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Abstract

Impulse is a new memory system architecture that adds two important features to a traditional mem-
ory controller. First, Impulse supports application-specific optimizations through configurable physical
address remapping. By remapping physical addresses, applications control how their data is accessed and
cached, improving their cache and bus utilization. Second, Impulse supports prefetching at the memory
controller, which can hide much of the latency of DRAM accesses. Because it requires no modification
to processor, cache, or bus designs, Impulse can be adopted in conventional systems.

In this paper we describe the design of the Impulse architecture, and show how an Impulse memory
system can improve the performance of memory-bound scientific applications. For instance, Impulse de-
creases the running time of the NAS conjugate gradient benchmark by 67%. We expect that Impulse will
also benefit regularly strided, memory-bound applications of commercial importance, such as database
and multimedia programs.

Keywords: irregular applications, memory systems, computer architecture, memory bandwidth, hard-
ware prefetching

1 Introduction

Since 1987, microprocessor performance has improved at a rate of 55% per year; in contrast, DRAM laten-
cies have improved by only 7% per year, and DRAM bandwidths by only 15-20% per year [14]. The result
is that the relative performance impact of memory accesses continues to grow. In addition, as instruction
issue rates increase, the demand for memory bandwidth grows at least proportionately (possibly even super-
linearly) [7, 18]. Many important applications (e.g., sparse matrix, database, signal processing, multimedia,
and CAD applications) do not exhibit sufficient locality of reference to make effective use of the on-chip
cache hierarchy. For such applications, the growing processor/memory performance gap makes it more and
more difficult to effectively exploit the tremendous processing power of modern microprocessors. In the
Impulse project, we are attacking this problem by designing and building a memory controller that is more
powerful than conventional ones.

The Impulse memory controller has two features that are not present in current memory controllers.
First, the Impulse controller supports an optional, extra stage of address translation: data addresses can
be remappedwithout copying. This feature improves bus and cache utilization by allowing applications to
control how their data is accessed and cached. Second, the Impulse controller supports prefetching at the
memory controller, which reduces the effective latency to memory. Prefetching at the memory controller

Contact information: Prof. John Carter, Dept. of Computer Science, 50 S Central Campus Drive, Room 3190, University of
Utah, SLC, UT 84112-9205. retrac@cs.utah.edu. Voice: 801-585-5474. Fax: 801-581-5843.

1



helps hide the latency of Impulse’s address translation, and is also a useful optimization for non-remapped
data.

Impulse introduces an optional level of address translation at the memory controller. The key insight
that this feature exploits is that unused “physical” addresses can be translated to “real” physical addresses at
the memory controller. An unused physical address is a legitimate address that is not backed by DRAM. For
example, in a conventional system with 4GB of physical address space and only 1GB of installed DRAM,
3GB of the physical address space remains unused. We call these unused addressesshadow addresses, and
they constitute ashadow address spacethat the Impulse controller maps to physical memory. By giving
applications control (mediated by the OS) over the use of shadow addresses, Impulse supports application-
specific optimizations that restructure data. Using Impulse requires software modifications to applications
(or compilers) and operating systems, but requires no hardware modifications to processors, caches, or
buses.

As a simple example of how Impulse’s memory remapping can be used, consider a program that accesses
the diagonal elements of a large, dense matrixA. The physical layout of part of the data structureA is shown
on the right-hand side of Figure 1. On a conventional memory system, each time the processor accesses a
new diagonal element (A[i][i] ), it requests a full cache line of contiguous physical memory (typically
32–128 bytes of data on modern systems). The program accesses only a single word of each of these cache
lines. Such an access is shown in the bottom half of Figure 1.

On an Impulse memory system, an application can configure the memory controller to export a dense,
shadow-space alias that contains just the diagonal elements, and can have the OS map a new set of virtual
addresses to this shadow memory. The application can then access the diagonal elements via the new
virtual alias. Such an access is shown in the top half of Figure 1. The details of how Impulse performs the
remapping are described in Section 2.1.

Remapping the array diagonal to a dense alias yields several performance benefits. First, the program
enjoys a higher cache hit rate because several diagonal elements are loaded into the caches at once. Second,
the program consumes less bus bandwidth because non-diagonal elements are not sent over the bus. Third,
the program makes more effective use of cache space because the diagonal elements now have contiguous
shadow addresses. In general, Impulse’s flexibility allows applications to customize addressing to fit their
needs.

The second important feature of the Impulse memory controller is that it supports prefetching. The con-
troller includes a small amount of SRAM to store data prefetched from the DRAMs. For non-remapped data,
prefetching can reduce the latency of sequentially accessed data. We show that controller-based prefetching
of non-remapped data performs as well as a system that uses simple L1 cache prefetching. For remapped
data, prefetching enables the controller to hide the costs associated with remapping (some remappings can
require multiple DRAM accesses to fill a single cache line). With both prefetching and remapping, an
Impulse controller significantly outperforms conventional memory systems.

In recent years, a number of hardware mechanisms have been proposed to address the problem of in-
creasing memory system overhead. For example, researchers have evaluated the prospects of making the
processor cache configurable [34, 35], adding computational power to the memory system [20, 25, 33], and
supporting stream buffers [19]. All of these mechanisms promise significant performance improvements;
unfortunately, most require significant changes to processors, caches, or memories, and thus have not been
adopted in mainstream systems. Impulse supports similar optimizations, but its hardware modifications are
localized to the memory controller.

We simulated the impact of Impulse on two benchmarks: the NAS conjugate gradient benchmark and
a dense matrix-matrix product kernel. Although we evaluate only scientific kernels here, we expect that
Impulse will be useful for optimizing non-scientific applications, as well. Some of the optimizations that we
describe are not conceptually new, but the Impulse project is the first system that provides hardware support
for them in general-purpose computer systems. For both benchmarks, the use of Impulse optimizations
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significantly improves performance compared to a conventional memory controller. In particular, we find
that a combination of address remapping and controller-based prefetching improves the performance of
conjugate gradient by 67%.

2 Impulse Architecture

To illustrate how the Impulse memory controller works, we describe in detail how it can be used to optimize
the simple diagonal matrix example described in Section 1. We describe the internal architecture of the
Impulse memory controller, and explain the kinds of address remappings that it currently supports.

2.1 Using Impulse

Figure 3 illustrates the address transformations that Impulse performs to remap the diagonal of a dense
matrix. The top half of the figure illustrates how the diagonal elements are accessed on a conventional
memory system. The original dense matrix,A, occupies three pages of the virtual address space. Accesses
to the diagonal elements ofA are translated into accesses to physical addresses at the processor. Each access
to a diagonal element loads an entire cache line of data, wasting bus bandwidth and cache capacity by
loading the adjacent, non-diagonal elements that won’t be used.

The bottom half of the figure illustrates how the diagonal elements ofA are accessed using Impulse. The
application reads from a data structure that the OS has remapped to a shadow alias for the matrix diagonal.
When the processor issues the read for that alias over the bus, the Impulse controller gathers the diagonal
data into a single cache line, and sends that data back over the processor bus. Impulse supports prefetching
of remapped data within the controller so that the latency of the gather can be hidden.

The operating system remaps the diagonal elements to a new alias,diagonal , as follows:

1. The application allocates a contiguous range of virtual addresses large enough to map the diagonal
elements ofA, and asks the OS to map these virtual addresses through shadow memory to the actual
elements. This range of virtual addresses corresponds to the new variablediagonal . To improve L1
cache utilization, an application can allocate virtual addresses with appropriate alignment and offset
characteristics.

2. The OS allocates a contiguous range of shadow addresses large enough to contain the diagonal ele-
ments ofA. The operating system allocates shadow addresses from a pool of physical addresses that
do not correspond to real DRAM addresses.

3. The OS downloads to the memory controller a function to map shadow addresses to offsets within
pseudo-virtual memory space, which mirrors virtual space in its layout. This pseudo-virtual space is
necessary to be able to remap data structures that are larger than a page. In our example, the mapping
function involves a simplebaseandstride function — other remapping functions supported by the
current Impulse model are described in Section 2.2.

4. The OS downloads to the memory controller a set of page mappings for pseudo-virtual space forA.

5. The OS maps the virtual aliasdiagonal to the newly allocated shadow memory, flushes the original
address from the caches, and returns.

Currently, we hand-modify application kernels to perform the system calls to remap data, but we are explor-
ing compiler algorithms to automate the process. Both shadow addresses and virtual addresses are system
resources, so the operating system must manage their allocation and mapping. We have implemented a set
of system calls that allow applications to use Impulse without violating inter-process protection.
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2.2 Hardware

The organization of the Impulse controller architecture is depicted in Figure 2. The memory controller
includes:

� a Shadow Descriptor Unitthat contains a small number of shadow-space descriptors, SRAM buffers
to hold prefetched shadow data, and logic to assemble sparse data retrieved from DRAM into dense
cache lines mapped in shadow space;

� a Page Table Unitthat contains a simple ALU andMemory Controller TLB(MTLB) that map ad-
dresses in dense shadow space to pseudo-virtual and then to physical addresses backed by DRAM,
along with a small number of buffers to hold prefetched page table entries; and

� aScheduling Unitthat contains circuitry that orders and issues accesses to the DRAMs, along with an
SRAM Memory Controller Cache(Mcache) to buffer non-shadow data.

Since the extra level of address translation is optional, addresses appearing on the memory bus may be
to physical (backed by actual DRAM) or shadow memory space. Valid physical addresses pass untranslated
to the DRAM scheduler. The Page Table Unit uses the corresponding shadow descriptor to turn shadow
addresses into physical DRAM addresses. Currently, this translation can take three forms, depending on
how Impulse is used to access a particular data structure: direct, strided, or scatter/gather.

Direct mappingtranslates a shadow address directly to a physical DRAM address. This mapping can be
used to recolor physical pages without copying [8] or to construct superpages dynamically [30]. We discuss
no-copy page coloring further in Section 3.1.Strided mappingcreates dense cache lines from array elements
that are not contiguous in physical memory. The mapping function maps an addresssoffsetin shadow space
to pseudo-virtual addresspvaddr + stride� soffset, wherepvaddr is the starting address (assigned by the
OS) of the data structure’s pseudo-virtual image.Scatter/gather mappinguses an indirection vectorivec
to translate an addresssoffsetin shadow space to pseudo-virtual addresspvaddr + stride� ivec[soffset].
Investigating support for other mappings is part of ongoing work.

In order to keep the controller hardware simple and fast, Impulse restricts the remappings. For example,
in order to avoid the necessity for a divider in the controller, strided mappings must ensure that a strided
object has a size that is a power of two. Also, we assume that an application (or compiler/OS) that uses
Impulse ensures data consistency through appropriate flushing of the caches. Note that Impulse in no way
affects the virtual memory system — paging and address translation are handled by the OS and on-chip TLB
just as in a non-Impulse system.

3 Impulse Optimizations

In this section we describe how Impulse can be used to optimize two scientific application kernels: sparse
matrix-vector multiply (SMVP) and dense matrix-matrix product (DMMP). We apply two techniques to
optimize SMVP: vector-style scatter/gather at the memory controller and no-copy physical page coloring.
We apply a third optimization, no-copy tile remapping, to DMMP.

3.1 Sparse Matrix-Vector Product

Sparse matrix-vector product (SMVP) is an irregular computational kernel that is critical to many large
scientific algorithms. For example, most of the time in conjugate gradient [3] or in the Spark98 earthquake
simulations [24] is spent performing SMVP.

To avoid wasting memory, sparse matrices are generally compacted so that only non-zero elements and
corresponding index arrays are stored. For example, the Class A input matrix for the NAS conjugate gradient
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kernel (CG-A) is 14,000 by 14,000, and contains only 2.19 million non-zeroes. Although sparse encodings
save tremendous amounts of memory, sparse matrix codes tend to suffer from poor memory performance
because data must be accessed through indirection vectors. CG-A on an SGI Origin 2000 processor (which
has a 2-way, 32K L1 cache and a 2-way, 4MB L2 cache) exhibited L1 and L2 cache hit rates of only 63%
and 92%, respectively.

The inner loop of sparse matrix-product looks like:

for i := 1 to n do
sum := 0
for j := ROWS[i] to ROWS[i+1]-1 do

sum += DATA[j]*x[COLUMN[j]]
b[i] := sum

Code and data structures for SMVP are illustrated in Figure 4. Each iteration multiplies a row of the
sparse matrixA with the dense vectorx . The accesses tox are indirect (via theCOLUMNindex vector)
and sparse, making this code perform poorly on conventional memory systems. Wheneverx is accessed,
a conventional memory system fetches a cache line of data, of which only one element is used. The large
sizes ofx , COLUMN, andDATAand the sparse nature of accesses tox inhibit data reuse in the L1 cache.
Each element ofCOLUMNor DATAis used only once, and almost every access tox results in an L1 cache
miss. A large L2 cache can enable reuse ofx , if physical data layouts can be managed to prevent L2 cache
conflicts betweenA andx . Unfortunately, conventional systems do not typically provide mechanisms for
managing physical layout.

Scatter/gather. The Impulse memory controller supports scatter/gather of physical addresses through
indirection vectors. Vector machines such as the CDC STAR-100 [15] provided scatter/gather capabilities
in hardware within the processor. Impulse allows conventional CPUs to take advantage of scatter/gather
functionality by implementing the operations at the memory, which reduces memory traffic over the bus.

The CG code that an Impulse compiler would generate looks like:

setup x’, where x’[k] = x[COLUMN[k]]
for i := 1 to n do

sum := 0
for j := ROWS[i] to ROWS[i+1]-1 do

sum += DATA[j] * x’[j]
b[i] := sum

The first line asks the operating system to 1) allocate a new region of shadow space, 2) mapx’ to that
shadow region, and 3) instruct the memory controller to map the elements of the shadow regionx’[k] to
the physical memory forx[COLUMN[k]] . After the remapped array has been set up, the code accesses the
remapped version of the gathered structure (x’ ) rather than the original structure (x ).

This optimization improves the performance of SMVP in two ways. First, spatial locality is improved
in the L1 cache. Since the memory controller packs the gathered elements into cache lines, each cache line
contain 100% useful data, rather than only one useful element. Second, the processor issues fewer memory
instructions, since the read of the indirection vectorCOLUMNoccurs at the memory controller. Note that
the use of scatter/gather at the memory controller reduces temporal locality in the L2 cache. The remapped
elements ofx’ cannot be reused, since all of the elements have different addresses.

Consider the inner loop of SMVP. Its cost is dominated by three loads (toDATA[i] , COLUMN[i] ,
andx[COLUMN[i]] ). Assume that the L1 cache has 32-byte lines, and the L2 cache has 128-byte lines.
Table 1 illustrates the advantage of using Impulse scatter/gather remapping. The table lists the memory
references over four iterations of the loop. The initial read ofDATA[i] hits in the L2 cache 75% of the
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time, because an L2 cache line is four times larger than an L1 cache line. The read ofCOLUMN[i] is
similar: because the elements ofCOLUMNare single-word integers, elements will hit in the L1 cache.

The columns of Table 1 show the difference between a conventional memory system and Impulse.Best
represents the best-case performance of a conventional memory system, where the L2 cache is large enough
to holdx , and there are no L2 cache conflicts betweenx and any other data.Worstrepresents the worst-case
performance of a conventional memory system, where either the L2 cache is too small to hold a significant
fraction ofx , or x conflicts with other structures in the L2 cache.x is not accessed directly in Impulse and
therefore its best and worst cases are identical.

As Table 1 shows, scatter/gather remapping on Impulse can eliminate four L2 accesses from the best
case for a conventional system. In place of these four accesses, Impulse incurs the miss marked in the
table with an asterisk, which is the gathered access tox’ . Impulse performs the gathered access by reading
COLUMN[i] from DRAM at the controller, and then readingx[COLUMN[i]] . Compared to the worst
case for a conventional system, Impulse eliminates four misses to main memory. If we assume that software
pipelining and prefetching hide cold misses to linearly accessed data, the misses toDATA[i] ,COLUMN[i] ,
andx’[i] can be overlapped with processor activity. As a result, using Impulse will allow the processor
to perform floating point operations as fast as the memory system can supply two streams of dense data (x’
andDATA) with good L1 cache performance. In contrast, the conventional system makes sparse accesses to
x[COLUMN[i]] , and will incur frequent L1 cache misses.

Page recoloring. The Impulse memory controller supports dynamic physical page recoloring through
direct remapping of physical pages. Physical page recoloring changes the physical addresses of pages so
that reusable data is mapped to a different part of a physically-addressed cache from non-reused data. By
performing page recoloring, conflict misses can be eliminated. On a conventional machine, physical page
recoloring is expensive. The cost is in copying: the only way to change the physical address of data is to
copy the data between physical pages. Impulse allows pages to be recoloredwithout copying. Virtual page
recoloring has been explored by other authors [5].

For SMVP, thex vector is reused within an iteration, while elements of theDATA, ROW, andCOLUMN
vectors are used only once in each iteration. As an alternative to scatter/gather ofx at the memory controller,
Impulse can be used to physically recolor pages so thatx does not conflict with the other data structures in
the L2 cache. For example, in the CG-A benchmark,x is over 100K bytes: it would not fit in most L1 caches,
but would fit in many L2 caches. Impulse can remapx to pages that occupy most of the physically-indexed
L2 cache, and can remapDATA, ROWS, andCOLUMNSto a small number of pages that do not conflict with
x . In effect, we can use a small part of the L2 cache as a set of virtual stream buffers forDATA, ROWS, and
COLUMNS[23]. The resulting performance should approach that of the column labeledBestin Table 1.

3.2 Tiled Matrix Algorithms

Dense matrix algorithms form an important class of scientific kernels. For example, LU decomposition and
dense Cholesky factorization are dense matrix computational kernels. Such algorithms aretiled (or blocked)
in order to increase their efficiency. That is, the iterations of tiled algorithms are reordered to improve their
memory performance. The difficulty with using tiled algorithms lies in choosing an appropriate tile size [21].
Because tiles are non-contiguous in the virtual address space, it is difficult to keep them from conflicting
with each other or with themselves in cache. To avoid conflicts, either tile sizes must be kept small, which
makes inefficient use of the cache, or tiles must be copied into non-conflicting regions of memory, which is
expensive.

Impulse provides an alternative method of removing cache conflicts for tiles. We use the simplest tiled
algorithm, dense matrix-matrix product (DMMP), as an example of how Impulse can improve the behavior
of tiled matrix algorithms. Assume that we want to computeC = A�B. We want to keep the current tile
of theC matrix in the L1 cache as we compute it. In addition, since the same row of theA matrix is used
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multiple times to compute a row of theC matrix, we would like to keep the active row ofA in the L2 cache.
Impulse allows base-stride remapping of the tiles from non-contiguous portions of memory into con-

tiguous tiles of shadow space. As a result, Impulse makes it easy for the OS to virtually remap the tiles,
since the physical footprint of a tile will match its size. If we use the OS to remap the virtual address of a
matrix tile to its new shadow alias, we can then eliminate interference in a virtually-indexed L1 cache. First,
we divide the L1 cache into three segments. In each segment we keep a tile: the current output tile fromC,
and the input tiles fromA andB. When we finish with one tile, we use Impulse to remap the virtual tile to
the next physical tile. In order to maintain cache consistency, we must purge theA andB tiles and flush the
C tiles from the caches whenever they are remapped. As Section 4.2 shows, these costs are minor.

4 Performance

We have performed a preliminary simulation study of Impulse using the Paint simulator [29]. We model
a variation of a 120 MHz, single-issue, HP PA-RISC 1.1 processor running a BSD-based microkernel, and
a 120 MHz HP Runway bus. In addition, we model a synthetic four-way superscalar version of the same
processor. The 32K L1 data cache in both models is non-blocking, single-cycle, write-back, write-around,
virtually indexed, physically tagged, and direct mapped with 32-byte lines. The 256K L2 data cache is
non-blocking, write-allocate, write-back, physically indexed and tagged, and 2-way set-associative, with
128-byte lines. Since Impulse is only intended to improve data cache performance, instruction caching
is assumed to be perfect. A hit in the L1 cache has a minimum latency of one cycle; a hit in the L2
cache, seven cycles; an access to memory, 44-46 cycles. The TLBs are unified I/D, single-cycle, and fully
associative, with a not-recently-used replacement policy. In addition to the main TLB, a single-entry micro-
ITLB holding the most recent instruction translation is also modeled. Kernel code and data structures are
mapped using a singleblock TLBentry that is not subject to replacement.

The simulated Impulse memory controller (described in Section 2.2) is based on the HP memory con-
troller [17] used in servers and high-end workstations. We model eight shadow descriptors, each of which
is associated with a 512-byte SRAM buffer. The controller prefetches the corresponding shadow data into
these fully associative buffers of four 128-byte lines. A 4K SRAM Mcache holds prefetched, non-shadow
data within the Scheduler Unit. The Mcache is four-way set associative with 32 lines of 128 bytes. The
MTLB is two-way associative, has 128 eight-byte entries (the same size as the entries in the kernel’s page
table), and includes two 128-bit buffers used to prefetched consecutive lines of page table entries on an
MTLB miss. Prefetched page table entries are also stored in the Mcache. If an MTLB miss hits in the
buffers, the required entry can be transferred into the MTLB in one cycle. Otherwise the MTLB initiates an
Mcache access, and if that misses, it initiates a DRAM access to retrieve the entry.

References to shadow addresses incur a minimum three-cycle delay, with complex mapping functions
causing larger delays. Prefetching within the memory controller reduces the impact of the extra translation
overhead. To keep the remapping circuitry simple and fast, we require that all remapped data structures be
page-aligned and that various dimensions of data structures used in strided mappings be powers of two in
size. This avoids including a divider in Impulse. We implemented the Impulse system calls within Paint’s
microkernel such that applications can use Impulse without violating interprocess protection.

The memory system modeled contains four DRAM buses and 16 banks of SDRAM, and has a total
memory latency of 44-46 cycles, broken down as follows:

� L1 cache latency is one cycle,

� L2 cache latency is six cycles,

� address latency on system bus is one cycle,
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� memory controller latency is two cycles,

� DRAM access latency is 24 cycles,

� DRAM demultiplexer latency is two cycles,

� bus arbitration latency is zero to two cycles, and

� latency for returning data is eight cycles.

In our experiments we measure the performance benefits of using Impulse to remap physical addresses,
as described in Section 3. We also measure the benefits of using Impulse to prefetch data. When prefetching
is turned on for Impulse, both shadow and non-shadow accesses are prefetched. As a point of compari-
son, we evaluate controller prefetching against a form of processor-side prefetching: hardware next-line
prefetching into the L1 cache, such as that used in the HP PA 7200 [9]. Our results show that controller
prefetching is competitive with this simple form of processor-side prefetching. Finally, we modify our sim-
ulator to approximate a four-way superscalar processor so that we can estimate the speedups that Impulse
should provide on a more modern architecture.

4.1 Sparse Matrix-Vector Product

Table 2 illustrates the performance of the NAS Class A Conjugate Gradient (CG-A) benchmark on various
configurations of an Impulse system. In the following two sections we evaluate the performance of scat-
ter/gather remapping and page recoloring, respectively. Note that our calculation of “L2 cache hit ratio”
uses the total number of loads (not the total number of L2 cache accesses) as the divisor to make it easier to
compare the effects of the L1 and L2 caches on memory accesses.

Scatter/gather. The first and second parts of Table 2 show that scatter/gather remapping on CG-A
improves performance significantly. Without prefetching, Impulse improves performance by 1.33, largely
due to the increase in the L1 cache hit ratio. Each main-memory access for the remapped vectorx’ now
loads the cache with several useful elements from the originalx , increasing the cache hit rate. In addition,
scatter/gather reduces the total number of loads issued, since loads of the indirection vector occur at the
memory controller. This reduction more than compensates for the scatter/gather’s increase in the average
cost of a load, and accounts for almost one-third of the cycles saved in this instance. The drop in the L2
cache hit ratio does not negatively impact performance.

The combination of scatter/gather remapping and prefetching is even more effective, speeding up ex-
ecution time by a factor of 1.67. With prefetching, the average time for a load drops from 5.24 cycles to
3.53 cycles. Even though the cache hit ratios do not change, CG-A runs significantly faster because Impulse
hides the latency of the memory system.

We introduced controller-based prefetching to Impulse primarily to hide the latency of scatter/gather
operations, but it has proved useful on its own. Without scatter/gather support, controller-based prefetching
improves performance by 4%, compared to the 12% performance improvement that can be achieved for
this benchmark by performing a simple one-block-ahead prefetching mechanism at the L1 cache. However,
controller-based prefetching requires no changes to the processor core, and thus can benefit processors with
no integrated hardware prefetching.

Page recoloring.The first and third sections of Table 2 show that page recoloring improves performance
on CG-A. We color the vectorsx , DATA, andCOLUMNso that they do not conflict in the L2 cache. The
multiplicand vectorx is heavily reused during SMVP, so we color it to occupy the first half of the L2 cache.
To keep the largeDATAandCOLUMNstructures from conflicting, we divide the second half of the L2 cache
into two, and then colorDATAandCOLUMNso they each occupy one section.
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Page recoloring consistently reduces the cost of memory accesses. Without prefetching, recoloring
speeds execution time by a factor of 1.04. With the addition of prefetching at the controller, the speedup
increases to 1.09. The effects of controller prefetching compared to L1 cache prefetching are similar to those
with scatter/gather. Controller prefetching alone is about half as effective as either L1 cache prefetching or
the combination of the two. Although the speedups for page recoloring are more modest than scatter/gather
remapping, this optimization is nonetheless worthwhile. In addition, page recoloring benefits a much wider
range of applications than scatter/gather (or any other fine-grained type of remapping).

4.2 Dense Matrix-Matrix Product

This section examines the performance benefits of tile remapping for DMMP, and compares the results to
software tile copying. Impulse’s alignment restrictions require that remapped tiles be aligned to L2 cache
line boundaries, which adds the following constraints to our matrices:

� Tile sizes must be a multiple of a cache line. In our experiments, this size is 128 bytes. This constraint
is not overly limiting, especially since it makes the most efficient use of cache space.

� Arrays must be padded so that tiles are aligned to 128 bytes. Compilers can easily support this
constraint: similar padding techniques have been explored in the context of vector processors [6].

Table 3 illustrates the results of our tiling experiments. The baseline is the conventional no-copy tiling.
Software tile copying and tile remapping both outperform the baseline code by more than 95%, unsurpris-
ingly. The improvement in performance is primarily due to the difference in caching behavior: both copying
and remapping more than double the L1 cache hit rate, giving rise to an average memory access time of ap-
proximately one cycle. Impulse tile remapping is slightly faster than tile copying, even when the overheads
of the Impulse system calls and the associated cache flushes are taken into account.

This comparison between conventional and Impulse copying schemes is conservative for several reasons.
Copying works particularly well on DMMP: the number of operations performed on a tile of sizeO(n2) is
O(n3), making the overhead of physical copying relatively low. For algorithms where the reuse of the data
is lower, the relative overhead of copying is greater. Likewise, as caches (and therefore tiles) grow larger,
the cost of copying grows, whereas the (low) cost of Impulse’s tile remapping remains fixed. In addition, our
physical copying experiment avoids cross-interference between active tiles in both the L1 and L2 caches.
Other authors have found that the performance of copying can vary greatly with matrix size, tile size, and
cache size [31], but Impulse should be insensitive to cross-interference between tiles.

All forms of prefetching performed approximately equally for this application. The effectiveness of
copying and tile remapping diminish the effects of prefetching. When the tiling optimizations are not being
used, controller prefetching improves performance by about 2%. In contrast, L1 cache prefetching actually
hurts performance slightly, due to the very low hit rate in the L1 cache and to the contention that prefetching
introduces at the L2 cache.

4.3 Impact of Superscalar Processors

To measure the expected performance benefit of using Impulse on more modern processors, we modified
our simulator to approximate a four-way superscalar machine. We do not change Paint’s PA-RISC processor
model, but we approximate a quad-issue superscalar machine by issuing up to four instructions each cycle
(without checking dependencies). We leave the cache and bus models unchanged, thereby enforcing realistic
limits on the rate of memory requests. While this model is unrealistic for gathering processor microarchi-
tecture statistics, it stresses the memory system in a manner similar to a real superscalar processor [26].

Tables 4 and 5 summarize the results of running CG-A and DMMP on Impulse. The numbers in those
two tables correspond directly to those in Tables 2 and 3, respectively. Note that even though the synthetic
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superscalar processor is nominally four times faster than the single-issue processor, it is less than 1.5 faster
on our memory-bound benchmarks. As expected, the hit ratios on the superscalar are essentially the same
as those on the single-issue processor.

Since the performance of our benchmarks is dominated by memory latency, Impulse delivers greater
speedups on the superscalar processor. For example, the speedup for scatter/gather remapping using Impulse
is 1.40, compared with 1.33 on the single-issue processor. Similarly, the speedup for CG-A with page
recoloring is 1.07 (vs. 1.04 for the single-issue machine), and the speedup for DMMP with tile remapping
is 3.41 (vs. 1.98 for the single-issue machine).

The speedup due to using Impulse’s controller-based prefetching increases with issue width: 1.96 vs.
1.67 for CG-A using scatter/gather, and 1.14 vs. 1.09 for CG-A using page recoloring. The performance
benefits of prefetching on the non-memory-bound versions of DMMP (the two tiled versions) are negligible:
the raw execution times for this benchmark are nearly identical.

The performance benefits of L1 cache prefetching do not increase with instruction issue width for CG-A.
With L1 prefetching, a miss to main memory takes 63 cycles to satisfy; with Impulse prefetching, a miss
takes only 33 cycles. Even though the average time for a load is less with L1 prefetching (since the L1 hit
rate is higher), those loads that go to memory cannot be hidden as effectively by the processor. As a result,
Impulse prefetching outperforms L1 prefetching by 11%.

5 Related Work

A number of projects have proposed modifications to conventional CPU or DRAM designs to improve
memory system performance, including supporting massive multithreading [2], moving processing power
on to DRAM chips [20], or developing configurable architectures [35]. While these projects show promise,
it is now almost impossible to prototype non-traditional CPU or cache designs that can perform as well as
commodity processors. In addition, the performance of processor-in-memory approaches are handicapped
by the optimization of DRAM processes for capacity (to increase bit density) rather than speed.

The Morph architecture [35] is almost entirely configurable: programmable logic is embedded in vir-
tually every datapath in the system, enabling optimizations similar to those described here. The primary
difference between Impulse and Morph is that Impulse is a simpler design that can be profitably exploited
by current processor architectures.

The RADram project at UC Davis is building a memory system that lets the memory perform computa-
tion [25]. RADram is a PIM, orprocessor-in-memory, project similar to IRAM [20]. The RAW project at
MIT [33] is an even more radical idea, where each IRAM element is almost entirely reconfigurable. In con-
trast to these projects, Impulse does not seek to put an entire processor in memory, since DRAM processes
are substantially slower than logic processes.

Many others have investigated memory hierarchies that incorporate stream buffers. Most of these fo-
cus on non-programmable buffers to perform hardware prefetching of consecutive cache lines, such as the
prefetch buffers introduced by Jouppi [19]. Even though such stream buffers are intended to be transpar-
ent to the programmer, careful coding is required to ensure good memory performance. Palacharla and
Kessler [27] investigate the use of similar stream buffers to replace the L2 cache, and Farkas et al. [12]
identify performance trends and relationships among the various components of the memory hierarchy (in-
cluding stream buffers) in a dynamically scheduled processor. Both studies find that dynamically reactive
stream buffers can yield significant performance increases. All of these mechanisms prefetch cache lines
speculatively, so they may bring unneeded data into the processor cache(s). This increases memory system
bandwidth requirements, and decreases effective bandwidth. Farkas et al. mitigate this problem by imple-
menting an incremental prefetching technique that reduces stream buffer bandwidth consumption by 50%
without decreasing performance.
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In contrast, systems that prefetch within the memory controller itself never waste bus bandwidth fetch-
ing unneeded data onto the processor chip. The Dynamic Access Ordering systems studied by McKee et
al. [22] and Hong et al. [16] combine programmable stream buffers and prefetching within the memory con-
troller with intelligent DRAM scheduling. For vector or streaming applications with predictable memory
reference patterns, these systems dynamically reorder stream accesses to improve bus utilization, to exploit
parallelism in the memory system (e.g., from multi-bank memories or sophisticated command interfaces),
and to increase locality of reference with respect to the DRAM page buffers. In the same vein, Corbal et
al. [11] propose aCommand Vector Memory Systemthat exploits parallelism and locality of reference to
improve effective bandwidth for vector accesses on out-of-order vector processors with SDRAM memories.
For SRAM memory systems, Valero et al. [32] show how reordering of strided accesses can be used to
eliminate bank conflicts on a vector machine.

The Impulse DRAM scheduler that we are designing has similar goals to these other studies of dynamic
access ordering. With Impulse, though, the set of addresses to be reordered will be more complex: for
example, the set of physical addresses that is generated for scatter/gather is much more irregular than strided
vector accesses.

The Imagine media processor is a stream-based architecture with a bandwidth-efficient stream register
file [28]. The streaming model of computation exposes parallelism and locality in applications, which makes
such systems an attractive domain for intelligent DRAM scheduling.

A great deal of research has gone into prefetching into cache. For example, Chen and Baer [10] describe
how a prefetching cache can outperform a non-blocking cache. Fu and Patel [13] use cache prefetching
to improve memory hierarchy performance on vector machines, which is somewhat related to Impulse’s
scatter/gather optimization. Cache prefetching is orthogonal to Impulse’s controller-based prefetching. In
addition, our results show that controller prefetching can outperform simple forms of cache prefetching.

Yamada [34] proposed instruction set changes to support combined relocation and prefetching into the
L1 cache. Relocation is done at the processor in this system, and thus no bus bandwidth is saved. In addition,
because relocation is done on virtual addresses, the L2 cache utilization cannot be improved. With Impulse,
the L2 cache utilization increases directly, and the operating system can then be used to improve L1 cache
utilization.

Alexander and Kedem [1] describe a memory-based prefetching scheme that can significantly improve
the performance of some applications. They use a prediction table to store up to four possible “next-access”
predictions for any given memory address. When an address is accessed, the targets of the associated
predictions are prefetched into SRAM buffers.

6 Conclusions

The Impulse project attacks the memory bottleneck by designing and building a smarter memory controller.
Impulse requires no modifications to the CPU, caches, or DRAMs, and it has two forms of “smarts”:

� The controller supports application-specific physical address remapping. This paper demonstrates
how several simple remapping functions can be used in different ways to improve the performance of
two important scientific application kernels.

� The controller supports prefetching at the memory. Our results demonstrate that controller-based
prefetching often performs as well as simple next-line prefetching in the L1 cache.

The combination of these features can result in substantial program speedups: using scatter/gather remap-
ping and prefetching improves performance on the NAS conjugate gradient benchmark by 67%. Impulse’s
performance impact should be even greater on superscalar machines, where memory becomes a bigger bot-
tleneck, and where non-memory instructions are effectively cheaper.
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Flexible remapping support in the Impulse controller can be used to implement a variety of optimiza-
tions. In previous work [30], we showed that the Impulse memory remappings can be used to dynami-
cally build superpages and thereby reduce the frequency of TLB faults. Impulse creates superpages from
non-contiguous user pages. Our simulations show that this optimization improves the performance of five
SPECint95 benchmark programs by 5-20%.

Although this simulation study focuses on two scientific kernels, the optimizations that we describe
should be applicable across a variety of memory-bound applications. In particular, Impulse should be useful
in improving system-wide performance. For example, Impulse can speed up messaging and interprocess
communication (IPC). Impulse’s support for scatter/gather can remove the software overhead of gathering
IPC message data from multiple user buffers and protocol headers. The ability to use Impulse to con-
struct contiguous shadow pages from non-contiguous pages means that network interfaces need not perform
complex and expensive address translations. Finally, fast local IPC mechanisms like LRPC [4] use shared
memory to map buffers into sender and receiver address spaces, and Impulse could be used to support fast,
no-copy scatter/gather into shared shadow address spaces.

7 Acknowledgments

We thank Erik Brunvand, Al Davis, Chris Johnson, Chen-Chi Kuo, Ravindra Kuramkote, Mike Parker, Lam-
bert Schaelicke, Terry Tateyama, Massimiliano Poletto, and Llewellyn Reese for their assistance in preparing
earlier drafts of this paper. This work was sponsored in part by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL) under agreement number F30602-98-1-
0101 and DARPA Order Numbers F393/00-01 and F376/00. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the official polices or
endorsements, either express or implied, of DARPA, AFRL, or the U.S. Government.

References

[1] T. Alexander and G. Kedem. Distributed prefetch-buffer/cache design for high performance memory
systems. InProceedings of the Second Annual Symposium on High Performance Computer Architec-
ture, pages 254–263, February 1996.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith. The Tera com-
puter system. InProceedings of the 1990 International Conference on Supercomputing, pages 1–6,
September 1990.

[3] D. Bailey et al. The NAS parallel benchmarks. Technical Report RNR-94-007, NASA Ames Research
Center, March 1994.

[4] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. Lightweight remote procedure call.ACM
Transactions on Computer Systems, 8(1):37–55, February 1990.

[5] B. Bershad, D. Lee, T. Romer, and J. Chen. Avoiding conflict misses dynamically in large direct-
mapped caches. InProceedings of the 6th Symposium on Architectural Support for Programming
Languages and Operating Systems, pages 158–170, October 1994.

[6] P. Budnik and D. Kuck. The organization and use of parallel memories.ACM Transactions on Com-
puters, C-20(12):1566–1569, 1971.

12



[7] D. Burger, J. Goodman, and A. Kagi. Memory bandwidth limitations of future microprocessors. In
Proceedings of the 23rd Annual International Symposium on Computer Architecture, pages 78–89,
May 1996.

[8] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand, A. Davis, C.-C. Kuo, R. Ku-
ramkote, M. Parker, L. Schaelicke, , and T. Tateyama. Impulse: Building a smarter memory controller.
In Proceedings of the Fifth Annual Symposium on High Performance Computer Architecture, pages
70–79, January 1999.

[9] K. Chan, C. Hay, J. Keller, G. Kurpanek, F. Schumacher, and J. Zheng. Design of the HP PA 7200
CPU. Hewlett-Packard Journal, 47(1):25–33, February 1996.

[10] T.-F. Chen and J.-L. Baer. Reducing memory latency via non-blocking and prefetching caches. InPro-
ceedings of the 5th Symposium on Architectural Support for Programming Languages and Operating
Systems, pages 51–61, October 1992.

[11] J. Corbal, R. Espasa, and M. Valero. Command vector memory systems: High performance at low
cost. InProceedings of the 1998 International Conference on Parallel Architectures and Compilation
Techniques, pages 68–77, October 1998.

[12] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic. Memory-system design considerations for
dynamically-scheduled processors. InProceedings of the 24th Annual International Symposium on
Computer Architecture, pages 133–143, June 1997.

[13] J. Fu and J. Patel. Data prefetching in multiprocessor vector cache memories. InProceedings of
the 18th Annual International Symposium on Computer Architecture, pages 54–65, Toronto, Ontario
(Canada), May 1991.

[14] J. Hennessy and D. Patterson.Computer Architecture: A Quantitative Approach. Morgan Kaufmann,
San Francisco, California, second edition, 1996.

[15] R. Hintz and D. Tate. Control Data STAR-100 processor design. InIEEE Computer Society Interna-
tional Conference, Boston, Massachusetts, September 1972.

[16] S. I. Hong, S. A. McKee, M. H. Salinas, R. H. Klenke, J. H. Aylor, and W. A. Wulf. Access order
and effective bandwidth for streams on a direct rambus memory. InProceedings of the Fifth Annual
Symposium on High Performance Computer Architecture, pages 80–89, January 1999.

[17] T. Hotchkiss, N. Marschke, and R. McClosky. A new memory system design for commercial and
technical computing products.Hewlett-Packard Journal, 47(1):44–51, February 1996.

[18] A. Huang and J. Shen. The intrinsic bandwidth requirements of ordinary programs. InProceedings
of the 7th Symposium on Architectural Support for Programming Languages and Operating Systems,
pages 105–114, October 1996.

[19] N. Jouppi. Improving direct-mapped cache performance by the addition of a small fully associative
cache and prefetch buffers. InProceedings of the 17th Annual International Symposium on Computer
Architecture, pages 364–373, May 1990.

[20] C. Kozyrakis et al. Scalable processors in the billion-transistor era: IRAM.IEEE Computer, pages
75–78, September 1997.

13



[21] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and optimizations of blocked
algorithms. InProceedings of the 4th ASPLOS, pages 63–74, Santa Clara, CA, April 1991.

[22] S. A. McKee et al. Design and evaluation of dynamic access ordering hardware. InProceedings of the
10th ACM International Conference on Supercomputing, Philadelphia, PA, May 1996.

[23] S. A. McKee and W. A. Wulf. Access ordering and memory-conscious cache utilization. InProceed-
ings of the First Annual Symposium on High Performance Computer Architecture, pages 253–262,
January 1995.

[24] D. R. O’Hallaron. Spark98: Sparse matrix kernels for shared memory and message passing systems.
Technical Report CMU-CS-97-178, Carnegie Mellon University School of Computer Science, October
1997.

[25] M. Oskin, F. T. Chong, and T. Sherwood. Active pages: A model of computation for intelligent
memory. InProceedings of the 25th International Symposium on Computer Architecture, pages 192–
203, Barcelona, Spain, June 27–July 1, 1998.

[26] V. S. Pai, P. Ranganathan, and S. V. Adve. The impact of instruction-level parallelism on multipro-
cessor performance and simulation methodology. InProceedings of the Third Annual Symposium on
High Performance Computer Architecture, pages 72–83, February 1997.

[27] S. Palacharla and R. Kessler. Evaluating stream buffers as a secondary cache replacement. InPro-
ceedings of the 21st Annual International Symposium on Computer Architecture, pages 24–33, May
1994.

[28] S. Rixner, W. Dally, U. Kapasi, B. Khailany, A. Lopez-Lagunas, P. Mattson, and D. Owens. A
bandwidth-efficient architecture for media processing. InProceedings of the 31st Annual International
Symposium on Microarchitecture, December 1998.

[29] L. Stoller, R. Kuramkote, and M. Swanson. PAINT: PA instruction set interpreter. Technical Report
UUCS-96-009, University of Utah Department of Computer Science, September 1996.

[30] M. Swanson, L. Stoller, and J. Carter. Increasing TLB reach using superpages backed by shadow
memory. InProceedings of the 25th Annual International Symposium on Computer Architecture,
pages 204–213, June 1998.

[31] O. Temam, E. D. Granston, and W. Jalby. To copy or not to copy: A compile-time technique for assess-
ing when data copying should be used to eliminate cache conflicts. InProceedings of Supercomputing
’93, pages 410–419, Portland, OR, November 1993.

[32] M. Valero, T. Lang, J. Llaberia, M. Peiron, E. Ayguade, and J. Navarro. Increasing the number of
strides for conflict-free vector access. InProceedings of the 19th Annual International Symposium on
Computer Architecture, pages 372–381, Gold Coast, Australia, 1992.

[33] E. Waingold, et al.˙Baring it all to software: Raw machines.IEEE Computer, pages 86–93, September
1997.

[34] Y. Yamada.Data Relocation and Prefetching in Programs with Large Data Sets. PhD thesis, University
of Illinois at Urbana-Champaign, Urbana, IL, 1995.

[35] X. Zhang, A. Dasdan, M. Schulz, R. K. Gupta, and A. A. Chien. Architectural adaptation for
application-specific locality optimizations. InProceedings of the 1997 IEEE International Confer-
ence on Computer Design, 1997.

14



Cache

Impulse
Controller

Conventional
Memory System

Impulse
Memory System

Physical
Pages

wasted bus bandwidth

Figure 1: Using Impulse to remap the diagonal of a dense matrix into a dense cache line. The black boxes
represent data on the diagonal, whereas the gray boxes represent non-diagonal data.
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ROWS

for i := 1 to n do

  sum := 0

  for j := ROWS[i] to ROWS[i+1]-1 do

    sum += DATA[j] * x[COLUMN[j]]

  b[i] := sum;
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Figure 4: Conjugate gradient’s sparse matrix-vector product. The matrixA is encoded using three dense
arrays:DATA, ROWS, andCOLUMN. The contents ofA are inDATA. ROWS[i] indicates where theith row
begins inDATA. COLUMN[i] indicates which column ofA the element stored inDATA[i] comes from.
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Conventional Impulse
Value Loaded Behavior Value Loaded Behavior

Best Worst
DATA[i] .75 L2 .75 L2 DATA[i] .75 L2

COLUMN[i] .5 L1, .375 L2 .5 L1, .375 L2 — —
x[COLUMN[i]] L2 miss — —

— — — x’[i] .75 L2*
DATA[i+1] L1 L1 DATA[i+1] L1

COLUMN[i+1] L1 L1 — —
x[COLUMN[i+1]] L2 miss — —

— — — x’[i+1] L1
DATA[i+2] L1 L1 DATA[i+2] L1

COLUMN[i+2] L1 L1 — —
x[COLUMN[i+2]] L2 miss — —

— — — x’[i+2] L1
DATA[i+3] L1 L1 DATA[i+3] L1

COLUMN[i+3] L1 L1 — —
x[COLUMN[i+3]] L2 miss — —

— — — x’[i+3] L1

Table 1: Simple performance comparison of conventional memory systems (best and worst cases) and Im-
pulse for scatter/gather remapping of sparse matrix-vector product. The inner loop has been unrolled four
times, and the analysis assumes a 32-byte L1 cache and a 128-byte L2 cache. On a conventional memory
system, three reads are performed in each iteration; on Impulse, only two reads are performed in each itera-
tion. The miss that occurs in the starred entry is more expensive on Impulse, because it requires a gather at
the memory controller.
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Standard Prefetching
Impulse L1 cache both

Conventional memory system
Time 2.81 2.69 2.51 2.49

L1 hit ratio 64.6% 64.6% 67.7% 67.7%
L2 hit ratio 29.9% 29.9% 30.4% 30.4%

mem hit ratio 5.5% 5.5% 1.9% 1.9%
avg load time 4.75 4.38 3.56 3.54

speedup — 1.04 1.12 1.13
Impulse with scatter/gather remapping

Time 2.11 1.68 1.51 1.44
L1 hit ratio 88.0% 88.0% 94.7% 94.7%
L2 hit ratio 4.4% 4.4% 4.3% 4.3%

mem hit ratio 7.6% 7.6% 1.0% 1.0%
avg load time 5.24 3.54 2.19 2.04

speedup 1.33 1.67 1.86 1.95
Impulse with page recoloring

Time 2.70 2.57 2.39 2.37
L1 hit ratio 64.7% 64.7% 67.7% 67.7%
L2 hit ratio 30.9% 31.0% 31.3% 31.3%

mem hit ratio 4.4% 4.3% 1.0% 1.0%
avg load time 4.47 4.05 3.28 3.26

speedup 1.04 1.09 1.18 1.19

Table 2: Simulated results for the NAS Class A conjugate gradient benchmark, with various memory system
configurations. Times are in billions of cycles; the hit ratios are the number of loads that hit in the corre-
sponding level of the memory hierarchy divided by total loads; the average load time is the average number
of cycles that a load takes; the speedup is the “Conventional, no prefetch” time divided by the time for the
system being compared.
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Standard Prefetching
Impulse L1 cache both

Conventional memory system
Time 2.57 2.51 2.58 2.52

L1 hit ratio 49.0% 49.0% 48.9% 48.9%
L2 hit ratio 43.0% 43.0% 43.4% 43.5%

mem hit ratio 8.0% 8.0% 7.7% 7.6%
avg load time 6.37 6.18 6.44 6.22

speedup — 1.02 1.00 1.02
Conventional memory system with software tile copying

Time 1.32 1.32 1.32 1.32
L1 hit ratio 98.5% 98.5% 98.5% 98.5%
L2 hit ratio 1.3% 1.3% 1.4% 1.4%

mem hit ratio 0.2% 0.2% 0.1% 0.1%
avg load time 1.09 1.08 1.06 1.06

speedup 1.95 1.95 1.95 1.95
Impulse with tile remapping

Time 1.30 1.29 1.30 1.28
L1 hit ratio 99.4% 99.4% 99.4% 99.6%
L2 hit ratio 0.4% 0.4% 0.4% 0.4%

mem hit ratio 0.2% 0.2% 0.2% 0.0%
avg load time 1.09 1.07 1.09 1.03

speedup 1.98 1.99 1.98 2.01

Table 3: Simulated results for tiled dense matrix-matrix product. Times are in billions of cycles; the hit ratios
are the number of loads that hit in the corresponding level of the memory hierarchy divided by total loads;
the average load time is the average number of cycles that a load takes; the speedup is the “Conventional,
no prefetch” time divided by the time for the system being compared. The matrices are 512� 512, with 32
� 32 tiles.
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Standard Prefetching
Impulse L1 cache both

Conventional memory system
Time 2.06 1.94 1.84 1.83

L1 hit ratio 64.7% 64.7% 67.6% 67.6%
L2 hit ratio 29.9% 29.9% 30.5% 30.4%

mem hit ratio 5.4% 5.4% 1.9% 2.0%
avg load time 4.73 4.35 3.74 3.72

speedup — 1.06 1.12 1.13
Impulse with scatter/gather remapping

Time 1.47 1.05 1.17 0.93
L1 hit ratio 88.1% 88.0% 94.7% 94.7%
L2 hit ratio 4.4% 4.4% 4.4% 4.4%

mem hit ratio 7.5% 7.6% 0.9% 0.9%
avg load time 5.13 3.44 2.11 1.95

speedup 1.40 1.96 1.76 2.22
Impulse with page recoloring

Time 1.94 1.82 1.75 1.75
L1 hit ratio 64.8% 64.7% 67.7% 67.7%
L2 hit ratio 30.9% 31.0% 31.0% 30.9%

mem hit ratio 4.3% 4.3% 1.3% 1.4%
avg load time 4.38 4.00 3.50 3.49

speedup 1.07 1.14 1.18 1.18

Table 4: Simulated results for the NAS Class A conjugate gradient benchmark, with various memory system
configurations and a synthetic four-way superscalar. Times are in billions of cycles; the hit ratios are the
number of loads that hit in the corresponding level of the memory hierarchy divided by total loads; the
average load time is the average number of cycles that a load takes; the speedup is the “Conventional, no
prefetch” time divided by the time for the system being compared.
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Standard Prefetching
Impulse L1 cache both

Conventional memory system
Time 2.01 1.96 2.10 2.04

L1 hit ratio 49.0% 49.0% 48.9% 48.9%
L2 hit ratio 43.0% 43.0% 43.4% 43.4%

mem hit ratio 8.0% 8.0% 7.7% 7.7%
avg load time 6.46 6.27 6.81 6.61

speedup — 1.03 0.96 0.99
Conventional memory system with software tile copying

Time 0.60 0.60 0.59 0.59
L1 hit ratio 98.5% 98.5% 98.5% 98.5%
L2 hit ratio 1.3% 1.3% 1.4% 1.4%

mem hit ratio 0.2% 0.2% 0.1% 0.1%
avg load time 1.09 1.08 1.07 1.07

speedup 3.35 3.35 3.41 3.41
Impulse with tile remapping

Time 0.59 0.59 0.59 0.58
L1 hit ratio 99.4% 99.4% 99.5% 99.6%
L2 hit ratio 0.4% 0.4% 0.3% 0.3%

mem hit ratio 0.2% 0.2% 0.2% 0.1%
avg load time 1.09 1.07 1.09 1.03

speedup 3.41 3.41 3.41 3.47

Table 5: Simulated results for tiled matrix-matrix product on a synthetic four-way superscalar. Times are in
billions of cycles; the hit ratios are the number of loads that hit in the corresponding level of the memory
hierarchy divided by total loads; the average load time is the average number of cycles that a load takes; the
speedup is the “Conventional, no prefetch” time divided by the time for the system being compared. The
matrices are 512 by 512, with 32 by 32 tiles.
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