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Abstract 
 

While traditional methods of designing FPGA 

applications have relied on schematics or HDL, much 

interest has been shown in C-to-FPGA tool flows that 

allow users to design FPGA hardware in C. We 

evaluate a C-to-FPGA tool flow (Impulse C) by 

analyzing the performance of three independent 

implementations of the Computed tomography (CT) 

filtered backprojection (FBP) algorithm developed 

using C, Impulse C, and VHDL respectively. In the 

process, we compare the design process of Impulse C 

versus HDL, and discuss the benefits and challenges of 

using Impulse C. In addition, we explore the benefits of 

tightly-coupled FPGA acceleration offered by the 

XtremeData XD1000. The results demonstrate that 

Impulse C designs can achieve over 61x improvement 

over multi-threaded software, and similar performance 

as VHDL, while significantly reducing the design 

effort, and that tightly-coupled FPGA coprocessors 

like the XD1000 effectively overcomes the traditional 

communication bottleneck between CPU and FPGA.  

 

1. Introduction 
 

Tomography (CT) is a medical imaging technique 

used to create cross-sectional images from x-ray 

transmission data acquired by a scanner. In traditional 

tomographic systems, the primary computational 

demand after data capture by the scanner is the 

backprojection of the acquired data to reconstruct the 

scanned object. Backprojection can be viewed as the 

mapping of raw scanner data into the image space. In a 

typical CT system, the data has ~106 entries per cross-

section, and the process of tracing each datum through 

the image space is computationally demanding. As a 

result, hardware acceleration of this process has been 

the focus of several studies [1].  

Previous works often used FPGAs to implement 

such hardware accelerators, and have achieved 

dramatic improvements over microprocessor based 

software systems. However, the traditional method of 

designing FPGA based accelerators, using either 

schematics or HDL to describe the hardware, require 

the skill set and expertise of a hardware engineer. A 

promising method of reducing this barrier to entry is a 

C-to-FPGA tool flow that allows users to describe the 

hardware computations in C and automatically 

generates the hardware description for synthesis.  

The general perception has been that while such 

high level tool flows are simple to use, they do not 

provide the same level of performance as hand coded 

HDL. We investigate this notion by considering a C-

to-FPGA tool flow called Impulse C [2]. Our 

benchmark was an implementation of the filtered 

backprojection (FBP) algorithm running on a 

microprocessor. We partitioned the design such that 

the compute intensive backprojection step was run on 

an FPGA while the user interface and some filtering 

operations were performed on the host processor. The 

XD1000 development system was chosen for the 

implementation because it offers a tightly coupled 

CPU-FPGA platform, reducing communication latency 

that can overshadow the benefits of using hardware 

acceleration. 

Overall, this paper provides a case study of the 

performance of Impulse C in the design and 

implementation of a typical application that can benefit 

from hardware acceleration. We hope to provide an 

accurate representation of the benefits and 

shortcomings of using Impulse C to replace traditional 

development methods for FPGAs. 

 

2. Background 
2.1. Tomographic Reconstruction 
 

Tomographic reconstruction is the process of 

generating cross-sections of an object from a series of 

measurements acquired from many different directions. 

In Computed Tomography (CT scans), the 

measurements are x-ray attenuation data. The set of all 

projections acquired by a scanner is stored as a two 

dimensional matrix, with the dimensions being the 



angle at which the projection was acquired, and the 

position of the detector that recorded the x-ray. This 

data represents a 2-D spatial function termed a 

sinogram. The problem of reconstruction can be 

viewed as the problem of transforming the sinogram 

(θ,S) into the image space (X,Y). 

 

2.2. XD1000 Coprocessor Accelerator 
 

Frequently occurring or complex computations can 

overwhelm the primary microprocessor (host or CPU) 

in a computer system. A solution to this is utilizing 

coprocessors to shoulder some of the burden, allowing 

the CPU to offload these computations. The host 

processor would retain functions such as interfacing 

with the user or peripherals, and the coprocessor would 

be tasked with processing the raw data.  

Companies such as DRC Computer and 

XtremeData take an approach with FPGA coprocessors 

that use a very tightly-coupled FPGA to CPU 

interface, with the FPGA coprocessor module situated 

in one of the CPU sockets in an AMD Opteron 

motherboard. This allows the FPGA module to 

communicate with the CPU via the HyperTransport 

bus, which has a bandwidth of 1.6 GB/s. This remedies 

the bandwidth concern with accelerating applications 

using FPGA coprocessors. 

 

2.3. Impulse C 
 

While FPGAs have traditionally been programmed 

with either schematics or HDL describing the 

hardware, interest has been growing in the use of C-to-

FPGA tool flows. One example is Impulse C, which 

promises to reduce design and programming effort.  

The Impulse C tools include the CoDeveloper C-to-

FPGA tools and the CoDeveloper Platform Support 

Packages (PSPs). PSPs add platform-specific 

capabilities to the Impulse CoDeveloper programming 

tools. With the PSP, users can partition the application 

between the host and coprocessors, make use of other 

on board resources, and automatically generate the 

required interfaces. The interfaces are implemented as 

a wrapper function around the user logic. We used the 

Impulse C tools with the XtremeData XD1000 PSP. 

 

3. Design 
3.1. System Parameters 
 

We chose to first implement 512x512 (θxS) 

backprojectors independently in VHDL and Impulse 

C, followed by 1024x1024 versions using each 

approach. The algorithm discussions in this section 

reflect the 1024x1024 implementations. Performance 

results for both the 512x512 and 1024x1024 

implementations can be found in the results section. 

3.2. Backprojection 
 

The CT scanning process can be modeled as 

detectors acquiring line integrals of the attenuation 

coefficient along the scanned object.  When 

reconstructing, we start with an image initialized to 0. 

Corresponding to each entry of the sinogram we 

identify all the pixels that lie on the ray. The values of 

those image pixels are then increased by the 

corresponding ray-value. When this process is 

performed for all entries in the sinogram, we have 

reconstructed the image. This is ray-by-ray 

reconstruction. Another way to approach this is to 

reconstruct one pixel at a time. Given a pixel and an 

angle of measurement, the ray-value that contributes to 

the pixel needs to be identified. If we go through all 

angles, identifying all rays that the pixel was on, and 

sum those values, that pixel is fully reconstructed. We 

can then go ahead and reconstruct all other pixels in 

the same way. This is pixel-by-pixel reconstruction. 

Since both pixel-by-pixel and ray-by-ray 

reconstruction methods require the compute loop to 

touch every angle of the sinogram for every point on 

the image (an O(n3) operation), the main difference 

between these two methods is the outer loop of the 

processing algorithm [4]. The pixel-by-pixel approach 

places the x-y loops outside of the angle loop, with the 

opposite being true for the ray-by-ray method. Both of 

these methods can be made parallel by introducing 

blocks into the image and sinogram respectively. For 

the pixel-by-pixel method, each column of the image 

can be assigned to a separate processing engine. An 

example is a system with four 128x512 blocks, which 

will require 128 processing engines. The ray-by-ray 

method can be made parallel by partitioning the 

sinogram into blocks of 128x1024 (θxS) with each 

angle of the sinogram block assigned to a separate 

processing engine. 

These two methods produce identical reconstructed 

images, and primarily differ in their resource 

requirements [4]. However, since the hand-coded 

VHDL and Impulse C versions of the backprojector 

were designed independently of each other, a split 

occurred at this point. Initial analysis indicated that the 

pixel-by-pixel algorithm appeared more compatible 

with the hardware hierarchical design abilities of HDL, 

and analysis on the ray-by-ray algorithm [3] indicated 

that it was compatible with the programming model of 

Impulse C. 



4. Implementation 
4.1. Impulse C Backprojector 
 

The sequence of operations can be found in [3]. 

 

Initially, we experienced difficulty getting the 

Impulse C design to meet timing when the onboard 

accumulation algorithm was used. This forced us to 

create a version of the backprojector where partially 

created images would be sent back to the CPU, and 

later accumulated in software. While this is a fast 

computation, we still wanted to avoid the additional 

data transfers this would require. After analysis, it was 

determined that our timing issues originated from the 

declaration of an imgRAM that would span 8 MRAMs 

on the FPGA. This forced the Quartus tools to connect 

all 8 MRAMs together, which resulted in timing issues 

since the MRAMs are spread across the FPGA. A fix 

for this was found by manually declaring separate 

arrays for each MRAM, and introducing separate 

pipelined logic to tie them together. 

Another issue we ran into during our 

implementation of the above system was the pipeline 

throughput generated by Impulse C. Since the XD1000 

platform support package for Impulse C imposed a 

fixed 100 MHz clock on the design, we aim to have the 

pipeline accept inputs and produce results every cycle. 

However, the pipeline could only achieve a rate of 2 

cycles per input/output due to operations within the 

compute loop requiring two values from the same 

memory. This can be resolved with the use of true-dual 

port memories; however, efforts to implement true-

dual port memories in Impulse C resulted in the design 

failing to meet timing.  Improvements to the PSP could 

likely fix this. 

 

4.2. VHDL Backprojector 
 

The VHDL Backprojector shares many of the same 

operation steps as the Impulse C backprojector. Details 

of the differences between the two backprojector 

implementations can be found in [4]. 

 After the 512x512 VHDL backprojector was 

complete, several observations regarding the 

performance of the pixel-by-pixel and ray-by-ray 

methods of reconstruction were made. First, the pixel-

by-pixel method would not scale as effectively to 

1024x1024 due to resource utilization. Since ray-by-

ray can use the MRAM to store the image data, much 

more of the M4K and M512 RAMs were available for 

the sinogram data. We realized that if we use pixel-by-

pixel to construct a 1024x1024 projector, we would 

need to decrease the number of processing engines to 

64. Second, we realized that the transfer time saved by 

overlapping communication with computation is not 

significant compared to the runtime of the compute 

loop. We decided the benefits of pixel-by-pixel did not 

outweigh the cost for the 1024x1024 projector, so we 

adopted ray-by-ray (similar to the Impulse C design) 

for the 1024x1024 version. 

 

4.3. Software 
 

The software benchmark performance numbers 

were obtained using two quad-core Intel Xeon L5320 

processors with operating frequencies of 1.86 GHz. 

The base results represent a serial execution, and the 

multi-threaded result is obtained using OpenMP and 8 

threads distributed across each of the eight available 

CPU cores. 

 

5. Results 
5.1. Performance Comparisons 
 

Table I shows the VHDL implementation and 

Impulse C implementation, compared to the software 

benchmarks. 

TABLE I.  EXECUTION TIMES (SECONDS) 

Design 512 Project 1024 Project 

Base Software 5.17 20.93 

Multi-threaded Software 1.06   3.95 

Impulse C 0.03183   0.06452 

VHDL 0.02168   0.03802 

 

The major reasons for the FPGA implementations 

being significantly faster than the software benchmark 

are pipelining and loop unrolling. These two 

techniques allowed us to process 128 elements in 

parallel, resulting in a much faster implementation than 

the software versions.  

The tight coupling of the FPGA and the CPU in the 

XD1000 also played a pivotal role in the results we 

achieved. Due to the high bandwidth and low latency 

between the CPU and the FPGA, transferring data to 

the FPGA did not prove to be a bottleneck for this 

application (Table II), and we were able to focus the 

resources and effort to optimize other areas of the 

system. 

The compute pipeline in the HDL version produces 

a result every cycle, whereas the Impulse C version 

produces a result only once every two cycles. This 

makes the hand-coded compute pipeline 2x faster. 

Furthermore, in the hand-coded version the final image 

is streamed directly to the CPU instead of using the 

SRAM as an intermediate, making that process 30% 



faster. Lastly, the hand-coded version has a custom 

SRAM controller that achieves 2x faster data access to 

the onboard SRAM than the Impulse C version.  

However, the Impulse C library for loading data to the 

SRAM was significantly faster than our VHDL 

version. Additional details can be found in [3, 4]. 

 

5.2. Design Effort 
 

To quantify the ease of use of Impulse C compared 

to VHDL, we compare the design time and lines of 

code in the 512x512 projector designs. Both the 

Impulse C and VHDL designs were created by 

designers with similar hardware engineering 

background and FPGA design experience. Creating the 

initial version of the design using Impulse C took 25% 

less time than the HDL version. This includes the time 

it took us to get acquainted to the Impulse C tools, and 

understand the tool flow and design methodology.  

This represents the time it takes an experienced 

hardware designer to learn and use Impulse C, vs. 

implementing in an existing flow. To add an additional 

data point to this analysis, we created a 1024x1024 

version of the VHDL pixel-by-pixel backprojector, and 

compared the implementation time to Impulse C. The 

incremental time taken to design, test and debug the 

1024 version of the design using Impulse C was much 

less when compared to HDL. 

TABLE II.  COMPARISON OF DESIGN TIME 

Design Version VHDL Impuse C 

512 Projections 12 weeks 9 weeks 

Time to extend 

design to support 

1024 projections 

1 week 1 day 

 

6. Discussion 
6.1. Strengths and Weaknesses of Impulse C 
 

Impulse C is an effective design methodology for 

targeting a hardware platform. The ability to create 

applications entirely in C, but have them easily 

partitioned across the CPU and FPGA, is very 

attractive. Also, the ability to perform functional 

verification on the complete design is greatly 

enhanced. If one were creating the FPGA design 

separately by writing HDL and C to run on the host, 

the design verification is much more complex. Further, 

because the design of the software and hardware is so 

tightly coupled the eventual implementation is 

seamless. With traditional methods it takes extra effort 

to integrate the software and hardware execution 

stages.  

One of the drawbacks of Impulse C is the loss of 

fine grained control over the resulting hardware. In 

certain situations we might want to make simple 

modifications like adding registers to the input and 

output of a computation. For example, we discovered 

that writing to the image cache was a step that failed 

timing. A simple work-around we wanted to 

implement was to postpone the write to the next clock 

cycle by adding a register to the input and output of the 

cache. These sorts of fine grained changes are not 

easily communicated to the compiler. An upshot of the 

above drawback is that it is extremely difficult to 

efficiently implement control logic in the pipeline. 

 

6.2. XD1000 Bandwidth 
 

We found the tightly-coupled FPGA coprocessor 

offered by the XD1000 is a significant advantage. Our 

results showed that, contrary to commonly held beliefs, 

the time spent transferring data to and from the FPGA 

was not the bottleneck of our application. Instead, data 

transfer occupied a small fraction of the total execution 

time. This suggests that as technology moves towards 

higher bandwidth and lower latency in FPGA 

coprocessor implementations, designers can instead 

focus on utilizing available hardware resources to 

produce the most efficient computation structure.  

There will always be applications where the 

communication to computation ratio rules out FPGA 

coprocessor implementations, but tightly coupled 

FPGA-CPU systems allows many more applications to 

benefit from these systems. 
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