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Abstract Faces play an important role in guiding visual attention, thus the
inclusion of face detection into a classical visual attention model can improve
eye movement predictions. In this study, we proposed a visual saliency model to
predict eye movements during free viewing of videos. The model is inspired by
the biology of the visual system, and breaks down each frame of a video database
into three saliency maps, each earmarked for a particular visual feature. (i) A
‘static’ saliency map emphasizes regions that differ from their context in terms
of luminance, orientation and spatial frequency. (ii) A ‘dynamic’ saliency map
emphasizes moving regions with values proportional to motion amplitude. (iii)
A ‘face’ saliency map emphasizes areas where a face is detected with a value
proportional to the confidence of the detection. In parallel, a behavioral experiment
was carried out to record eye movements of participants when viewing the videos.
These eye movements were compared with the models’ saliency maps to quantify
their efficiency. We also examined the influence of center bias on the saliency maps,
and incorporated it into the model in a suitable way. Finally, we proposed an
efficient fusion method of all these saliency maps. Consequently, the fused master
saliency map developed in this research is a good predictor of participants’ eye
positions.
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1 Introduction

Faces play an important role in guiding visual attention, and they immediately
attract the eyes when people are looking at static images [1]. Many studies conclude
that this natural preference is behind the early-onset responses to face stimuli [2–4].
Moreover, in [5], even when participants were explicitly asked to not attend to
faces, they had difficulty doing so. On the contrary, other object-stimuli are easily
avoided when faces are the targets of attention. These results indicate a natural
preference for faces. Therefore, this preference might lead to a slight delay in
the deployment of complete endogenous or voluntary control for attention [6–9].
The bias might be linked to the social and biological importance of faces, or the
information conveyed by faces: eye gaze, visual speech, and facial emotions.

Different neuroimaging studies have established that faces activate relatively
specific brain areas in the fusiform gyrus [10]. There is also strong evidence of a
fast sub-cortical face-processing pathway that operates on low-spatial frequencies
and modulates cortical responses [11,12]. Furthermore, other studies suggest that
changes in faces are quickly detected compared to other object stimuli [2]. This
implies speedier processing of faces, and automatic shifts of attention without
endogenous control; consequently, neglecting other objects presented alongside
faces [13–15].

Numerous visual attention models have been proposed to predict eye move-
ments for static images [16–20], or for dynamic images [21–24]. Most of them
are based on low-level image features (such as color, orientations and spatial
frequencies, motion), despite the fact that high-level stimulus properties (e.g.,
semantic information) also play an important role in visual perception. A recent
paper [25] demonstrates that a combined model of high-level object detection
and low-level saliency significantly outperformed a low-level saliency model in
predicting eye movements. Other studies work on adding a face detection algorithm
to increase the saliency at the location of a face [1,26]. In fact, [27] finds that visual
saliency computed through a classical visual attention model, similar to the one
proposed by Itti and Koch [18], does not explain human eye fixations when looking
at videos with complex social scenes. Moreover, they conclude that observers often
direct their initial gaze toward the eyes and heads of people present in the scenes,
and these elements are not emphasized using a classical visual attention model.

Based on all these reported researches, it appears important to add a ‘face
feature’ into existing visual attention models to improve their efficiency to predict
eye movements. This inclusion of faces in models was already done in [1, 28]
using static visual stimuli, and in [26] using dynamic stimuli but for a specific
application—video summarization. However, none of the studies incorporate faces
in the dynamic visual attention model, and compare model predictions to eye
movements recorded during free viewing of videos. The aim of the present
research was to study the impact of faces on the recorded eye movements of
observers looking at videos with various types of content, and to examine whether
the face feature is biased towards the center of the stimuli, as are the other
elementary visual features. Our main contributions are (1) a saliency model which
combines low-level feature extraction (static features with orientations and spatial
frequencies, dynamic features with object motion amplitude) with a higher-level
feature: face, and the comparison to eye movements in videos, and (2) the analysis
of the impact of the center bias on the ‘face feature’.
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The organization of the paper is as follows. In Section 2, we present the model
with static, dynamic and face features. We emphasize face detection based on
Viola-Jones algorithm [29]. Section 3 describes the evaluation of the model, and
the contribution of the face pathway.

2 Visual Saliency Model

The presentation of the model in Figure 1 is broken down into in three steps: the
initial spatio-temporal saliency model (Section 2.1), the model integrating face
features (Section 2.2), and the final model that takes into account the center bias
(Section 2.3).

2.1 Spatio-temporal Saliency Model

The spatio-temporal saliency model integrates two pathways (static and dynamic)
drawn on the left side of the Figure 1. The model uses two saliency maps: a static
and dynamic one. The computation of these maps shares common stages: a retina-
like filter and a cortical-like bank of filters. Each pathway is tuned to the processing
of a specific type of feature (luminance, orientation and spatial frequency for the
static pathway and motion amplitude for the dynamic pathway). The details of
this part are given in [23].

Retina-like Filter

The retina model is simply simulated by a cascade of three linear filters. It simu-
lates the two main outputs of the retina that are projected on the magnocellular
and parvocellular cells. The first output is the high-spatial frequencies of the scene
that is used as input for the static pathway. On the contrary, the second output
extracts low-spatial frequencies for the dynamic pathway.

Cortical-like Filters

Visual information is processed into different spatial frequencies, orientations and
motion in the primary visual cortex (V1) [30]. The model classically simulates
the primary visual cortex complex cells through a bank of Gabor filters with six
orientations and four frequency bands in the Fourier domain.

The Static Pathway

As mentioned above, the high-spatial frequency output of the retina is the first
stage of the static pathway which gives detailed information about the visual
signal. This information is further processed by a bank of Gabor filters, where each
filter is sensitive to a specific orientation and a spatial frequency band. The outputs
of the filter bank are raw feature maps. Afterwards, the different raw feature maps
interact together to reinforce objects belonging to a specific orientation.

The last step of this pathway models the fact that a region is salient if the
region is different to its neighbors. Thus, to strengthen intermediate maps that
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Fig. 1: Block diagram of the proposed visual saliency model with three saliency
maps dedicated to specific features: static, dynamic, and face. All these features
are computed in parallel pathways, and resultantly each produces a saliency map—
such as Ms, Md, and Mf . The maps may then be fused together either before or
after applying the center model to analyze the influence of the center bias. Here,
Mscdcf is the final saliency model that combines all the three features with center
bias.

have spatially distributed maxima, the method developed by Itti [18] was used.
Finally, all the intermediate maps were added together to obtain a static saliency
map Ms for each frame k (Figure 2b).

The Dynamic Pathway

Humans see stable and moving components in a movie effortlessly. This is true
for the case when an object tracked by a camera is seen as moving even if it is
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stationary on frames. Therefore, we assumed that the human gaze is attracted
by motion contrast, which is the motion of a region against its neighbors. The
dynamic pathway starts with the estimation and compensation of relative motion
using the 2D motion estimation algorithm developed in [31]. At the output of
this algorithm camera motion is compensated, and then the retina and the Gabor
filters allow moving objects to be extracted.

Motion Estimation: A differential approach was used for motion estimation that
relies on the assumption of luminance constancy. For every frame, the optical flow
constraint was applied to each Gabor filter output in the same frequency band.
This resulted in an over-determined system of equations, which overcomes the
aperture problem [32]. A motion vector was defined (per pixel) by its modulus
and angle—corresponding to the motion amplitude and direction respectively. We
only used the modulus of the motion vector to define the saliency of an area,
assuming that the motion saliency map of a region is proportional to its speed
against the background.

Temporal Filtering: If a pixel moved in one frame but not in the previous ones, it
is probably the noise resulting from motion estimation. Hence, a temporal median
filter was applied to five successive frames—the current one and the four previous
frames—to remove this possible noise. Finally, a dynamic saliency map Md was
obtained for each frame k (Figure 2c).

Two-pathway Fusion

The fusion of static and dynamic saliency maps is done by assigning weights to
each of them using their relevant statistics, thus, combining them efficiently. For
the static saliency maps, the maximum can express the power of the most salient
region in a map. We observed experimentally that frames with high maximum
values for static saliency maps better explain eye movements than frames with
low maximum values. In case of dynamic saliency maps, we found that the maps
have higher skewness when there is a small object in motion, and we wanted
to enhance such maps, as they strongly predictive of eye positions. Hence, we
chose the skewness to weight the dynamic saliency maps for fusion, because high
skewness reflects a better predictability of eye positions. It was shown previously
in [23] that our fusion method is a better predictor than a simple average fusion.
Consequently, the fusion is carried out using the equation:

Msd = αMs + βMd + αβMsMd

where,

{
α = max(Ms)
β = skewness(Md)

In the above equation, the fusion incorporates a term Ms ×Md that allows the
salient areas in both static and dynamic pathways to be reinforced. The saliency
maps Ms and Md for the two-pathway model and their resulting master saliency
map are shown in Figure 2.
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(a) (b) (c) (d)

Fig. 2: From left to right the input frame with superimposed human eye positions,
the static saliency map Ms, the dynamic saliency map Md, the fusion saliency map
Msd.

2.2 Model with Face Feature

Face detection and face perception are active fields of research, which over the
years have interested people from varying fields of research. These areas include
visual cognition, neuroscience, and computer vision. Different studies claim that
face detection is coded in a specific cortical area of the brain; the fusiform face
area (FFA) [10, 33, 34]. Electrophysiological studies show that face processing is
very fast, and human faces evoke a negative potential at 172ms (N170) [35].

A recent study [1] shows that eye movements during free viewing of static
natural scenes are largely attracted by faces. Almost 80% of the participants focus
on a face within the first two eye fixations. Consequently, the authors improved
the predictability of their model by the inclusion of a face pathway.

In this study, we further investigated the influence of faces in dynamic stimuli
(videos with various content). We used the Viola-Jones face detector [29] to extract
faces in a visual scene along their confidence scores. These scores were put to work
for the rejection of bad face detection, and to build a face saliency map. To sum
up, the proposed model introduces a face as an important information feature
which is extracted in parallel alongside other classical visual features (static and
dynamic features). The improvement of performance of the spatio-temporal model
using face features is critical because,

– In the recorded eye positions, we observed that faces attract gaze [36]. This
behavior towards faces was anticipated, as it has already been studied in the
context of free-viewing of static images [1].

– In the spatio-temporal model, faces were not emphasized enough either in static
or dynamic saliency maps. In the static pathway, the textured parts of a face
(eyes, nose, mouth) can be salient but their saliency could be outperformed by
salient regions in the background, while for dynamic pathway, faces could be
salient, unless they are moving.

Implementation of the Face Pathway

The proposed face pathway uses the Viola-Jones object detector [29]. This object
detector is based on the detection of specific features that carry information about
the class of object to be detected such as faces, cars, or any other object. This
information can be coded by Haar-like features that are sensitive to the orientation
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of contrasts among regions. In our case, a human face can be represented as a set
of features exhibiting the relationship of contrast of different regions like eyes,
nose, mouth, etc. The Viola and Jones Haar-like feature set defines 2-rectangle, 3-
rectangle and 4-rectangle features. Each feature determines the presence or absence
of certain characteristics in the image, such as edges or changes in texture. For
example, a 2-rectangle feature can indicate the boundary between a dark region
and a light region.

A Haar-like feature considers adjacent rectangular regions in the detection
window, and computes an average pixel value for each region. Then the difference
between these values is compared to an already learned threshold to separate
non-objects from objects in the detection window. A large number of Haar-like
features are required to detect an object robustly, as each represents a ‘weak
classifier’ or ‘low-feature detector’. Therefore, these ‘weak classifiers’ are organized
in a cascade of classifiers, which achieves increased detection performance while
reducing computation time. Here, the initial cascade starts off with very simple
features rejecting the vast majority of image regions. This makes the process
simpler, and the cascade becomes more meaningful as it progresses down.

Another advantage of using Haar-like features is the use of integral images
also known as summed area tables. The advantage of these tables is that the sum
and mean of pixel values of an area of arbitrary size can be computed in constant
time. Here, each pixel is a sum of the pixels to its upper left region. It can be
computed faster, and it is an effective way of calculating the sum of pixel values
for the rectangular feature model. For example, the sum of rectangular areas can be
computed in the image, at any position or scale, using only four lookups. Likewise,
the Viola-Jones 2-rectangle features need six lookups, 3-rectangle features need
eight lookups, and 4-rectangle features need nine lookups.

The working of the pathway is divided into three steps as follows:

– Pre-processing: The Viola-Jones face detection algorithm uses luminance values
to extract facial features, which are prone to environmental factors such
as ambient illumination. Different image enhancement methods are used to
minimize the contrast of regions with over-exposure or under-exposure. In this
step, we used the same retina model to extract the high spatial frequencies
of the scene, since in the human visual system FFA takes its input from the
parvocellular layer of the lateral geniculate nucleus (LGN) [37]. Consequently,
the treatment improves the robustness and performance of the detection system
in varying illumination conditions.

– Face Detector: The implementation uses the Viola-Jones face detection algo-
rithm from OpenCV library by calling the cvHaarDetectObjects() function.
The library also comes with several pre-trained cascade files to detect different
types of faces. Here, we used the ones for ‘frontal’ and ‘profile’ faces. The
function takes a pretreated gray scale image, and uses a search window to scan
across the original image to extract facial features. The search window examines
all image locations and classifies them as ‘Face’ or ‘Not Face’. This scanning
procedure is repeated on several scales to find faces of different sizes by simply
resizing the classifier rather than the original image. After the completion
of the search process, we obtain multiple neighboring bounding boxes in a
positive face region, whereas a single bounding box is often considered as a
false detection. The result of the face detector is a set of bounding boxes with
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a confidence measure and the type of detection—in our case either profile or
frontal face. Here, confidence is the measure of existence of an object at a
location after all the information has been collected. The estimate is useful to
overcome ambiguities by ranking and rejecting several detections.
We took the video database used in our experimental design to record eye
positions of participants detailed in Section 3.1, and used it to evaluate the
performance of the face detector. The detection was carried out on all 14155
input video frames. The resulting faces detected were hand-labeled as either
a true or a false face detection (Table 1). An example of the faces detected is
shown in Figure 3a.

– Post-processing: The face detector was executed twice with two different
trained cascades: frontal and profile faces. Hence, the detector returns over-
lapping face bounding boxes for the same face regions. To judge these face
detections, we first computed the overlapping regions among all the face
bounding boxes using:

Ai,j =
∑
i,j<i

max

{
h′ × w′

hi × wi
,
h′ × w′

hj × wj

}
> τ

Here, h and w represent the dimensions of face bounding boxes (both frontal
and profile), and h′ and w′ are the dimensions of their overlapping region. We
used a threshold τ of 0.6 or 60% for two face bounding boxes to be considered
as overlapping.
This overlapped region A is then used to reject weak detections using their
confidence measures C and detected face-type T as follows:

Face =


max(Ci,Cj), if Ti = Tj ;
max(Ci,Cj), if Ti 6= Tj & Ai,j > 0.8;
min(hiwi, hjwj), otherwise.

An example of post-processed faces is shown in Figure 3b.

The face saliency map Mf for the face pathway is generated by marking
each detected faces bounding box by a 2D Gaussian. The dimensions of the face
bounding box determine the distances from its origin in horizontal and vertical
axis, while the confidence score is its width or standard deviation. The resulting
face saliency map is shown in Figure 3c.

Results of face detector

Total True False Percentage of

detections positive positive true positives

7696 5424 2272 70%

Table 1: Results of the face detector for our video database.
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(a) (b) (c)

Fig. 3: Raw face detections (left), post-processed face detections (middle), face
saliency map Mf after post-processing (right)

Three-pathway Fusion

The fusion method modulates the static, dynamic and face saliency maps using
maximum, skewness and confidence measures respectively, and fuses them together
using:

Msdf = αMs + βMd + γMf

+ αβMsMd + βγMdMf + αγMsMf

where,


α = max(Ms)
β = skewness(Md)
γ = mean(confidence)

An example of this fusion is given in Figure 4. As mentioned in Section 2.1
the maximum and skewness are appropriate weightings for static and dynamic
saliency maps respectively. Similarly, the weighting suitable for face saliency map
is its confidence. The higher the confidence, the greater the probability of the
presence of a face in an image is. Hence, this map should have a higher weight
for the fusion. Furthermore, we assume that common salient regions in different
saliency maps obtain the most representation in the final map. This is done by
reinforcing such regions by a multiplicative fusion of different feature maps.

2.3 Model with Center Bias

The central fixation bias in visual scene viewing is selecting an optimal viewing
position independent of the image features. There is a strong tendency to look
more frequently around the center than in the periphery. The center might not
provide an information-processing advantage, but it is an optimal position to
explore the visual scene. A number of factors contribute to this effect [38–40]:
high-level strategic advantage, drop in visual sensitivity in periphery, and motor
bias. Moreover, people tend to direct their first saccades in the visual scene towards
subjects of interest or salient locations closer to the center, as the initial saccades
are a localizing response, and afterwards are the explorations of the objects [41,42].
In this study, we examine the influence of center bias on each of the three visual
feature maps: static, dynamic, and face. The observations were used to propose a
center model.
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Input image

Static saliency map Ms

Dynamic saliency map Md

Face saliency map Mf

Two-pathway saliency map Msd

Three-pathway saliency map Msdf

Fig. 4: Block diagram illustrates the fusion of two and three pathway visual saliency
models for video database. The two-pathway saliency map Msd is the result of the
fusion of saliency maps Ms and Md, whereas the three-pathway saliency map Msdf

also takes into account the face saliency map Mf alongside the other two saliency
maps.

The Center Model

The center model is a significant predictor of eye position in arbitrary natural
scenes, due to the preference of placement of focal and foreground objects in
the center of the screen. This model alone outperforms models without a central
bias [21, 43, 44]. Its introduction enhances the correlation between eye positions
and computational model output, but it might not be useful for applications of
visual attention because it is not specific to visual features. The centered model is
considered as a saliency model applying the same ‘central’ saliency map Mc to all
the frames. In our case, this map corresponds to a 2D Gaussian with sigma 10◦ and
dimensions equal to that of the original video frame. It is applied multiplicatively
to the spatial information as illustrated in Figure 5.

Mmc = Mm ×Mc

Here, Mm is for the feature maps from different pathways of the visual saliency
model.

Three-pathway Fusion with Center Bias

The fusion model fuses the centered static saliency map Msc , centered dynamic
saliency map Mdc

and face saliency map Mf using maximum, skewness and
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confidence scores respectively.

Mscdcf =αMsc + βMdc
+ γMf

+ αβMscMdc
+ βγMdc

Mf + αγMscMf

The fusion weights α, β and γ are computed for centered static saliency map Msc ,
centered dynamic saliency map Mdc

and face saliency map Mf respectively. Here,
the saliency maps from the face pathway are not modulated with center bias.
The reason is the attractiveness of face stimuli regardless of their location around
the center of a visual scene. Also, the occasional presence of faces in the video
sequences suggests that such weighting did not significantly improve the results of
evaluation as shown in Table 5.

Fig. 5: Block diagram illustrates the fusion of saliency maps from the three
pathways of the model. The center bias is applied to saliency maps Ms and Md to
obtain centered saliency maps Msc and Mdc

. These two resulting maps are fused
to the face saliency map Mf to obtain final saliency map Mscdcf .

Input image

Static saliency map Ms

Dynamic saliency map Md

Face saliency map Mf

×

×

Central saliency map Mc

Central saliency map Mc

Centered static saliency map Msc

Centered dynamic saliency map Mdc
Three-pathway saliency map Mscdcf

3 Results

3.1 Eye Movement Experiment

The experiment aims to record eye movements of naive participants when looking
at videos with various contents. The eye movement data is used to evaluate the final
saliency model. Additionally, comparing this data with a saliency model helps to
understand which features explain the best eye movements and fixated locations.
This experiment was the same as the one described in [23].

Stimuli

To create the dynamic stimuli, we were inspired by the experiment proposed by
Carmi and Itti [45]. Fifty-three videos (25 frames per second, 720 × 576 pixels
per frame) were selected from heterogeneous video sources including movies, TV
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shows, news, animated movies, commercials, sports, and music videos. These
videos were cut every 1-3 seconds (mean 1.86s± 0.61) into 305 clip snippets. The
length of the clip snippets was chosen randomly with only one constraint—to avoid
scene cuts inside a clip snippet. These clip snippets were strung together to obtain
20 ’MTV-style’ clips of 30 seconds (mean 30.20s± 0.81). Furthermore, each of the
clips contained at most one clip snippet from all fifty-three continuous sources.
The choice of clip snippets and their duration was random to prevent observers
from anticipating scene cuts. We used gray-level stimuli (14155 frames) without
audio signal. Moreover, to prevent top-down effects—as the proposed model is
bottom-up—we used ’MTV-style’ clips rather than classical videos.

Participants

Fifteen young adults (3 women and 12 men, range 23-40 years, mean 28 years)
participated in the experiment. All participants had normal or corrected to normal
vision.

Data Acquisition

Participants were sitting, with their head stabilized with a chin rest, in front of
a 21-inch monitor (75Hz refresh rate) at a viewing distance of 57cm (40◦ × 30◦

field of view). Participants were instructed to look at the videos without any
particular task. All participants saw the 20 clips in a random order. Before each
clip, we ensured that participants gazed at the screen center. Instantaneous eye
positions were tracked by head-mounted EyeLink II cameras (SR Research) in
pupil-recording mode with 500Hz temporal resolution. A 9-point calibration was
carried out at the beginning of the experiment and every five clips. Drift correction
was also done before each clip.

Human Eye Position Density Maps

The eye tracker recorded the two eye positions at 500Hz—20 eye positions (10
positions for each eye) per frame and per participant. The median of these positions
was taken (with x-axis and y-axis median) for each frame and for each participant.
Then, for each frame, the median position for fifteen participants was considered,
which is the raw eye positions map Mp. A two-dimensional Gaussian was added
to each position. The standard deviation of this Gaussian was chosen to obtain
a diameter at mid-height equal to 0.5◦ of visual angle, which is close to the size
of the maximum resolution of the fovea. Therefore, for each frame, we obtained
a human eye position density map Mh. These maps are then used to evaluate
saliency maps Mm from the proposed model.

3.2 Model Evaluation Metrics

We used two evaluation metrics to estimate the relevance between normalized
predicted saliency maps from the visual saliency model and the eye-position
density maps.
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– NSS: Normalized Saliency Scanpath is proposed by Peters et al. [46]. It is
calculated by averaging pixels that correspond to eye positions. It acts like a
z-score computed by comparing a saliency map from the model to fixations of
participants. The NSS(i,j) at positions (i, j) of a saliency map is given as:

NSS(i,j) =
Mm ·Mh − x̄m

sm

Mm : saliency value at pixel (i, j)
Mh : human position density map at (i, j)
x̄m : empirical mean of saliency map Mm

sm : empirical standard deviation of saliency map Mm

The NSS value can be: (i) zero, when there is no link between experimental eye
positions and salient regions; (ii) negative, when the positions are on non-salient
regions; or (iii) positive, when they are projected on the salient regions—the
higher the positive values of NSS are the more the salient regions are attended.

– TC: Torralba et al. [47] propose a method to evaluate the quality of a visual
saliency model. It simply estimates the ratio of the eye positions predicted
by the saliency map over all the experimental eye positions. A position is
predicted if it is projected on the most salient region, which is 20% of the map
surface. When compared to NSS the metric needs to define a threshold, but
it is simpler to calculate.

TC = 100× Ninside

Nall
%

Ninside : positions inside salient regions
Nall : total experimental eye positions

3.3 Evaluation of the Model

Table 2 presents the results for different saliency maps. Here, we calculated the
sample mean x̄ among first 70 frames for all 305 video snippets, and then took
the standard deviation of this sample mean denoted as SEx̄. As shown in [23], the
dynamic saliency map Md performs better than the static one Ms for both criteria.
This is due to the importance of motion in guiding attention [24, 48]. The lower
results for the face saliency maps Mf is explained by the fact that faces are present
only in a small percentage of the video database (35%), thus, and for the rest of
the frames, the prediction score is zero. Moreover, the fusion integrating the face
pathway Msdf outperforms the fusion combining static and dynamic pathway Msd.
Msdf takes into account the face information when there is a face, otherwise it is
similar to Msd when no face is detected. This additional information considerably
improves the results because face is a powerful gaze-attractor.

In Table 2, the saliency maps for all pathways have lower prediction scores
than a simple Gaussian at the center of the frame—central saliency map Mc. This
demonstrates that center bias has an impact on eye positions during free viewing,
and its appropriate integration will improve the model’s efficiency in predicting
eye movements.
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Evaluation results without center model

Criterion Mc Ms Md Mf Msd Msdf

NSS
x̄ 1.25 0.72 0.96 0.57 0.99 1.28

SEx̄ 0.019 0.010 0.020 0.019 0.016 0.029

TC (%)
x̄ 64 49 50 10 57 58

SEx̄ 0.735 0.560 0.502 0.379 0.608 0.710

Table 2: NSS and TC results for the different pathways of the model without the
center bias, except Mc that represents the center model. The sample mean x̄ and
its standard error SEx̄ were averaged over the 305 video snippets.

3.4 Interest of Separate Face Pathway

It is important to note that if we do not use a face pathway, fusion of the static
and dynamic pathways is not sufficient to make faces salient. As already found in
the literature, a classical visual attention model (only static and dynamic features)
cannot explain gaze on face locations because they are not always emphasized in
such a model. To investigate this point, we performed a simple analysis using the
static saliency map and true-positive face detections obtained by comparing the
detected faces to the hand-labeled ground truth. We started by calculating the
mean static saliency values at face locations for all n frames with at least one face;
{x1, x2, ..., xn}. The mean x̄ was used as a threshold to split the frames into two
subgroups: face salient, and face non-salient frames. Subsequently, we used the
two metrics to compute the scores for these subgroups of frames. The resulting
scores in Table 3 show that faces have similar scores in the conditions of low or
high static saliency. The NSS and TC scores are high for salient faces as expected
because faces are attractive. Likewise, non-salient faces also have high scores for
both metrics. We can imply based on this observation that static saliency maps do
not model the saliency of faces, but are instead only activated by object contrasts.
Hence, it is interesting to include a separate face pathway to improve the model’s
eye movement predictions.

Evaluation results for static saliency of faces

Face salient Face non-salient

Samples(#) 2610 4709

NSS score 2.68 1.85

TC score 42 37

Table 3: NSS and TC results for the frames with at least one face in a condition
of high or low static saliency.

3.5 Influence of Center Bias on Eye Positions

Figure 6 is an illustration of all human eye positions from the experiment
superimposed as a 2D-image. We clearly observed that there is an apparent center
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bias effect in play. This effect could be the result of the experimental setup where
the first eye position for a clip starts from the central marker. Also, it could be
a significant contribution due to the video content presented such as ‘Hollywood
movies’ [39]. Consequently, this motivates us to incorporate a center model to
enhance the relevance among experimental eye positions and visual saliency maps
from the proposed model. In fact, practical applications potentially using the visual
attention model might prefer to use all salient information, and hence not require
this modulation.

Human data is highly center-biased as shown in Figure 6. Hence, adding a
larger border will increase the overall performance of the model. The result is
consistent with the fact that saliency falls off with the distance from the center.
As a result, we find that the simple Gaussian technique outperformed the results
of the model without center bias. Consequently, the fusion step then considered
the nature of each map, and integrated a center bias when appropriate to reinforce
the salient regions. The resulting master saliency map performed better than each
pathway predicting independently and standalone Gaussian map from the central
model.

Fig. 6: 2D contour map presents the distribution of participants eye positions for
video database, and the distribution after Gaussian fitting is shown in subplot.

3.6 Evaluation of the Model with Center Bias

Table 4 shows that center bias modulation of the saliency maps’ results in higher
scores for all maps such that Msc outperforms Ms (F (1, 609) = 178.59, p < 0.001)
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1 and gives similar results to Mc. The results between Mc and Msc are very close,
even if Mc still outperforms Msc with respect to the NSS criteria (F (1, 609) =
4.62, p < 0.05). Mdc

outperforms both Md (F (1, 609) = 87.36, p < 0.001) and
Mc (F (1, 609) = 18.98, p < 0.001). More than looking at the center of the frame a
participant gazes at what is salient near the center of the frame, since the static and
dynamic saliency maps both provide complementary information that is needed
to predict the participant eye positions. In addition to the integration of center
bias before its fusion into the saliency map Mscdc

outperforms the simple fusion
saliency map Msd (F (1, 609) = 65.25, p < 0.001) and central saliency map Mc

(F (1, 609) = 4.93, p < 0.05). Similarly, the fusion of the three pathways with
center model Mscdcf gives the best results, outperforming the central saliency
map Mc (F (1, 609) = 45.72, p < 0.001), centered two-pathway saliency maps
Mscdc

(F (1, 609) = 19.40, p < 0.001), and three-pathway saliency maps Msdf

(F (1, 609) = 34.70, p < 0.001). Therefore, both center bias and faces are important
to consider to obtain a good predictor of eye positions of participants.

Evaluation results with center model

Criterion Mc Msc Mdc Mfc Mscdc Mscdcf

NSS
x̄ 1.25 1.19 1.45 0.57 1.37 1.69

SEx̄ 0.019 0.016 0.022 0.020 0.021 0.030

TC (%)
x̄ 64 65 67 10 68 71

SEx̄ 0.735 0.675 0.623 0.375 0.666 0.673

Table 4: NSS and TC results for the different pathways of the model with the
center bias, except Mc that represents the center model. The sample mean x̄ and
its standard error SEx̄ were averaged over the 305 video snippets.

3.7 Faces and Center Bias

One wonders which is the most important bias while watching videos; the center
bias which tends to make a participant to gaze more at the center, or the
particularity of faces which makes participants to look at a face and recognize
it more rapidly than other objects. In the former case, Dorr et al. [39] discussed
the impact of the center bias on different types of videos, such as professionally
made ‘Hollywood movies,’ and amateur made ‘natural movies.’ They show an
increased impact of center bias in ‘Hollywood movies’—the kind of videos that
were used to generate our clips. In the latter case, it is shown in [49] that faces
are easier to detect than other objects, and the detection facilitation of such
stimuli is higher even if it is presented at the periphery. They concluded that
the spatial window for face detection is wider than for other objects. In our
experiment, we observed similar results when considering the scores for the face
saliency map Mf (NSS = 0.51, TC = 18%) or the one weighted by center bias

1 For clarity, only statistics using NSS criteria are presented since both NSS and TC generally
produce the same conclusion. We took the sample mean of 70 frames from each video snippet,
and then applied the significance tests.
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Mfc
(NSS = 0.55, TC = 19%) from Tables 2 and 4 respectively. This result could

either be explained by a smaller impact of center bias for faces than other salient
objects or by the fact that there were few faces present in the frames to make the
center bias significant on face saliency maps.

To investigate further the probable cause of faces attracting human gaze
independent of their location, we calculated scores for the maps Mc and Mfc

,
as presented in Table 5. Here, the frames considered contained at least one face,
yet the impact of central weighting is still marginal. Furthermore, there was no
impact of the center model on the two scores (NSS and TC) for M ′f and M ′fc

,
where we considered only the true-positive detections obtained by comparing the
detected faces to the hand-labeled faces (ground truth). Therefore, our results
agree with the finding of [49] that the presence of faces attracts the gaze of a
participant more than their tendency to fixate on the center. This is not the case
for the two other features; in fact, adding the center bias on the static and the
dynamic saliency maps considerably improved the scores.

Evaluation results for face pathway

Criterion Mf Mfc M ′f M ′fc

NSS
x̄ 1.75 1.75 2.34 2.32

SEx̄ 0.054 0.053 0.070 0.069

TC (%)
x̄ 30 30 38 38

SEx̄ 0.963 0.952 1.169 1.156

Table 5: NSS and TC results for the face saliency maps (Mf and Mfc
) with or

without the center model. Similarly, Mf ′ and Mfc
′ are the face saliency maps

comprising of only the true-positive face detections. Here, we only consider the
video frames with at least one face detected.

3.8 Temporal Evaluation of the Model

The time course of the influence of center bias has also been investigated [38,41].
To analyze the evolution of the center bias effect on videos, different saliency map
scores were plotted along frame position. For each frame position inside a snippet
(independently of the snippet position on the clip), all the scores corresponding
to that frame position where averaged. We averaged on the first 70 frames even if
some snippets were longer.

Figure 7 illustrates that all saliency maps were more predictive at the beginning
of each snippet from 5th to 13th frame. Afterwards, the prediction scores decreased,
which is consistent with the fact that the proposed model is bottom-up. The
peaks corresponding to center biased saliency maps Mscdc

and Mscdcf were
sharper compared to saliency maps without center bias Msd and Msdf . The biased
saliency maps reached their maximum quickly around the 8th frame, and clearly
outperformed maps without center bias. However, they decreased more rapidly
showing that center bias is particularly predominant at the scene onset, as also
mentioned in [38]. Therefore, the influence of center bias decreases along time,
letting other features to take over irrespective of their position in the visual scene.
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The temporal evolution of metrics also showed that the introduction of face
pathway is an improvement. In Figure 7, we find that three-pathway saliency
map Msdf did produce better metric scores compared to two-pathway saliency
map Msd. Moreover, Msdf performed comparatively well against the two-pathway
saliency map with center bias Mscdc

. This result indicated that face feature as a
separate pathway certainly did increase the predictability power of the model. The
saliency map was reinforced further by center bias, and the resulting saliency map
Mscdcf delivered the best scores.

(a) NSS evolution (b) TC evolution

Fig. 7: Evolution of metrics (NSS and TC) for the different pathways with or
without the center bias for video database.

4 Conclusion

This study presents a new bottom-up saliency model that breaks down the visual
signal using three processing pathways based on different types of visual features:
static, dynamic, and face. The static and dynamic pathways are inspired by the
biology of the first steps of the human visual system: a retina-like filter and a
cortical-like bank of filters. The static pathway extracts the texture information
based on luminance. The dynamic pathway extracts information about objects’
motion against background. The face pathway extracts information about the
presence of faces in the frames. This model also integrates the center bias as a
suitable modulation on the different saliency maps.

An eye movement experiment was used to record the gaze of participants
viewing various videos freely. This experiment was used to evaluate, and also
to improve the saliency model. Each pathway is effective for predicting eye
movements. The face pathway is particularly effective for predicting eye movements
on frames containing faces, highlighting the importance of integrating face feature
in a bottom-up saliency model. The eye movement experiment enables us to study
which visual features attract a participant’s gaze, and how to integrate them into
the saliency model, and more particularly, to the fusion step of the three pathways.
The fusion of the three types of maps into a single master saliency map is optimized
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by weighting the saliency maps produced by the three pathways using specific
coefficients The specific coefficients correspond to particular statistics extracted
from the different types of saliency maps (maximum, skewness, and confidence).
These weights are then used to strengthen the most relevant feature maps.

The study concentrates on the importance of faces and center bias for the
improvement of a visual saliency model. In future work, we hope to analyze the
evolution of performance of the proposed model for longer videos, when bottom-
up processes are no longer predominant and top-down processes might play an
important role on eye movements. Thus, the bottom-up visual saliency model can
be integrated with top-down weights to modulate the saliency maps as a function
of the goal. The resulting saliency maps from combined stimulus-driven and goal-
driven model can give better prediction of eye movements.
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