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Indoor localization techniques using Wi-Fi 
ngerprints have become prevalent in recent years because of their cost-e�ectiveness
and high accuracy. 	e most common algorithm adopted for Wi-Fi 
ngerprinting is weighted K-nearest neighbors (WKNN),
which calculates K-nearest neighboring points to a mobile user. However, existingWKNN cannot e�ectively address the problems
that there is a di�erence in observed AP sets during o�ine and online stages and also not all the K neighbors are physically close
to the user. In this paper, similarity coecient is used to measure the similarity of AP sets, which is then combined with radio
signal strength values to calculate the 
ngerprint distance. In addition, isolated points are identi
ed and removed before clustering
based on semi-supervised anity propagation. Real-world experiments are conducted on a university campus and results show the
proposed approach does outperform existing approaches.

1. Introduction

Localization techniques are essential for increasingly popular
location-based services in pervasive computing and Internet
of 	ings. In indoor environments, GPS signals cannot
penetrate, so Wi-Fi based localization methods become the
dominant positioning technique. Fingerprinting based on
received signal strength (RSS) is the most popular method
of indoor positioning that was 
rst proposed in the radar
system [1]. 	is technique includes an o�ine training phase
and an online location estimation phase. 	e o�ine phase
detects Wi-Fi signal strength from surrounding APs and
collects location 
ngerprints to create a radio map. In the
online phase, a Wi-Fi enabled mobile device obtains a vector
of signal strengths in real time. 	ese signal measurements
are then compared to the 
ngerprints in the radio map.
	e location of the best matching 
ngerprint is used as the
estimated location.

	e Wi-Fi 
ngerprinting based method has two prob-
lems.

(i) APs mismatch: we have found that the visible Wi-
Fi access points (APs) set varies over time and

space, which implies that there might not exist a
perfect match for current location when trying to

nd a match in the 
ngerprint database. Existing
work typically uses one of the two methods to work
around this issue. One is to select the APs shared
by online radio measurements and reference points
(RPs) in radio map, and then these APs with the
strongest RSS will be used for 
nal matching [2–4].
	e other method is to assign a small RSS value to a
nonobservedAP [5–7].However, bothmethods fail to
completely represent signal characteristics at a certain
location due to the addition or deletion of some
information, which ultimately a�ects the accuracy of

ngerprint distance estimation.

(ii) Clustering ine	ciency: to compare multiple locations
and select the one that best matches the observed sig-
nal strength, weighted K-nearest neighbors (WKNN)
method is o�en used due to its simplicity. However,
due to the inherent time-varying nature of wireless
signal, �-nearest neighboring points are not always
close to a user’s real position. Consequently, directly
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using K-nearest neighbors may lead to bad estima-
tions. To address this problem, clustered WKNN
algorithms have been developed [8–13], and most
of them either use �-means [10] or �-means [12]
as the clustering algorithm. However, they need to
prespecify the clustering number, which is unsuitable
for classifying RPs whose distribution is initially
unknown. In fact, ideally the cluster should have low
similarity to other clusters.

In this work, we aim to tackle these two problems in
Wi-Fi 
ngerprinting based localization method: we address
the APs mismatch problem by combining AP sets similarity
and RSS distance when calculating 
ngerprint distance and
we address the clustering ineciency issue by enhancing
semi-supervised anity propagation clustering algorithm
in combination with detection of isolated points. Hence,
we call the improved algorithm semi-supervised anity
propagation based WKNN (WKNN-SAP). WKNN-SAP has
been implemented on a server and evaluated through real-
world experiments performed in a teaching building.

	e rest of this paper is organized as follows. We discuss
related work in Section 2. Section 3 provides an overview
of WKNN-SAP, followed by algorithm details in Section 4.
Results of performance evaluation are analyzed in Section 5
and 
nally Section 6 concludes the paper.

2. Related Work

Research in Wi-Fi 
ngerprinting localization recently has
been mainly focusing on how to improve the collection of
signal 
ngerprints and how to improve localization accu-
racy. For 
ngerprint collection, various alternatives have
been proposed and they include using a signal propagation
model, ray-tracing [14], interpolation, and even unsupervised
crowdsourcing using the inertial sensors and indoor �oor
plans [15]. To improve localization accuracy, researchers
have adapted to heterogeneous Wi-Fi clients [16, 17], used
historical tracks, and fused other positioning techniques such
as PDR [18, 19] or acoustic ranging [20, 21]. In our work, we
focus on two speci
c issues in currentmethod: APsmismatch
and clustering ineciency.

	e visible APs are o�en di�erent during online and
o�ine stages. In existing work, researchers simply select
these common APs with the largest signal strength for
matching [2–4] or set the corresponding RSS entity to a
small value (e.g., −110 dBm) if no RSS reading is found for
an AP [5–7]. In fact, these approaches either introduce some
false information or omitted some useful information. 	us,
they cannot accurately describe the signal characteristic of
surrounding Wi-Fi environment.

Due to the time-varying nature of indoor radio prop-
agation, received signal measurements in online stage are
di�erent from the 
ngerprints collected in o�ine stage. To
eliminate this adverse impact, researchers used clustering
technique to partition the neighbors into multiple clusters
and the onewith themostmembers and/or the lowest average
RSS distance is chosen as delegate for calculating the position
of target. Ma et al. 
rst proposed the cluster 
ltered KNN

(CFK) method [9], using hierarchical clustering to partition
the nearest neighbors of RPs. 	e results show that KNN
is improved when clustering technology is used. Altintas
and Serif [12] improve this method by replacing hierarchical
clustering with �-means to gain a higher positioning accu-
racy. Likewise, Sun et al. [10] developed a KNN-FCM hybrid
algorithm.	ey use fuzzy �-means (FCM) clusteringmethod
to divide �-nearest neighbors into several clusters and one
cluster is chosen to calculate user position. As a consequence,
this method has better results than KNN when the distance
error is less than 2 meters. However, it is dicult to specify
� value for �-means and fuzzy �-means, while hierarchical
clustering cannotmake sure that obtained clusters achieve the
greatest sum of distance between all clusters. From a di�erent
perspective, Tian and Au et al. [13, 22] both used anity
propagation to cluster 
ngerprints in the o�ine stage. First,
a coarse-grained position which is normally represented by
one ormore clusters is estimated through clusteringmatching
in online stage, followed by a 
ne-grained positioning. 	e
disadvantage is that clustering all the RPs in o�ine stage takes
more time, and in fact only a small part of RPs contributes to
accurate positioning.

3. Algorithm Overview

Figure 1 depicts the overall �ow of WKNN-SAP. We 
rst
create an o�ine radiomap and then collect RSS vectors in real
time for any point that we need its location. For each point, we
calculate the AP sets similarity and the average RSS distance
between this vector and all the reference points in the radio
map. We then estimate 
ngerprint distances to all the refer-
ence points with our proposed 
ngerprint distance model.
To get more suitable neighbors for comparison [23, 24], �-
nearest neighbors are dynamically selected according to a
signal distance threshold before eliminating isolated points.
	e neighbors are then partitioned into several clusters with
semi-supervised anity propagation (SAP) and one cluster is
chosen as the delegate. 	e user’s position is then calculated
by WKNN.

4. Details of WKNN-SAP

4.1. Calculation of Fingerprint Distance by Combining AP
Sets Similarity and RSS Distance. In the online stage of the
Wi-Fi 
ngerprinting based localization method, trying to

nd an exact match of visible AP sets in the radio map
constructed o�ine is a challenge. Several factors contribute
to the di�erences in AP sets.

(i) Limited coverage of an AP: scattered deployment of
Wi-Fi APs at di�erent physical locations and limited
signal coverage of each AP will inevitably lead to only
partial APs being visible at certain locations of indoor
buildings.

(ii) Signal interference: wireless signals are vulnerable
to multipath and shadow e�ects as well as people’s
movement. Even performing multiple scans at the
same position, visible AP sets are not always the same.
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Figure 1: Flow of WKNN-SAP.
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Figure 2: Histogram of AP sets similarity at di�erent positions.

(iii) Insertion or removal of APs: some damaged APs may
be removed manually, or new APs may be added into
the environment, which will cause the di�erence of
AP sets between RPs and observed signal vector.

To represent the similarity of two AP sets, we use Jac-
card similarity coecient [25]. Jaccard coecient measures
similarity between two sets and is de
ned as the size of the
intersection divided by the size of the union of the sample
sets: sim(�, �) = |� ∩ �|/|� ∪ �|.

Our experiments have validated the causes of APs mis-
match described above. In an area of about 30m2, we choose
an RP as the base point and calculate the Jaccard similarity of
AP sets between base point and other 39 RPs. Figure 2 shows
the histogram of the similarity: the number of RPs whose AP
set is the same as the base point (i.e., similarity equals 1.0) is
small. In other words, visible APs at di�erent positions di�er
considerably, even if these positions are physically close. In
addition, we conducted continuous scan at a certain position
to capture multiple signal vectors and then choose one signal
vector as the base point. We calculate the AP sets Jaccard
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Figure 3: Histogram of AP sets similarity at di�erent times.

similarity between base point and other signal vectors. 	e
results in Figure 3 show that it is very rare to have the same
visible APs at di�erent times even at the same position.

Using AP sets similarity or RSS distance alone to rep-
resent 
ngerprint distance results in undesirable outcomes:
AP sets similarity only provides coarse-grained information
about two reference points, while RSS distance may delete
some useful signal characteristics [2–4] or add arti
cial
information [5–7]. 	erefore, we propose to combine AP
sets similarity and RSS distance to calculate the distance
between two 
ngerprints. Fingerprint is de
ned as fp =
{coor,APs, rssis}, where coor is the coordinate and it is an
unknown quantity in online measurements; APs are the AP
set of 
ngerprint points and APs = {ap1, ap2, . . . , ap�};
rssis is the set of signal strength of corresponding APs.
	erefore, to estimate the AP sets similarity of two 
nger-
prints ormeasurements, we should calculate the set similarity
between set APs1 = {ap11, ap12, . . . , ap1�} and set APs2 =
{ap21, ap22, . . . , ap2�}, where � and 	 are the size of two sets
and probably are not equal.
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We denote RSS average distance of commonAPs between
observation signal vector and RPs using 
�. For instance,
when � = 1, 
1 is Manhattan distance; when � = 2, 
2 is
Euclidean distance:


� =
(∑���=1

����rssi�� − rssi	�
����
�)1/�

�� , (1)

where �� is the number of elements in intersection set and
rssi�� and rssi	� are the signal strength received at two di�erent
RPs from the same AP.

Typically, a small similarity of AP sets means a larger
distance between two 
ngerprints, while a small RSS distance
implies small distance between them, and vice versa. To

nd a reasonable model describing the relationship between
the two independent variables (i.e., AP sets similarity and
RSS distance) and a dependent variable (i.e., 
ngerprint
distance), we use 1stOpt [26] to 
t their linear or nonlinear
relationships. 1stOpt is a set of mathematical optimization
analysis so�ware packages specializing nonlinear regression,
curve 
tting, and parameter estimation of misaligned com-
plex models. 	is modeling problem can be described as
follows: based on the AP sets similarity sim and RSS average
distance of the AP intersection set, derive the real physical
distance between two RPs. 	erefore, we seek a function
that minimizes the di�erence between the estimated distance
and the physical distance. If the AP sets similarity and
RSS distance between two reference points are 1 and 0,
respectively, the estimated distance should be 0.

Based on the 
tting results, we use the followingmodel to
compute 
ngerprint distance FD�:

FD� = �1 ∗
(∑���=1

����rssi�� − rssi	�
����
�)1/�

(��) + �2 ∗ ln (sim) , (2)

where �1 and �2 are parameters and sim is Jaccard similarity
coecient calculated. Because only proximity degree instead
of the absolute distance is needed when performing com-
parisons, we merge the two parameters �1 and �2 into one
parameter � by dividing �1 on both sides of the equation and
we get the relative 
ngerprint distance RFD� as follows:

RFD� =
(∑���=1

����rssi�� − rssi	�
����
�)1/�

(��) + � ∗ ln (sim) . (3)

4.2. Isolated Points Identi
cation Based on Nearest Neighbors.
With our proposed 
ngerprint distance model and a 
nger-
print distance threshold, we can obtain�-nearest RPs to user
position. 	e next step is to detect and delete isolated points
among these nearest RPs. An isolated point is de
ned as one
that has very few neighboring points in physical space. 	e
accuracy of clustering is always a�ected by the presence of
isolated points in the data set. We design an isolated points
identi
cation algorithm that considers nearest neighbors.
Assuming the training data set is� = {��}, � = 1, . . . , 	, nearest
neighbors of a point are de
ned as follows: if �(��, �
) < �,
1 ≤ �, � ≤ 	, then �� ∈ �
, where �
 is the set of nearest

neighbors of point �
 and �(��, �
) is the distance between ��
and �
 and � is a distance threshold.

Isolated points detection works in two steps. (1) Traverse
all the points in the data set �, and record the number of
nearest neighbors of every point. If a particular point holds
very few neighbors or is evenwithout any neighbor, this point
is considered as an isolated point. (2)Whenone isolated point
is identi
ed, other points are analyzed again. If one point is
the neighbor of this isolated point, the number of nearest
neighbors of this point is decreased by 1. However, if the 
rst
isolated point is not identi
ed or not all the isolated points are
detected, go back to (1) for another iteration until no isolated
point exists in the data set.

4.3. ClusterNeighbors Based on Semi-SupervisedA	nity Prop-
agation. A�er calculating the 
ngerprint distances between
the online signal measurements and all the reference points
in the 
ngerprint database, traditional WKNN uses the �-
nearest reference points to estimate user position, where a
commonly usedweight � is the inverse of theRSS distance: � =
∑��=1((1/(
��+�))×��). However, due to the radio interference,
�-nearest neighbor points are not always physically close to
user’s position, so using the�-nearest neighbors directlymay
lead to poor estimation. If we choose these� neighbors more
carefully before calculation, a more accurate estimation may
be obtained. As shown in Figure 4, the numbered points are
nearest neighbors. 	e smaller the number is, the closer the

ngerprint distance is from this RP to signal measurement
collected at user’s position.	e actual user position ismarked
as solid red circle. If WKNN (� = 3) is directly used, the
estimated position represented by the solid blue diamond is
quite far away from the actual position. However, we can
cluster all the neighboring points according to their physical
locations and then select one cluster as the delegate based on
the average 
ngerprint distance and the size of clusters. In this
way, some “fake neighbors” such as point 2 are removed; thus,
the 
nal estimation can be improved (the solid green square
in this case). 	is example demonstrates that how to cluster
neighboring points is important. In the following, we propose
a new scheme to 
lter out useless neighbors.

Di�erent from �-means clustering algorithm that ran-
domly selects � initial points, the main idea of anity
propagation clustering [27] is using preference to label RPs.
	e preference of RP�, called preference(�) or �(�, �), is the
a priori suitability of RP� to serve as an exemplar. 	e RPs
with larger preference values are more likely to be selected
as cluster centers. 	e number of clusters is in�uenced by the
values of the input preferences. High values of the preferences
will cause anity propagation to 
nd many clusters, while
low values will lead to a small number of clusters. Preferences
can be set to a shared value or customized for particular data
points. Normally, the shared value could be themedian of the
input similarities or their minimum. In our work, the shared
preference is used and represented as

preference = � coecient ∗ median (similarities) , (4)
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Figure 4: An example to demonstrate the e�ectiveness of clustering.

where � coecient is the preference parameter, which in�u-
ences the number of clusters, and median(similarities) is the
median of the input similarities.

	epairwise similarity �(�, �) shows howwell RP
 is suited
to be the exemplar for RP�. Here, we de
ne pairwise similarity
between RP� and RP
 as �(�, �) = −RFD(�, �), where RFD(�, �)
is computed using (3). 	e similarity matrix � is used as
input for anity propagation clustering and the output is the
clustering results of reference points and the corresponding
centers.

	emost important factor that a�ects the performance of
anity propagation is the similarity matrix. In other words,
if the similarity matrix can accurately capture relationship
among data, anity propagation can achieve excellent clus-
tering. We, therefore, try to modify similarity matrix in our
proposed semi-supervised anity propagation algorithm.

If two RPs are very close to each other, they should be
assigned to the same cluster. We use � to denote the set of
such RPs with a must-link relationship: � = {(��, �
)}. 	e
basic idea of adjusting similarity matrix is that when a pair
of points satisfy the constraint that (��, �
) ∈ �, the two
points �� and �
 have high similarity (�(�, �) = 0). According
to the transitivity of themust-link relationship, new pairs that
satisfy this relation can be formed:

(��, �
) ∈ � �⇒ � (�, �) = 0, � (�, �) = 0,

(��, ��) ∉ �, (��, �
) ∈ �,

(�
, ��) ∈ � �⇒ � (�, #) = 0, � (#, �) = 0,

� = (��, ��) ∪ �.

(5)

Anity propagation is then used to cluster these points
based on the new similarity matrix. Since the must-link
relationships only change some of the similarity values, the

original anity propagation may put a pair of points into
di�erent clusterswhile they should belong to the same cluster:
{(��, �
)} ∈ �, but �� ∈ $� and �
 ∈ $�, where $� and $�
are distinct clusters. To address this issue, we make further
adjustments.

(i) If the sizes of the two clusters are equal, compute ���
(i.e., distance between �� and cluster $�) and �
� (i.e.,
distance between �
 and cluster$�). If��� < �
�, then
assign �� to $�; otherwise, point �
 is added to $�.

(ii) Otherwise, the cluster having more members will
include the other point that did not belong to this
cluster before.

4.4. Delegate Cluster Selection. A�er partitioning nearest
RPs into several clusters, one cluster should be chosen as
the delegate region. Previous work selects candidate cluster
mainly based on the number ofmembers in clusters [9] or the
average 
ngerprint distance [12], and only when one criterion
cannot pick out the candidate cluster, the other will be used.
Our empirical 
ndings show that depending too much on
either criterion would result in large errors, so we propose a
uni
ed selection rule considering both the criteria. Given the
maximum number of members of all the clusters is %, when
the size of a cluster exceeds %/2 (an adjustable threshold),
the cluster with smallest average 
ngerprint distance will
be chosen. Otherwise, choose the cluster having the most
members.

5. Performance Evaluation

We implement WKNN-SAP and test it in real-world envi-
ronments. We compare its performance against existing
approaches from several di�erent angles, including impact of
isolated points removal, semi-supervised clustering, delegate
cluster selection, clustering, and 
ngerprint distance model.
We next describe our experimental setup and results.

5.1. Experimental Setup. To evaluate the performance of
WKNN-SAP, we collected Wi-Fi RSS data using a Huawei
C8650 smartphone on the 
rst �oor of the third teaching
building of China University of Geosciences in Wuhan. 	e
dimension of the building is 55 × 35 meters, as depicted in
Figure 5. 	is building has seven �oors with a total of 19
Aruba APs: 5 on the 
rst �oor, 4 on the second �oor, and 2
on each of the other �oors. Figure 6 shows the Aruba APs
deployed in classrooms. Besides, there are several di�erent
types of APs outside the building. 	e number of visible APs
also varies dramatically at di�erent locations (from 4 to 22 in
our test).

We collected data twice, one for building the radio map
and the other for testing it. 	e training data was collected
from 160 distinct locations with 2m spacing between each
reference point. 	ere are 30 temporal RPs and we recorded
RSS values at a rate of 1Hz for each location in the radio
map. During the testing, RSS samples were collected at 77
test points with a 3m separation. 	e test points were placed
on and o� the training points and 10 samples per location
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Figure 5: 	e layout of the experimental testbed.

Figure 6: Aruba APs deployed in classrooms.

are recorded for testing. Figures 7 and 8 show the graphical
user interface used for o�ine data collection and online
positioning, respectively.

5.2. Experimental Results

5.2.1. Impact of Isolated Points Selection. In this experiment,
we set the distance threshold value as 4 meters, which means

if the distance between two points is less than 4 meters,
then they are each other’s nearest neighbors. Figures 9 and
10 show the positioning experiment at one test point, in
which 6 initial nearest reference points are selected by using
dynamical selection algorithm based on RSS threshold. As
shown in Figure 9, if we do not detect the isolated points,
6 RPs are grouped into one cluster. WKNN is then used to
estimate the position with the 3 nearest RPs. Figure 10 shows
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Figure 10: Result of clustering a�er removing isolated points.

that a�er isolated points (point 3) are identi
ed and deleted,
the remaining RPs are divided into two clusters. 	e cluster
containing RP 1, 4, and 5 has the largest number of members
as well as the smallest average 
ngerprint distance compared
to the other cluster. 	erefore, this cluster is selected as
the delegate, and the 
nal estimation has been improved
compared to the previous result without removing isolated
points.

5.2.2. Impact of Semi-Supervised Clustering Based A	nity
Propagation. In this experiment, we select one test point
as an example and compare the performance of anity
propagation and semi-supervised anity propagation. We
de
ne that two points satisfy the must-link relationship, only
if their distance is below 2meters. We use color and shapes to
distinguish di�erent clusters. Figure 11 shows that when using
the original anity propagation idea, points 1, 6, and 9 belong
to the same cluster which is selected as the delegate due
to its smaller average 
ngerprint distance compared to the
other clusters. However, using our proposed semi-supervised
anity propagation approach, point 1 is adjusted to another
cluster as shown in Figure 12.	e estimated position is much
closer to the actual position due to this adjustment.

5.2.3. Impact of Delegate Cluster Selection. To demonstrate
how delegate cluster selection a�ects the position estimation,
we show two results. When there is a cluster whose size
exceeds %/2 (where % is the maximum size of all clusters),
the selection criteria should be RSS distance. Otherwise, the
number of elements in clusters should be the metric. As
shown in Figure 13, the RPs are partitioned into 3 clusters
with a size of 1, 3, and 14, respectively. 	e size of cluster
denoted using pink lower triangles ismarkedly larger than the
other two clusters, so it serves as the delegate. In Figure 14,
11 RPs are partitioned into 2 clusters with a size of 4 and 7,
respectively. Due to the small di�erence in the size of the
two clusters, average 
ngerprint distance is then used as the
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propagation.

selection metric. Hence, the cluster consisting of points 1, 2,
and 9 is selected.

5.2.4. Impact of Clustering Techniques. In this experiment,
we compare WKNN-SAP with classic �-means clustering
and WKNN without clustering. Four metrics are compared,
including standard deviation of error, mean error, median
error, and 67% CEP (circular error probability). 	e CEP
is de
ned as the radius of the circle that has its center at
the true location and contains the location estimates with
a probability. 	e location error is de
ned as the Euclidean
distance between the estimated position and the real position
of the client device. For fairness, the three methods use the
same 
ngerprint distance estimation scheme that combines
AP sets similarity and signal distance, and the parameter �
is set to be 1. For WKNN-SAP, we set the values of several
parameters as follows: the 
ngerprint distance threshold of
selecting the nearest neighbors is set to 0.4, which means
we will choose those RPs whose 
ngerprint distance to the
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Figure 13: Delegate cluster selection based on cluster size.
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Figure 14: Delegate cluster selection based on the average 
nger-
print distance.

measurement of target location is at most 0.4 more than
the smallest 
ngerprint distance. When detecting isolated
points and if the physical distance between two RPs is below
4 meters, then we consider one as the nearest neighbor
of the other. A pair of RPs have must-link relationship,
only if the physical distance between them is less than 2
meters. As for �-means clustering, we select 13 nearest
neighbors, which yields the best location accuracy in our
experimental environment. WKNN-SAP and �-means use
the 
nal remaining 3 nearest RPs in the delegate cluster
to calculate the position of the target. For WKKN without
clustering, the 3 nearest RPs are directly used.

	e number of clusters is the key factor that in�uences
the positioning results in clustering based WKNN approach,
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Figure 15: Comparison of positioning accuracy based on di�erent
clustering strategy.
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Figure 16: Comparison of positioning accuracy using di�erent

ngerprint distance models (entire environment).

so we vary the number of clusters for both �-means and
semi-supervised anity propagation. For�-means, the clus-
tering number � number should be assigned manually. In
this case, we set the clustering number as 2, 3, and 4,
respectively. As for SAP, the clustering number is determined
by the value of � coecient, which is shown in (4). Here,
� coecient is set to be 1.3, 1, and 0.7, respectively, which
can dramatically change the clustering results, and accord-
ingly the clustering number increases. Figure 15 and Table 1
show results of WKNN-SAP and �-means with di�erent
clustering number aswell as the traditionalWKNNapproach.
As we can see, WKNN-SAP achieves a better positioning
accuracy compared to the other two methods, while �-
means based approach can get the best result when the
clustering number is 3.Moreover,WKNN-SAP is less a�ected
by the clustering number compared with �-means. 	is is

because the clustering number of semi-supervised anity
propagation is eventually adjusted based on the de
nedmust-
link relationship.

5.2.5. Impact of Fingerprint Distance Estimation Techniques.
To evaluate the performance of the proposed 
ngerprint
distancemodel combiningAP sets similarity and average RSS
distance, we compare it with traditional methods including
selecting the sharedAPswith strongest RSS (beyond−85) and

lling nonobserved AP with a small RSS value (−97). As for
the proposed distance model, the parameter � is set to be 1.
For fairness, three methods use the sameWKNNmethod. �
is set to be 2, and positioning result is shown in Figure 16. To
consider the e�ect of di�erent� values forWKNNalgorithm,
we test the positioning results when � is equal to 2, 4,
6, and 8, respectively. 	e results in Table 2 demonstrate
that proposed 
ngerprint distance model used in WKNN-
SAP provides better positioning performance compared with
traditional approaches. 	is can be explained by the capacity
of capturing the absence or appearance of APs in WKNN-
SAP.

In order to further evaluate the performance of the
proposed 
ngerprint distance model in an environment
with di�erent Wi-Fi conditions, positioning results of two
subspaces of the experimental environment are compared. As
shown in Figure 5, the corridors outside the classrooms are
divided into three parts, which have considerable di�erence
in sensed AP sets because of the interference of walls.
	e other subspace is an open area located in the center
of the experimental environment, and received AP sets at
di�erent locations are basically the same. We can regard this
subspace as the normal Wi-Fi environment for traditional
WKNN approach. 	e results are shown in Figures 17 and
18, respectively. We can conclude that proposed 
ngerprint
distance model is superior to the traditional methods when
the di�erence of AP sets is large. However, for normal Wi-
Fi environment with small AP sets di�erence, the proposed
approach achieves similar performance to the one selecting
common strongest APs, which can also be derived from
(3). When sim equals 1, (3) approximately evolves to the
one selecting common strongest APs.	is experiment shows
that the proposed method can better adapt to the indoor
environment with distinct AP sets, and the greater the
di�erence is, the more superior the proposed method is to
traditional methods.

6. Conclusions

In this paper, we propose an improved Wi-Fi 
ngerprint-
ing positioning algorithm called WKNN-SAP. WKNN-SAP
centers around two major contributions. First, we propose
a new 
ngerprint distance estimation model using AP sets
similarity and RSS distance to deal with the observation that
visible AP sets are o�en di�erent in o�ine and online stages.
Second, we design a semi-supervised anity propagation
clustering algorithm coupled with isolated points removal to
gain a more reasonable clustering result and eliminate some
outliers. Our evaluation results indicate that both SAP and
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Table 1: Four error measures for di�erent algorithms.

Methods Mean Std. Median 67% CEP

WKNN-SAP (� coecient = 1.3) 1.85m 1.39m 1.46m 1.93m

WKNN-SAP (� coecient = 1) 1.85m 1.43m 1.43m 1.93m

WKNN-SAP (� coecient = 0.7) 1.95m 1.46m 1.5m 1.94m

�-means (� number = 2) 2.48m 1.58m 2.07m 2.86m

�-means (� number = 3) 2.28m 1.57m 1.94m 2.47m

�-means (� number = 4) 2.58m 1.81m 2.22m 2.88m

WKNN without clustering 2.59m 2.08m 1.92m 2.67m

Table 2: Average distance errors and standard deviation of test results (entire environment).

Select APs with largest RSS Fill nonsensed AP with small RSS Proposed 
ngerprint distance model

Mean Std. Mean Std. Mean Std.

� = 2 3.28m 3.40m 3.47m 3.06m 2.50m 2.11m

� = 4 3.14m 2.36m 3.45m 2.56m 2.69m 1.62m

� = 6 3.20m 2.08m 3.75m 2.84m 3.02m 1.72m

� = 8 3.33m 2.03m 3.78m 3.08m 3.13m 1.79m
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Figure 17: Comparison of positioning accuracy using di�erent

ngerprint distance models (subspace: corridor).

�-means clustering can be used to improve the localization
accuracy of traditional WKNN, while SAP outperforms
�-means in both the accuracy improvement and stability
because the former one is less a�ected by the clustering
number. Moreover, proposed 
ngerprint distance model can
better adapt to the indoor environment with distinct AP
sets, and the greater the di�erence is, the more superior the
proposed method is to traditional approaches.

As for future work, the diculties of radio map building
in the o�ine phase can be reduced by using calibration
free radio map generation technique, such as crowdsourcing.
Also, PDR (pedestrian dead reckoning) can be integrated to
improve timeliness and accuracy. Last, location model based
positioning technique can utilize spatial contexts (e.g., walls
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Figure 18: Comparison of positioning accuracy using di�erent

ngerprint distance models (subspace: open area).

and obstacles) and connectivity between indoor entities (e.g.,
rooms and corridors) to constrain users’ movement in indoor
environment.
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