
Impulse C vs. VHDL for Accelerating Tomographic Reconstruction

Jimmy Xu
1
, Nikhil Subramanian

1
, Adam Alessio

2
, Scott Hauck

1

1
 Department of Electrical Engineering,

2
 Department of Radiology, University of Washington,

Seattle, WA. USA

{jimmyxu, niksubr, aalessio, hauck}@u.washington.edu

Abstract

While traditional methods of designing FPGA

applications have relied on schematics or HDL, much

interest has been shown in C-to-FPGA tool flows that

allow users to design FPGA hardware in C. We

evaluate a C-to-FPGA tool flow (Impulse C) by

analyzing the performance of three independent

implementations of the Computed tomography (CT)

filtered backprojection (FBP) algorithm developed

using C, Impulse C, and VHDL respectively. In the

process, we compare the design process of Impulse C

versus HDL, and discuss the benefits and challenges of

using Impulse C. In addition, we explore the benefits of

tightly-coupled FPGA acceleration offered by the

XtremeData XD1000. The results demonstrate that

Impulse C designs can achieve over 61x improvement

over multi-threaded software, and similar performance

as VHDL, while significantly reducing the design

effort, and that tightly-coupled FPGA coprocessors

like the XD1000 effectively overcomes the traditional

communication bottleneck between CPU and FPGA.

1. Introduction

Tomography (CT) is a medical imaging technique

used to create cross-sectional images from x-ray

transmission data acquired by a scanner. In traditional

tomographic systems, the primary computational

demand after data capture by the scanner is the

backprojection of the acquired data to reconstruct the

scanned object. Backprojection can be viewed as the

mapping of raw scanner data into the image space. In a

typical CT system, the data has ~106 entries per cross-

section, and the process of tracing each datum through

the image space is computationally demanding. As a

result, hardware acceleration of this process has been

the focus of several studies [1].

Previous works often used FPGAs to implement

such hardware accelerators, and have achieved

dramatic improvements over microprocessor based

software systems. However, the traditional method of

designing FPGA based accelerators, using either

schematics or HDL to describe the hardware, require

the skill set and expertise of a hardware engineer. A

promising method of reducing this barrier to entry is a

C-to-FPGA tool flow that allows users to describe the

hardware computations in C and automatically

generates the hardware description for synthesis.

The general perception has been that while such

high level tool flows are simple to use, they do not

provide the same level of performance as hand coded

HDL. We investigate this notion by considering a C-

to-FPGA tool flow called Impulse C [2]. Our

benchmark was an implementation of the filtered

backprojection (FBP) algorithm running on a

microprocessor. We partitioned the design such that

the compute intensive backprojection step was run on

an FPGA while the user interface and some filtering

operations were performed on the host processor. The

XD1000 development system was chosen for the

implementation because it offers a tightly coupled

CPU-FPGA platform, reducing communication latency

that can overshadow the benefits of using hardware

acceleration.

Overall, this paper provides a case study of the

performance of Impulse C in the design and

implementation of a typical application that can benefit

from hardware acceleration. We hope to provide an

accurate representation of the benefits and

shortcomings of using Impulse C to replace traditional

development methods for FPGAs.

2. Background
2.1. Tomographic Reconstruction

Tomographic reconstruction is the process of

generating cross-sections of an object from a series of

measurements acquired from many different directions.

In Computed Tomography (CT scans), the

measurements are x-ray attenuation data. The set of all

projections acquired by a scanner is stored as a two

dimensional matrix, with the dimensions being the

angle at which the projection was acquired, and the

position of the detector that recorded the x-ray. This

data represents a 2-D spatial function termed a

sinogram. The problem of reconstruction can be

viewed as the problem of transforming the sinogram

(θ,S) into the image space (X,Y).

2.2. XD1000 Coprocessor Accelerator

Frequently occurring or complex computations can

overwhelm the primary microprocessor (host or CPU)

in a computer system. A solution to this is utilizing

coprocessors to shoulder some of the burden, allowing

the CPU to offload these computations. The host

processor would retain functions such as interfacing

with the user or peripherals, and the coprocessor would

be tasked with processing the raw data.

Companies such as DRC Computer and

XtremeData take an approach with FPGA coprocessors

that use a very tightly-coupled FPGA to CPU

interface, with the FPGA coprocessor module situated

in one of the CPU sockets in an AMD Opteron

motherboard. This allows the FPGA module to

communicate with the CPU via the HyperTransport

bus, which has a bandwidth of 1.6 GB/s. This remedies

the bandwidth concern with accelerating applications

using FPGA coprocessors.

2.3. Impulse C

While FPGAs have traditionally been programmed

with either schematics or HDL describing the

hardware, interest has been growing in the use of C-to-

FPGA tool flows. One example is Impulse C, which

promises to reduce design and programming effort.

The Impulse C tools include the CoDeveloper C-to-

FPGA tools and the CoDeveloper Platform Support

Packages (PSPs). PSPs add platform-specific

capabilities to the Impulse CoDeveloper programming

tools. With the PSP, users can partition the application

between the host and coprocessors, make use of other

on board resources, and automatically generate the

required interfaces. The interfaces are implemented as

a wrapper function around the user logic. We used the

Impulse C tools with the XtremeData XD1000 PSP.

3. Design
3.1. System Parameters

We chose to first implement 512x512 (θxS)

backprojectors independently in VHDL and Impulse

C, followed by 1024x1024 versions using each

approach. The algorithm discussions in this section

reflect the 1024x1024 implementations. Performance

results for both the 512x512 and 1024x1024

implementations can be found in the results section.

3.2. Backprojection

The CT scanning process can be modeled as

detectors acquiring line integrals of the attenuation

coefficient along the scanned object. When

reconstructing, we start with an image initialized to 0.

Corresponding to each entry of the sinogram we

identify all the pixels that lie on the ray. The values of

those image pixels are then increased by the

corresponding ray-value. When this process is

performed for all entries in the sinogram, we have

reconstructed the image. This is ray-by-ray

reconstruction. Another way to approach this is to

reconstruct one pixel at a time. Given a pixel and an

angle of measurement, the ray-value that contributes to

the pixel needs to be identified. If we go through all

angles, identifying all rays that the pixel was on, and

sum those values, that pixel is fully reconstructed. We

can then go ahead and reconstruct all other pixels in

the same way. This is pixel-by-pixel reconstruction.

Since both pixel-by-pixel and ray-by-ray

reconstruction methods require the compute loop to

touch every angle of the sinogram for every point on

the image (an O(n3) operation), the main difference

between these two methods is the outer loop of the

processing algorithm [4]. The pixel-by-pixel approach

places the x-y loops outside of the angle loop, with the

opposite being true for the ray-by-ray method. Both of

these methods can be made parallel by introducing

blocks into the image and sinogram respectively. For

the pixel-by-pixel method, each column of the image

can be assigned to a separate processing engine. An

example is a system with four 128x512 blocks, which

will require 128 processing engines. The ray-by-ray

method can be made parallel by partitioning the

sinogram into blocks of 128x1024 (θxS) with each

angle of the sinogram block assigned to a separate

processing engine.

These two methods produce identical reconstructed

images, and primarily differ in their resource

requirements [4]. However, since the hand-coded

VHDL and Impulse C versions of the backprojector

were designed independently of each other, a split

occurred at this point. Initial analysis indicated that the

pixel-by-pixel algorithm appeared more compatible

with the hardware hierarchical design abilities of HDL,

and analysis on the ray-by-ray algorithm [3] indicated

that it was compatible with the programming model of

Impulse C.

4. Implementation
4.1. Impulse C Backprojector

The sequence of operations can be found in [3].

Initially, we experienced difficulty getting the

Impulse C design to meet timing when the onboard

accumulation algorithm was used. This forced us to

create a version of the backprojector where partially

created images would be sent back to the CPU, and

later accumulated in software. While this is a fast

computation, we still wanted to avoid the additional

data transfers this would require. After analysis, it was

determined that our timing issues originated from the

declaration of an imgRAM that would span 8 MRAMs

on the FPGA. This forced the Quartus tools to connect

all 8 MRAMs together, which resulted in timing issues

since the MRAMs are spread across the FPGA. A fix

for this was found by manually declaring separate

arrays for each MRAM, and introducing separate

pipelined logic to tie them together.

Another issue we ran into during our

implementation of the above system was the pipeline

throughput generated by Impulse C. Since the XD1000

platform support package for Impulse C imposed a

fixed 100 MHz clock on the design, we aim to have the

pipeline accept inputs and produce results every cycle.

However, the pipeline could only achieve a rate of 2

cycles per input/output due to operations within the

compute loop requiring two values from the same

memory. This can be resolved with the use of true-dual

port memories; however, efforts to implement true-

dual port memories in Impulse C resulted in the design

failing to meet timing. Improvements to the PSP could

likely fix this.

4.2. VHDL Backprojector

The VHDL Backprojector shares many of the same

operation steps as the Impulse C backprojector. Details

of the differences between the two backprojector

implementations can be found in [4].

 After the 512x512 VHDL backprojector was

complete, several observations regarding the

performance of the pixel-by-pixel and ray-by-ray

methods of reconstruction were made. First, the pixel-

by-pixel method would not scale as effectively to

1024x1024 due to resource utilization. Since ray-by-

ray can use the MRAM to store the image data, much

more of the M4K and M512 RAMs were available for

the sinogram data. We realized that if we use pixel-by-

pixel to construct a 1024x1024 projector, we would

need to decrease the number of processing engines to

64. Second, we realized that the transfer time saved by

overlapping communication with computation is not

significant compared to the runtime of the compute

loop. We decided the benefits of pixel-by-pixel did not

outweigh the cost for the 1024x1024 projector, so we

adopted ray-by-ray (similar to the Impulse C design)

for the 1024x1024 version.

4.3. Software

The software benchmark performance numbers

were obtained using two quad-core Intel Xeon L5320

processors with operating frequencies of 1.86 GHz.

The base results represent a serial execution, and the

multi-threaded result is obtained using OpenMP and 8

threads distributed across each of the eight available

CPU cores.

5. Results
5.1. Performance Comparisons

Table I shows the VHDL implementation and

Impulse C implementation, compared to the software

benchmarks.

TABLE I. EXECUTION TIMES (SECONDS)

Design 512 Project 1024 Project

Base Software 5.17 20.93

Multi-threaded Software 1.06 3.95

Impulse C 0.03183 0.06452

VHDL 0.02168 0.03802

The major reasons for the FPGA implementations

being significantly faster than the software benchmark

are pipelining and loop unrolling. These two

techniques allowed us to process 128 elements in

parallel, resulting in a much faster implementation than

the software versions.

The tight coupling of the FPGA and the CPU in the

XD1000 also played a pivotal role in the results we

achieved. Due to the high bandwidth and low latency

between the CPU and the FPGA, transferring data to

the FPGA did not prove to be a bottleneck for this

application (Table II), and we were able to focus the

resources and effort to optimize other areas of the

system.

The compute pipeline in the HDL version produces

a result every cycle, whereas the Impulse C version

produces a result only once every two cycles. This

makes the hand-coded compute pipeline 2x faster.

Furthermore, in the hand-coded version the final image

is streamed directly to the CPU instead of using the

SRAM as an intermediate, making that process 30%

faster. Lastly, the hand-coded version has a custom

SRAM controller that achieves 2x faster data access to

the onboard SRAM than the Impulse C version.

However, the Impulse C library for loading data to the

SRAM was significantly faster than our VHDL

version. Additional details can be found in [3, 4].

5.2. Design Effort

To quantify the ease of use of Impulse C compared

to VHDL, we compare the design time and lines of

code in the 512x512 projector designs. Both the

Impulse C and VHDL designs were created by

designers with similar hardware engineering

background and FPGA design experience. Creating the

initial version of the design using Impulse C took 25%

less time than the HDL version. This includes the time

it took us to get acquainted to the Impulse C tools, and

understand the tool flow and design methodology.

This represents the time it takes an experienced

hardware designer to learn and use Impulse C, vs.

implementing in an existing flow. To add an additional

data point to this analysis, we created a 1024x1024

version of the VHDL pixel-by-pixel backprojector, and

compared the implementation time to Impulse C. The

incremental time taken to design, test and debug the

1024 version of the design using Impulse C was much

less when compared to HDL.

TABLE II. COMPARISON OF DESIGN TIME

Design Version VHDL Impuse C

512 Projections 12 weeks 9 weeks

Time to extend

design to support

1024 projections

1 week 1 day

6. Discussion
6.1. Strengths and Weaknesses of Impulse C

Impulse C is an effective design methodology for

targeting a hardware platform. The ability to create

applications entirely in C, but have them easily

partitioned across the CPU and FPGA, is very

attractive. Also, the ability to perform functional

verification on the complete design is greatly

enhanced. If one were creating the FPGA design

separately by writing HDL and C to run on the host,

the design verification is much more complex. Further,

because the design of the software and hardware is so

tightly coupled the eventual implementation is

seamless. With traditional methods it takes extra effort

to integrate the software and hardware execution

stages.

One of the drawbacks of Impulse C is the loss of

fine grained control over the resulting hardware. In

certain situations we might want to make simple

modifications like adding registers to the input and

output of a computation. For example, we discovered

that writing to the image cache was a step that failed

timing. A simple work-around we wanted to

implement was to postpone the write to the next clock

cycle by adding a register to the input and output of the

cache. These sorts of fine grained changes are not

easily communicated to the compiler. An upshot of the

above drawback is that it is extremely difficult to

efficiently implement control logic in the pipeline.

6.2. XD1000 Bandwidth

We found the tightly-coupled FPGA coprocessor

offered by the XD1000 is a significant advantage. Our

results showed that, contrary to commonly held beliefs,

the time spent transferring data to and from the FPGA

was not the bottleneck of our application. Instead, data

transfer occupied a small fraction of the total execution

time. This suggests that as technology moves towards

higher bandwidth and lower latency in FPGA

coprocessor implementations, designers can instead

focus on utilizing available hardware resources to

produce the most efficient computation structure.

There will always be applications where the

communication to computation ratio rules out FPGA

coprocessor implementations, but tightly coupled

FPGA-CPU systems allows many more applications to

benefit from these systems.

7. Acknowledgements

This project was supported by the Washington State

Technology Center and Impulse Accelerated

Technologies.

8. References

[1] M. Leeser, S. Coric, E. Miller, H. Yu, and M. Trepanier,

“Parallel–beam backprojection: An FPGA
implementation optimized for medicalimaging,” Int.
Symposium on FPGAs, pp. 217–226, 2002.

[2] http://www.impulseaccelerated.com/ , Impulse
Accelerated Tech-nologies.

[3] N.Subramanian, A C-to-FPGA Solution for
Accelerating Tomographic Reconstruction, M.S. thesis,
University of Washington, Washington, USA, June
2009.

[4] J. Xu, An FPGA Hardware Solution for Accelerating
Tomographic Reconstruction, M.S. thesis, University of
Washington, USA, June 2009

