
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Impulse Based Control of Joints and Muscles
Rachel Weinstein, Eran Guendelman, and Ron Fedkiw, Member, IEEE

Abstract— We propose a novel approach to proportional
derivative (PD) control exploiting the fact that these equations
can be solved analytically for a single degree of freedom. The
analytic solution indicates what the PD controller would accom-
plish in isolation without interference from neighboring joints,
gravity and external forces, outboard limbs, etc. Our approach to
time integration includes an inverse dynamics formulation that
automatically incorporates global feedback so that the per joint
predictions are achieved. This effectively decouples stiffness from
control so that we obtain the desired target regardless of the
stiffness of the joint, which merely determines when we get there.
We start with simple examples to illustrate our method, and then
move on to more complex examples including PD control of line
segment muscle actuators.

Index Terms— proportional derivative control, torque control,
muscle control, animation

I. INTRODUCTION

O
VER 20 years ago, [1], [2] used torques to control

joint angles, and the notion of combining dynamics with

character animation has remained exciting ever since. For

example, consider the spacetime constraints animation of Luxo

Jr. [3], the physics based athlete animations just before the

1996 Summer Olympics in Atlanta [4], and the composable

controllers used to make a virtual stuntman [5].

With few exceptions, most systems use linear or

nonlinear springs to target a desired angle. The most

popular of these is proportional derivative control

τ = −k1(θ − θo) − k2(θ̇ − θ̇o). Many authors omit θ̇o

instead targeting a zero velocity, although there are notable

exceptions, e.g. [4]. In spite of its popularity, PD control has

many agreed upon drawbacks. For example, [6] pointed out

how applying torques at one joint adversely effects others,

[7], [8] criticized the large amount of tuning necessary to

achieve proper gains, [9] noted the lack of system wide

feedback, and [10] discussed how gravity and external forces

cause errors even at equilibrium and how increasing gains to

alleviate this results in overly stiff characters.

In a simple setting with no closed loops, contact or collision,

etc., [6], [11] proposed using τ = m((θo − θ)/∆t − ω)/∆t
which yields θo exactly at the end of a forward Euler step in

generalized coordinates. However, they noted that this tracks

the kinematic motion too closely making the character too stiff.

More generally, inverse dynamics ([12], [13]) can be used to

find the torques that give any acceleration desired, although

inverse dynamics does not account for the time integration

scheme and methods for combating drift are required. The

problem is not that we cannot track motion, but that the

R. Weinstein is with the Stanford University Department of Computer
Science and Industrial Light + Magic. E. Guendelman is with the Stanford
University Department of Bioengineering. R. Fedkiw is with the Stanford
University Department of Computer Science and Industrial Light + Magic.

motions are tracked too closely. This is especially problematic

when the input motion is of low quality or violates physical

constraints. PD control works well because it smooths out the

input motion in a desirable, physically realistic fashion.

The problem with PD control stems from locality. Anima-

tors understand how to choose gains for individual joints, but

are then frustrated when the behavior of the joint in question

is affected by global factors such as other joints, gravity and

external forces, etc. Techniques have been proposed to allevi-

ate these problems to some degree, e.g. [14], [15] scaled the

stiffness of the gains by the moments of inertia of the outboard

body, [16] recommended tuning the stiffness parameters so

that the character can stand up under gravity, and [17] used

inverse dynamics to calibrate gains.

We propose a new PD control technique that achieves the

desired per joint behavior regardless of global effects. The

key idea is to realize that the PD equations can be solved

analytically to find out what the PD controller aims to achieve

during the time step, and then to exactly target that state.

That is, instead of targeting the input motion, we target

what the individual joint controllers would do if they were

working as designed without interference from global effects

and external forces. This gives us many of the properties

that make other algorithms attractive in comparison to PD,

while still maintaining the PD framework. For example, our

method decouples stiffness from control, and accounts for

global feedback via the inverse dynamics without the need

for prediction models as in [9] or the need to include extra

terms as in proportional integral derivative (PID) control. With

regards to the compensation provided by the integral term of

PID control, our method achieves the same result but in a

memoryless fashion without the need for tunable parameters.

Our method decouples stiffness from control similar to [10].

However, [10] requires estimates of the external forces which

our method does not need. Also, we enjoy additional benefits

such as unconditional stability. We can critically damp the

errors as in model reference adaptive control [7], but our

critically damped path is based on the physical second order

system given by the PD equations. Moreover, we obtain the

desired target regardless of the stiffness of the joint, which

merely determines when we get there. As pointed out in

section III, our method can be generalized to other controllers.

Also, we could include other parameterizations including the

ones given by [10]. Finally, our method can be summarized

as inverse dynamics tracking of PD smoothed input motion,

which is similar in spirit to using non-physical Ferguson curves

to smooth between extremal target angles [8].

The PD generated torques are typically integrated via time

integration, which results in drift. Thus, we take an impulse

based approach to the dynamics as in [18]–[21] working with

impulse and velocity as opposed to force and acceleration. This

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Fig. 1. (Left) At the beginning of the simulation, the block’s weight

provides contact and collision forces which fight with PD resulting in the

depression of the planks beneath. (Right) When the block is included

in the global post-stabilization, the articulated structure automatically

generates the forces required to achieve the target position. Thus, the

animator can choose whether foreign objects should be heavy or effortless

to lift. For example, while characters should struggle to lift a large stone,

one might want them to brandish a sword with ease.

also allows for more robust incorporation of external forces

such as collisions and contact, giving us a hybrid between what

the character is trying to do and its reaction to its environment.

Figure 1 demonstrates the tradeoff between reaction to external

forces and incorporation of external forces.

We use the articulated rigid body framework of [22], which

maintains articulation constraints using a combination of pre-

stabilization and post-stabilization. Pre-stabilization computes

linear and angular impulses needed to maintain joint con-

straints at the end of a time step. In [22], the linear and angular

impulses were determined by solving two independent systems

of equations, whereas in our work we have improved upon this

by solving a single, fully coupled system of equations (see

section IV and appendix A). Post-stabilization uses impulses

to project the joint velocities to satisfy the constraints (see

also e.g. [23]). Whereas [22] treated the joints sequentially,

in our work we solve for all joints simultaneously in order to

incorporate global effects during inverse dynamics (see section

V). Furthermore, significant generalizations of [22] would be

required to address the issues of motion control and muscle

actuation.

II. OTHER PREVIOUS WORK

[24] proposed a method for slowing down a limb as it

reaches the target angle, [25] merged many segments into one

fixed block for efficiency (see also [26]), [27], [28] mixed

high level control strategies with low level dynamics, [29]–

[31] proposed interesting control strategies that work with PD

control, [32] used inverse dynamics for balance and comfort,

[33] showed examples of ladder climbing and push-ups (closed

loops), and [15] reduced gains during contact so that characters

can react.

[3] introduced spacetime constraints which impose con-

straints for the entire course of the animation relying on large-

scale constrained optimization and sparse matrix methods.

Typical objective functions minimize internal actuation, de-

fined via an undamped spring targeting a rest angle that varies

in time (as does the spring constant). These were improved by

considering smaller windows with boundary conditions [34]

and a hierarchical approach [35]. [36] incorporated generalized

muscle forces based on PD control with the θ̇ term, and

Fig. 2. Given current data and the size of a time step, our method (blue

arrow) exactly achieves the desired angle whereas traditional PD control

(red arrow) overshoots. The red arrow is drawn tangent to the curve,

which is the result for forward Euler time integration. Other explicit

integration schemes such as Runge-Kutta overshoot differently, but the

overshoots still cause inaccuracy and time step restrictions.

included a muscle smoothness term in the objective function

along with a term that measures deviation from an input

motion. [37] improved the approximation of muscle forces

incorporating effects such as relative strengths and passive

forces.

After torque actuators, the next logical step (before full-

blown three-dimensional finite element analysis) are the line

segment muscle actuators which control joints via lines of

action as in [38], [39]. Examples include building models of

the legs [40]–[42], arms [43], [44], hands [45], [46], neck [47],

and body [48], [49]. There is also the musculoskeletal strand

model of [50].

III. PD CONTROL

We begin by discussing PD control in a generalized (re-

duced) coordinate formulation, where each coordinate repre-

sents a degree of freedom. Given a sufficiently smooth target

trajectory θo(t) (splines, etc. can be used for smoothing if

required) along with first and second derivatives of this trajec-

tory, the PD control law specifies the generalized acceleration

as

θ̈ = θ̈o − kp(θ − θo) − kv(θ̇ − θ̇o)

where kp and kv are the proportional (position) and derivative

(velocity) gains, respectively. Note that the definition of these

constants differs from that of k1 and k2 given in section I

where torque was computed rather than acceleration. These

quantities are related via kp = k1/m and kv = k2/m where

m is a generalized moment of inertia. Many authors ignore

θ̇o and θ̈o, instead targeting a zero velocity and acceleration.

However, including these allows us to formulate a second order

equation for the error,

Ë + kvĖ + kpE = 0

where E = θ− θo. Given errors in both velocity and position,

PD control drives those errors to zero while fitting naturally

into a second order physics system. Moreover, similar to

Baumgarte stabilization [51], the error is reduced most quickly

via critical damping which drives E to zero with at most one

overshoot. This is achieved by setting kv = 2
√

kp reducing

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Fig. 3. The red curve shows the results obtained using our method

for kp and kv along with forward Euler time integration. The method

converges to the analytic solution of the PD equations with k′

p = kp/2
and k′

v = kv/2 depicted in black circles. The blue curve shows our

method with k̂p = 2kp and k̂v = 2kv , which converges to the solution

of the PD equations with kp and kv as desired (black x’s).

the choice of gains to a one-dimensional family parameterized

by kp. Increasing kp causes the trajectory to be tracked more

strongly. A key point here is that the trajectory is followed

using a second order system compatible with the physics, in

contrast to Ferguson curves or other interpolation schemes.

We exploit the fact that we can integrate analytically to

obtain closed form expressions for both the error and its

derivatives. In the critically damped case, the roots of the

quadratic equation r2 + kvr + kp = 0 are r1 = r2 = −
√

kp,

and we obtain

E(t) = (c1 + c2t)e
−

√
kpt

Ė(t) =
(

−
√

kp(c1 + c2t) + c2

)

e−
√

kpt

where c1 = E(0) and c2 = Ė(0) +
√

kpE(0). Thus, the

exact solution at the end of the time step is obtained by

evaluating E and Ė at ∆t, i.e. E(∆t) and Ė(∆t). The analytic

solution to the PD equations at end of the time step is therefore

θE = θo(∆t) + E(∆t) and θ̇E = θ̇o(∆t) + Ė(∆t). Note that

in our impulse based approach the target acceleration θ̈o is

never used or required, even though it is accounted for in the

equations. We use simple Euler time integration, which for a

single degree of freedom is θn+1 = θn+∆tωn+1. Thus, if the

analytically determined exact solution at the end of the time

step is given by θE , then setting our angular velocity based

on the secant to the curve (blue arrow in Figure 2) gives

ω̂ =
θE − θn

∆t

which guarantees that we achieve the exact position at the end

of the Euler integration step.

Since θE is the exact solution at tn+1, we can Taylor expand

θE about tn and substitute it into our equation for ω̂ to obtain

ω̂ =
(θn + ∆tωn + (∆t)2

2 αn + O(∆t3)) − θn

∆t

= ωn +
∆t

2
αn + O(∆t2)

where α is angular acceleration. The ∆t
2 illustrates that our

angular velocity ω̂ lives most naturally at tn+ 1

2 , i.e. it is the

velocity at the half time step, ωn+ 1

2 , up to O(∆t2). Thus, it is

Fig. 4. Comparison of our method (blue), traditional PD control (red)

and the analytic solution (black) for a medium size time step where errors

can be seen. Note that for smaller time steps, all three curves lie on top

of each other. We also show the results of our method for an extremely

large time step (dotted blue) where the standard force based PD control

method becomes unstable and diverges. Our method removes almost all

the error in one (rather big) time step as it targets the analytic solution.

straightforward to use central time differencing (e.g. see [52]),

ωn+ 1

2 = ωn +
∆t

2
αn

θn+1 = θn + ∆tωn+ 1

2

ωn+1 = ωn+ 1

2 +
∆t

2
αn+1

by replacing ωn+ 1

2 with ω̂ obviating the need for the first of

these three equations (i.e., the one that determines ωn+ 1

2).

However, we use the method of [20] (that robustly treats

contact and collision, e.g. removing contact chatter) which

requires a time discretization of the form

ωn+1 = ωn + ∆tαn

θn+1 = θn + ∆tωn+1

where our modification is to replace ωn+1 with ω̂. Since

ω̂ naturally lives at tn+ 1

2 , the resulting position update,

θn+1 = θn + ∆tω̂, resembles the second of the three central

differencing equations. Whereas central differencing has a

third equation to integrate ωn+ 1

2 to ωn+1, it is not clear how

to incorporate this into the method of [20] (which we use),

and we therefore omit it. As a result, in the limit as ∆t → 0,

only half of the acceleration −kpE − kvĖ is accounted for,

which is equivalent to using PD control with gains k′

p = kp/2
and k′

v = kv/2 implying that k′

v 6= 2
√

k′
p (the system is

underdamped, not critically damped).

This problem is trivially corrected by applying our method

to a set of PD equations with twice the acceleration. That is,

we apply our secant time integration method to the modified

system,

Ë + k̂vĖ + k̂pE = 0

with k̂v = 2kv and k̂p = 2kp. This is an overdamped system

with roots r = (−k̂v±
√

k̂2
v − 4k̂p)/2, and an analytic solution

of

E(t) = c1e
r1t + c2e

r2t

Ė(t) = r1c1e
r1t + r2c2e

r2t

where c1 = (r2E(0) − Ė(0))/(r2 − r1) and

c2 = (Ė(0) − r1E(0))/(r2 − r1). The solution of this

overdamped system at the end of the time step, E(∆t),

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

Fig. 5. In the first two images, our method (first image) and traditional

PD control (second image) perform equally well in zero gravity. However,

the next two images show the results with gravity where our method

(third image) still exactly reaches the desired position while traditional

PD control (fourth image) fails to achieve it.

is used to find θE = θo(∆t) + E(∆t) which is used as

the exact solution in ω̂ = (θE − θn)/∆t. Incorporating

this ω̂ into our time integration scheme yields a solution

with half the acceleration, i.e. it yields the solution to the

PD equations with gains of k′

p = k̂p/2 and k′

v = k̂v/2 as

desired. Figure 3 illustrates this approach. Note that the

correct critically damped formulation reaches zero quicker

than the underdamped case. Moreover, Figure 4 shows that

our scheme remains unconditionally stable driving the error

to zero as desired even for large time steps.

Finally, note that the results of this section are not restricted

to PD control. Our secant based approach can be applied to

one’s favorite control method as long as that method satisfies

a few basic principles, such as being able to determine (or

even sketch by hand) the desired behavior for a single degree

of freedom. The desired control curve would be targeted using

inverse dynamics and extended to situations such as multiple

joints just as we do for PD control.

IV. DYNAMICS

Following [22] we process collisions, post-stabilize veloci-

ties by projecting them onto a constraint satisfying manifold,

integrate velocity forward in time (add gravity, etc.), and

post-stabilize again. Then we apply their combined contact

processing and pre-stabilization method that evolves the rigid

body positions and orientations in a manner that satisfies

both contact conditions and articulation constraints. Notably,

we improve pre-stabilization by solving a single nonlinear

equation f(j, jτ) = 0 (with a 7 × 6 Jacobian) for the linear

and angular impulses, j and jτ , that satisfy both positional

and angular articulation constraints simultaneously, rather than

using two separate equations (see appendix A). This improves

pre-stabilization, since it allows for quicker convergence by

accounting for the cross-coupling between linear and angular

impulses. Then post-stabilization is applied to the velocities

once again.

Since PD control is typically integrated into velocity as a

force, we incorporate our method into the post-stabilization

step that immediately follows the velocity update. Post-

stabilization solves for the impulses j and jτ that maintain

the constraints on a joint by joint basis. We define the 6 × 6
matrix

Kb =

[

δ r∗T
b

0 δ

] [

m−1
b δ 0
0 I−1

b

] [

δ 0
r∗b δ

]

where b refers to an arbitrary body, δ is the identity matrix, Ib

is the inertia tensor of body b, and rb is a vector from b’s center

of mass to the joint location (where impulses are applied). This

Fig. 6. Plots of the angle for the examples shown in Figure 5 as compared

to the analytic solution (black x’s). Our method matches the analytic

solution without gravity (blue dashed) and with gravity (blue), whereas

traditional PD control matches it without gravity (red dashed) but fails

to with gravity (red).

allows us to compactly write the post-stabilization equations

given in [20], [22] as

(Kp + Kc)

(

j

jτ

)

=

(

∆urel

∆ωrel

)

(1)

where p and c refer to the joint’s parent and child, and ∆urel

and ∆ωrel are the changes in relative (parent minus child)

linear and angular velocities at the joint caused by the given

impulses. Given desired velocity changes, the impulses are

found by inverting the symmetric positive definite Kp + Kc.

The desired values for ∆urel and ∆ωrel are determined

by a combination of joint constraints and PD control. For

example, for a hinge joint with one rotational degree of

freedom, in the PD controlled direction we want the secant-

based ω̂ computed as described above, while a zero velocity

is targeted in the other two angular dimensions as well as for

the fully constrained positional degrees of freedom (projecting

onto the constraint manifold as in standard post-stabilization).

PD actuation of a 3 degree of freedom point joint is only

slightly more involved. In this case, our target trajectory θo is

an orientation and θ̇o is an angular velocity. A joint consists

of joint frames attached to both the parent and child. If we

let Jp and Jc represent the orientation of the parent and child

attached joint frame, then we define the joint’s orientation to

be J−1
c Jp (parent joint orientation with respect to the child).

Define vn to be the rotation vector corresponding to the

rotation Jcθ
n
o J−1

p , i.e. a rotation of |vn| radians about the unit

vector v̂n. This is a world space representation of the rotation

error between the current joint orientation and the current

target orientation (analogous to θn−θn
o). Setting E(0) = |vn|

and Ė(0) = (θ̇n − θ̇n
o) · v̂n, we solve for the scalar quantity

E(∆t) as usual and set the desired joint angular velocity to

ω̂ =
E(∆t) − |vn+1|

∆t
v̂n+1

where vn+1 = Jcθ
n+1
o J−1

p represents the error between the

joint’s current orientation and the updated trajectory orien-

tation (i.e. where it wants to be). This formula matches our

usual one since |vn+1| represents θn −θn+1
o so the numerator

looks like θE −θn. In general, the current angular velocity ωn

may not be parallel to vn+1 (or even to vn). This means that

the above simplification to one dimension does not adequately

address the other two dimensions (perpendicular to v̂n+1).

The full multi-dimensional application of PD control should

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 7. (Top) Even with multiple joints, our method can attain and hold the desired horizontal state without difficulty. (Bottom) A similar example

with a different target state. We stress that all joints are controlled locally and there is no need for scaling joints based on outboard inertia tensors,

or for estimates of external forces and gravity.

be applied to all three dimensions, although our specific one-

dimensional restriction lumps all positional errors into that

one dimension leaving positional errors of zero in the other

two dimensions. While there are no positional errors in the

remaining two dimensions, velocity errors do exist, similar to

a one-dimensional case with an overshoot where the positional

errors are temporarily zero. We can apply our technique to

these other two dimensions by adding to ω̂ an extra term

e−k̂v∆tωn,⊥ where ωn,⊥ is the component of ωn orthogonal

to v̂n+1.

If a joint has degrees of freedom that are not constrained or

actuated, we solve a projected version of equation 1 so that

the dynamics in those degrees of freedom are not adversely

affected, i.e.

PT (Kp + Kc)P ĵP = PT

(

∆urel

∆ωrel

)

where P is a matrix whose columns form a basis for the space

of allowable impulses, and ĵP = PT ĵ is the projected linear

and angular impulse (̂j representing the concatenation of j

and jτ). The joint velocities (on the right hand side) are also

projected so that the velocity in the free directions does not

influence our system. The full six-dimensional spatial impulse

is then recovered using P ĵP .

We demonstrate single joint post-stabilization with a few

simple examples as shown in Figure 5. Given zero gravity,

or no external forces, both our algorithm and traditional PD

control reach the desired target angle of zero degrees. How-

ever, when gravity is introduced, traditional PD control fails

to bring the joint to its desired state while ours accomplishes

this. As the gains are increased, traditional PD performs better

(although with a more severe time step restriction), but this is

unnecessary for our algorithm which performs well with any

gains allowing gains to be set based on desired stiffness rather

than for motion tracking purposes. Figure 6 plots the angles

of the joints with respect to time.

V. INVERSE DYNAMICS

Extending PD control to multiple joints significantly com-

plicates the situation, because each joint generates forces that

interfere with neighboring joints. We use inverse dynamics

to alleviate this problem solving for the impulses that take

surrounding joints into account. This is accomplished by

extending post-stabilization from a joint by joint approach to

a global approach for the entire articulated rigid body. While

the previous section gives the post-stabilization equation for a

single joint, the global framework requires a matrix A relating

the impulses at all joints to the change in velocities at all joints.

A is an n×n block matrix (n the number of joints) composed

of 6×6 blocks. In order to describe the contents of a block in

A, we generalize the Kb matrix from section IV to Kb(i, k):

Kb(i, k) = χi(b)χk(b)

[

δ r∗T
b,i

0 δ

][

m−1

b δ 0
0 I−1

b

][

δ 0
r∗b,k δ

]

The “connectivity” factor χα(b) is defined to be +1, −1, or

0 depending on whether b is a parent of, child of, or not

connected to joint α, respectively. In Kb(i, k), χk(b) is used

to indicate whether the action or reaction (negated) impulses

are being applied to b at k, and χi(b) corresponds to the fact

that we are measuring parent velocity minus child velocity at

joint i. Block (i, k) of A can then be written succinctly as

A(i, k) =
∑

b

Kb(i, k)

One can think of A(i, k) as relating the impulses jk and jkτ
applied at joint k to the change in relative velocities ∆ui

rel

and ∆ωi
rel at joint i. The global system can be written

Aĵ = ∆û

where impulses and velocities have been concatenated into

vectors ĵ and ∆û. The values of ∆û come from a combination

of joint constraints and PD actuation as in the single joint

case (see section IV). Furthermore, projection matrices may be

used to reduce the system if any unconstrained and unactuated

degrees of freedom remain.

Note that A is both symmetric (Kb(i, k) = Kb(k, i)T) and

sparse (A(i, k) is only non-zero when joints i and k share

a common body). Symmetry is guaranteed regardless of how

parent and child labels are assigned at a joint. Unlike the case

for a single joint where A = Kp + Kc is positive definite, A
may in general be singular. Thus, we first factor A using QR
factorization. Using column pivoting we can ensure R has the

form

R =

[

B S
0 ǫ

]

where B is an upper triangular square matrix with well-

conditioned, non-zero diagonal entries, and ǫ is zero up to

some user chosen tolerance. If P is the pivot matrix (AP =
QR), then our new system is RPT ĵ = QT ∆û. To simplify

notation, let x = PT ĵ and b = QT ∆û. Then these vectors

can be decomposed to match the blocks of R, yielding
[

B S
0 ǫ

](

xB

xS

)

=

(

bB

bǫ

)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

Fig. 8. (Top) Our PD control method allows for interesting object interaction. Here, the articulated object struggles to reach its target when

obstructed by an immovable foreign object. (Bottom) A collision with a ball disturbs the target position, after which it recovers gracefully. Our

separation of stiffness from control allows the object to be pushed very far from its target by the ball, while still recovering without adverse effects

from gravity.

Since B is non-singular by construction, the first equation,

BxB + SxS = bB has a family of solutions which can be

parameterized by xS , i.e.

x = ZxS + b̂

where Z =

(

−B−1S
I

)

, and b̂ =

(

B−1bB

0

)

. In order

to single out a particular solution, we solve a least squares

problem in xS which aims to minimize both the norm of the

solution x as well as the residual of the remaining equations

ǫxS = bǫ. That is, we solve

min
xS

(

‖ZxS + b̂‖2
2 + ‖ǫxS − bǫ‖2

2

)

with corresponding normal equations of

(ZT Z + ǫT ǫ)xS = −ZT b̂ + ǫT bǫ.

The first term in the objective function minimizes the norm

of x, which ensures that we satisfy the first equation, BxB +
SxS = bB , with minimal impulses. In order to account for

the effect of the second term, we consider two cases. In the

case where ǫ is zero, the original system is singular, and the

objective function is simply offset by the constant ‖bǫ‖2
2 which

is nonzero only if the original target ∆û is unachievable. Thus,

in this case, the least squares problem still yields a solution

with minimal impulses. In the case where ǫ is nonzero, the

combination of the two terms in the objective function means

that we try to minimize impulses while also minimizing errors

in the second equation, ǫxS = bǫ. Weights can be added

to the two terms to control the relative importance of these

two objectives, and also to account for different units of

measurement used for the two terms. We also note that the

above is readily adjusted to minimize x using a weighted norm

‖W 1/2x‖2
2 by replacing Z with W 1/2Z and b̂ with W 1/2b̂

in the normal equations.

Figure 7 shows two articulated chains with gravity. Since

global post-stabilization gives global feedback, joints do not

fight each other and instead move smoothly towards the target

state. Moreover, we only specified a single final state with no

in-betweens, and still achieved characteristically smooth and

natural PD style motion with our method. Furthermore, we

can adjust kp without concern for gravity or outboard inertia

tensors. Besides obtaining smooth motion, an advantage of

dynamic controllers (versus kinematic) is response to unantic-

ipated forces. In the top row of Figure 8, the planks attempt

to curl (as in the bottom of Figure 7) while obstructed by an

immovable object. Figure 1 (left) shows an articulated chain of

planks targeting a horizontal state while supporting the weight

of a disjoint block. This mimics a character easily moving

their own limbs around, but struggling to lift a foreign object.

In the right figure, we incorporate the block into the global

post-stabilization to illustrate that our PD control can fully

compensate for its weight if desired.

We still iterate for pre-stabilization (as in [22]) but for post-

stabilization we have a global linear system, which is sparse

and solved for using a direct method. This may be slower than

[22] for large systems but typically characters are not very

big, and each character could be solved for independently and

then coupled through external contact and collision. We also

support iterative post-stabilization as in [22] which can be used

in place of a global solve for large systems such as the net as

seen in Figure 10.

VI. INVERSE MUSCLE ACTUATION

Line segment muscles differ from PD actuation in a number

of ways. First, while PD actuation impulses may be cho-

sen from a whole subspace of possible directions, muscle

actuation is strictly limited to lie along the muscle’s line

of action. Additionally, multiple muscles may cross a given

joint (redundancy) and multiple joints may be crossed by

the same muscle (e.g., the sartorius crosses both the hip and

knee joints). Finally, bounds on non-dimensionalized muscle

activation (between 0 and 1) induce bounds on the range of

muscle force. While our method solves for muscle actuation

(impulse) directly as proof of concept, musculotendon force is

linear in activation in a Hill-type model making the extension

to this case straightforward.

We augment our post-stabilization method to include muscle

actuation by writing it in the following form

[

Â1 Â2

]

(

ĵ

ĵm

)

= ∆û (2)

where ĵ are the usual joint constraint and actuation impulses,

while ĵm are the muscle impulses with jm,k the impulse

applied by muscle k. Â1 is constructed analogously to matrix

A from post-stabilization, but will be a tall rather than square

matrix in general. Â2 captures the effect of muscle actuation

on joint velocities. In similar style to Kb(i, k), we can write

the factor relating a muscle actuation impulse jm,k directed

positively along the line of action l̂m,k and applied at rb on

the velocity at joint i as

χi(b)

[

δ r∗T
b,i

0 δ

] [

m−1
b δ 0
0 I−1

b

](

l̂m,k

rb × l̂m,k

)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

This is a 6 × 1 vector which we project to the constrained

and controlled velocity components of joint i. For a given

muscle k, column k of Â2 is formed by concatenating these

vectors for all of the constrained and controlled joint velocities

and summing across all attachments for that muscle. Note

that a single muscle passing through a number of via points

has multiple lines of action, but only the linear segments

connecting via points on different bones result in a net force.

As discussed in the last section, QR with pivoting can be

applied to Â1 to subsequently reduce the size of the system.

However, for the sake of exposition, we assume that Â1 is full

column rank and that its top square block Â1,1 is invertible so

that we can reduce the system by multiplying equation 2 with

Z =
[

Â2,1Â
−1
1,1 −I

]

where Â2,1 is the bottom block of Â1. Since ZÂ1 = 0 this

leaves us with an equation of the form

Ãĵm = b̃ (3)

where Ã = ZÂ2 and b̃ = Z∆û. A common approach is to

minimize ‖ĵm‖2
2 + ‖Ãĵm − b̃‖2

2 where the first term is added

to minimize muscle activation, especially since redundant

muscles can cause Ã to be rank deficient. However, this

approach will not attain the solution to equation 3 even when

it exists, e.g. if equation 3 was the scalar equation j = 1,

adding j = 0 to minimize j gives a least squares solution

of j = 1/2. This means that the trajectories we worked so

hard to formulate won’t be achieved, even when the impulses

necessary to follow these trajectories are feasible. Instead, our

approach solves equation 3 exactly to the degree possible,

and minimizes any unattainable equations (over-determined

subsets) along with the redundant muscle activations. Thus,

following section V, we use QR with pivoting to convert

equation 3 to the form
[

B S
0 ǫ

](

xB

xS

)

=

(

bB

bǫ

)

yielding the final form of the optimization problem:

minimize ‖x‖2
2 + ‖ǫxS − bǫ‖2

2

subject to BxB + SxS = bB and jmin
m,k ≤ jm,k ≤ jmax

m,k

noting that xB and xS are simply a permutation of the

components of ĵm.

To summarize our approach, given a target motion (specifi-

cally, target joint velocities), it may or may not be achievable

with the given set of actuators, so we use QR factorization

to instead target the achievable motion closest to it in a

least squares sense. Then we solve a constrained optimization

problem which achieves this target motion while minimizing

muscle impulses and ensuring they stay within prescribed

limits. Visually, the only compromise is in the first part –

projecting to an achievable motion. The rest is just a choice

among different muscle activations, all of which achieve the

same motion, and which can be augmented to prefer some

muscles over others using a weighted norm.

We solve this quadratic programming problem using a two-

phase, active set approach. First, a feasible point (satisfying

Fig. 9. A skeleton swinging a mace demonstrates the ability to mix

controlled objects with purely dynamic objects.

Fig. 10. A skeleton caught in a net illustrates the ability to mix our

global post-stabilization (for the skeleton) with the iterative method (for

the net).

both equality and inequality constraints) is found by solving

a linear programming problem with an objective designed to

drive the iterates from vertex to vertex on the manifold of

active constraints and towards the feasible region. Once a fea-

sible point is found, we minimize the quadratic objective with

quadratic programming. This iterative method moves towards a

minimum by taking steps consistent with the constraints while

always staying within the feasible region.

VII. EXAMPLES

We created a skeleton from the Visible Human data set.

Joints for the upper body were created from [53], while the

joints for the lower body and individual digits were generated

by hand. The skeleton contains 74 joints with a total of 118

degrees of freedom including fully articulate fingers, toes and

vertebrae. We generated 228 muscles for the skeleton from

SIMM data derived from [54], [55]. In order to demonstrate

the ability to mix controlled and purely dynamic joints, we

animated a skeleton swinging a mace. The arm movement is

defined by an analytic function targeted via our PD control,

while the mace is a series of purely dynamic, freely rotating

point joints. The simulation time was about a minute per

frame. We demonstrate the ability to handle closed loops

with our net example (Figure 10), which contains 960 joints

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

Fig. 11. A skeleton performing push-ups demonstrates how our post-

stabilization method can be used to generate muscular impulses to drive

motion.

and over 225 closed loops. The skeleton is controlled using

key framed motion interpolated with B-splines. We achieved

simple key framing by dragging bones with the mouse and

applying post-stabilization. The skeleton uses global post-

stabilization, while the iterative method from [22] is used

on the net. Finally, we demonstrate our optimization-based

inverse muscle actuation with an example of our skeleton

performing a series of push-ups (Figure 11). The push-up

motion was created using analytic functions, and our opti-

mization method determined the muscle actuation required to

achieve the desired joint angles. The skeleton contains muscles

spanning multiple joints and antagonistic muscles, which our

method handles trivially. Even with the additional calculation

of the muscular impulses, this simulation only required three

minutes a frame. Simple examples with lower degrees of

freedom ran in interactive time.

Our method makes it easier to create realistic animations

by making PD control easier to use, and that is a primary

motivation of our work. Stiffness can be set on a per joint basis

making the damping parameter kp more intuitive. Although we

could have incorporated motion capture and other methods

into the motion descriptions to increase the realism of our

examples, we chose not to and instead focused on highlighting

the key points of our algorithm through simpler motions and

poses.

VIII. CONCLUSION

We presented a novel approach to PD control that uses the

analytic solution on a per joint basis coupled with inverse dy-

namics to alleviate difficulties with traditional PD control. Our

method achieves the desired angle regardless of joint stiffness

because it globally accounts for cross-coupling between joints

and external forces such as gravity, effectively decoupling

stiffness from control. We demonstrated the efficacy of our

method in various scenarios including contact and collision,

as well as on a complex articulated human skeleton with

actuating muscles. For future work, we plan to apply our

inverse muscle actuation framework to skinning (as proposed

by [12]).

As mentioned previously, our method can be extended to

work with more general controllers as long as one has a sense

of an analytic or desired target trajectory. For example, more

interesting human behaviors can be obtained with an approach

similar to [5].

APPENDIX A

Pre-stabilization

Combining both position and angular constraints, we solve

f(j, jτ) =

(

ft(j, jτ)
fr(j, jτ)

)

= 0

where ft and fr measure the translational and rotational joint
errors after advancing forward in time. Using the notation of
[22], these can be written as

ft (j, jτ) =
(

xw
p

)n
+ ∆t

(

vw
p

)n
+

∆t

mp

j

+q̂
(

△t
(

ωw
p

)n
+ △tI−1

p

(

r∗pj + jτ
)) [(

qw
p

)n [

x
p
j

+ q
p
j

[

xtarget
]]]

− (xw
c)n

− ∆t (vw
c)n +

∆t

mc

j

−q̂
(

△t (ωw
c)n

−△tI−1

c (r∗c j + jτ)
) [

(qw
c)n

[

xc
j

]]

= 0

fr (j, jτ) = q̂
(

△t
(

ωw
p

)n
+ △tI−1

p

(

r∗pj + jτ
)) (

qw
p

)n
q

p
j
qtarget

−q̂
(

△t (ωw
c)n

−△tI−1

c (r∗c j + jτ)
)

(qw
c)n qc

j = 0

with q[r] indicating a quaternion q applied to a vector r. We

solve using Newton iteration, and the Jacobian is a 7 × 6
matrix.

ACKNOWLEDGMENTS

Research supported in part by an ONR YIP award and

a PECASE award (ONR N00014-01-1-0620), a Packard

Foundation Fellowship, a Sloan Research Fellowship, ARO

DAAD19-03-1-0331 and NIH U54-GM072970. R.W. was

supported in part by a NIH NIGMS Fellowship.

REFERENCES

[1] W. W. Armstrong and M. Green, “The dynamics of articulated rigid
bodies for purposes of animation,” in Graph. Interface ’85, May 1985,
pp. 407–415.

[2] J. Wilhelms and B. A. Barsky, “Using dynamic analysis to animate
articulated bodies such as humans and robots,” in Graph. Interface ’85,
May 1985, pp. 97–104.

[3] A. Witkin and M. Kass, “Spacetime constraints,” in Comput. Graph.

(Proc. SIGGRAPH ’88), vol. 22, 1988, pp. 159–168.
[4] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien,

“Animating human athletics,” in Proc. of SIGGRAPH ’95, 1995, pp.
71–78.

[5] P. Faloutsos, M. van de Panne, and D. Terzopoulos, “Composable con-
trollers for physics-based character animation,” in ACM Trans. Graph.

(SIGGRAPH Proc.), 2001, pp. 251–260.
[6] J. Wilhelms, “Virya–a motion control editor for kinematic and dynamic

animation,” in Proc. on Graph. Interface ’86/Vision Interface ’86, 1986,
pp. 141–146.

[7] E. Kokkevis, D. Metaxas, and N. Badler, “User-controlled physics-based
animation for articulated figures,” in Proc. Comput. Anim. ’96, 1996.

[8] M. Oshita and A. Makinouchi, “A dynamic motion control technique
for human-like articulated figures,” Comput. Graph. Forum (Proc. Eu-

rographics), vol. 20, no. 3, pp. 192–202, 2001.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

[9] J. Laszlo, M. van de Panne, and E. Fiume, “Limit cycle control and
its application to the animation of balancing and walking,” in Proc. of

SIGGRAPH ’96, 1996, pp. 155–162.

[10] M. Neff and E. Fiume, “Modeling tension and relaxation for computer
animation,” in Proc. ACM SIGGRAPH Symp. on Comput. Anim., 2002,
pp. 77–80.

[11] J. Wilhelms, “Using dynamic analysis for realistic animation of articu-
lated bodies,” IEEE Comput. Graph. and Appl., vol. 7, no. 6, pp. 12–27,
1987.

[12] P. Isaacs and M. Cohen, “Controlling dynamic simulation with kinematic
constraints, behavior functions and inverse dynamics,” in Proc. of

SIGGRAPH 1987, 1987, pp. 215–224.

[13] P. Isaacs and M. Cohen, “Mixed methods for complex kinematic
constraints in dynamic figure animation,” The Vis. Comput., vol. 4, no. 6,
pp. 296–305, 1988.

[14] V. B. Zordan and J. K. Hodgins, “Tracking and modifying upper-body
human motion data with dynamic simulation,” in In Proc. of Comput.

Anim. and Sim. ’99, September 1999.

[15] V. B. Zordan and J. K. Hodgins, “Motion capture-driven simulations
that hit and react,” in Proc. ACM SIGGRAPH Symp. on Comput. Anim.,
2002, pp. 89–96.

[16] M. van de Panne, “Parameterized gait synthesis,” IEEE Comput. Graph.

and Appl., vol. 16, no. 2, pp. 40–49, March 1996.

[17] M. McKenna and D. Zeltzer, “Dynamic simulation of a complex human
figure model with low level behavior control,” Presence, vol. 5, no. 4,
pp. 431–456, 1996.

[18] B. Mirtich and J. Canny, “Impulse-based dynamic simulation,” in Alg.

Found. of Robotics, K. Goldberg, D. Halperin, J.-C. Latombe, and
R. Wilson, Eds. A. K. Peters, Boston, MA, 1995, pp. 407–418.

[19] B. Mirtich and J. Canny, “Impulse-based simulation of rigid bodies,” in
Proc. of 1995 Symp. on Int. 3D Graph., 1995, pp. 181–188, 217.

[20] E. Guendelman, R. Bridson, and R. Fedkiw, “Nonconvex rigid bodies
with stacking,” ACM Trans. Graph. (SIGGRAPH Proc.), vol. 22, no. 3,
pp. 871–878, 2003.

[21] D. Kaufman, T. Edmunds, and D. Pai, “Fast frictional dynamics for rigid
bodies,” ACM Trans. Graph. (SIGGRAPH Proc.), pp. 946–956, 2005.

[22] R. Weinstein, J. Teran, and R. Fedkiw, “Dynamic simulation of articu-
lated rigid bodies with contact and collision,” IEEE Trans. on Vis. and

Comput. Graph., vol. 12, no. 3, pp. 365–374, 2006.

[23] M. Cline and D. Pai, “Post-stabilization for rigid body simulation with
contact and constraints.” in Proc. of the 2003 IEEE Int. Conf. on Robotics

and Automation, ICRA 2003, Taipei, Taiwan, September 14-19 2003, pp.
3744–3751.

[24] W. Armstrong, M. Green, and R. Lake, “Near-real-time control of human
figure models,” IEEE Comp. Graph. and Appl., vol. 7, no. 6, pp. 51–61,
1987.

[25] J. Wilhelms, M. Moore, and R. Skinner, “Dynamic animation: Interac-
tion and control,” The Vis. Comput., vol. 4, pp. 283–295, 1988.

[26] S. Redon, N. Galoppo, and M. C. Lin, “Adaptive dynamics of articulated
bodies,” ACM Trans. Graph., vol. 24, no. 3, pp. 936–945, 2005.

[27] A. Bruderlin and T. W. Calvert, “Goal-directed, dynamic animation of
human walking,” in Comp. Graph. (SIGGRAPH Proc.), 1989, pp. 233–
242.

[28] M. McKenna and D. Zeltzer, “Dynamic simulation of autonomous
legged locomotion,” in Comput. Graph. (Proc. SIGGRAPH ’90), 1990,
pp. 29–38.

[29] M. H. Raibert and J. K. Hodgins, “Animation of dynamic legged
locomotion,” in Comp. Graph. (SIGGRAPH Proc.), 1991, pp. 349–358.

[30] M. van de Panne and E. Fiume, “Sensor-actuator networks,” in Proc. of

SIGGRAPH ’93, 1993, pp. 335–342.

[31] M. van de Panne, R. Kim, and E. Fiume, “Virtual wind-up toys for
animation,” in Proc. of Graph. Interface ’94, Banff, Alberta, Canada,
1994, pp. 208–215.

[32] H. Ko and N. I. Badler, “Animating human locomotion with inverse
dynamics,” IEEE Comput. Graph. and Appl., vol. 16, no. 2, pp. 50–59,
March 1996.

[33] J. Lo and D. Metaxas, “Recursive dynamics and optimal control tech-
niques for human motion planning,” in Proc. of the Comput. Anim.,
1999, p. 220.

[34] M. F. Cohen, “Interactive spacetime control for animation,” in Comp.

Graph. (SIGGRAPH Proc.), 1992, pp. 293–302.

[35] Z. Liu, S. J. Gortler, and M. F. Cohen, “Hierarchical spacetime control,”
in Proc. of SIGGRAPH ’94, 1994, pp. 35–42.

[36] Z. Popović and A. Witkin, “Physically based motion transformation,” in
Comput. Graph. (Proc. SIGGRAPH ’99), 1999, pp. 11–20.

[37] C. K. Liu, A. Hertzmann, and Z. Popović, “Learning physics-based
motion style with nonlinear inverse optimization,” ACM Trans. Graph.,
vol. 24, no. 3, pp. 1071–1081, 2005.

[38] S. Delp and J. Loan, “A graphics based software system to develop and
analyze models of musculoskeletal structures,” Comput. and Biomed.

Research, vol. 25, no. 1, pp. 21–34, 1995.
[39] S. Delp and J. Loan, “A computational framework for simulating and

analyzing human and animal movement,” IEEE Computing In Science

And Eng., vol. 2, no. 5, pp. 46–55, 2000.
[40] T. Komura, Y. Shinagawa, and T. Kunii, “A muscle-based feed-forward

controller for the human body,” Comput. Graph. Forum (Proc. Euro-

graphics), vol. 16, no. 3, pp. C165–C172, September 1997.
[41] T. Komura, Y. Shinagawa, and T. L. Kunii, “Calculation and visualiza-

tion of the dynamic ability of the human body,” J. Vis. Comput. Anim.,
vol. 10, pp. 57–78, 1999.

[42] T. Komura, Y. Shinagawa, and T. L. Kunii, “Creating and retargetting
motion by the musculoskeletal human body model,” The Vis. Comput.,
vol. 16, no. 5, pp. 254–270, June 2000.

[43] J. Teran, S. Blemker, V. Ng, and R. Fedkiw, “Finite volume methods
for the simulation of skeletal muscle,” in Proc. of the 2003 ACM

SIGGRAPH/Eurographics Symp. on Comput. Anim., 2003, pp. 68–74.
[44] J. Teran, E. Sifakis, S. Salinas-Blemker, V. Ng-Thow-Hing, C. Lau, and

R. Fedkiw, “Creating and simulating skeletal muscle from the visible
human data set,” IEEE Trans. on Vis. and Comput. Graph., vol. 11,
no. 3, pp. 317–328, 2005.

[45] I. Albrecht, J. Haber, and H. P. Seidel, “Construction and animation of
anatomically based human hand models,” in Proc. of the 2003 ACM

SIGGRAPH/Eurographics Symp. on Comput. Anim., 2003, pp. 98–109.
[46] W. Tsang, K. Singh, and E. Fiume, “Helping hand: an anatomically

accurate inverse dynamics solution for unconstrained hand motion,” in
Proc. ACM SIGGRAPH Symp. on Comput. Anim., 2005, pp. 319–328.

[47] S.-H. Lee and D. Terzopoulos, “Heads up! Biomechanical modeling and
neuromuscular control of the neck,” ACM Trans. Graph. (SIGGRAPH

Proc.), vol. 25, no. 3, pp. 1188–1198, 2006.
[48] T. Komura and Y. Shinagawa, “Motion conversion based on the mus-

culoskeletal system,” in Proc. of Graph. Interface 2001, June 2001, pp.
27–36.

[49] V. De Sapio, J. Warren, O. Khatib, and S. Delp, “Simulating the task-
level control of human motion: a methodology and framework for
implementation,” The Vis. Comput., vol. 21, no. 5, pp. 289–302, June
2005.

[50] D. K. Pai, S. Sueda, and Q. Wei, “Fast physically based musculoskeletal
simulation,” in SIGGRAPH 2005 Sketches & Appl. ACM Press, 2005.

[51] J. Baumgarte, “Stabilization of constraints and integrals of motion in
dynamical systems,” Comput. Meth. in Appl. Mech. and Eng., vol. 1,
pp. 1–16, 1972.

[52] R. Bridson, R. Fedkiw, and J. Anderson, “Robust treatment of colli-
sions, contact and friction for cloth animation,” ACM Trans. Graph.

(SIGGRAPH Proc.), vol. 21, pp. 594–603, 2002.
[53] B. Garner and M. Pandy, “Musculoskeletal model of the upper limb

based on the visible human male dataset,” Comput. Meth. Biomech.

Biomed. Eng., vol. 4, pp. 93–126, 2001.
[54] S. Delp, J. Loan, M. Hoy, F. Zajac, E. Topp, and J. Rosen, “An interactive

graphics-based model of the lower extremity to study orthopaedic
surgical procedures,” IEEE Trans. on Biomed. Eng., vol. 37, pp. 757–
767, 1990.

[55] K. Holzbaur, W. Murray, and S. Delp, “A model of the upper extremity
for simulating musculoskeletal surgery and analyzing neuromuscular
control,” Annals of Biomed. Eng., vol. 33, no. 6, pp. 829–840, 2005.

