visual reasoning from information

extraction to representation formation to reasoning, which

is convenient for humans to understand the mechanism and

process of the whole system work. Troubleshoot the bot-

tleneck of the model. Simultaneously, the visual reasoning

model based on the inference process decouples the inde-

pendent functional modules as much as possible. Only the

corresponding components can be replaced without the entire

network retraining when the visual reasoning task is changed.

Therefore, the visual reasoning model based on the rea-

soning process is more suitable for the actual production

environment.

The semantic representation of the image is used as the

input of the visual inference model. In the experiment, deep

learning combined with traditional image processing is used

to achieve target detection, but the effect is limited. Therefore,

in the future, we can improve the accuracy of this part by

increasing the amount of data or adopt a better segmentation

model such as Mask R-CNN. Fine-tune transfer learning can

also be done using segmentation models trained on other

datasets. Or data enhancements to the original data set.

Based on the former point [1], the general method of

extracting semantic representation in the form of the semantic

network from general images is perfected. The three elements

of the semantic network are node, attribute class, and attribute

value. Therefore, to build a semantic network, it is necessary

to find the entities (nodes) in the image first, consider the

target detection of the original image, and extract the objects

contained therein. Then it is necessary to judge the useful

feature types (attribute classes) according to the task types

and then use a neural network to judge the coping attributes

(attribute values). Finally, a semantic network describing the

whole image is constructed. In the future, we can further opti-

mize the organization of semantic representation and design

more effective inference models for inference tasks.

After extracting the semantic representation of the image,

the question and the image are taken as the input of the

reasoning model to get the final answer. The construction of

the inference model is mainly based on two different usage

scenarios. One is to build a process-based reasoning model

by using the supervision information about the reasoning

process provided by the data set to increase the transparency

and understandability of the model. The other is an end-to-

end reasoning model that considers the more general case and

simplifies the complexity of the model. Finally, the advan-

tages and disadvantages of the model are analyzed and sum-

marized. In the future, the combination of reinforcement

learning technology and reinforcement learning training after

a small amount of supervised information learning can be

considered to reduce the dependence on data sets.

VI. CONCLUSION

The main contributions of this research to related fields are

as follows:

1) Considering that the semantic network can express

knowledge deeply, including the characteristics of entity

structure, hierarchy, and causal relationship between entities,

semantic representation instead of image visual-feature as

a visual reasoning model is proposed. Make the reasoning

process more transparent and increase the comprehensibility

of the model. It is convenient to decouple the system from the

bottleneck of the analysis model.

2) Improve U-Net so that the output of U-Net is not a

mask of the scene object but a Distance Map for watershed

segmentation. The output of U-Net can be directly used for

watershed segmentation, equivalent to passing deep neural

networks. The effect of watershed segmentation is optimized

so that themethod can obtain satisfactory image segmentation

results under the condition of fewer samples.

3) Use the model based on the attention mechanism to

transform the natural language into a potential logical rep-

resentation, which can be used to map natural language into

a program tree-like machine translation.
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This paper demonstrates how the semantic representation

can be used as an input and verifies that changing the rep-

resentation of the image can further improve system perfor-

mance. After replacing the visual feature, the accuracy of

non-relational questions was significantly improved. Then

the semantic vector was pre-processed by constructing a

relation matrix. The semantic representation effect is com-

petitive compared to visual representation, and the semantic

representation is simple and easy to carry out other processes.

After analysis, it was summarized that introducing seman-

tic information was equivalent to a feature selection and

extraction before input. The selected features were useful for

answering questions. Compared with the feature extraction

of CNN, the semantic information is more accurate and less

redundant. So, it is easier to find the precise relationship when

handling relational reasoning.
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