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This paper describes the application of model-based predictive control (MPC) techniques

to the flow management in large-scale drinking water networks including a telemetry/telecontrol

system. MPC technique is used to generate flow control strategies from the sources

to the consumer areas to meet future demands, optimizing performance indexes associated

to operational goals such as economic cost, network safety volumes and flow control stability.

The designed management strategies are applied to a real case study based on a representative

model of the drinking water network of Barcelona (Spain).
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INTRODUCTION

Drinking water management in urban areas is a subject of

increasing concern as cities grow. Limited water supplies,

conservation and sustainability policies, as well as the

infrastructure complexity for meeting consumer demands

with appropriate flow, pressure and quality levels make

water management a challenging control problem. Decision

support systems provide useful guidance for operators in

complex networks, where resources management best

actions are not intuitive. Optimization and optimal control

techniques provide an important contribution to a smart

management strategy computation for drinking water

networks (DWN) (see Nitivattananon et al. 1996; Westphal

et al. 2003; Tu et al. 2005). Similarly, problems related to

modelling and control of water supply, transport and

distribution systems have been object of important research

efforts during the last few years (see, e.g. Brdys & Ulanicki

1994; Cembrano et al. 2000; Maksimovic et al. 2003; Butler

& Memon 2006).

This paper describes preliminary results of a collabora-

tive project between AGBAR, the company in charge of

water transport and distribution in Barcelona and its

metropolitan area and the Advanced Control Systems



research group (SAC) from the Technical University of

Catalonia (UPC). The objective of the project is to apply

model-based predictive control techniques for flow manage-

ment in large-scale water transport systems.

Model predictive control (MPC) is a set of control

methodologies that use a mathematical model of the

considered system to obtain control signals over a time

horizon that minimize a cost function related to selected

indexes associated to a desired system performance. MPC is

very flexible regarding its implementation and can be used

over almost all systems since it is set according to the model

of the plant (Maciejowski 2002; Camacho & Bordons 2004).

Moreover, MPC has some features to deal with complex

systems, such as water networks, which present the

following characteristics: physical and operational con-

straints, a multivariable and large-scale nature, demand

forecasting requirement, and complex, multi-objective

operational goals. Moreover, MPC is relatively simple to

be used by people without deep knowledge of control.

Thus, according to (Marinaki & Papageorgiou 2005;

Ocampo-Martinez 2007; Brdys et al. 2008), among others,

such controllers are very suitable to be used in the global

control of networks related to the urban water cycle within

a hierarchical control structure. This global control struc-

ture is shown in Figure 1, where the MPC determines the

references for the local controllers located on different

elements of the network. The management level is used to

provide MPC with the operational objective, which is

reflected in the controller design as the performance

indexes to be optimized.

In general, DWNs are pressurized systems containing

multiple tanks, pumping stations, water sources (superficial

and underground) and sectors of consumer demand (Brdys

& Ulanicki 1994). The MPC technique is used here to

generate flow-control strategies from the drinking water

treatment plants to the consumer areas to meet future

demands, optimizing a performance index expressing

operational goals such as economic cost, water safety

storage and flow control stability. The main contribution

of this paper consists in highlighting the advantages of using

optimization-based control techniques as MPC to improve

the performance of a DWN taking into account the added

complexity of the MPC design for these systems, namely,

their large scale (in terms of number of dynamic elements

and decision variables), the nature of the desired control

objectives and the type and behaviour of the system

disturbances (drinking water demands). The developed

control strategies have been tested on the drinking water

transport network of Barcelona, a representative example of

a large-scale and complex DWN.

The structure of the paper is as follows: first, modelling

and MPC applied to DWNs is revised. Then, the description

of the case study based on an aggregate model of the

Barcelona drinking water system is presented. Next, the

main results obtained from simulations of the closed-loop

system using MPC techniques are discussed. Different

aspects and issues of the simulations are commented on.

Finally, the main conclusions are drawn.

DWN MODELLING ORIENTED TO PREDICTIVE

CONTROL

In order to obtain the DWN control-oriented model, the

constitutive elements and basic relationships are

introduced.

The mass balance expression relating the stored

volume in tanks, x, the manipulated tank inflows and

outflows, u, and the demands, d, can be written as
Figure 1 | Hierarchical structure for RTC of drinking water system. Adapted from

(Ocampo-Martinez 2007).



the difference equation
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where qin,i(k) and qout,j(k) correspond to the i-th tank

inflow and the j-th tank outflow, respectively, given in m3/s.

The physical constraint related to the range of tank

volume capacities is expressed as

xmin # xðkÞ # xmax ð2Þ

where xmin and xmax denote the minimum and the maximum

volume capacity, respectively, given in m3. Since this is a

physical limit, it is expressed as a hard constraint: it is

impossible to send more water to a tank than it can store.

In a DWN, nodes correspond to intersections of mains.

The static equation that expresses the mass conservation in

these elements can be written as

i

X
qin;iðkÞ ¼

j

X
qout;jðkÞ ð3Þ

where qin,i(k) and qout,j(k) correspond to the i-th node

inflow and the j-th node outflow, respectively, given in

m3/s. Therefore, considering the expressions presented

above, the control-oriented model of a DWN in discrete-

time state space may be written as:

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ þ BpdðkÞ; ð4Þ

where x [ Rn is the state vector corresponding to the water

volumes of the tanks at time k, u [ Rm represents the vector

of manipulated flows through the actuators, and d [ Rp

corresponds to the vector of demands. A, B, and Bp are the

system matrices of suitable dimensions. Since the demands

can be forecasted and they are assumed to be known, d is a

known vector containing the measured disturbances affect-

ing the system. Therefore, (4) can be rewritten as

xðkþ 1Þ ¼ AxðkÞ þ GvðkÞ; ð5Þ

where G ¼ ½B Bp� and vðkÞ ¼ ½uðkÞT dðkÞT�T. Regarding

the system constraints and according to the network

modelling, they are related to:

† Mass balance relationships at the network nodes

(relations between manipulated inputs and, in some

cases, measured disturbances). These equalities are

written as

E1vðkÞ ¼ E2 ð6Þ

† Bounds on system states and measured inputs expressed

by (2) and the inequality

umin # uðkÞ # umax ð7Þ

where u min and u max are vectors with the lower and

upper limits of the actuators, respectively.

Hence, expressions in (2), (5), (6) and (7) constitute the

set of constraints related to the DWN mathematical model.

OPTIMIZATION-BASED CONTROL OF DWNS

Along the last few years, MPC has shown to be one of the

most effective and accepted control strategies for complex

systems (Maciejowski 2002). The objective of using this

technique for controlling DWNs is to compute, in a

predictive way, the best manipulated inputs in order to

achieve the optimal performance of the network according

to a given set of control objectives and predefined perform-

ance indexes. MPC strategies have some important features

to deal with complex systems, such as water networks: the

amenability to including disturbance (demand) prediction,

physical constraints and multivariable system dynamics and

objectives in a relatively simple fashion.

Control objectives and cost function

This paper considers that a MPC design for a DWN should

satisfy the operational objectives described as follows.

Minimizing water production and transport cost

The main economic costs associated to drinking water

production (treatment) are due to: chemicals, legal canons

and electricity costs. Delivering this drinking water to

appropriate pressure levels through the water transport

network involves important electricity costs in pumping

stations. For this study, this control objective can be



described by the expression

f1ðkÞ ¼ WaðauðkÞÞ þWgðgðkÞuðkÞÞ; ð8Þ

where a corresponds to a known vector related to the

economic costs of the water according to the selected

source (treatment plant, dwell, etc.) and g(k) is a vector of

suitable dimensions associated to the economic cost of the

flow through certain actuators (pumps only) and their

control cost (pumping). Note the k-dependence of g since

the pumping effort has different values according to the time

of the day (electricity costs). Weight matrices Wa and Wg

penalize the control objective related to economic costs in

the optimization process.

Safety storage term

The satisfaction of water demands should be fulfilled at any

time instant. This is guaranteed through the equality

constraints of the water mass balances at demand sectors.

However, some risk prevention mechanisms should be

introduced in the tank management so that, additionally,

the stored volume is preferably maintained over safety limit

for eventual emergency needs and to guarantee future

availability. A quadratic expression for this concept is used,

as follows:

f2ðkÞ ¼
0 if xðkÞ $ b

ðxðkÞ2 bÞTWxðxðkÞ2 bÞ if xðkÞ , b

8<
: ; ð9Þ

where b is a term which determines the security volume to

be considered for the control law computation and matrix

Wx defines the weight of the objective in the cost function.

Stability of control actions

Pumping stations must, in general, avoid excessive switch-

ing; valves should operate smoothly in order to avoid

big transients in the pressurized pipes which can lead

to poor pipe condition. Similarly water flows requested

from treatment plants must have a smooth profile due

to the plants operational constraints. To obtain such

smoothing effect, the proposed MPC controller includes

a third term in the objective function to penalize control

signal variation between consecutive time intervals,

i.e. DuðkÞ ¼ uðkÞ2 uðk2 1Þ. This term is expressed as

f3ðkÞ ¼ DuðkÞTWuDuðkÞ; ð10Þ

where Du(k) corresponds to the vector of variation in the

inputs from time k 2 1 to time k, and Wu corresponds to a

weight matrix of suitable dimensions.

Therefore, the performance function J(k), considering

the aforementioned control objectives has the form

JðkÞ ¼
XHu21

i¼0

f1ðkþ iÞ þ
XHp

i¼0

f2ðkþ iÞ þ
XHu21

i¼0

f3ðkþ iÞ; ð11Þ

where Hp and Hu correspond to the prediction and control

horizons, respectively. In this equation, index k represents

the current time instant while index i represents the time

along the prediction and control horizons.

The highest priority objective is the economic cost,

which should be minimized while obtaining acceptable

satisfaction of security and stability objectives. Further

improvements in objective priority handling can be

obtained by using a lexicographic approach as suggested

in (Ocampo-Martı́nez et al. 2008).

Remark 1. Weight matrices Wa and Wg for the first control

objective, Wx for the second, and Wx for the third objective

are defined as diagonal matrices of the form

Wi ¼ diag s1 s2 … sq

h i

where i [ {a,g,x,u} and s is the specific weight for the

corresponding variable. Moreover, q [ {n,m,p}, depending

on the variables associated to the cost function term and

defining a weight matrix of suitable dimensions.

DEMAND FORECASTING

The demand forecasting algorithm used for the design

procedure of the MPC controller consists of two levels:

† a time-series modelling to represent the daily aggregate

flow values, and

† a set of different daily flow demand patterns according to

the day type to cater for different consumption during the

weekends and holidays periods. Every pattern consists of

24 hourly values for each daily pattern.



This algorithm runs in parallel with the MPC controller.

The daily series of hourly flow predictions is computed

as a product of the daily aggregate flow value and the

appropriate hourly demand pattern.

Aggregate daily flow model

The aggregate daily flow model is built on the basis of a

time series modelling approach using ARIMA strategy.

A time series analysis was carried out on several daily

aggregate series, which consistently showed a weekly

seasonality, as well as the presence of deterministic periodic

components. A general expression for the aggregate daily

flow model, to be used for a number of demands in different

locations, was derived using three main components:

† Aweekly-period oscillating signal, with zero average value

to cater for cyclic deterministic behaviour, implemented

using a second-order (two-parameter) model with two

oscillating modes in s-plane: s1–2 ¼ ^2p/7j (or equiva-

lently, in z-plane: z1–2 ¼ cos(2p/7) ^ j sin(2p/7)).

Then, the oscillating polynomial is:

yðkÞ ¼ 2 cos
2p

7

� �
yðk2 1Þ2 yðk2 2Þ: ð12Þ

† An integrator takes into account possible trends and the

non-zero mean value of the flow data:

yðkÞ ¼ yðk2 1Þ: ð13Þ

† An autoregressive component to consider the influence

of previous flow values within a week. For the general

case, the influence of four previous days is considered.

However, after parameter estimation and significance

analysis, the models are usually reduced implementing a

smaller number of parameters

yðkÞ ¼2 a1yðk2 1Þ2 a2yðk2 2Þ2 a3yðk2 3Þ2 a4

yðk2 4Þ: ð14Þ

Combining the three components (12)–(14) in the

following way:

DyintðkÞ ¼ yðkÞ2 yðk2 1Þ;

DyoscðkÞ ¼ DyintðkÞ2 2 cosð2p=7ÞDyintðk2 1Þ
þDyintðk2 2Þ;

ypðkÞ ¼ 2a1Dyoscðk2 1Þ2 a2Dyoscðk2 2Þ
2a3Dyoscðk2 3Þ2 a4Dyoscðk2 4Þ;

the structure of aggregate daily flow model for each demand

sensor is therefore:

ypðkÞ ¼ 2b1yðk2 1Þ2 b2yðk2 2Þ2 · · ·2 b7yðk2 7Þ: ð15Þ

The parameters b1,… ,b7 should be adjusted using least-

squares-based parameter estimation methods and historical

data (after pre-processing to obtain fault-free set). In

parallel with the forecasting and control module, a data

validation module should be considered, which validates

the used information. This part of the research is underway

and it is not addressed in this paper. However, the reader is

referred to (Ragot & Maquin 2006) for a methodology

that can be used to guarantee that measurements are free

of faults.

1-hour flow model

The 1-hour flow model is based on distributing the daily

flow prediction provided by the time-series model described

in previous section using a one-hour-flow pattern that

takes into account the daily/monthly variation in the

following way:

yp1hðkþ iÞ ¼
ypatðk; iÞP24
j¼1 ypatðk; iÞ

ypðjÞ; i ¼ 1; … ;24 ð16Þ

where yp1hðkÞ is the predicted flow for the current day j

using (15) and ypatðk; iÞ is the prediction provided by the

one-hour-flow pattern with the flow pattern class day/

month of the actual day.

CASE-STUDY DESCRIPTION

The water transport network of Barcelona is used as the

case study of this paper. This network covers a territorial

extension of 425km2, with a total pipe length of 4,470 km.

Every year, it supplies 237.7 hm3 of drinking water to a

population over 2.8 millions of inhabitants. The network

has a centralized telecontrol system, organized in a two-

level architecture. At the upper level, a supervisory control

system installed in the control centre of AGBAR is in charge

of controlling the whole network by taking into account

operational constraints and consumer demands. This upper
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level provides the set-points for the lower-level control

system. The lower level optimizes the pressure profile to

minimize losses due leakage and to provide sufficient water

pressure, e.g. for high-rise buildings.

Simplifying assumptions

This paper considers an aggregate version of the Barcelona

DWN, which is a representative version of the entire

network developed cooperatively by the AGBAR Company

and the SAC research group. In the aggregate model, some

consumer demand sectors of the network are concentrated

in a single point. Similarly, some tanks are aggregated in a

single element and the respective actuators are considered

as a single pumping station or valve. Pumping stations flows

are treated as continuous variables. This means that a

pumping station is modelled as being able to produce any

flow in a certain range, so that an additional scheduling

procedure (not addressed here) is required for individual

pump operation to produce the desired flow. The aggregate

network, shown in Figure 2, is comprised of 17 tanks (state

variables of the dynamical network model), 61 actuators

(26 pumping stations and 35 valves), 11 nodes and 25 main

sectors of water demand (model disturbances). The model

has been simulated and compared against real behaviour

assessing its validity. The detailed information about

physical parameters and other system values is reported in

(Caini et al. 2009).

SIMULATIONS AND RESULTS

Simulator of Barcelona DWN

A toolbox for simulation of DWN has been developed in

MATLAB/SIMULINK, which allows implementing and

testing control solutions. The results presented in this

section were tested against a simulator developed using

this DWN simulation toolbox. Figure 3 presents the

SIMULINK block diagram of the simulator. This simulator

not only allows the user to test the MPC controller

developed in closed loop but also to evaluate the real

economic cost of the DWN operation given by the control

actions derived by using such controller. With this simu-

lator, it is possible to compare the economic cost of the

manual operation of the network against the optimized one

considering the MPC controller.

Tuning set-up of the MPC controller

The MPC controller developed for the optimal control of

the Barcelona network uses a prediction horizon of 24

hours. The control horizon was also set to 24 hours. It is left

as further research to investigate whether a smaller control

horizon might be used in order to save computation time.

The MPC controller is implemented using GAMS-CONPT

(GAMS 2004), which is interfaced with the MATLAB

environment. The demand forecast obtained from the

procedure previously described in this paper, is

implemented in MATLAB as separate module. The safety

volumes of tanks have been determined increasing by a

20% the minimum volumes required to satisfy the demand

one hour ahead of the prediction horizon. The MPC

performance function, as discussed in the MPC design

section, includes three terms: economic cost, safety and

Table 1 | Tuning set-up of the MPC controller

Priority Economical cost Water cost Electricity cost

Economical cost 68.63 59.24 9.39

Security 130.93 117.84 13.09

Trade-off 70.49 61.98 8.52

Figure 4 | Hourly pattern of a demand sector.



stability terms. The main priority is to minimize the

economic cost. At the same time, safety and stability

objectives must also be optimized. The relative importance

of these objectives is given by the weight in the performance

function. Table 1 presents the results of the tuning

procedure where just one weight is emphasised at time.

Numbers are not given in real economical units due to

confidentiality reasons. The closed-loop results presented in

the next section have been obtained by using a tuning

procedure that analyses the trade off between the control

objectives taking the given prioritization into account. The

controller also takes advantage of the electrical cost tables

so that the optimal strategy can be found trying to pump

when electricity is less expensive (in Barcelona mainly

during the night time).

Closed-loop results

The case study was parameterized using real data (e.g.

demands, operational ranges of elements, etc.). Figure 4

shows a demand profile corresponding to the 24-hour

demand distribution in one demand sector. Similar demand

patterns are used on all demand locations. The test

considers a periods of three consecutive days.

Figure 5a and b plot the evolution of two tanks of the

Barcelona DWN during 72 hours. This figure shows that

Figure 5 | Volume evolution of two selected tanks.

Figure 6 | Pumped flow to the tank d115CAST and electrical cost tariff for this pump.



the demand may be efficiently satisfied while the safety

volume is maintained at all times. This fact implies the

proper working of the MPC controller, improving

the performance index associated to the safety storage.

Figure 6a shows the flow pumped to the tank d115CAST,

whose volume evolution is presented in Figure 5b. It can be

noticed that MPC controller decides to avoid pumping at

the peak-tariff times (see Figure 6b). In Figure 5b, the

volume evolution of tank d101MIR shows that, in order to

supply water for the later part of the day, it is necessary to

receive water during the day in addition to filling the tank

at night time with lower electricity tariffs (see Figure 6b).

It is important to note that the designed management

strategy allows for emptying the tank close to the safety

limit, so as to avoid pumping during peak-tariff time. In

Figure 7a and b, the total flow required from two treatment

plants is presented. These figures show how the stability

term in the cost function has efficiently handled the storage

capability of the network to satisfy the demands with

stable flows from the plants, i.e. avoiding abrupt variations

of their outflows.

CONCLUSIONS AND FURTHER WORK

This paper has presented preliminary results of applying

MPC techniques for flow management in a large-scale

drinking water network including a telemetry/telecontrol

system. The obtained results have shown the smart

capabilities of MPC to generate control strategies that fill

the tanks to appropriate volumes in order to meet demand,

reducing water transport and production costs by taking

into account time-varying electrical tariffs and by using less

expensive sources while maintaining the safety tank

volumes for avoiding risk of shortage in the water supply.

Moreover, the use of a stability term in the performance

function to be optimized by the MPC strategy provides

smooth flows, especially in treatment plants outflows. This

fact implies an efficient handling of the plants, avoiding

performance problems of these elements. The next step of

this study, currently underway, is to compare the optimal

actions computed by the MPC strategy with the current

strategies applied by AGBAR to the real system in order to

examine their respective costs and degree of completion of

the safety and stability goals.
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