
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Improving Word Embedding Compositionality using Lexicographic Definitions

Scheepers, T.; Kanoulas, E.; Gavves, E.
DOI
10.1145/3178876.3186007
Publication date
2018
Document Version
Final published version
Published in
The Web Conference 2018
License
CC BY

Link to publication

Citation for published version (APA):
Scheepers, T., Kanoulas, E., & Gavves, E. (2018). Improving Word Embedding
Compositionality using Lexicographic Definitions. In The Web Conference 2018: companion
of the World Wide Web Conference WWW2018 : April 23-27, 2018, Lyon, France (pp. 1083-
1093). International World Wide Web Conferences Steering Committee.
https://doi.org/10.1145/3178876.3186007

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Aug 2022

https://doi.org/10.1145/3178876.3186007
https://dare.uva.nl/personal/pure/en/publications/improving-word-embedding-compositionality-using-lexicographic-definitions(ed5bce6a-1360-40f8-a5b8-a432bb5b0449).html
https://doi.org/10.1145/3178876.3186007

Improving Word Embedding Compositionality
using Lexicographic Definitions

Thijs Scheepers
University of Amsterdam

thijs.scheepers@student.uva.nl

Evangelos Kanoulas
University of Amsterdam

e.kanoulas@uva.nl

Efstratios Gavves
University of Amsterdam

e.gavves@uva.nl

ABSTRACT

We present an in-depth analysis of four popular word embeddings
(Word2Vec, GloVe, fastText and Paragram) in terms of their semantic
compositionality. In addition, we propose a method to tune these
embeddings towards better compositionality. We �nd that train-
ing the existing embeddings to compose lexicographic de�nitions
improves their performance in this task signi�cantly, while also
getting similar or better performance in both word similarity and
sentence embedding evaluations.

Our method tunes word embeddings using a simple neural net-
work architecture with de�nitions and lemmas fromWordNet. Since
dictionary de�nitions are semantically similar to their associated
lemmas, they are the ideal candidate for our tuning method, as well
as evaluating for compositionality. Our architecture allows for the
embeddings to be composed using simple arithmetic operations,
which makes these embeddings speci�cally suitable for production
applications such as web search and data mining. We also explore
more elaborate and involved compositional models.

In our analysis, we evaluate original embeddings, as well as
tuned embeddings, using existing word similarity and sentence em-
bedding evaluation methods. Aside from these evaluation methods
used in related work, we also evaluate embeddings using a ranking
method which tests composed vectors using the lexicographic de�-
nitions already mentioned. In contrast to other evaluation methods,
ours is not invariant to the magnitude of the embedding vector—
which we show is important for composition. We consider this new
evaluation method, called CompVecEval, to be a key contribution.

ACM Reference Format:

Thijs Scheepers, Evangelos Kanoulas, and Efstratios Gavves. 2018. Improv-
ing Word Embedding Compositionality using Lexicographic De�nitions. In
The Web Conference 2018, April 23–27, 2018, Lyon, France. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3178876.3186007

1 INTRODUCTION

The principle of compositionality [17] states that the meaning of
an expression comprises the meaning of its constituents as well as
the rules to combine them. It was �rst introduced to explain the
way humans understand language. Today, the same principle is
used to model the way computers represent meaning [49]. While
the exact interpretation and implications of word speci�c meaning
is debatable, it is clear that lexicography, i.e. the act of writing

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW 2018, April 23–27, 2018, Lyon, France

© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3186007

dictionaries, is important to illustrate the relationship between
words and their meaning [18]. Words in dictionaries, or lemmas,
are described in one or more short but exact de�nitions. These
dictionary de�nitions are called lexicographic de�nitions. If we have
such a de�nition, according to the principle of compositionality,
it should be composable to the word it describes. For example,
we should be able to compose: “A small domesticated carnivorous

mammal with soft fur, a short snout, and retractable claws.” into the
lexical semantic representation of ‘cat’.

Lexical representation using real valued vectors, i.e. word em-

beddings [36], have become an important aspect of neural models
for information retrieval, natural language processing as well as
other text related model classes. Ever since the paper which made
these real valued embeddings popular, there has been interest in
their compositional properties [37]. These properties are especially
important in the context of deep neural models where, in various ar-
chitectures, multiple representations can be composed into a single
deeper representation.

Finding good representations for words in an unsupervised man-
ner, in practice, often relies on a word’s context. Training based
on context results in a representation which captures both syntax
as well as semantics. While syntactic information is important for
composing representations, it is not necessarily useful for applying
the meaning of single word embedding in a model. When compos-
ing words into a joint representation we often want to create a
representation of meaning, i.e. semantics, and often do not care for
syntax, even though this information is essential to the act of com-
position itself. Having a compact representation of meaning can
be useful for lots of tasks, such as question answering, web search,
machine translation and sentiment analysis. In most of these tasks
one would need to combine multiple word embeddings to create a
single embedding of the semantics from a combination of words.
We de�ne such an operation as word embedding composition.

In this work we analyze the practical use of four widely used pre-
trained word embeddings:Word2Vec [37], GloVe [44], fastText [8]
and Paragram [57]. These embeddings are often used directly as
features or used for transfer learning to kick start a model’s training
operation and improve its �nal performance. Since most applica-
tions of word embeddings require them to be composed, we decided
to analyze the most popular pretrained word embeddings on their
compositional properties, so we can make more informed decisions
on which embeddings to use.

In order to do this, we created a new evaluation method called
CompVecEval, which tests the compositionality of word embeddings
using a test set of lexicographic de�nitions and lemmas. We used
de�nitions and lemmas fromWordNet [38]. The novel evaluation
method checks if the composed words from the de�nitions are close
to the embedding of the lemma. This means we test speci�cally

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1083

https://doi.org/10.1145/3178876.3186007
https://doi.org/10.1145/3178876.3186007

for the various senses of ambiguous words. If we take the example
of ‘cat’ again, it does not only refer to the furry animal but also
to: “A method of examining body organs by scanning them with

X-rays and using a computer to construct a series of cross-sectional

scans along a single axis”. Our tests make sure the embeddings of
all lexicographic descriptions of ‘cat’ are able to compose into its
lexical representation. Not just the most frequent, as that could be
the case when learning embeddings from large corpora.

Our test di�ers from others because it uses a balltree ranking
[42] algorithm—which is an exact nearest neighbor algorithm. It
therefore considers the relation to all other lexical representations
and is not invariant to the embeddings magnitude. Other evaluation
methods are invariant to this aspect of the embeddings. Our results
show that summing embeddings can be just as e�ective or even
better than averaging them. Even though averaging happens a lot
in popular algorithms and has a theoretical framework backing it
up [3].

In addition, we built a model to tune the existing embeddings to-
wards better compositionality using the same dictionary de�nitions.
We were able to tune the embeddings using various compositional
functions, some of which should be learned and some of which
are simple algebraic functions. Using simple algebraic functions is
sometimes necessary for large scale production applications that
need to process large amounts of data. They are also surprisingly
e�ective as our results show. We were able to create embeddings
which performed better or comparable across both the CompVecE-

val task, as well as several word similarity and sentence embedding
evaluation tasks. We believe therefore that our tuned embeddings
could be an even better candidate for direct use in application spe-
ci�c models or for transfer learning. Our method for tuning these
embeddings can be applied using other compositional datasets as
well. We call this method of tuning word embeddings using com-
positional data: CompVec1.

2 RELATEDWORK

Compositionality in linguistics was �rst de�ned back in 1892 by
Frege [17] and later neatly placed into the present context by
Janssen [26]. In 2010 the mathematical foundations of composi-
tional semantics were described by Coecke et al. [12].

Mitchell and Lapata [39, 40] were the �rst to semantically com-
pose meaning using a simple element-wise algebraic operation on
word vector representations. This work does not use the real valued
word embeddings which are popular today. They compare various
operations on word embeddings and how it a�ects their compo-
sition. In their results, multiplicative models are superior to the
additive models, which is not the case in our analysis.

Distributional composition. Before the popularity of neural ap-
proaches increased, there has been progress with usingmore sophis-
ticated distributional approaches. These distributional approaches
can su�er from data sparsity problems due to large matrices that
contain co-occurrence frequencies. Baroni and Zamparelli [5] com-
posed adjective-noun phrases using an adjective matrix and a noun
vector. Grefenstette and Sadrzadeh [22] did something similar but
they use a matrix for relational words, and a vector for argument

1We provide an open source implementation as well as an open source dataset on
https://thijs.ai/CompVec/.

words. Yessenalina and Cardie [59] used matrices instead of vectors
to model each word and compose them using matrix multiplication.
Matrix multiplication is not commutative; and can, to some extent,
take order in to account.

Word embeddings through neural networks. Bengio et al. [6] �rst
coined the term word embedding, in the context of training a neu-
ral language model. Collobert and Weston [13] showed that word
embeddings are actually useful for downstream tasks and are great
candidates for pretraining. The popularization of word embeddings
can be attributed to Mikolov et al. [36, 37] withWord2Vec and their
skip-gram algorithm. In their work, they discuss composition for
word embeddings in terms of analogy tasks. They give a clear pic-
ture of the additive compositional properties of word embeddings;
however, the analogy tasks are still somewhat selective.

A popular method for creating paragraph representations is
called Paragraph2Vec or Doc2Vec [31], in which word vectors are
averaged, as well as combined, with a separate paragraph repre-
sentation. Such a combined representation can then be used in
document retrieval. This method makes an implicit assumption
that averaging is a good method for composition. While averag-
ing is a simple operation, our results show that another simple
operation will likely perform better on most embeddings.

Wieting et al. [57] showed thatword embeddings, such asWord2Vec
and GloVe, could be further enhanced by training them to com-
pose sentence embeddings for the purpose of paraphrasing. Their
method, which uses averaging, has shown signi�cant improve-
ments on semantic textual similarity (STS) tasks. The structure of
their model is similar to ours, but it di�ers in the loss function and
the training objective. Their loss function is magnitude invariant,
and this explains why they prefer averaging since averaging and
summing are essentially exactly the same if you normalize the
embeddings magnitude. Our task involves direct composition to
lexicographic lemmas, while their training task was a paraphrasing
task. Arora et al. [3] improved on Wieting et al. [57] using a simple
weighted average using the function a

a+p(w)
, where a is a parameter

and p(w) is the estimated word frequency.
Kiros et al. [30] presented the skip-through algorithm. Inspired

by skip-gram, it predicts a context of composed sentence represen-
tations given the current composed sentence representation. Which
could be described as being a decompositional approach to creating
sentence representations. Kenter et al. [27] combined approaches
from Kiros et al. [30] with the approach from Wieting et al. [57] to
create an unsupervised method for learning sentence embeddings
using a siamese neural network which tries to predict a sentence
from context (CBOW). Kenter et al. also average word embeddings
to create a semantic representation of sentences.

Recently Tissier et al. [54] introduced dict2vec, which expanded
the skip-gram algorithm by incorporating word pair relatedness
into the training procedure. These word pairs are extracted from
lexicographic de�nitions, similar to the de�nitions we use. However,
their approach is included directly in the training procedure of
lexical word embeddings where we focus on composition.

Algebraic composition. Aside from work by Mitchell and Lapata,
there are a lot of applicationswhere algebraic composition is applied

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1084

https://thijs.ai/CompVec/

as part of a model’s architecture. Examples are: weighted averaging
in attention mechanisms [4, 34], or in memory networks [56].

Paperno and Baroni [43] provided some mathematical explana-
tions for why algebraic composition is performing well. Arora et al.
[3] introduced a mathematical framework which attempts a rigor-
ous theoretical understanding for the performance of averaging
skip-gram vectors. Gittens et al. [20] built on this and proofed that
the skip-gram algorithm actually ensures additive compositionality
in terms of analogy tasks. There are caveats, they assume a spe-
ci�c de�nition of composition and a uniform word distribution. But
words are distributed according to Zipf’s law [60].

Convolutional composition. Work on more elaborate neural net-
work composition can be divided into two categories: convolutional
approaches and recurrent approaches. Convolutional approaches use
a convolutional neural network (CNN) to compose word representa-
tions into n-gram representations. Kim [28] composed embeddings
using a single layer CNN to perform topic categorization and senti-
ment analysis. Blunsom et al. [7] presented a new pooling layer to
apply CNNs to variable length input sentences. Liu et al. [33] later
improved this model by reversing its architecture. Our results show
that a convolutional model can be used for composing lexicographic
de�nitions, even though we did not �nd it to be the most e�ective
method.

Recurrent composition. Models utilizing a recurrent neural net-
work (RNN) can read input sentences of varying length. They have
been used for neural machine translation (NMT) [10] and neural

question answering (NQA) [21, 56] as well as other model classes.
Cho et al. [10] introduced the encoder-decoder architecture as well
as the gated recurrent unit (GRU) to be a more e�cient alternative
to the long short-term memory (LSTM) [25]. Sutskever et al. [52]
improved upon the encoder-decoder model by stacking recurrent
layers and reversing the input. The GRU unit is empirically evalu-
ated by Chung et al. [11] and they found that the GRU is comparable
in performance with less computational cost. We use the GRU as
an order dependent composition function.

In most deep learning models word embeddings are trained
jointly with the model in a supervised manner. The embedding-
matrix in these models are good candidates for transfer learning
from the unsupervised context-driven approach to jump start train-
ing. When applying transfer learning it is important to consider
the compositional properties of the used embeddings.

Now we turn to attention mechanisms [4, 34], which are impor-
tant components of NMT and NQA systems. In such mechanisms,
creating an attention vector boils down to using a di�erent method
for composition, as opposed to RNN-encoding. In a traditional at-
tention architecture, multiple assumptions are made on how they
compose representations, e.g. using the hidden states from the en-
coder as input and using a weighted average over all source words
or a speci�c window.

Recursive composition. Socher et al. [48–50] introduce a matrix-

vector recursive neural networks (MVRNN), which uses the syn-
tactic tree structure from constituency parse to compose embed-
dings. Their models are not end-to-end because of the required
constituency parser. The model relies on a correct parse to make
good compositions, this is not always the case. But it is one of the

�rst models that tries to separate syntactic information from the
word embedding to focus solely on the semantics.

Evaluation of composed embeddings. Evaluating word represen-
tations in general is a di�cult task. This usually happens in terms
of the similarity between two words and is handcrafted for speci�c
examples. The methods aggregated by Faruqui and Dyer [15]2 are
a popular. Their evaluation combines 13 di�erent word pair simi-
larity sets [16, 19, 24], with a total of 11,212 word pairs, and they
use the Spearman’s rank correlation coe�cient as a metric. Because
their method focuses on word pairs they can capture the semantic
similarity between words but cannot necessarily say something
about their compositionality. We use these methods in this work
to show that lexical semantic qualities of word embeddings do not
decrease when we tune the embeddings.

Conneau et al. [14] aggregated di�erent of sentence evaluation
methods3, including some on compositionality. Downstream per-
formance in applications such as sentiment classi�cation [46, 48] or
question answering [32] provide an extrinsic evaluation of composi-
tionality, but results may su�er from other confounding e�ects that
a�ect the performance of the classi�er. The STS tasks [1, 2], from
SemEval 2014 and 2015, are evaluation tasks which can be used
to determine sentence similarity and are also good candidates to
test composition indirectly. Marelli et al. [35] created the Sentences
Involving Compositional Knowledge (SICK) dataset which tests two
important aspects of composition speci�cally: textual relatedness
and textual entailment. We use all of these evaluation methods in
this work as well.

None of these works seem to evaluate compositional semantics of
lexical de�nitions. Our evaluation method, called CompVecEval, �lls
this gap by directly trying to �nd the semantic similarity between a
dictionary de�nition fromWordNet [38] and the associated lemma.

3 DATASET

In order to test semantic composition, we turn to a dictionary
for our data. The words or lemmas in dictionaries all have good
de�nitions, which can be composed semantically into the meaning
of that word, and thus ideal for our task. We choose to use WordNet
[38] as the basis for our dataset. The synonym set in WordNet
allows for the creation of pairs x = (d, ld) of de�nitions d ∈ D with
one, or many lemmas ld ⊂ L associated with that de�nition. A
de�nition is a sequence of words where d = ⟨wd

1
,wd

2
. . .wd

n |w
d ∈

W⟩. We make sure to remove stop words from this de�nition. For
our evaluation method, we only consider single word, i.e. unigram,
lemmas which are also in W for L, which makes L ⊂ W. We
added this constraint because this makes the evaluation method
more usable, since word embeddings do not necessarily have to be
applied on the target side, even though that is still possible.

In the original WordNet synonym graph, if we �nd that the
lemma is actually one of the de�nition words, we do not add that
lemma to ld for that particular x . We end up with |X| = 52, 430

unique data points with a vocabulary of |D| = 48, 944 unique words
and a target vocabulary of |L| = 33, 186 unique lemmas.

2More commonly known as https://wordvectors.org.
3The set of evaluation methods is provided in the SentEval software library
https://github.com/facebookresearch/SentEval.

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1085

https://wordvectors.org
https://github.com/facebookresearch/SentEval

Pretrained word embeddings. Now that we have a vocabulary
of de�nition words W as well as a vocabulary of target words
L, we �nd vector representations for each de�nition and target
words from the four popular large pretrained word embeddings:
Word2Vec, GloVe, fastText and Paragram. Each of these pretrained
word embeddings, were trained on English text and have a dimen-
sionality of 300, as to keep our �nal comparison relatively fair.

Word2Vec was trained using the original skip-gram algorithm
using a context window and walking over a large corpus of 100B
tokens from Google News articles. GloVe vectors where trained
using a local context window, similar to skip-gram, combined with
global matrix factorization. With this global matrix vector, each
context word is weighted to its global co-occurrence frequency. We
used GloVe representations that where trained on the Common
Crawl which has 840B tokens and a vocabulary of 2.2M. fastText
uses a training algorithm that is based on skip-gram, however it
represents each word as a bag of character n-grams. A vector repre-
sentation is associated with each n-gram and words are represented
as a sum of these n-grams. The fastText embeddings were trained
on a large EnglishWikipedia dataset. The Paragram embeddings we
use, are the same as the tuned embeddings from the compositional
paraphrasic model of Wieting et al. [57] combined with the larger
embedding dataset from Wieting et al. [58].

Keep in mind that we understand that these word embeddings
are each trained using both a di�erent algorithm and a di�erent
dataset. We are not trying to determine which algorithm is better.
We are merely trying to give insights into the compositionality of
existing pretrained publicly available word embeddings.

Train-test split. Since our objective is to create a tuning method
and an evaluation method for existing embeddings, using this new
dataset, we have to split the dataset into train and test portions.
The structure of the data in X is such that we cannot randomly
split anywhere. When splitting we make sure that a lemma l with
multiple de�nitions d are all in the same set. Otherwise the training
algorithm would be able to train on lemmas that are also in the
test set, which would make for unbalanced results. Additionally,
we make sure that both training and test datasets contain at least
one de�nition word w which is the same as a lemma l from the
other set, to prevent diverging embeddings. We end up with a train
dataset of 49, 807 data points and a test dataset of 2, 623 data points.
We made the dataset and the code to create the entire dataset freely
available4.

4 METHODS OF COMPOSITION

The goal of word embedding composition is to combine multiple
word embeddings in to a single composed embedding. Figure 1
shows how this can be done. The compositional function f c can
be anything from a very complicated neural network to simple
element-wise addition. In our evaluation, we will test four simple
algebraic composition functions, and six learnable composition
functions.

Combining multiple intermediate representations into one sim-
ple representation is something which happens in lots of deep
learning architectures. But in itself, it is not often studied in detail.

4The dataset and companion software can be found at: https://thijs.ai/CompVec/.

c

humana

f c

being

person

x[0…2]

yp c

<random lemma>

yn

objective

maximize
distance

minimize
distance

Figure 1: This �gure illustrates theCompVecmodel structure.

The input embeddings go into the composition function f c

and get composed into a single composed embedding c. We

see how this composed vector c gets compared against the

positive example yp and the negative example yn in the loss

function.

In our case we look at the compositionality of word embeddings,
but these approaches could very well be extended to other types
of representations. Similar evaluations on compositional functions
could take place.

In our experiments, we truncate the input de�nitions tokens to
a maximum of 32 and pad the unused tokens. In order to determine
this cut point, we looked at the length of all de�nitions. We found
that the mean de�nition length was: 10 tokens, the 95th percentile
was: 22 tokens and the 99th percentile: 31 tokens. Additionally,
we create a mask for the padding tokens to correctly handle the
composition functions for variable input length.

4.1 Algebraic composition

First, we will try to create a composition by applying element-wise
operations: +, ×, max(d) and average(d). It should be no surprise
that composing by simple mathematical operation is not ideal, since
the act of composing considers neither the relationship between
individual words nor the order of the words. Instead such relation-
ships should already be present in the space of all words under the
operation. But by analyzing the results from simple operations we
could have new insights into the word embedding space itself, how
it already has compositional properties and how it can be used. For
example, the document representation model Paragraph2Vec uses
an average(d) operation to compose embeddings of any kind. Our
evaluation shows that this is not necessarily the optimal operation.

We mask padding tokens and make sure the composition in our
model is handled correctly. For example, padding tokens should
have a vector �lled with zero values as an embedding for the +

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1086

https://thijs.ai/CompVec/

operation while they should have a vector �lled with one values as
embedding for the × operation.

It should be noted that the magnitude, i.e. norm, of the pretrained
embeddings is sometimes assumed to be 1 [45]. If one makes this
assumption, averaging is a logical composition function over sum-
mation. However, the magnitude of all pretrained embeddings is
not 1. Instead, it varies from embedding to embedding. If one wants
the embeddings to have this property they would have to normalize
the embeddings, with which they could lose valuable information.

4.2 Tune embeddings while composing

Now that we have de�ned simple algebraic composition and a
dataset for composition we can try tuning the pretrained embed-
dings for better composition under a speci�c composition function
f c . In order to do this, we train using stochastic gradient decent and
the triplet loss function [23] as can be seen in equation 1. The loss
function is related to the more popular contrastive loss function.

triplet loss :=
N
∑

i=1

max
(

| |ci − y
p
i | |

2 − ||ci − yni | |
2
+ α , 0

)

(1)

Aside from this loss function, we also experimented with a triplet
loss function based on cosine similarity, similar to the work of
[57]. Results from training using the loss function based on cosine-
similarity were inferior on all evaluation methods.

cos triplet loss :=
N
∑

i=1

max
(

cos(ci ,y
p
i) − cos(ci ,y

n
i) + α , 0

)

(2)

Descending the gradients of the triplet loss will insure that the
composed embedding c moves closer to the reference lemma em-
bedding yp but at the same time moves away from a random other
reference lemma embedding yn . Using the negative example en-
sures the embedding values do not converge to 0. The loss function
also has a margin parameter α which basically makes sure that if
the embeddings c and yp are already close enough to each other
they do not incur a loss. After some experimentation, we choose
to use the margin value α = 5 for the additive composition and
α = 0.25 for all other models.

While most word embedding algorithms do not include a form
of regularization during the training procedure, we experimented
with adding this to our training procedure. While experimenting
we found that adding dropout [51] improved the �nal results con-
siderably. Therefore, our �nal models are trained with a dropout
probability of Pdropout = 0.25 on the input embeddings.

We trained the model for 205 epochs using batches of 512 data
points with the Adam stochastic gradient decent optimizer [29]. We
used a learning rate of lr = 1e−3, β1 = 0.9, β2 = 0.99 and ϵ = 1e−8.

4.3 Learning to compose

In addition to simple algebraic composition we also trained models
to compose embeddings. We learned a simple projection layer, re-
current models as well as convolutional models. There are three big
advantages of using a learned model over using simple operations.
First, we learn the parameters for the compositional function to

c

h

ur

f gru

xi

~
hnexthprev

Figure 2: This �gure shows the inner workings of a GRU.We

see the update and reset gatewith their input and output.We

see h̃ and how it in�uences the �nal output c or h.

improve the representation so that we are not bound to the origi-
nal embedding space and its compositional properties. Second, we
can make non-linear transformations when combining represen-
tations. Lastly, a RNN and a CNN will be able to take word order
into account and thus can do more with syntactical information.

We execute the training procedure twice for all learned compo-
sition functions. Once with the embeddings �xed, and once where
we �x the embeddings for the �rst part of training (2500 steps or
25 epochs) and then re�ne the embeddings along with the model’s
weight matrices. In the results table the models trained with �xed
embeddings can be found under the columns titled Original, and
the models with tuned embeddings under CompVec.

Projecting the Composed Vector. Our �rst and simplest learned
composition function is a projection. This is similar to the approach
Wieting et al. [57] took.

c = tanh(xWx + b) (3)

We apply this projection to vectors which are composed using the
same functions as in the previously discussed algebraic composition
functions.

Recurrent Composition. Our �rst recurrent model uses a plain
RNN units for its hidden layer. Our hidden units have a dimension-
ality of 300, similar to our word embeddings. The RNN is described
in the Equation 4.

h = tanh(xWx + ht−1Wh + b) (4)

Our second recurrent model uses a GRU instead of plain RNN
units. It has been shown that GRU is well suited for language related
tasks and performs on par with or better than the LSTM [11]. This
model has three times the parameters of as our plain RNN model.
Figure 2 shows the internals of a GRU schematically. Equation 5
gives us the mathematical de�nition of a GRU.

r = σ (xWxr + ht−1Whr + br) reset gate
u = σ (xWxu + ht−1Whu + bu) update gate

h̃ = tanh(xW
xh̃
+ r · ht−1Whh̃

+ b
h̃
) candidate update

h = 1.0 − u · ht−1 + u · h̃ �nal update

(5)

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1087

c

human

being

a

person

x[0…2]

f c

Wf [0…3]

max

Figure 3: This �gure shows the inner workings of a CNN for composing word embeddings. We see the weight matrix for the

�lters, the max pooling operation as well as c the �nal output.

Our last recurrent model is a bi-directional GRU [47] where we
have the input sequence in regular order project to a hidden state
of 150 units, and we have a separate model doing so for the input
sequence in reverse order.

Convolutional Composition. For our �rst CNNwe will use a �lter
were the dimensions correspond to the embedding size (E = 300)
and the width of the sliding window (F = 3). We ensure that each
�lter predicts a single dimension of the target embedding. We see
this clearly in Figure 3.

h̃i j =
∑F
a=0

∑E
b=0

W
f

ab
x(i+a)(j+b) convolution

h = relu(h̃ + b) nonlinearity
c = maxpool(h) pooling

(6)

For the second more complex CNN we employ di�erent �lters
with di�erent sliding window widths. This CNN should be able to
better capture long distance dependencies. We choose �lters with a
sliding window size of: 3, 5, 7 and 9.

5 ANALYSIS AND EVALUATION

In our analysis of the four popular word embeddingsWord2Vec [37],
GloVe [44], fastText [8] and Paragram [57] we test their applicability
when using speci�c types of composition in a deep neural network
architecture. We present both results for the original untuned em-
beddings as well as results for embeddings tuned with our dataset
and the architecture described in the previous section. To analyze
these word embeddings directly in terms of their compositionality
we introduce CompVecEval. Additionally, we also analyze the em-
beddings in terms of their semantic textual similarity, relatedness
and entailment using various existing evaluation methods. Lastly,
we see if the quality of the word embeddings themselves have been
in�uenced by the tuning optimization by looking at the scores of
word similarity tests.

5.1 CompVecEval

We compare our composed representation to our target word rep-
resentation using nearest neighbor ranking with the ball tree al-
gorithm [42], in contrast to other methods which us magnitude
invariant metrics such as cosine similarity. The vector magnitude
is important because (intermediate) representations of semantics in
neural architectures are a�ected by it. One does not often normalize
each intermediate representation, because it could lead to a loss of
information and in�uence the network’s performance.

The balltree algorithm produces a complete ranking of all the
33, 186 target words. In the subsequent ranking, we mark all tar-
get words from ld as equally relevant, and all other words as not
relevant. This will result in di�erent results for + and average(d),
as opposed to them being the same with cosine similarity based
ranking approaches.

We believe that ranking is superior to other evaluation methods
because it is independent of the provided embedding space. Addi-
tionally, there are several metrics you can compute out of a ranking
which could be interpreted in di�erent ways, especially regarding
compositionality. Also ranking allows us to �nd structure in the
very noisy compositional representations.

When we have obtained the ranking and the relevant results, we
apply several well-known ranking measures: Mean Reciprocal Rank
(MRR) [9], Mean Average Precision (MAP) as well as Mean Preci-
sion@10 (MP@10). In addition, we evaluate usingMean Normalized
Rank (MNR) which describes the fraction of the total dataset that
does not need to be viewed when encountering a relevant result.
For MNR and MRR we use the rank of the �rst relevant target word
in ld .

MNR := 1 −
1

|D|

∑

d ∈D

rankd
|L|

MRR :=
1

|D|

∑

d ∈D

1

rankd
(7)

Here is rankd the rank of the �rst relevant target word for the
de�nition d . MRR is the more common method, it is top heavy, i.e.
the contribution on lower ranked relevant decreases exponentially.
MNR does weight each rank of a relevant result equally. Both of
these measures are recall based.

MAP :=
1

|D|

∑

d ∈D

∑ |L |
rd=1

P(rd) × rel(rd)

|ld |
(8)

MAP as well as MP@10 captures the possibility of multiple
relevant target words into the metric, where MAP is a recall-based
metric and MP@10 is a precision-based metric. For all metrics we
can state: "higher is better".

For now, we de�ne CompVecEval as computing theMRRmeasure
on the test set of 2, 623 data points, since we use the rest for tuning
the embeddings. If one’s task does not require the training data one
could use all the available data points (52, 430) for an even more
accurate evaluation method. And whenever we want more insight
into the compositionality of word embeddings, we can also look at
the other ranking methods considered: MRR, MAP and MP@10.

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1088

Table 1: This table displays the results of all evaluation measures. For all measures counts: "Higher is better". The results for

CompVecEval and SICK-E scores are denoted ×100. All other sentence evaluation measures are denoted in Pearson’s r × 100,

whereas the word similarity measures are denoted in Spearman’s r × 100. It is important to note that in the case of the learned

composition functions (RNN, GRU, CNN etc.) under original, we did train the models themselves but did not change the

original embeddings whereas under CompVec we tuned the embeddings as well.

Word2Vec GloVe fastText Paragram
Measure Composition Original CompVec Original CompVec Original CompVec Original CompVec

CompVecEval MRR + 17.0 23.0 (+6.0) 11.9 26.5 (+14.6) 20.7 26.3 (+5.6) 26.6 29.9 (+3.3)

average(d) 2.0 2.0 (-0.0) 3.3 4.1 (+0.8) 3.0 3.4 (+0.5) 3.8 4.1 (+0.3)

× 0.6 0.9 (+0.2) 0.9 0.9 (-0.0) 0.9 1.0 (+0.1) 1.0 0.5 (-0.5)

max(d) 6.6 15.6 (+9.0) 13.7 20.1 (+6.4) 14.6 18.6 (+4.0) 20.5 23.3 (+2.8)

+ Proj. 9.7 14.3 (+4.6) 17.5 22.7 (+5.2) 16.0 19.1 (+3.1) 20.3 24.8 (+4.6)

RNN 8.5 7.3 (-1.2) 15.7 14.7 (-0.9) 14.2 12.6 (-1.7) 16.3 15.6 (-0.7)

GRU 23.4 20.7 (-2.7) 28.9 28.9 (+0.0) 27.8 26.1 (-1.6) 29.2 29.8 (+0.6)

Bi-GRU 23.6 20.4 (-3.2) 30.2 30.1 (-0.1) 29.0 26.3 (-2.7) 29.7 30.3 (+0.5)

CNN-3 11.4 14.8 (+3.3) 21.9 22.6 (+0.7) 22.2 22.4 (+0.2) 24.0 23.8 (-0.1)

CNN-3,5,7,9 12.0 14.8 (+2.8) 23.4 23.7 (+0.4) 23.3 22.6 (-0.7) 22.4 24.2 (+1.8)

SentEval STS14 [2] + 31.4 61.8 (+30.4) 54.1 65.7 (+11.5) 52.7 65.2 (+12.5) 70.5 71.1 (+0.5)

average(d) 32.0 41.5 (+9.6) 54.1 48.0 (-6.1) 53.2 46.3 (-6.9) 70.5 49.9 (-20.6)

× 4.6 1.9 (-2.7) 5.9 7.4 (+1.5) 8.6 21.2 (+12.6) 1.6 4.7 (+3.1)

max(d) 22.4 62.4 (+39.9) 60.6 67.1 (+6.5) 42.6 65.1 (+22.5) 61.6 66.3 (+4.7)

+ Proj. 10.1 27.1 (+16.9) 25.2 49.7 (+24.5) 22.6 39.3 (+16.8) 27.0 55.5 (+28.5)

RNN 41.4 46.5 (+5.2) 52.4 48.0 (-4.4) 46.8 49.8 (+3.0) 55.7 47.6 (-8.1)

GRU 48.2 62.5 (+14.2) 62.9 65.5 (+2.6) 57.9 63.9 (+6.0) 65.5 67.4 (+1.9)

Bi-GRU 53.5 62.3 (+8.8) 66.1 67.5 (+1.4) 62.1 64.6 (+2.5) 66.8 67.9 (+1.1)

CNN-3 36.0 52.9 (+16.8) 55.8 59.2 (+3.4) 51.0 57.4 (+6.4) 63.6 63.5 (-0.1)

CNN-3,5,7,9 35.5 54.4 (+18.9) 59.2 61.6 (+2.4) 54.0 59.1 (+5.1) 63.7 64.2 (+0.5)

STS15 [1] + 36.8 68.7 (+31.9) 58.1 66.6 (+8.5) 58.1 68.8 (+10.7) 75.0 75.2 (+0.2)

average(d) 36.3 47.3 (+10.9) 58.1 51.3 (-6.8) 58.2 52.2 (-6.0) 75.0 54.6 (-20.3)

GRU 54.3 65.0 (+10.7) 64.6 65.8 (+1.2) 57.4 63.9 (+6.5) 69.4 68.9 (-0.5)

Bi-GRU 59.8 63.6 (+3.9) 67.6 69.6 (+2.0) 63.3 65.5 (+2.2) 70.4 70.0 (-0.3)

SICK-E [35] + 73.3 77.3 (+4.0) 75.8 76.7 (+0.9) 77.0 76.1 (-1.0) 77.5 78.0 (+0.6)

average(d) 77.1 76.9 (-0.2) 79.0 78.2 (-0.8) 78.3 76.6 (-1.7) 81.1 78.9 (-2.1)

GRU 75.6 78.2 (+2.6) 80.6 80.5 (-0.0) 77.7 78.7 (+1.0) 81.5 81.3 (-0.2)

Bi-GRU 74.7 78.9 (+4.3) 79.7 78.7 (-1.0) 79.0 79.5 (+0.5) 81.1 81.1 (+0.0)

SICK-R [35] + 72.4 78.4 (+6.1) 78.3 80.0 (+1.7) 78.2 78.0 (-0.2) 80.3 79.9 (-0.4)

average(d) 71.4 72.2 (+0.8) 79.8 75.5 (-4.3) 79.1 74.0 (-5.0) 81.5 77.0 (-4.5)

GRU 74.8 77.5 (+2.8) 81.6 81.2 (-0.4) 79.4 79.2 (-0.2) 81.3 81.1 (-0.2)

Bi-GRU 76.9 78.3 (+1.3) 81.8 80.1 (-1.6) 80.1 79.1 (-1.0) 81.3 80.4 (-0.9)

WordSim SimLex [24] + 44.0 51.4 (+7.4) 40.2 50.1 (+9.8) 37.3 46.5 (+9.1) 66.2 67.0 (+0.8)

average(d) 44.0 37.5 (-6.5) 40.2 45.0 (+4.8) 37.3 35.5 (-1.8) 66.2 62.1 (-4.1)

× 44.0 7.8 (-36.2) 40.2 33.7 (-6.6) 37.3 6.2 (-31.1) 66.2 49.1 (-17.1)

max(d) 44.0 48.2 (+4.2) 40.2 43.0 (+2.7) 37.3 41.1 (+3.8) 66.2 66.0 (-0.2)

+ Proj. 44.0 46.6 (+2.6) 40.2 44.4 (+4.2) 37.3 43.6 (+6.3) 66.2 66.7 (+0.6)

RNN 44.0 44.3 (+0.3) 40.2 43.5 (+3.2) 37.3 39.7 (+2.4) 66.2 66.1 (-0.1)

GRU 44.0 47.3 (+3.3) 40.2 44.6 (+4.3) 37.3 43.8 (+6.4) 66.2 67.2 (+1.0)

Bi-GRU 44.0 51.1 (+7.1) 40.2 45.4 (+5.2) 37.3 43.3 (+6.0) 66.2 67.2 (+1.0)

CNN-3 44.0 46.2 (+2.2) 40.2 44.0 (+3.7) 37.3 41.6 (+4.3) 66.2 66.9 (+0.7)

CNN-3,5,7,9 44.0 47.0 (+3.0) 40.2 44.3 (+4.1) 37.3 40.3 (+2.9) 66.2 67.2 (+1.0)

SimVerb [19] + 34.2 39.3 (+5.2) 25.4 34.2 (+8.7) 23.0 34.1 (+11.1) 56.8 58.3 (+1.5)

average(d) 34.2 30.7 (-3.4) 25.4 32.2 (+6.8) 23.0 29.2 (+6.2) 56.8 55.7 (-1.1)

GRU 34.2 37.2 (+3.1) 25.4 29.7 (+4.2) 23.0 29.5 (+6.5) 56.8 57.9 (+1.1)

Bi-GRU 34.2 36.9 (+2.8) 25.4 29.5 (+4.1) 23.0 29.9 (+6.9) 56.8 58.1 (+1.3)

WS-353 [16] + 70.6 70.1 (-0.5) 71.9 76.5 (+4.6) 74.5 70.1 (-4.3) 73.1 72.1 (-1.1)

average(d) 70.4 67.8 (-2.5) 71.9 73.2 (+1.3) 74.5 69.8 (-4.6) 73.1 76.6 (+3.5)

GRU 70.4 70.3 (-0.1) 71.9 72.9 (+0.9) 74.5 76.5 (+2.1) 73.1 74.4 (+1.2)

Bi-GRU 70.7 68.5 (-2.3) 71.9 73.2 (+1.2) 74.5 73.9 (-0.6) 73.1 74.8 (+1.6)

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1089

5.2 Sentence Representation Evaluation

To see which composition functions, have an impact on speci�c
aspects of sentence representations we evaluated our composed
embeddings using two popular methods: , STS14 [2], STS15 [1] and
SICK [35]. Conneau et al. [14] describes how to match di�erent
sentence vectors from the SICK dataset. There are 3 matching meth-
ods used to extract the relations between two composed sentences
u and v: concatenation of the two representations (u,v); element-
wise product u · v; and absolute element-wise di�erence |u − v |.
The total resulting vector is fed into a logistic regression classi�er.
The di�erent datasets are evaluated using 10-fold cross validation.
We evaluate our compositions using the SICK dataset using both
entailment (Entailment) and semantic relatedness (Relatedness).
For relatedness we learn to predict the probability distribution of
the relatedness scores [53]. Results for relatedness are reported as
Pearson’s correlation coe�cients since other related works also
report this metric. Results for entailment are accuracy scores on
the classi�er with 3 labels.

With STS14 [2] and STS15 we evaluate the embeddings on 11
unsupervised SemEval tasks. The dataset is a combination of post-
editing, news, question and plagiarism sentences labeled with a
similarity score between 0 and 5. Here we also report the Pearson’s
correlation coe�cient similar to SICK Relatedness.

For all these evaluations, we used the available 48,944 words
from our dataset vocabulary to select embeddings for the words we
should compose. If a word was not available, we grabbed back to
the vocabulary of the original word embeddings (which is much
larger in all cases). In this way, our results for the original word
embeddings are similar to those in other publications.

It is also important to note that we do not directly optimize for
the task and we are not trying to improve the state of the art of these
evaluation metrics. We are simply showing the impact of di�erent
compositional functions on the pretrained embeddings, as well
as the impact that tuning for compositionality does not decrease
or even slightly increase the sentence similarity, entailment or
relatedness performance. Including a task speci�c learning objective
would probably boost results further.

5.3 Word Similarity Evaluation

We performed word similarity tests to see if the quality of the single
word embeddings do not su�er under the training for composition.
In the results table, we will see that the values before training
are exactly the same. This is logical since we are not evaluating
the composition itself here. We are only seeing how "training for
compositionality" in�uences the �nal quality.

WS-353 by Myers et al. [41] is a widely used WordNet based
word similarity measure. Naturally, we should improve on this
measure since it is based on similar data. This should be noted
and might make this result biased. This word similarity set is not
very elaborate either with 353 word pairs. SimLex by Hill et al.
[24] is a larger word similarity dataset with 999 word pairs. It was
speci�cally created to capture similarity independent of relatedness
and association. SimVerb by Gerz et al. [19] focuses on the similarity
between 3500 verb pairs from the USF free-association database.
For word similarity, we report Spearman’s correlation coe�cient
since other related works also report this metric.

Again, it is important to note that we do not directly optimize
for the task and we are not trying to improve the state of the art of
these evaluation metrics. We are simply showing that tuning for
compositionality does not decrease or even slightly increase the
word similarity performance. Including a word similarity learning
objective would probably boost results further.

5.4 Results

Table 1 shows the results for all evaluation measures when using
all ten di�erent composition functions. We left out under perform-
ing composition functions (×, Proj., RNN, CNN etc.) from most
measures.

When we compare the four di�erent embeddings used for trans-
fer learning we see clearly that the Paragram embeddings are the
best starting point. These embeddings were already compared to
the GloVe embeddings with an averaging function [57]. Now we
can see how it compares against fastText and Word2Vec with dif-
ferent composition functions as well. The Paragram embeddings
bene�t from tuning using the lexicographical de�nitions, albeit
only slightly on evaluations other than CompVecEval.

GloVe and Word2Vec seem to bene�t the most from tuning. On
the additive composition (+) function Word2Vec jumps 30.4 points
on the STS14 benchmark, 6.0 points on CompVecEval and 7.4 points
on SimLex. The same goes for GloVe with 11.5 points on STS14,
14.6 points on CompVecEval and 9.8 points on SimLex.

We can see that fastText has a lot of bene�t from additive compo-
sition (+) on CompVecEval without tuning. This is can be explained
by looking at the fastText algorithm. It creates embeddings of words
by additive composition of n-grams itself, so fastText is intrinsically
optimized for additive composition.

Interestingly enough additive composition (+) performs similar
or slightly worse when compared to averaging on measures other
than CompVecEval. But when we tune on additive composition the
tuned model outperforms averaging on our CompVecEval task as
well as on STS, SimLex and SimVerb. When tuned on averaging
model performance drops signi�cantly for STS tasks, which could be
attributed to our choice of loss function. Averaging does yield a bad
result on CompVecEval for untuned as well as tuned embeddings.

Multiplicative composition (×) performed, by far, the worst of
all composition functions. This directly contradicts results from
Mitchell and Lapata [39], however their vectors were not real-
valued embeddings as uses in neural networks.

We see that the max(d) operation or max composition can be a
good approach to compose elements. Which is somewhat counter
intuitive, because the composition only takes a very small portion
of the available information into account. For CompVecEval as well
as the other evaluation measures this composition function scores
relatively high. In neural networks today, we rarely see an operation
such as element-wise maximum used within an architecture outside
of CNN’s. This could be an interesting direction to explore.

On the projection function, we have results that are not in line
with Wieting et al. [57]. Where they found that using a projection
performed comparable to the algebraic composition function, we
�nd that for our limited dataset this is not the case. Perhaps this
could change when we increase the size of the training data. The
projection function was outperformed by other learned models

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1090

(e.g. GRU) and the additive algebraic composition function on all
metrics.

For the learned composition functions, we see that the recurrent
models outperform the convolutional models. While the more elab-
orate convolutional model with larger window sizes (CNN-3,5,7,9)
did outperform the simpler CNN as well as the RNN, it was sur-
passed by both the GRU models. Both GRU models consistently
beat all other learned composition functions. We see that the bi-
directional GRU was sometimes better, but overall, they perform
comparable. This could be due to the limited token length of our
de�nitions. It could be that with longer tokens the addition of the
bi-directional GRU could have a larger impact.

CompVecEval. The results for CompVecEval show that the un-
tuned Paragram embeddings are the best untuned embeddings
at composing w.r.t. all composition functions. The compositing
performance increases if we train for the task of composing lexico-
graphical de�nitions, as one would expect.

If we look at the best MRR of 30.3 for the bi-directional GRU and
the second best MRR of 29.9 for the additive model (+) their di�er-
ence is minimal. The learned GRU model has noticeable downsides,
since the inference operation on a GRU model is a lot more expen-
sive and does require a model to be loaded into memory, while
simple addition only requires the word embeddings themselves.

When we look at the best MRR score for Paragram with a tuned
algebraic model (+): 29.9, it had a MNR of 92.8 which comes down
to seeing an average 3,524 of the total of the total 48,944 target
words before encountering a relevant one, which is way better
than the random baseline but still not great. To highlight this, we
added a randomly generated ranking for all data points. In this
random baseline, we see a MNR of 55.2 and not of 50 because
there are various data points with more than one relevant target
words. All this is good news since it means there is a lot of room
for improvement in making embeddings more composable.

The low scores on CompVecEval for averaging could be due to
the fact that our balltree absolute distancemetric is strongly a�ected
by the embeddings magnitude into account. Whereas sentence em-
beddings metrics might not be, because they are usually composing
two sentences of similar length into a comparable sentence em-
bedding, whereas we have a relatively long source (lexicographic
de�nition) and a very short target (lemma).

Sentence Evaluation. We see that tuning for composition has
a very big impact in the STS metrics for Word2Vec, GloVe and
fastText. Where the improvements for the Paragram embeddings
are also there but less signi�cant. These improvements still lead
to the best result because the Paragram embeddings already score
high on the STS metrics to begin with.

It is interesting that tuning for composition improves the STS
metrics signi�cantly for the �rst three embeddings even though
that the task of composing de�nitions into short lemmas is not
directly related to sentence representations. When the original
STS14 challenge was held the contestants trained models on STS
data speci�cally and the 75th percentile of the score was 71.4which
means our best score is better or comparable to 75 % of contestants
while we did not use task speci�c training data.

For the SICK Relatedness and Entailment tests we see comparable
results for most composition functions and are not able to improve

on them. That could be due to the nature of the SICK data. While
our focus is on composing lexical semantics, the focus on the SICK
data is on relatedness and entailment. This is not really represented
in lexicographical data.

Word Similarity. If we look at the results for the word similar-
ity metrics we see that overall, they increase quite signi�cantly
when tuned for composing lexicographic de�nitions. This even
happens when tuning the embeddings to work better with learned
composition functions. One would expect that these embeddings
would decrease in general performance and increase in the task
they are trained for. But the word similarity results suggest that the
opposite is the case. Embeddings from the tuned GRU models and
our tuned embeddings for additive composition (+) yield the best
SimLex and SimVerb performance. It has to be mentioned that the
Paragram embeddings [58] were trained on the SimLex [24] dataset.
So naturally they will score high on SimLex word similarity.

6 CONCLUSION

In this work, we introduced a newmethod to tune word embeddings
for ten composition functions, four of which are algebraic and easily
applicable in large scale industrial systems, and six of which are
learned. Additionally, we presented a new method to evaluate word
embeddings called: CompVecEval. This method is di�erent from
existing methods since it directly tries to evaluate compositional
semantics from lexicographic de�nitions to lemmas, in addition
it relies on ranking instead of accuracy and is not invariant the
magnitude of the embedding vector.

We analyzed four popular word embeddings and found that the
Paragram embeddings are the most versatile for various forms of
composition. Our tuned CompVec Paragram embeddings are the
best choice if your model uses them for additive composition. Using
GRU composition is also a candidate which seems to be a more
elaborate but e�ective composition function for speci�c tasks. In
addition, for almost every evaluation measure we found that tuning
the embeddings on our lexicon-based dataset performed better or
comparable. When selecting word embeddings for transfer learning
for training a neural network our results can give insights into
which embeddings you should choose. We published and open
sourced both the dataset as well as the tuned embeddings.

For future research, one could look into multi-layered composi-
tion functions. One neural model we would like to explore is a con-
volutional model containing so called: ‘dilated convolutions’ [55].
These could provide a solution to the problems with long distance
relationships.

One limitation of our lexicographic dataset is its size. Other
dictionaries sometimes contain more de�nitions and words. For
example, the Oxford Dictionary is a lot larger and the data from
this dictionary can be extracted using their open API. Our intuition
is that using this larger dataset could increase the performance.

Published theoretical works on the understanding of word em-
beddings is currently limited [3, 20]. This work only provides theory
for the original skip-gram algorithm. Further work could look at the
theoretical and mathematical properties of the embedding spaces
created using other algorithms.

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1091

REFERENCES
[1] Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor

Gonzalez-Agirre, Weiwei Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, et al. 2015. Semeval-2015 Task 2: Semantic Textual Similarity, Eng-
lish, Spanish and Pilot on Interpretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015). ACL, 252–263.

[2] Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor
Gonzalez-Agirre, Weiwei Guo, Rada Mihalcea, German Rigau, and Janyce Wiebe.
2014. Semeval-2014 task 10: Multilingual Semantic Textual Similarity. In Pro-
ceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014).
ACL, 81–91.

[3] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2016. A Simple but Tough-to-
Beat Baseline for Sentence Embeddings. In Proceedings of the 4th International
Conference on Learning Representations (ICLR 2016).

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine
translation by jointly learning to align and translate. arXiv:1409.0473 (2014).

[5] Marco Baroni and Roberto Zamparelli. 2010. Nouns are Vectors, Adjectives are
Matrices: Representing Adjective-Noun Constructions in Semantic Space. In
Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2010). ACL, 1183–1193.

[6] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003.
A Neural Probabilistic Language Model. Journal of Machine Learning Research
(JMLR) 3 (2003), 1137–1155.

[7] Phil Blunsom, Edward Grefenstette, and Nal Kalchbrenner. 2014. A Convolutional
Neural Network for Modelling Sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (ACL 2014). ACM.

[8] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. En-
riching Word Vectors with Subword Information. Transactions of the Association
for Computational Linguistics (TACL) 5 (2017), 135–146.

[9] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. 2009. Expected
Reciprocal Rank for Graded Relevance. In Proceedings of the 18th ACM Conference
on Information and Knowledge Management (CIKM 2009). ACM, 621–630.

[10] Kyunghyun Cho, Bart van Merriënboer, Çaglar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2014). ACL, 1724–1734.

[11] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical Evaluation of Gated Recurrent Neural Networks on SequenceModeling.
(2014). Presented in the Deep Learning and Representation Learning Workshop
of NIPS 2014.

[12] Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. 2010. Mathematical
foundations for a compositional distributional model of meaning. Linguistic
Analysis 36 (2010), 345–384.

[13] Ronan Collobert and Jason Weston. 2008. A Uni�ed Architecture for Natural
Language Processing: Deep Neural Networks with Multitask Learning. In Pro-
ceedings of the 25th International Conference on Machine Learning (ICML 2008).
ACM, 160–167.

[14] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine
Bordes. 2011. Supervised learning of universal sentence representations from
natural language inference data. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP 2017). ACL, 670–680.

[15] Manaal Faruqui and Chris Dyer. 2014. Community Evaluation and Exchange of
Word Vectors at wordvectors.org. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (ACL 2014). ACL, 19–24.

[16] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi
Wolfman, and Eytan Ruppin. 2001. Placing Search in Context: The Concept
Revisited. In Proceedings of the 10th International Conference on World Wide Web
(WWW 2001). ACM, 406–414.

[17] Gottlob Frege. 1892. On Concept and Object. The Frege Reader (1892), 181–193.
[18] Luca Gasparri and Diego Marconi. 2016. Word Meaning. In The Stanford En-

cyclopedia of Philosophy (spring 2016 ed.). Metaphysics Research Lab, Stanford
University.

[19] Daniela Gerz, Ivan Vulić, Felix Hill, Roi Reichart, and Anna Korhonen. 2016.
SimVerb-3500: A Large-Scale Evaluation Set of Verb Similarity. In Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP
2016). ACL.

[20] Alex Gittens, Dimitris Achlioptas, and Michael W Mahoney. 2017. Skip-gram -
zipf + uniform = vector additivity. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (ACL 2017). ACL, 69–76.

[21] Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural Turing Machines.
arXiv:1410.5401 (2014).

[22] Edward Grefenstette and Mehrnoosh Sadrzadeh. 2011. Experimental Support for
a Categorical Compositional Distributional Model of Meaning. In Proceedings of
the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP
2011). ACL, 1394–1404.

[23] Alexander Hermans, Lucas Beyer, and Bastian Leibe. 2017. In Defense of the
Triplet Loss for Person Re-Identi�cation. arXiv:1703.07737 (2017).

[24] Felix Hill, Roi Reichart, and Anna Korhonen. 2015. Simlex-999: Evaluating
Semantic Models with Genuine Similarity Estimation. Computational Linguistics
41, 4 (2015), 665–695.

[25] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780.

[26] Theo Janssen. 2001. Frege, Contextuality and Compositionality. Journal of Logic,
Language and Information 10, 1 (2001), 115–136.

[27] Tom Kenter, Alexey Borisov, and Maarten de Rijke. 2016. Siamese CBOW: Op-
timizing Word Embeddings for Sentence Representations. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (ACL 2016).
ACL.

[28] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classi�cation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2014). ACL.

[29] Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimiza-
tion. (2015).

[30] Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Skip-Thought Vectors. In Proceedings of
the 28th International Conference on Neural Information Processing Systems (NIPS
2015). NIPS, 3294–3302.

[31] Quoc Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents. In Proceedings of the 31st International Conference on Machine
Learning (ICML 2014). IMLS, 1188–1196.

[32] Xin Li and Dan Roth. 2002. Learning Question Classi�ers. In Proceedings of the
19th International Conference on Computational Linguistics (COLING 2002. ACL,
1–7.

[33] Shujie Liu, Nan Yang, Mu Li, and Ming Zhou. 2014. A Recursive Recurrent
Neural Network for Statistical Machine Translation. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (ACL 2014). ACL,
1491–1500.

[34] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. E�ective
Approaches to Attention-based Neural Machine Translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing (EMNLP
2015). ACL, 1412–1421.

[35] MarcoMarelli, StefanoMenini, Marco Baroni, Luisa Bentivogli, Ra�aella Bernardi,
and Roberto Zamparelli. 2014. A SICK Cure for the Evaluation of Compositional
Distributional Semantic Models. In Proceedings of the 9th International Conference
on Language Resources and Evaluation (LREC 2014). ELRA, 216–223.

[36] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. 2013. E�cient
Estimation of Word Representations in Vector Space. arXiv:1301.3781 (2013).

[37] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je� Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Proceedings of the 26th International Conference on Neural Information Processing
Systems (NIPS 2013). NIPS, 3111–3119.

[38] George Miller and Christiane Fellbaum. 1998. Wordnet: An Electronic Lexical
Database. (1998).

[39] Je� Mitchell and Mirella Lapata. 2008. Vector-based Models of Semantic Composi-
tion. In Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics (ACL 2008, HLT). ACL, 236–244.

[40] Je� Mitchell and Mirella Lapata. 2009. Language Models based on Semantic
Composition. In Proceedings of the 2009 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2009). ACL, 430–439.

[41] Jerome L Myers, Arnold Well, and Robert Frederick Lorch. 2010. Research Design
and Statistical Analysis. Routledge.

[42] Stephen M Omohundro. 1989. Five Balltree Construction Algorithms. International
Computer Science Institute Berkeley.

[43] Denis Paperno and Marco Baroni. 2016. When the Whole is Less than the Sum
of its Parts: How Composition A�ects PMI Values in Distributional Semantic
Vectors. Computational Linguistics 42, 2 (2016), 345–350.

[44] Je�rey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP 2014). ACL, 1532–
1543.

[45] Sebastian Ruder. [n. d.]. On word embeddings, Part 1. ([n. d.]). http://ruder.io/
word-embeddings-1/

[46] Tobias Schnabel, Igor Labutov, David M. Mimno, and Thorsten Joachims. 2015.
Evaluation methods for unsupervised word embeddings. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing (EMNLP
2015). ACL, 298–307.

[47] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional Recurrent Neural Net-
works. IEEE Transactions on Signal Processing 45, 11 (1997), 2673–2681.

[48] Richard Socher, John Bauer, Christopher D Manning, and Andrew Y Ng. 2013.
Parsing with compositional vector grammars. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (ACL 2013). ACL, 455–
465.

[49] Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. 2012.
Semantic Compositionality through Recursive Matrix-Vector Spaces. In Pro-
ceedings of the 2012 Joint Conference on Empirical Methods in Natural Language

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1092

http://ruder.io/word-embeddings-1/
http://ruder.io/word-embeddings-1/

Processing and Computational Natural Language Learning (EMNLP-CoNLL 2012).
ACL, 1201–1211.

[50] Richard Socher, Alex Perelygin, JeanWu, Jason Chuang, Christopher D. Manning,
Andrew Ng, and Christopher Potts. 2013. Recursive Deep Models for Semantic
Compositionality Over a Sentiment Treebank. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP 2013). ACL,
1631–1642.

[51] Nitish Srivastava, Geo�rey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a Simple Way to Prevent Neural Networks from
Over�tting. Journal of Machine Learning Research (JMLR) 15, 1 (2014), 1929–1958.

[52] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
LearningwithNeural Networks. In Proceedings of the 27th International Conference
on Neural Information Processing Systems (NIPS 2014). NIPS, 3104–3112.

[53] Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved
Semantic Representations From Tree-Structured Long Short-Term Memory Net-
works. In Proceedings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2015). ACL, 1556–1566.

[54] Julien Tissier, Christopher Gravier, and Amaury Habrard. 2017. Dict2vec : Learn-
ing Word Embeddings using Lexical Dictionaries. In Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing (EMNLP 2015).
ACL, 254–263.

[55] AÃďron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
2016. WaveNet: A Generative Model for Raw Audio. In Proceedings of the 9th
ISCA Speech Synthesis Workshop (SSW9). ISCA, 125–125.

[56] Jason Weston, Sumit Chopra, and Antoine Bordes. 2014. Memory networks.
arXiv:1410.3916 (2014).

[57] John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2016. Towards
Universal Paraphrastic Sentence Embeddings. (2016).

[58] John Wieting, Mohit Bansal, Kevin Gimpel, Karen Livescu, and Dan Roth. 2015.
From Paraphrase Database to Compositional Paraphrase Model and Back. Trans-
actions of the Association for Computational Linguistics (TACL) (2015).

[59] Ainur Yessenalina and Claire Cardie. [n. d.]. Compositional Matrix-space Models
for Sentiment Analysis. In Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2011). ACL, 172–182.

[60] George Kingsley Zipf. 1932. Selected Studies of the Principle of Relative Frequency
in Language. (1932).

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1093

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset
	4 Methods of composition
	4.1 Algebraic composition
	4.2 Tune embeddings while composing
	4.3 Learning to compose

	5 Analysis and Evaluation
	5.1 CompVecEval
	5.2 Sentence Representation Evaluation
	5.3 Word Similarity Evaluation
	5.4 Results

	6 Conclusion
	References

