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Abstract. A critical aspect of applications with wireless sensor networks is network lifetime. Battery-powered sensors are usable as long

as they can communicate captured data to a processing node. Sensing and communications consume energy, therefore judicious power

management and scheduling can effectively extend operational time. To monitor a set of targets with known locations when ground access in

the monitored area is prohibited, one solution is to deploy the sensors remotely, from an aircraft. The loss of precise sensor placement would

then be compensated by a large sensor population density in the drop zone, that would improve the probability of target coverage. The data

collected from the sensors is sent to a central node for processing. In this paper we propose an efficient method to extend the sensor network

operational time by organizing the sensors into a maximal number of disjoint set covers that are activated successively. Only the sensors

from the current active set are responsible for monitoring all targets and for transmitting the collected data, while nodes from all other sets

are in a low-energy sleep mode. In this paper we address the maximum disjoint set covers problem and we design a heuristic that computes

the sets. Theoretical analysis and performance evaluation results are presented to verify our approach.
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1. Introduction

Wireless sensor networks provide new applications for envi-

ronment monitoring, and military surveillance applications.

Recent developments in hardware miniaturization combined

with low-cost mass production and advances in wireless com-

munications technologies have made possible applications

with large numbers of sensors. In some cases ground access

to the area of the objectives to be monitored is difficult or dan-

gerous, so one solution to install the sensors is to deploy them

from an aircraft. Without precise positioning, the only way to

provide adequate target coverage by sensors is to use more

sensors than the optimal number. Large sensor density will

increase the probability of target coverage, considering that

sensors may be randomly dispersed in the targets’ proximity.

One of the main issues in sensor networks is network life-

time. With the available technology, the sensors are battery

powered. Due to size and cost constraints, the energy avail-

able at each sensor for sensing and communications is limited

and globally affects the application lifetime. A solution for

mitigating the energy problem is to implement mechanisms

for efficient energy management. One method is based on

scheduling sensor activity so that for each sensor the active

state, in which it actually performs its monitoring task alter-

nates with a low-energy idle (sleep) state. As pointed out in

[3,11] the ratio of energy consumed between the active and

the sleep state is considerable and may be as high as 100.
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Another result relevant to this approach is that batteries dis-

charging in short bursts with significant off-time have approx-

imately twice as long a lifetime as compared to a continuous

mode of operation (see [2]). Therefore, a mode of operation

that alternates active and inactive battery states extends net-

work lifetime.

In this paper we address the problem of energy efficiency in

wireless sensor applications for surveillance of a set of targets

with known locations. We consider that a large number of

sensors are dispersed randomly in close proximity to a set of

objectives and send the monitored information to a central

processing node. Every target must be monitored at all times

by at least one sensor and every sensor is able to monitor all

targets within its operational range. One method for extending

the sensor network lifetime is to divide the set of sensors into

disjoint sets such that every set completely covers all targets.

We consider that a target is covered if it is within an active

sensor’s operational range. These disjoint sets are activated

successively, such that at any moment in time only one set

is active. The sensors from the active set are into the active

state and all other sensors are in a low-energy sleep state. As

all targets are monitored by every sensor set, the goal of this

approach is to determine a maximum number of disjoint sets,

so that the time interval between two activations for any sensor

is longer. By decreasing the fraction of time a sensor is active,

the overall time until power runs out for all sensors is increased

and the application lifetime is extended proportionally by a

factor equal to the number of disjoint sets. As a consequence,

the spatial density of active nodes is lowered, thus improving

channel access for transmitting sensor data.
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The disjoint sets in our approach are modeled as disjoint set

covers, where every cover completely monitors all the target

points. We assume that the targets have fixed locations, so the

algorithm for computing the covers is executed only once by

a central node after the location for all sensors has been deter-

mined. After the wireless sensors are deployed, they activate

their positioning service and send their location information to

the central node. Based on this information, the central node

computes the disjoint set covers and sends membership infor-

mation back to every sensor. Knowing the set it belongs to

and the number of covers, every sensor is then able to identify

the time periods when it has to be active or in the sleep state.

We assume that a time synchronization service is available to

sensors, most likely facilitated by periodic beacon messages

from the central node or on-board GPS receivers.

In this paper we define the disjoint set covers problem and

demonstrate it is NP-complete. Then we determined a lower-

bound performance result and propose an efficient heuristic

for set covers computation.

There is a significant amount of literature addressing the

issue of energy efficiency in wireless networking, at all lay-

ers of the protocol stack. In general, proposed techniques for

energy saving fall in one of the following categories: (1) sched-

ule operations, to allow nodes to enter low energy states; (2)

choose routes that consumes the lowest energy; (3) selectively

use wireless nodes based on their energy status; (4) reduce

amount of data and avoid useless activity.

Scheduling nodes to enter low energy states is an efficient

way to accomplish energy savings. Next, we review few access

protocols which attain energy savings by scheduling the node

transmissions, such that every node alternates between active

and low energy idle states. IEEE 802.11 MAC [1] proposes

a power saving method for use both in ad-hoc environment

as well as with PCF mechanism. In ad-hoc environments, the

nodes may enter a sleep state, and wake up from time to time

to determine if any traffic is pending for them. In PCF control

mechanisms, the access point (AP) coordinates the medium

access by using a traffic indication map (TIM) which is trans-

mitted periodically and which identifies the stations for which

traffic is pending and buffered in the AP. If a station is listed

in the TIM, then it stays awake, otherwise will doze until

the next TIM is scheduled. The power saving mode in ETSI

HIPERLAN [5] is a contract between at least two stations.

Each p-saver station is coordinating a dozing cycle with one

or more p-supporters, which act as surrogate destinations for

the p-saver station’s traffic while it is dozing.

An effective way to conserve energy is to schedule apri-

ori the wireless node transmissions, allowing them to enter

a low state energy while they are inactive. This idea is ex-

plored in [4], where authors study the communication from

a base station to a large number of wireless nodes. Three ac-

cess protocols are designed, considering two important factors:

low delay and low energy requirements. These protocols pro-

pose a transmission scheduling strategy at the base station as

well as a wake-up schedule at each node. In the grouped-tag

TDMA protocols, the nodes are divided in groups and each

group is assigned a TDMA slot for communication with the

base station. In directory protocols, the base station broad-

casts a directory which lists the destinations, permitting nodes

to schedule their wake-up slots to coincide with the broadcast

of their packets. In the pseudorandom protocols, the base sta-

tion knows when every node is awake, based on sharing the

seed for a random number generator, and thus knows when

to send packets to specific destinations. In [11], the authors

perform a comprehensive study of the problem of scheduling

the communication between the central controller and other

wireless nodes, with focus on energy conservation. The pa-

per contributes three directory protocols that may be used by

the central node to coordinate data transmissions considering

multiple factors such as traffic-type (e.g. downlink, uplink,

peer-to-peer) and the effects of packets errors.

In [10], the authors propose an energy conservation tech-

nique for wireless sensor networks that works by selecting

and successively activating mutually exclusive sets of sensor

nodes, where every set completely covers the entire monitored

area. Their method achieves energy savings by increasing the

number of disjoint covers. The authors propose a heuristic so-

lution to this problem. In Section 4, we compared the perfor-

mance of this heuristic versus the performance of our heuristic.

In [3], we proposed an efficient node organization scheme, by

grouping the sensors in disjoint dominating sets, with every

set successively responsible for area monitoring.

In [9], the authors proposed a new multiaccess protocol,

PAMAS, based on MACA [8], with the addition of a sepa-

rate signaling channel. PAMAS achieves energy savings by

powering off the nodes which are not actively transmitting or

receiving packets.

The rest of the paper is structured as follows. In Sec-

tion 2 we present the disjoint set covers problem, show its

NP-completeness and a lower bound result. Section 3 contin-

ues with a heuristic for computing the maximum number of

disjoint set covers. Section 4 presents performance evaluation

results and Section 5 concludes the paper.

2. Disjoint set covers (DSC) problem

In this section we define the disjoint set covers (DSC) prob-

lem and prove its NP-completeness. We also prove that any

polynomial-time approximation algorithm for DSC problem

has a lower bound of 2.

Let us assume that n sensors S1, S2, . . . , Sn are deployed

in territory to monitor m targets T1, T2, . . . , Tm . In order to

increase the energy savings, the goal is to divide the sensors

into a maximum number of disjoint sets, such that every set

completely covers all the target points. We consider that a

target, identified by its position, is covered by a sensor when

it lies within the sensing range of that sensor.

Our problem is modeled as a collection of sensors C =

{S1, S2, . . . , Sn}, where each sensor covers a subset of the

targets in T = {T1, T2, . . . , Tm}, e.g. Si = {Ti1
, Ti2

, . . . , Tin
},

1 ≤ i ≤ n. We want to determine a maximum number of dis-

joint covers, where every cover is a set of sensors which to-

gether monitor all the target points.
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Next, we define the Disjoint Set Covers problem (see [10]),

which can be seen as a generalization of the minimum cover

problem [6], and show its NP-completeness.

Definition 1. DSC: given a collection C of subsets of a finite

set T , find the maximum number of disjoint covers for T . Every

cover Ci is a subset of C , Ci ⊆ C , such that every element of

T belongs to at least one member of Ci , and for any two covers

Ci and C j , Ci ∩ C j = φ.

Next, we present the Double-Set-Covering problem, which

will be used to show that 2-DSC is NP-complete.

Definition 2. Double-Set-Covering: given two disjoint sets

A and B and a collection C of subsets of A ∪ B, determine

whether C can be partitioned into two disjoint subcollections

CA and CB covering A and B respectively.

Theorem 1. Double-Set-Covering is NP-complete.

Proof. It is easy to show that Double-Set-Covering∈NP, since

a nondeterministic algorithm needs only to partition C into two

disjoint subcollections and then verify in polynomial time if

one subcollection covers A and the other covers B.

To show that Double-Set-Covering is NP-hard, we reduce

the 3SAT problem [6] to it. A boolean formula is in con-

junctive normal form (CNF) if it is expressed as an AND

of clauses, each of which is the OR of one or more liter-

als. A boolean formula is in 3-CNF if each clause has exactly

three distinct literals. The 3SAT problem is defined as fol-

lows: given a 3-CNF formula F , determine whether F has

a satisfiable assignment. Let F be a 3-CNF formula with

m clauses c1, c2, . . . , cm , over n variables x1, x2, . . . , xn . Let

us define A = {x1, . . . , xn, c1, . . . , cm} and B = {x̄1, . . . , x̄n}.

Let C be the collection of following 2n subsets of A ∪ B:

Si = {xi , x̄i } ∪ {c j | c j contains the literal xi } and Ti =

{xi , x̄i } ∪ {c j | c j contains the literal x̄i }, where i = 1, . . . , n.

Next, we show that F is satisfiable if and only if C can be

partitioned into two subcollections covering A and B respec-

tively.

First, suppose F is satisfiable. Define CA = {Si | xi = 1}∪

{Ti | x̄i = 1} and CB = C − CA. Clearly, CA and CB cover A

and B respectively.

Now, assume that C can be partitioned into two subcol-

lections CA and CB covering A and B respectively. Define

xi = 1 if Si ∈ CA and xi = 0 otherwise. Then, every clause is

satisfied since CA covers A.

Finally, we note that this reduction is polynomial-time com-

putable. ✷

The decision version of the DSC problem is stated as follows:

k-DSC (disjoint set covers): Given a set T and a collection

C of subsets of T , determine whether C can be partitioned

into k disjoint set covers or not.

Theorem 2. 2-DSC is NP-complete.

Proof. It is easy to show that 2-DSC ∈ NP, since a nondeter-

ministic algorithm needs only to partition C into two disjoint

subcollections and then verify in polynomial time if every sub-

collection covers T .

To show that 2-DSC is NP-hard, we reduce the Double-

Set-Covering problem to it in polynomial-time. Consider an

instance of the Double-Set-Covering problem, which consists

of two disjoint sets A and B and a collection C of subsets of

A∪B. Choose an element u not in A∪B and define U = {u}∪A

and V = {u}∪ B. Now, we show that C can be partitioned into

two disjoint subcollections covering A and B respectively if

and only if C ∪ {U, V } contains two disjoint set covers for

{u} ∪ A ∪ B.

First, suppose C can be partitioned into two disjoint sub-

collections CA and CB covering A and B respectively. Then

CA ∪ {V } and CB ∪ {U } form two disjoint set covers for

{u} ∪ A ∪ B.

Next, let us assume that C ∪ {U, V } contains two disjoint

set covers C1 and C2 for {u}∪ A ∪ B. Since there are only two

sets U and V containing u, implies that U and V must belong

to different set covers. Without loss of generality, assume C1

contains U and C2 contains V . Then C1 − {U } must cover B

and C2 − {V } must cover A. ✷

Corollary 1. For any k ≥ 2, k-DSC is NP-complete.

Proof. We can construct a polynomial-time reduction from

2-DSC to k-DSC (k > 2) by adding k − 2 set covers into input

collection of subsets in a proper way. ✷

Corollary 2. If N P 	= P , then DSC has no polynomial-time

approximation algorithm with performance p for any p < 2.

Proof. Suppose such an approximation algorithm APPROX

exists. Then for a collection C having at least two disjoint

set covers, APPROX can tell that it contains at least 2/p > 1

disjoint set covers. For a collection C containing at most one set

cover, APPROX tells that C contains ≤ 1 set cover. Therefore,

APPROX can solve 2-DSC in polynomial-time, contradicting

N P 	= P . ✷

3. An heuristic to compute maximum disjoint set cover

In this section we present a heuristic for the DSC problem.

Given a collection C of subsets of a finite set T we want to

determine the maximum number of disjoint subcollections,

each covering the set T . Let us consider C = {S1, S2, . . . , Sn}

and T = {T1, T2, . . . , Tm}, where every Si , 1 ≤ i ≤ n is a set

of elements in T .

In order to compute the maximum number of covers, we

first transform DSC into a maximum-flow problem (MFP),

which is then formulated as a mixed integer programming

(MIP). Based on the solution of the MIP, we design a heuristic

to compute the number of covers. Next, we present every step

in detail.
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Let us first transform DSC problem into a M F P as follows:

Step 1. Consider a bipartite directed graph G = (V, E) where

the vertex set V = C ∪ T and Si T j ∈ E if and only if T j

is in Si , where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then assign to

every edge Si T j a capacity cSi T j
= 1. Create a vertex X

and connect every vertex T j in T to X with an edge of

capacity 1.

Step 2. Find a critical element in T which is contained by

a minimum number of subsets in the collection C and

note this number with k. Draw k copies of G, namely

G1, G2, . . . , Gk . In these k copies (components), let the

first index in a vertex notation reflect the component it be-

longs to, e.g. a vertex Si in G, is named S1i , S2i , . . . , Ski in

G1, G2, . . . , Gk .

Step 3. Create a source node S and for each Si in C , create

a vertex S0i . Then connect the source S with S0i with an

edge with capacity equal with the degree of Si in G. Also,

connect S0i with S j i for any 1 ≤ j ≤ k and assign a capacity

equal with the degree of Si in G.

Step 4. Create two sinks Y1 and Y2. Connect each vertex X j

with 1 ≤ j ≤ k to Y2 and assign a capacity m. Then connect

every vertex Ti j with 1 ≤ i ≤ k and 1 ≤ j ≤ m to Y1 and

assign the capacity n.

We define the flow f as an integer-valued function, that satis-

fies the following properties:

P1. Flow constraint: for all uv ∈ E , 0 ≤ fuv ≤ cuv . An addi-

tional condition to the classic flow network is that for any

v 	= Y1, fuv ∈ {0, cuv}.

P2. Flow conservation: for all u ∈ V − {S, Y1, Y2},∑
v∈V,uv∈E or vu∈E fuv = 0.

The goal of this maximum-flow problem is to maximize the

flow received in Y2.

Figure 1. Construction of the flow network for C = {S1, S2, S3}, T = {T1, T2, T3}, S1 = {T1, T2}, S2 = {T1, T2, T3}, S3 = {T2, T3} and a flow/capacity

assignment.

In the example in figure 1, we present the flow network con-

struction when C = {S1, S2, S3}, T = {T1, T2, T3} and S1 =

{T1, T2}, S2 = {T1, T2, T3}, S3 = {T2, T3}. Figure 1(a) shows

the bipartite graph G and in figure 1(b) the whole graph

is presented, with flow/capacity values assigned for each

edge.

Theorem 3. Given a collection C = {S1, S2, . . . , Sn} of sub-

sets of a finite set T = {T1, T2, . . . , Tm}, the DSC problem

returns c∗ covers if and only if the maximum-flow problem

obtains the flow c∗m in Y2 .

Proof. Let us note with fY2
the flow received in Y2, fY2

=∑
i=1...k fX i Y2

. As every flow fX i Y2
can be only 0 or m, the

flow fY2
is a multiple of m.

Let us first consider that the maximum number of covers is

c∗. We show that the maximum flow that can be obtained in Y2

is c∗m. Suppose by contradiction that a larger flow cm, c > c∗

is obtained in Y2. Then there exists c vertices X i1
, X i2

, . . . , X ic

such that fX i j
Y2

= m, j = 1 . . . c. We construct c covers as

follows: C j = {Su | fS0u S ju
= |Su |} for j = i1 . . . ic. These cov-

ers are disjoint, because for a sensor Su , there is at most one

component p such that fS0u Spu
= |Su |. Also, every element of

T belongs to at least one member of C j . Every vertex T ja ,

1 ≤ a ≤ m receives a flow greater or equal than 1, therefore

there is a vertex S jb ∈ C j , 1 ≤ b ≤ n such that Ta belongs

to Sb. Therefore we have constructed more than c∗ covers,

contradicting our assumption.

Let us consider now that the maximum flow obtained in Y2

is c∗m. We show that DSC problem has maximum c∗ cov-

ers. Suppose by contradiction that DSC problem could return

c covers, c > c∗, namely C1, . . . , Cc. We assign the flow in

the network as follows. For j = 1 . . . c, if Sa ∈ C j , then as-

sign fS0a S ja
= |Sa|, otherwise fS0a S ja

= 0. For j = c+1, . . . , k

assign fS0a S ja
= 0 for a = 1 . . . n. The flow on the remaining

edges can easily be computed, resulting in fY2
= cm, therefore

contradicting our assumption. ✷
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Next, we formulate this maximum flow problem as a mixed

integer programming (MIP):

maximize fY2

subject to

(1) fuv ≤ cuv uv ∈ E

(2)
∑

u:uv∈E

fuv −
∑

u:vu∈E

fvu = 0 v ∈ V ; v 	= {S, Y1, Y2}

(3) fSpi Tpi1
= fSpi Tpi2

i = 1 . . . n; p = 1 . . . k;

= · · · = fSpi Tpi j
Si = {Ti1

, Ti2
, . . . , Ti j

};

i j = |Si |

(4) fTp1 X p
= fTp2 X p

p = 1 . . . k

= · · · = fTpm X p

(5) fuv ≥ 0 uv ∈ E

such that:

� fSpi Tpr
∈ N, for any i = 1 . . . n, p = 1 . . . k and r such that

Tr ∈ Si

� fTpj X p
∈ N, for any p = 1 . . . k and j = 1 . . . m

� all other flow variables ∈ R.

Relations (3) and (4) assure that for any v 	= Y1 the flow fuv ∈

{0, cuv}. Therefore the flow of each edge in the network is

calculated such that to satisfy the flow constraint and flow

conservation properties. Note that in every component G p, all

fTpj X p
needs to have the same value 1 or 0, therefore fX pY2

has

the value of m or 0, and fY2
is a multiple of m.

Next we present the Maximum Covers using Mixed Integer

Programming (MC-MIP) heuristic, which computes the covers

based on the solution fY2
returned by the MIP:

MC-MIP Heuristic:

1. compute fY2
using M I P

2. α = fY2
/m; h = 0

3. for each p = 1 . . . k

4. if ( fX pY2
	= 0)

5. h + +; Ch = φ

6. for each i = 1 . . . n

7. if ( fS0i Spi
	= 0) then Ch = Ch ∪ Si

8. endfor

9. endfor

10. return the disjoint covers C1, C2, . . . , Cα

Our heuristic, MC-MIP, uses the output of the MIP to com-

pute the disjoint set covers. Recall that k is the number of

components. Lines 1 . . . 9 set α, the number of disjoint covers

and construct the covers C1, C2, . . . , Cα . The complexity of

our heuristic is dominated by the complexity of the MIP.

In the example in figure 1(b), we present the flow assign-

ment for each edge in the flow network. In this case α = 2 and

there are two covers C1 = {S1, S3} and C2 = {S2}.

4. Performance evaluation

In this section we evaluate the performance of the MC-MIP

heuristic, designed to compute the disjoint set covers. We sim-

ulate a stationary network with sensor nodes and target points

randomly located in a 500 m × 500 m area. We assume the

transmission range is equal for all the sensors in the network.

To solve the mixed integer programming MIP, we used the Op-

timization Solutions Library (O SL) [7] software developed by

IBM. The method we used in our code is branch and bound.

We compare the number of covers produced by our heuristic

with the number of covers produced by the most constrained-

minimally constraining heuristic proposed by Slijepcevic and

Potkonjak in [10], which was developed for area monitoring.

The area to be monitored is divided into a number of fields,

such that all points from a field are covered by the same set

of sensors. By viewing every field as a target, we directly

applied most constrained-minimally constraining heuristic to

our problem and compared its performances versus MC-MIP.

The approach in [10] builds each cover by successively adding

the sensors that cover the sparsely covered parts of the area.

Priority is giving to the sensors that (1) cover a high number

of uncovered areas (2) cover more sparsely covered areas (3)

do not cover areas redundantly and (4) redundantly cover the

areas which are not sparsely covered. This heuristic has com-

plexity O(n2) when the number of fields is not considered in

the computation and n is the number of sensors in the network.

In the first set of experiments, we consider 10 target points

randomly distributed, and we vary the number of sensors be-

tween 50–90 with an increment of 5 and the sensing range

between 100–300 m with an increment of 20. For every value

of the number of sensors and the sensing range, we repeated

the experiment 5 times, for different sensor node random po-

sitioning.

In figure 2, we present the average number of covers com-

puted by the MC-MIP heuristic, depending on the number

of sensors and the sensing range. As the number of sensors

or the sensing range increases, the number of disjoint covers

increases too, since every target would be covered by more

sensors.

In Table 1 we consider the measurements for 90 sensor

nodes and 10 targets and compare the results produced by MC-

MIP and the heuristic proposed by Slijepcevic and Potkonjak

in [10]. Our heuristic produces consistently more covers, there-

fore achieving better energy savings. Table 1 shows the run-

ning time, in seconds for the MC-MIP heuristic. The heuristic

in [10] is faster. However this algorithm is executed by the

central node only once. Therefore trading off the running time

in favor of more disjoint sets may be justified.

Figure 3 compares the average number of covers computed

by MC-MIP and [10] for networks with 90 sensors and 10

targets. As the transmission range increases, redundancy also



338 CARDEI AND DU

Table 1

Measurements for 90 sensors and 10 targets randomly distributed.

MIP Slijepcevic

Sensor Avg. Min. Avg. Max. Min. Avg. Max.

range runtime (s) covers covers covers covers covers covers

100 0 0 2.4 4 0 2.4 4

120 0.2 3 5.4 7 3 5 7

140 0.2 4 6.6 8 4 6 8

160 1 8 8.6 11 6 7.6 9

180 2.2 6 11.6 15 6 10.2 13

200 4.8 13 15 17 11 12.6 15

220 12.2 16 18.4 21 14 16.8 18

240 17.6 13 19.6 23 13 18.2 21

260 28.6 15 22.2 26 15 20.4 23

280 56.8 21 27 30 21 24.4 27

300 97.2 27 31.4 33 27 29.2 31

grows, reflected in more components in our network flow and

therefore more disjoint covers.

In the second set of experiments, we consider between 10–

50 target points and between 50–90 sensor nodes randomly

Table 2

Measurements for 90 sensors with sensing range of 250 m.

MC-MIP Slijepcevic

Number Avg. Min. Avg. Max. Min. Avg. Max.

targets runtime (s) covers covers covers covers covers covers

10 31.2 17 22.8 27 16 20.8 23

15 50 17 19.4 22 16 18.2 21

20 92 18 20.4 23 16 18.2 19

25 151.2 18 21.2 24 16 18 19

30 179.6 11 19 23 11 16.6 19

35 244.4 16 19.4 22 16 16.8 18

40 278 17 18.4 20 15 16 17

45 504.8 18 20.6 23 15 17.2 20

50 404.8 14 17 21 14 16 18

distributed with a sensing range of 250 m. For every such set

of values, we repeated the experiment 5 times, for different

sensor nodes random placements.

Figure 4 illustrates the average number of disjoint covers

computed by the MC-MIP heuristic. As the number of sensors

increases, the average number of covers increases, too.

Figure 2. Average number of covers computed by MC-MIP, depending on the number of sensors and range.

Figure 3. Average number of covers with 90 sensors and 10 targets.
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Figure 4. Average number of covers computed by MC-MIP, depending on the number of sensors and number of targets.

Figure 5. Average number of covers with 90 sensors with sensing range of 250 m.

In Table 2, we present the maximum, average and minimum

number of covers computed by MC-MIP and the heuristic in

[10] for 90 sensors randomly distributed, with a sensing range

of 250 m when number of targets vary between 10 . . . 50. The

general remark is that the number of covers obtained by MC-

MIP is larger, but the heuristic in [10] has lower execution

time.

Figure 5 compares the number of covers output by MC-MIP

and the heuristic in [10]. The oscillations in cover numbers

occur depending on the sensors and targets random distribution

in the 500 m × 500 m given area. As the number of targets

grows, the average number of sensors that cover every target

decreases, resulting in fewer covers.

5. Conclusion

Wireless sensor networks are battery powered, therefore pro-

longing the network lifetime through a power aware node or-

ganization is highly desirable. An efficient method for energy

saving is to schedule the sensor node activity such that every

sensor alternates between sleep and active state. One solution

is to organize the sensor nodes in disjoint covers, such that

every cover completely monitors all the targets. These covers

are activated in turn, in a round-robin fashion, such that at a

specific time only one sensor set is responsible for sensing

the targets, while all other sensors are in a low-energy, sleep

state. This problem is modeled as maximum disjoint set covers
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problem. We presented a theoretical analysis for this problem

and proposed an efficient heuristic MC-MIP with a mixed inte-

ger programming formulation. We evaluated its performance

by simulation, against the most constrained—minimally con-

straining heuristic proposed in [10].
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