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1 Introduction

The goal of this work is to obtain accurate matches and epipolar geometry between two images of the same scene,
where the motion is unlikely to be smooth or known a priori. Once the matches and two view image relation
have been recovered, they can be used for image compression, for building 3D models [3, 33, 35, 48], for object
recognition [19], for extraction of images from databases [31]

It transpires that the correspondence problem is one of the most difficult parts of structure recovery, especially
when these images are far apart (the wide baseline problem) or when they undergo large rotations (the large image
deformation problem). Whereas small baseline image matching technology have made large advances over the
past decade [1, 2, 3, 7, 14, 22, 35, 42, 50], there has been comparatively little progress in wide baseline matching
technology. Furthermore, the small baseline methods do not work on every image pair. For example, feature based
cross correlation methods may fail if (1) there are insufficient features in the image pair, (2) there is too much
repeated structure for features to get a good match, or (3) there is an image deformation that causes the cross
correlation to fail.

There has been some work on solving these problems. Pritchett and Zisserman [27] present a set of recipes for
special cases, but no unified theory of how to solve the problem in general. Cham and Cipolla [6] present a multi
scale method for feature matching when making mosaics. The work is valid only if there is no parallax, i.e. if the
image motion is governed by a homography. Furthermore the formulation is flawed as it propagates parameters
using the estimate at the coarser level as a prior for the estimate at the finer, but since the images at fine and coarse
resolution are not independent, the prior and likelihood are not independent. This leads to an erroneous posterior,
which is then used (in their method) as a prior for the next level, compounding the error.

As suggested in Tao [33] low level segmentation may be combined with matching, recent work by Matas et al
[20] suggest the use of extremal regions for wide baseline stereo, this approach seems to hold some promise.

Another style of approach is to first detect features in both images and then use a measure, invariant to large
image deformations, to establish an initial set of correspondences between the images. Such invariant features
have been suggested in [19, 24, 30, 31, 45]. Making a measure invariant to large image deformations means that
many false matches (outliers) will be made, as a rule of thumb the more invariant the measure the more outliers
will be produced. Thus a parametric motion model (e.g. homography or fundamental matrix) must be estimated
by a robust estimation method to remove the outliers. However the sheer number of outliers renders most robust
estimators useless (some work developing new estimators capable of dealing with a greater proportion of outliers
is reported in [25]), unless the number of parameters in the model is small (for instance an affine transformation is
used in [19]).

Rather than separate the process of matching and of estimating the epipolar geometry, we propose to fuse the
two into the same algorithm. This means that the ambiguity inherent in matching using invariant measures can be
avoided. A related work to this paper, that appeared at the same time as this work, is that of Dellaert et al [7], this
paper too proposes simultaneous estimation of both matches and epipolar constraint in a Bayesian framework. The
method of Dellaert et al is designed for the small baseline case, however it would be interesting to extend their
methods (based on MCMC and EM) to the wide baseline case.

The method presented here is also a Bayesian solution to the image deformation and wide baseline matching
problems. It has long been known that a coarse to fine approach can be beneficial in matching problems [4, 28].
In this approach information about the matching (and anything else of interest e.g epipolar geometry) is passed
from the coarser levels to the finer. The coarse to fine strategy is beneficial for a number of reasons. It furnishes a
solution to the wide baseline problem because the search window, and thus the number of potential false matches
per corner, is reduced at the finer levels. Furthermore, at the coarser level, it is less computationally intensive to
estimate the global image deformation, by testing different hypotheses for the deformation of the cross correlation
between image patches.

Ideally the information to be transmitted would be the posterior distribution of the parameters at the coarser
level. Encoding this posterior distribution and its relation to the finer level is an intricate task, not least because
the normalization constant of the distribution is unknown. Four powerful statistical methods are enlisted to create

1Part of this work first appeared in [38].
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a solution: (1) to represent the distributions as a set of particles, this overcomes the problem of representation. If
a parametric form of the distribution is required a mixture of Gaussians can be fitted to these particles. (2) the use
of importance sampling to generate the particles as unbiased draws from the posterior distribution, (3) RANSAC
to generate the initial set of particles, (4) MCMC to redistribute the particles so that they better approximate the
posterior. In this way the posterior distribution at the coarse level is used as an importance sampling function to
draw samples from the posterior distribution at the finer level. This allows for a statistically unbiased estimate of
the posterior at the next level down, which would not be the case if we simply used the posterior at the level above
as a prior for the posterior at the level below. As a result, the epipolar geometry is estimated by using features at
many different scales, solving the problem of having to select this scale manually. Furthermore the generation of
importance sampling functions using RANSAC, dubbed IMPSAC may be of more general interest.

The paper is organized as follows. The types of two view relations that might arise are described in Section 2,
and the likelihood of the matches given these relations in Section 2.1. It is shown how to derive a Bayesian
likelihood in two cases, (a) where the matches are given, and then (b) where the matching is unknown. Existing
geometry based matching methods are reviewed in Section 3, they comprise two stages: (a) estimate best cross
correlation matches, (b) estimate epipolar geometry using a robust estimator. The Bayesian algorithm for optimal
robust estimation of two view geometry, MAPSAC, is described in Section 3.1. However this approach breaks
down for the image deformation and wide base line cases. The IMPSAC algorithm is described in Section 4 it
consists of three stages at each level of the coarse to fine image pyramid, (1) first a set of particles are estimated
which encode the posterior of the two view relation using, at the first level, random sampling or in finer levels
SIR to propagate information from coarse to finer levels. (2) Then MCMC is used to adjust the particles to better
represent the posterior. (3) Then a new importance sampling function is made from those particles to be used in
generating particles at the next finer level. These steps are described in Sections 4.1, 4.2 and 4.3. The results are
given in Section 5, where the algorithm is demonstrated on the wide baseline and the image deformation problems.

Notation A 3D scene point projects to homogeneous three vectors x 1, and x2 in the first and second images.
The inhomogeneous coordinate of an image point of the ith point in the jth image is (x j

i ; y
j
i ). The kth correspon-

dence between two views will also be represented by the vector mk = (x1i ; y
1
i ; x

2
j ; y

2
j )
>, meaning that feature i

corresponds to feature j, if the matches are given then the features are ordered such that m i = (x1i ; y
1
i ; x

2
i ; y

2
i )
>.

The set of all observed point matches between two views will be denoted by D (D standing for data as these are
the observations). The probability density function (p.d.f.) of x given y is p(xjy). M is a hypothesized model
for the data, consisting of a noise model and two view relation R with parameters � = f�;�;g, whereas, <D,
is D dimensional Euclidean space, typically bounded. V is the algebraic variety for R with parameters �. An
algebraic variety (or just variety), V , is defined as the set of points in <D satisfying a polynomial set of equations
gq(mq) = 0, q = 1 : : :Q [47]. Furthermore within this paper V is also a manifold, of dimension d, codimension
r = D � d. Note if the functional forms of gq() are not polynomial then V is a manifold but not a variety, this
distinction is made for pedantry and is unimportant to the rest of the analysis.

2 The Two View Relations

This section describes the putative motion models that, under the assumption of rigidity, constrain the motion of
points between two views. Each motion model, M, consists of a noise model (including an outlier model), and
a relation, R, described by a set of parameters, �, that define Q implicit functional relationships on the image
coordinates between two views, i.e. gq(x1i ; y

1
i
; x2i ; y

2
i
;�) = 0; i = 1 : : : n; q = 1 : : :Q. Which may also be

written g(mi;�) = 0, where 0 is the zero vector.
Two examples of R are considered: (a) the Fundamental matrix [9, 15] and (b) the planar projective transfor-

mation (a homography), and Both of which can be estimated from image correspondences alone.
The Fundamental matrix encodes the epipolar constraint and applies for general motion and rigid structure with

uncalibrated cameras. The set of homogeneous image points fxi g; i = 1; : : : n; in the first image is related to
the set fx0ig in the second image by one implicit functional relationship x0>i Fxi = 0, where x = (x; y; 1)>, is a
homogeneous image coordinate, and F is the Fundamental Matrix. In the case where all the observed points lie
on a plane, or the camera rotates about its optic axis and does not translate, then all the correspondences lie on a
homography, which is encoded by two independent functional relationships, x0 = Hx.
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2.1 Likelihood of a Match Given a Relation

In this section a Bayesian framework for the robust estimation of the matches and epipolar geometry is laid out, we
shall mostly focus on the fundamental matrix, noting that the techniques are also valid for homographies. First the
case when the matches are known is considered, then this formalism will be extended to include the case when the
matches themselves are unknown and must be estimated. In both cases it will be demonstrated that, although the
problem contains a large number of latent variables, the likelihood can be determined from the parameters of the
epipolar geometry only.

The observed image coordinates of a match are noise corrupted versions of the projections of some real world
point, i.e.

x
j
i = x

j
i + �ij

yji = yj
i
+ ij j = 1; 2; and i = 1 : : : n

where �ij ; ij are sampled from the noise distribution and the implicit functional relationship defined byM at each
mi = (x1i ; y

1
i
; x2i ; y

2
i
) is zero, i.e.

gq(x
1
i ; y

1
i
; x2i ; y

2
i
;�) = 0; i = 1 : : : n; and q = 1 : : :Q:

The important thing to observe in this model is that the the observations, x 1i ; x
2
i etc, are only indirectly related to

the parameters, �, of the two view relation via their true locations x1i ; x
2
i etc. Given a particular value for �, let

the estimates of the true (uncorrupted) matches be fx̂ ji ; ŷji j gq(x̂
1
i ; ŷ

1
i ; x̂

2
i ; ŷ

2
i ; �̂) = 0; j = 1; 2; i = 1 : : : ng

which are parametrized by �. Let � i denote the parameters of the ith match mi. It might be thought that in the
two view case it would require four parameters to describe � i, however, once F is known � i can be described
in three, with some mapping: 	(� i) = (x1i ; y

1
i ; x

2
i ; y

2
i ). These three parameters could be interpreted as the

projective 3D location of the point in space, X i, with 	, xi = 	(Xi), the projection mapping from 3D to 2D, in
this case �i = Xi, however this is not the only way of parametrizing �, e.g. we could use any three parameters of
a coordinate system implicitly described on the three dimensional manifold described by F. Similarly once H is
known, �i, can be described by two parameters.

Then assuming a zero mean Normal distribution for e2i , with standard deviation � for �ij ; ij , and that all the
errors are independent then

p(Dj�;M; I) = Kn
Y

i=1:::n

exp� e2i
2�2

; (1)

where n is the number of correspondences, the normalization constant is K =
�

1p
2��

�D
, D = 4, as the obser-

vations are in <4, and e2i =
P

j=1;2((x̂
j
i � x

j
i )
2 + (ŷji � y

j
i )
2). Given a particular estimate of the parameters, �,

of a homography or epipolar geometry the maximum likelihood of (1) can be readily obtained by the well known
technique of minimizing reprojection error. A computationally efficient first order approximation to this is given
in Torr et al. [40]. Thus the maximum likelihood solution for � and � can be obtained by gradient descent on the
space of �, or some similar algorithm.

Next a fully Bayesian solution is laid out for the case where matches might also be outliers. First we introduce
 = f1 : : : ng, a set of indicator variables, i, such that i = 1, if the ith correspondence is an inlier, and  i = 0,
if the ith correspondence is an outlier. Generally the observations occur within a bounded region of < D, so the
distribution for outliers is assumed to be uniform 1

v
, where v is the volume of this space (measured in the same

units as �). Then the likelihood factors as

p (Dj�;;M; I) =
Y

i=1:::n

�
iK exp

�
� e2i
2�2

�
+ (1� i)

1

v

�
: (2)

In order to optimally estimate �, a MAP estimate, �̂, is made such that

�̂ = argmax�p(�jD;M; I) = argmax�
p(Dj�;M; I)p(�jM; I)

p(DjM; I) (3)
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with �̂ corresponding to the estimate of the true �. The two quantitiesD and I are defined as follows: D is the data,
in this case the image correspondences, I is the given information, upon which all the probabilities are conditioned.
The first term in the numerator is the likelihood term, the second term is the prior term, the denominator is called the
evidence or normalizing constant which is constant for a fixed M and so can be discounted for MAP estimation,
distributions for which this is unknown are referred to as unnormalized, a problem we shall return to in Section 4.
Referring to (3) the likelihood term can be written

p(Dj�;M; I) = p(Dj�;�;;M; I) = p(Dj�;;M; I) (4)

reflecting the fact that the likelihood component depends only on � the parameters of the matches and, , which
determines whether or not the matches are outliers or inliers; this is just equation (2). It will be assumed that, the
prior term can be written

P (�jM; I) = p(�;�;jM; I) = p(�j�;M; I)p(j�;M; I)p(�jM; I): (5)

within this paper the prior is assumed sufficiently diffuse as to be constant, however a more detailed discussion of
the prior term can be found in [36], but see also Section 3.2 where a prior on disparity is defined. In this case the
MAP solution for� involves maximizing (2), (see Section 3.1 and equation (13)) over�;�;. At first this seems
a very high space to search over, however really the search is just over all values of �. This is because, as has
already been seen, the optimal value of � can be readily obtained given any� 2. Once � and � are known  can be
determined with each i set to 0 or 1 so as to maximize (2), this is the basis of MLESAC [43], or MAPSAC [25].

2.2 Likelihood Formulation When the Matches are Unknown

In this section the likelihood for � is formulated given a set of features in each image but an unknown matching
between them. Let the set of n features in image one be x1i ; y

1
i ; i = 1 : : : n and the set of m features in image two

be x2j ; y
2
j ; j = 1 : : :m. Again it will be shown that even though the matching is unknown, this likelihood can be

approximated only knowing�, which is important as when optimizing we need only search the space of �.
The analysis then proceeds as in equations (3)-(5) except that in place of the parameters  a new set of indicator

variables, Æ, are introduced, such that Æij = 1 indicates that the ith feature in image one is matched to the jth
feature in image two. The fact that each feature can match at most one other (the uniqueness constraint) can be
written

P
i Æij = 0 or 1, and

P
j Æij = 0 or 1.

The � parameter is kept, �i, representing the estimate of the true location of feature i in image 1 and 2:
(x̂1i ; ŷ

1
i ; x̂

2
i ; ŷ

2
i ). In this new formulation (2) can be written as

p (Dj�; Æ;M; I) /
Y

i=1:::n

0
@ X

j=1:::m

ÆijK exp

�
�e(�i; Æij)

2

2�2

�
+

0
@1�X

j

Æij

1
A 1

v

1
A (6)

where
e(�i; Æij)

2 = (x̂1i � x1i )
2 + (ŷ1i � y1i )

2 + (x̂2i � x2j )
2 + (ŷ2i � y2j )

2: (7)

The quantity e(�i; Æij)
2 is simply the reprojection error for matching the ith to jth feature under the parameters�.

If the uniqueness constraint is dropped, which in general does not much affect the resulting likelihood, then Æ can
be disposed of by either maximizing or marginalizing in (6). Marginalizing or maximizing over �; makes little
difference if we are only interested in the MAP estimate of �, for Æ, however, marginalization is preferred as this
avoids an over early commitment to a particular matching, thus the Æ ij are replaced by their expectations in (6).

A likelihood for matching based purely on epipolar geometry would have many local minima if only the spatial
position of the features is considered. In order to reduce this photometric information is incorporated into the
likelihood. Suppose that the measure of photometric similarity between the image patches around the ith and jth
feature is given by  (i; j), such that

p (Dj�; Æ;M; I) /
Y

i=1:::n

0
@ X

j=1:::m

ÆijK exp

�
�e(�i; Æij)

2

2�2
�  (i; j)

�
+

0
@1�X

j

Æij

1
A 1

v

1
A : (8)

2For many cases the solution gained for � is the same if marginalization is done over �; instead of maximization, for more details see
[36].
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The correlation measure  (i; j) is based upon normalization cross correlation and is discussed further in Section 4.

3 Random Sampling Guided Matching

Within this section the state of the art in feature matching is described. This computation requires initial matching
of points (e.g. corners detected to sub-pixel accuracy by the Harris corner detector [13]) between two images; the
aim is then to compute the relation from these image correspondences. Given a corner at position (x; y) in the first
image, the search for a match considers all corners within a region centred on (x; y) in the second image with a
threshold on maximum disparity. The strength of candidate matches is measured by sum of squared differences in
intensity. At this stage, the threshold for match acceptance is deliberately conservative in order to minimise incorrect
matches. Nevertheless, many mismatches will occur because the matching process is based only on proximity and
similarity. These mismatches (called outliers) are sufficient to render standard least squares estimators useless.
Consequently robust methods must be adopted, which can provide a good estimate of the solution even if some of
the data are outliers.

There are potentially a significant number of mismatches amongst the initial matches. Since correct matches
will obey the epipolar geometry, the aim is to obtain a set of “inliers” consistent with the epipolar geometry using
a robust technique. In this case “outliers” are putative matches which are inconsistent with the epipolar geometry.
Robust estimation by random sampling (such as MLESAC, MAPSAC, LMS or RANSAC) have proven the most
successful [10, 39, 49, 42]. These algorithms are well known and MAPSAC is summarized next.

3.1 MAPSAC: An Algorithm for the MAP estimator

Within this section an algorithm is proposed to efficiently operationalize the finding of modes in the posterior. The
RANSAC [10] algorithm has proven very successful for robust estimation, here I consider its extension to finding
modes of the posterior in manifold fitting. Consideration of RANSAC shows that in effect it finds the minimum of
a cost function defined as

C =
X
i

�

�
e2i
�2

�
(9)

where �() is

�

�
e2

�2

�
=

(
0 e2

�2
< T

positive constant e2

�2
� T :

(10)

One of the problems with RANSAC is that if the threshold, T , for considering inliers is set too high then the robust
estimate can be very poor. In other words inliers score nothing and each outlier scores a constant penalty. Thus the
higher T is the more solutions there are with equal values of C tending to poor estimation e.g. if T were sufficiently
large then all solutions would have the same cost as all the matches would be inliers. In Torr and Zisserman [42] it
was shown that at no extra cost this undesirable situation can be remedied. Rather than minimizing C a new cost
function can be minimized which is simply the negative log of the posterior (3), which can be readily evaluated
given �. Jointly maximizing �;�; is achieved by maximizing

C2 =
X
i

�2

�
e2i
�2

�
(11)

where �2() is

�2

�
e2

�2

�
=

(
e2
i

2�2
e2

�2
< T

T e2

�2
� T :

(12)

with T

T = �2 log
�

1

vK

�
(13)

obtained by rearranging (2), and maximizing (2) over  i
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1. Obtain datami; i = 1 : : : n from some source, and determine the manifold to be fit.

2. Repeat (a)-(c) until a large number of samples have been taken or “jump out” occurs
as described in [41].

(a) Select a random sample of the minimum number of points (matches) Sm =
fmig to estimate �.

(b) Estimate � consistent with this minimal set Sm.

(c) Calculate the posterior for �: p(�jD;M; I). This can either be approximated
by maximizing , or by marginalizing  via EM

i. Either: Approximate posterior by minimizing C2 =
P

i �2

�
e2

2�2
i

�
, with

�2() defined in (12). (Lower computational cost).

ii. Or: use EM to marginalize  and maximize the posterior p(�jD;M; I)
directly. (Higher computational cost).

3. Select the best solution �̂ over all the samples i.e. that which maximized the posterior
(or minimizes C2).

4. Maximize the posterior (minimize C2) using non-linear optimization as described in
[41].

Table 1: A brief summary of the stages of the Bayesian random sampling estimation algorithm MAPSAC.

At a slight increase in computational cost and complexity of the algorithm the  can be marginalized over too,
which gives a slight increase in the accuracy of � [42]. However the computational simple form of maximizing
over  is appealing and often it is as important to 3D reconstruction to identify outliers as well as get the motion
correct.

It can be seen that outliers are still given a fixed penalty but now inliers are scored on how well they fit the data.
The implementation of this new method yields a modest to hefty benefit to all robust estimations with absolutely no
additional computational burden. Once this is understood there is no reason to use RANSAC in preference to this
method. Similar schemes for robust estimation using random sampling and M-estimators were also proposed in [37]
and [32]. After the random sampling the posterior is maximized using non-linear optimization as described in [41].
The generic method of using random samples to maximize the posterior (or an approximation of it) followed by
gradient descent is dubbed MAPSAC maximum a posteriori sample consensus to distinguish it from the author’s
previous work MLESAC which was purely a maximum likelihood formulation. The MAPSAC algorithm is
summarized in Table 1.

3.2 The Augmented Fundamental Matrix

In [44] it was shown that usingH to guide matches throughout the sequence leads to fewer matches being extracted
in the part of the sequence undergoing a general motion, as might be expected since the model underfits this
part. However, when a loose threshold of 3 pixels was used (as opposed to a threshold of 1.25 pixels which is
the two sigma window arising from interest point measurement noise) the homography is able to carry correct
matches even when the planar assumption is broken. The explanation lies in the “plane plus parallax” model of
image motion [17]: the estimated homography often behaves as if induced by a ‘scene average’ plane, or indeed
is induced by a dominant scene plane; the homography map removes the effects of camera rotation and change in
internal parameters, and is an exact map for points on the plane. The only residual image motion (which is parallax
relative to this homography) arises from the scene relief relative to the plane. Often this parallax is less than the
loose displacement threshold, so that all correspondences may still be obtained. Thus the homography provides
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strong disambiguation for matching and the parallax effects do not exceed the loose threshold. Note that disparity
can only be computed with respect to some homography, typically it is the one induced by camera rotation.

This suggests a new method for matching, in which one (or more) homographies and a fundamental matrix
are estimated for the data. The homographies estimated at the coarser level are used to guide the search windows
in order to detect matches for the features at the finer level. They can also be used to guide the cross correlation
matching at the finer level in that the patches that are correlated can be corrected by transformation under the
homography. This representation is referred to as the augmented fundamental F +. For the examples presented in
this paper, one homography is sufficient to guide matching. This leads to a 10 parameter estimation problem for
F+ (8 for the homography and 2 for the epipole, alternatively: 7 for the fundamental matrix and 3 for the plane of
the homography). Given an epipole im image 2 e 0 and a homography from image 1 to 2,H, then

F =

2
4 0 �e03 e02

e03 0 �e01
�e02 e01 0

3
5H : (14)

Future work will consider the use of several planes to augment the fundamental matrix, but for many image se-
quences one seems to be sufficient to get good matches.

To account for disparity in (5) the term, p(�j�;M; I), is adjusted to take into account the fact that lower
disparities are favoured, following the “slow and smooth” prior of Weiss [46], the disparity, � i, of the ith feature,
is defined as the Euclidean distance between x̂i

2 and Hx̂i
1, which is the distance moved along the epipolar line

between the point predicted byH and that predicted by F, which is assigned the Gaussian distribution:

p(�ij�;M; I) =
�

1p
2���

�
exp

�
� �2

i

2��2

�
; (15)

assuming the � are independent then, p(�j�;M; I) = Q
p(�ij�;M; I), this assumption is not entirely realis-

tic, as ideally some sort of smoothness should be enforced on nearby disparities, however for features which are
scattered across the image this condition can be relaxed.

3.3 Problems with Conventional Matching

There are two types of failure mode for the class of matching algorithms described in the last section. The first is
the wide baseline case, see top row Figure 1, which shows two images taken at the same time instant 3 where the
disparity is 160 pixels. In the conventional algorithm, described above, a search window must be set for putative
matches. If this search window is too large (which it must be in this case to guarantee that the correct match
lies within it), then there is a combinatorial explosion of putative matches. This leads to a catastrophic failure of
correlation matching as there are too many potential false matches for each corner. The second failure mode is
caused when the image is rotated (see bottom row Figure 1). In this case, standard correlation matching cannot
be expected to succeed, because the correlation score is not rotationally invariant. Using a rotationally invariant
correlation score does not correct this problem; instead it reduces the discriminating power of the score, increasing
the number of mismatches even when the second image is not rotated. The answer to both these problems, presented
here, is to adopt a coarse to fine strategy. The coarse to fine strategy has been used successfully for small baseline
homography matching [4], but neglected for feature matching.

4 Coarse to Fine

In order to reduce the search region and amount of spurious matches a coarse to fine strategy is adopted. In
the coarse to fine strategy, an image pyramid is formed by subsampling the image repeatedly by a factor of 2.
The first stage is to generate the features at all levels. Then, at the coarsest scale, cross correlation scores are
generated between all features, with each patch undergoing 16 evenly space rotations, the strongest matches over
these rotations are stored and used as the basis for estimating� using random sampling. The success of RANSAC-
style methods proves that at least some of the generated samples lie in areas of high posterior probability. It would

3Kindly provided by Dayton Taylor.
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Figure 1: Top Row Wide Baseline Failure of MAPSAC/LMS/RANSAC: 50 matches from the first and last images of the
Samsung sequence. The images are were imaged at the same time instance and are two of 50 taken from a 50 camera stereo
rig. The features are shown in each image (circles) together with the line joining them to their correspondence in the other
image, and are matched with a fundamental matrix. Although several of the features with small disparities have been correctly
matched, features with large disparities are incorrectly matched. This is because, as the disparity increases, so does the number
of potential mismatches. Bottom Row Catastrophic Failure of MAPSAC/LMS/RANSAC Due To Rotation: the second
image in the Zhang sequence has been rotated by 90 degrees, in addition there is a slight change of pose of the head. The image
correlation used is not invariant to rotation, so there are too many mismatches for MAPSAC to converge. Rotation-invariant
correlation is not a solution to this problem, because it is less discriminating and thus results in too many mismatches even when
the second image is not rotated.
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1. At each scale: Detect features.

2. Putative matching of corners over the coarsest two images using proximity
and cross correlation under a variety of rotations.

3. At the coarsest level.

(a) Generate initial particles at coarsest level using random sampling, as
described in Section 3.1.

(b) Apply MCMC to the particles to get a set which might be drawn from
p(�0jD0), as described in Section 4.3.

(c) Create an importance sampling function, g0(�), from the particles as
described in Section 4.1.

4. levels l = 1 to l = finest level.

(a) Generate particles using the important sampling function of the level
above, gl�1(�), using SIR as described in Section 4.2.

(b) Apply MCMC to the particles to get a set which might be drawn from
p(�ljDl), as described in Section 4.3.

(c) Create an importance sampling function, g l(�), from the particles as
described in Section 4.1.

5. The particle with the maximum posterior probability is taken as the MAP
estimate. This can then be used as a starting point for a gradient descent
algorithm.

Table 2: Feature Matching Algorithm using IMPSAC.

be nice to be able to harness the RANSAC mechanism in order to generate a good importance sampling function
with which to propagate information from coarse to fine levels. Due to the ambiguity and inaccuracy in matching,
at the coarsest level, in general it cannot be expected that a unique solution can be recovered using only the coarsest
level. What is desired is a way to transmit the information on � to the next level of fineness of the pyramid. One
way to propagate information from one level to the next is to simply propagate down the mode of this distribution.
However, at the coarsest levels this distribution is not expected to have a strong peak and often propagation of
the mode does not convey sufficient information. Too soon a commitment to a single hypothesis may cause the
algorithm to converge to the wrong solution. Rather, it is desirable to pass as much of the distribution as possible
from one level to the next.

Unfortunately the parametric form of the distribution is not known. The problem is overcome by representing
the distribution by a set of particles f�1 : : :�mg with weights fw1 : : : wmg in proportion to their likelihood. This
sort of representation has been used with a good deal of success in the tracking literature [18]. Ideally the set
of particles would be drawn from the posterior distribution. Note there is a duality between a sample and the
distribution from which it is generated: clearly, the distribution can generate the sample; conversely, given the
sample we can, at least approximately, re-create the distribution [5].

Define the distribution of the parameters � of the relation R given the data, D l, at level, l, is p(�ljDl). The
algorithm is summarized in Fig. 2. The aim of the algorithm is to generate the posterior distribution of � l at each
level, which allows for a full exploration and description of the solution space, if one answer is required at the end
the particles that maximizes the posterior can be selected.
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4.1 Particles to Parametric Distribution

Within this paper the only reason we wish to convert particles to parametric distributions is so that we can create an
importance sampling function, which is described in the next section. The approach used is to model the distribution
of � as a mixture of Gaussians and use EM to fit them [8, 21, 34]. Typically we have found 4 or 5 Gaussians to be
sufficient to encode most of the ambiguity in many cases.

4.2 Sampling-Importance-Resampling

Initially importance sampling was developed to evaluate integrals-and hence calculate posterior normalizing con-
straints and moments-however we can also exploit the idea to produce simulated samples from any function that
represents a distribution. Furthermore the normalization constant, p(DjM; I) in (3), need not be known for the
distribution.

Sampling-importance-resampling [11], or SIR, is a method for drawing samples from complicated high dimen-
sional posterior distributions for which the normalization factor is unknown. In this case we are going to use it
to generate an initial set of particles that represent the posterior distribution of � at a given resolution, using the
information from the higher (coarser) level. By this process information about the distribution of � is transmitted
from coarser to finer levels in a statistically consistent way. Suppose it is of interest to draw samples from such a
distribution q(�), and there exists a normalized positive density function, the importance sampling function, g(�)
from which it is possible to draw samples (in our case we have chosen g(�) to have the form of a mixture of
Gaussians particularly because this is easy to sample from e.g. see [29]). The algorithm proceeds as follows:

1. Generate a set of M draws S t = f�1; : : :�Mg from g(�).

2. Evaluate q(�) for each element of S t.

3. Calculate importance weights wi =
q(�i)
g(�i)

for each element of S t.

4. Sample a new draw from S t+1 from St where the probability of taking a new � i is proportional to its weight
wi.

Iterating this procedure from step 2 is called sampling importance resampling (SIR). This process, in the limit of
M , produces a fair sample from the distribution q(�) [11].

In our example g(�) is the approximation to the posterior, p(� l�1jDl�1), at the coarser level obtained by fitting
a mixture of Gaussians (it is necessary to fit the Gaussians in order to be able to generate samples from g(�)), and
q(�) is the posterior at the level below, p(�ljDl), for which we want to generate a representative set of particles.

The rate of convergence is determined by the suitability of the importance function g(�). The worst possible
scenario occurs when the importance weights, w i = q(�i)

g(�i)
, are small with high probability and large with low

probability, i.e. we cant g(�) to resemble q(�) for the particles. There is no general purpose method for choosing a
good importance sampling function, however in this paper the importance sampling function g(�) is either chosen
via RANSAC and MCMC at the coarsest level, level l = 0, or as an approximation to the posterior at levels
below, in either case this importance sampling function, g(�), should have similar shape to the, q(�), which is the
posterior of � at the level below, and hence good convergence properties.

4.3 An MCMC Step

Within this section the algorithm will first be described in general terms and then for our specific example. Markov
Chain Monte Carlo (MCMC) is an alternate method for simulating the drawing of samples � [26]. Markov chain
simulation, like importance sampling, is a general method based on drawing values of � from an approximate
distribution and then correcting those draws to approximate better the target distribution. The key difference is that
the samples are drawn sequentially, with the distribution of the sampled draws depending on the last value drawn.

There are two uses for MCMC in our algorithm. At initialization the purpose of the MCMC step is to alter
the particles generated by RANSAC to make them better approximate the posterior distribution of p(� 0jD0). For
each subsequent level an additional aim is to also ensure that all the probability does not become concentrated into
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one particle, thus if the same particle is repeatedly sampled in stage 4 of SIR, the MCMC will randomly perturb
each particle whilst still making the particles representative of the posterior.

There are a number of ways to generate a Markov process which converges to a particular distribution. These
include the Metropolis-Hastings [23, 16] class of algorithms, in which transitions or jumps are drawn from a user-
defined jumping distribution Jt(�tj�t�1) and the updated model is accepted or rejected based on a scoring function
f(�). The Metropolis algorithm, creates a sequence of random points � 0;�1; : : : whose distribution converges to
the target distribution, in our case we shall apply the MCMC algorithm to every particle generated.

1. Draw an initial point �0 from a starting distribution p0(�).

2. For t = 1::T

(a) Draw candidate point �� from the jumping distribution Jt(��j�t�1).

(b) Calculate the ratio

r =
f(��)
f(�t�1)

(16)

(c) Set �t = �� with probability min(r,1), otherwise set �t = �t�1

(d) Retain history of all points �t visited after a “burn-in” period during which the process converges.

In this case the jumping distribution is chosen to be a Gaussian.
A common pitfall of Markov chain simulation when applied to a multi modal distribution (i.e. one with multiple

peaks) is that it may converge to a local maximum and thus fail to fully explore the distribution. One way to guard
against this is to seed multiple Markov chains at random points in parameter space. This is akin to Monte Carlo
sampling of the parameter space, and algorithms which operate on this principle are known as Markov Chain Monte
Carlo (MCMC) algorithms [12, 26]. By running MCMC on the whole set of particles generated by importance
sampling or RANSAC we are effectively starting from many different starting points, and thus hopefully exploring
the whole space.

How many iterations should the MCMC algorithm be run for? The answer to this question depends on the
dimension and multi modality of the distribution and can be tens of thousands of iterations, however by using
RANSAC and SIR to seed the starting points for MCMC we have found that sometimes as little as one or two
iterations can be made (although one would expect better results for many iterations), this is because the particles
are (hopefully) already well positioned in areas of high probability by RANSAC and SIR.

5 Results

The final stage of the algorithm in Table 2 is to select the most likely particle at the finest level as the most likely
hypothesis. This is the particle �imax which maximizes p(�ijD). The ith feature in the first image is matched to
the feature j in the second image which maximizes p(�;�;; jD). The top row of Figure 2 shows the successful
matching of two images with up to 160 pixels disparity, demonstrating the capacity of IMPSAC for wide baseline
matching. The bottom row Figure 2 shows how IMPSAC is robust to large rotations of the image. In figure 3,
mismatches of MAPSAC are corrected by rematching with the augmented likelihood, doubling the number of
matched features.

When does the algorithm break? Typically when there are too few particles to explore the parameter space, in
the examples considered 2000 particles were used; if the number drops to 500 then 2 times in 3 the algorithm fails.
It is difficult to make a general rule for how many particles are required, as this depends to a large extent on the
multi modality of the posterior distribution, but in most cases the 2000 is the minimum.

6 Future Work

Due to space constraints, model selection is not the topic of this paper. However it will be briefly illustrated how
importance sampling can be used to evaluate the marginal likelihoods required for model comparison. Given a
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Figure 2: Top Row Wide Baseline Success of IMPSAC: the first and last images from the Samsung sequence, captured
at the same time but from different positions. The disparity between the images is up to 160 pixels, yet only 3 or 4 of the 50
example matches shown are mismatched. Bottom Row Rotation Success of IMPSAC: Despite the combination of a rotation
of 90 degrees and the change in pose of the face, the features are correctly matched. Although just 40 features are shown for
clarity, over 1000 were matched.
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Figure 3: MAPSAC Mismatches Corrected by Augmented Likelihood: (Above) MAPSAC matches with fundamental
matrix include numerous mismatches. (Below) From the same MAPSAC hypothesis, rematching with augmented likelihood
increases number of matches from 509 to 1274, also reducing mismatches.

set of k models M1 : : :Mk that can explain the data D (here the models are fundamental matrix, homography,
augmented fundamental matrix etc.) then Bayes rule leads us to

p(MijDI) = p(DjMiI)p(MijI)
p(DjI) ; (17)

where I is the prior information assumed about the world. Note p(DjI) is the same for all models. Assuming that
all the models are equally likely a priori i.e. Mi =

1
k

, the key posterior likelihood of each model is the evaluation
of p(DjMjI), which is called the evidence. This is the integral of the likelihood over all possible values of the
model’s parameters:

p(DjMjI) =

Z
p(DjMj�I)p(�jMjI)@� (18)

where � are the jth model’s parameters, and p(�jMjI) is the prior distribution of parameters of the model. One
method for numerically evaluating this integral would be to uniformly sample the parameter space and sum the
posteriors of the samples. Unfortunately the high dimensionality of the parameter space precludes this. One could
draw samples from the prior and sum the posterior of these samples, but typically the prior is too diffuse to yield
samples around the peak of the distribution. Importance sampling furnishes a Monte Carlo method for performing
this integration [11], the advantage of which is that samples can be taken more densely around the expected peak
of the posterior and less densely in areas of little interest. If the importance sampling function is g(�) (g(�) is a
normalized density), then given a set of M particles drawn from g(�)

p(DjMjI)!
i=MX
i=1

p(DjMj�I)p(�jMjI)

g(�)
as M !1 (19)
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Evaluation of this leads to the selection of an augmented fundamental matrix model for the Samsung sequence
shown in Figure 2, a homography model for the Zhang sequence shown in Figure 2, and an augmented fundamental
matrix for Figure 3.

7 Conclusion

Within this paper how to use the posterior distribution of a two view relation at a coarse level to generate the
posterior at a fine level is demonstrated. This has been achieved through the synthesis of powerful statistical
techniques. The concept of using a random sampling estimator to seed MCMC and to generate the importance
sampling function, IMPSAC, is a general mechanism that can be used in a wide variety of statistical problems
beyond this. It provides a solution to the general problem of how to create importance sampling functions for
outlier corrupted data. The coarse to fine strategy helps overcome the wide baseline problem. The resultant is a
general purpose and powerful image matching algorithm that can be used for 3D reconstruction or compression.
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