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Abstract

Impulsive differential equations are useful for modelling certain biological events.

We present three biological applications showing the use of impulsive differential

equations in real-world problems. We also look at the effects of stability on a reduced

two-dimensional impulsive HIV system. The first application is a system describing

HIV induction-maintenance therapy, which shows how the solution to an impulsive

system is used in order to find biological results (adherence, etc). A second application

is an HIV system describing the interaction between T-cells, virus and drugs. Stability

of the system is determined for a fixed drug level in three specific regions: low,

intermediate and high drug levels. Numerical simulations show the effects of varying

drug levels on the stability of a system by including an impulse. We reduce these two

models to a two-dimensional impulsive model. We show analytically the existence

and uniqueness of T-periodic solutions, and show how stability changes when varying

the immune response rate, the impulses and a certain nonlinear infection term. The

third application shows how seasonal changes can be incorporated into an impulsive

differential system of Rift Valley Fever, and looks at how stability may differ when

impulses are included. The analysis of impulsive differential systems is crucial in

developing more realistic mathematical models for infectious diseases.
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Chapter 1

Introduction

Impulses in differential equations are used to describe instantaneous changes in the

behaviour of a system. They aid in describing biological events that undergo sudden

perturbations more precisely. It is known, for example, that many biological phenom-

ena involving thresholds — such as drug resistance models in medicine and biology

— do exhibit impulsive effects. We develop and analyze three impulsive differential

systems, two of which describe the dynamics of the human immunodeficiency virus

(HIV) with impulsive drug effects and one that describes the dynamics of the Rift

Valley Fever (RVF) virus to seasonal changes. We also analyze a two-dimensional

reduced impulsive HIV system, and see the effects that an impulse and a nonlinear

term may have on the stability of the system.

We first include an overview of impulsive differential equations (Chapter 2). The

information is a summary of results from Impulsive Differential Equations: Periodic

Solutions and Applications and Theory of Impulsive Differential Equations [1, 2]. It

describes the different outcomes that occur when including an impulse in a differential

system and analyzes solutions to linear homogenous, linear non-homogenous and

nonlinear periodic equations.

Chapter 3 includes two applications describing the immunological effects of HIV.

1



1. Introduction 2

First there is a short overview of HIV. The interested reader is referred to Appendix A

for more information on the immunology and microbiology of the virus, drug therapy,

incidence, worldwide issues, and new and ongoing prevention strategies of HIV. Two

manuscripts are presented next. The first is published in the journal Biomed Central

Infectious Diseases [3] (Section 3.1), and the second is published in the Bulletin of

Mathematical Biology [4] (Section 3.2). The first application describes the effects

of induction-maintenance therapy. The impulsive differential system includes ten

ordinary differential equations. The drug dynamics occur at fixed times, where an

instantaneous increase occurs when a drug is taken. Between drug intakes, the drug

decays exponentially, meaning it is cleared from the body depending on its half-life.

The impulsive differential system (ordinary differential equations involving impulse

effects) is solved in order to view the effects of imperfect adherence to a protease-

inhibitor-sparing HIV drug regimen. The number of doses allowed during a drug

holiday was calculated in order to avoid drug resistance. Simulation details and

extra comments for the manuscript, as well as sensitivity analysis can be found in

Appendix B. The second application describes the interaction that occurs in an HIV-

positive individual between T-cells, virus and protease inhibitor drugs. The impulsive

differential system includes thirteen ordinary differential equations with the impulse

occurring when a drug is taken. Stability analysis shows the interaction between the

wild-type and resistant virus for a fixed drug level at either low, intermediate or high

concentration (see Appendices C, D, E, F for more details on the development of

results for different regions). Numerical simulations show the outcome when the drug

concentration varies. Simulation details and extra comments for the manuscript can

be found in Appendix G.

Chapter 4 introduces a two-dimensional impulsive differential system. The equa-

tions are derived from the models presented in the two manuscripts in Chapter 3.

The impulsive system is an approximated HIV model including only one class of T

cells and virus. We develop a general two-dimensional system where all but one term
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is linear (there is only one nonlinear infection term). The importance of the nonlin-

ear infection term has caused debate when modelling infectious diseases since some

research suggests that it can be omitted while others demonstrate that results change

when it is not included. We use our two-dimensional impulsive system to analyze the

effects of stability when this non-infection term is either included or not. We first

prove that, for a general linear impulsive system, the immune response rate (rate at

which the immune system reacts when virus is present) and the parameter chosen

for our impulse change the regions of stability. We also numerically show that, for

specific parameters, when the nonlinear infection term is included, the regions of sta-

bility appear to change. We also look at two subcases of the general impulsive system

in order to analytically show the effects of the nonlinear infection term.

Chapter 5 includes an application describing the epidemiological effects of RVF.

First there is a short overview of RVF. The interested reader is referred to Appendix H

for more information on the etiology of the virus, the vectors that transmit the virus,

the viable hosts and the epidemiology of the virus. The manuscript is presented next

(Section 5.1). This paper is in press in the journal Mathematical Population Studies

[5]. The model shows the effects of seasonal changes to a system including human,

livestock and mosquito populations. The one-season model is presented first. It is

a system of eleven ordinary differential equations. Stability analysis is computed for

the disease-free equilibrium, and the basic reproductive number is found. Impulses

are then included to analyze the multiple-season outcome. The winter season allows

the host populations to increase and the mosquito population to decrease. These

outcomes are described by a system of impulses. Numerical simulations show the

changes that may occur when multiple seasons are included. Simulation details and

extra comments for the manuscript can be found in Appendix I.

Chapter 6 concludes the thesis with a discussion, conclusion and future work.



Chapter 2

Overview of impulsive differential

equations

2.1 Review of Impulsive Differential Equations

Differential equations can be used to model the dynamics of many real-world phe-

nomena. Many evolutionary processes are characterized by the fact that at certain

moments of time they experience an abrupt change of state. These processes are

subject to short-term perturbations whose duration is negligible in comparison with

the duration of the process. Consequently, it is natural to assume that these per-

turbations act instantaneously; that is, in the form of impulses. Thus, impulsive

differential equations — that is, differential equations involving impulse effects — ap-

pear as a natural description of observed evolutionary phenomena of several real-world

problems. All the information provided in this chapter is a summary of the books

Impulsive Differential Equations: Periodic Solutions and Applications and Theory of

Impulsive Differential Equations [1, 2].

4
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2.1.1 Definition of Impulsive Differential Equations

Each system is given by an ordinary differential equation coupled with relations defin-

ing the jump condition. Assume that the law of evolution of the process is described

by a differential equation

dx

dt
= f(t, x),

where t ∈ R, x ∈ Ω ⊂ R
n, f : R×Ω → R

n and the moments of the impulse effect for

the solution x(t) occurs at t = τk (k ∈ N).

Denote I(t, x) : R × Ω → Ω, where

(t, x) → (t, x+ I(t, x))

is the mapping of the solution before the impulse, x(τ−k ), to after the impulse effect,

x(τ+
k ). Then

∆x(τk) = I(τ−k , x(τ
−
k )),

where ∆x(τk) = x(τ+
k ) − x(τ−k ).

2.1.2 Classes of Impulsive Differential Equations

There are three classes of impulsive differential equations:

Class 1: Equations with fixed moments of the impulse effect

dx

dt
= f(t, x) t 6= τk

∆x = Ik(x) t = τk.

(2.1.1)

The impulse is fixed beforehand by defining the sequence τk : τk < τk+1 (k ∈ K ⊂ Z).

For t ∈ (τk, τk+1] the solution x(t) of equation (2.1.1) satisfies the equation dx/dt =
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f(t, x), and for t = τk, x(t) satisfies the relation x(τ+
k ) = x(τ−k ) + Ik(x(τ

−
k )).

Class 2: Equations with state-dependent moments of the impulse effect

dx

dt
= f(t, x) t 6= τk(x)

∆x = Ik(x) t = τk(x),

(2.1.2)

where τk : Ω → R and τk < τk+1 (k ∈ K ⊂ Z, x ∈ Ω ). The impulse occurs when the

mapping point (t, x) meets some hypersurface σk of the equation t = τk(x).

Class 3: Autonomous impulsive equations

dx

dt
= f(x) x /∈ σ

∆x = Ik(x) x ∈ σ,

(2.1.3)

where σ is an (n − 1)−dimensional manifold contained in the phase space Ω ⊂ R
n.

The impulse occurs when the solution x(t) meets the manifold σ.

2.1.3 Example

Before we look at the existence and uniqueness of solutions, we present a simple

example of an impulsive differential equation with state-dependent moments of the

impulse effect.

Consider
dx

dt
= 0 t 6= τk(x)

∆x = x2sgn(x) − x t = τk(x),

(2.1.4)

where t ≥ 0, x ∈ R and τk(x) = x+ 6k for |x| < 3 (k = 0, 1, 2, . . . ).
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Starting at a point (0, x0) with |x0| ≥ 3, there is no impulsive effect since the

integral curve does not intersect the hypersurface σ (see Figure 2.1).

Starting at a point (0, x0) with 1 < |x0| < 3, the integral curve is subject to

an impulse effect finitely many times. For instance, starting at a point (0, 4
√

2),

the integral curve first hits the hypersurface at τ1 = x0 (since k = 0) and is sub-

ject to an impulse ∆x = x2
0sgn(x0) − x0. Then we solve dx/dt = 0 with the

new initial condition x(τ+
1 ) = x(τ−1 ) + x2

0sgn(x0) − x0 =
√

2. Once the integral

curve hits the hypersurface for the second time, τ−2 , it undergoes a second impulse

∆x = x(τ−2 )2sgn(x(τ−2 )) − x(τ−2 ) = 2 −
√

2 and again we solve the ODE dx/dt = 0

with the new initial condition x(τ+
2 ) = 2. This process continues till the integral curve

no longer hits the hypersurface. In this case, we have 3 impulses and, after moment

τ3 = 2, the integral curve no longer intersects the hypersurface σk (see Figure 2.2).

Starting at a point (0, x0) with 0 < x0 < 1, the integral curve is subject to an

impulse effect infinitely many times for which we have lim
k→∞

τk = ∞, lim
k→∞

x(τk) = 0

(see Figure 2.3).

Starting at a point (0, x0) with −1 < x0 < 0, the integral curve is subject to an

impulse effect infinitely many times but lim
k→∞

x(τk) = 0, lim
k→∞

τk = 6 (see Figure 2.4).

This phenomena is called beating.

The points (0, 0), (0, 1) and (0,−1) also intersect the hypersurfaces σk infinitely

many times, but at fixed points of the expression x2sgn(x) (see Figure 2.4).
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x

3

3 t

−3

0

Figure 2.1: The solution of the impulsive differential equation (2.1.4) has no
impulse effect for |x0| ≥ 3. For |x0| > 3 the integral curve does not hit the
hypersurface σk. Here, the dotted lines are the hypersurfaces σk and the solid
line is the integral curve.

3

2
1/4

3 t
0

x

Figure 2.2: The solution of the impulsive differential equation (2.1.4) hits
the hypersurface finitely many times for 1 < |x0| < 3 and undergoes a finite
number of impulses. Here, the dotted lines are the hypersurfaces σk and the
solid line is the integral curve.
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3

3

1

x

6 t

−3

0

Figure 2.3: The solution of the impulsive differential equation (2.1.4) hits
the hypersurface infinitely many times for 0 < x0 < 1 but the solution tends
towards zero. Here, the dotted lines are the hypersurfaces σk and the solid
line is the integral curve.

3 6

1

x

t

−1

0

Figure 2.4: The solution of the impulsive differential equation (2.1.4) can
(a) hit the hypersurface finitely many times for x0 = 0, 1,−1 but does not
undergo an impulse (since these are fixed points of the system), or (b) hits
the hypersurface infinitely many times for −1 < x0 < 0 and undergoes an
infinite amount of impulses (beating occurs in this case). Here, the dotted
lines are the hypersurfaces σk and the solid line is the integral curve.
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2.2 Existence and Uniqueness Theorems

2.2.1 State-dependent moments of impulse effect

Let Ω ⊂ R
n be an open set. Suppose that, for each k ∈ Z, the functions τk : Ω → R

are continuous in Ω and satisfy

τk(x) < τk+1(x), lim
k→±∞

τk(x) = ∞

for x ∈ Ω. Let f : R × Ω → R
n, Ik : Ω → R

n, (t0, x0) ∈ R × Ω and α < β (α, β ∈ R).

Consider the impulsive differential equation

dx

dt
= f(t, x) t 6= τk(x)

∆x = Ik(x) t = τk(x),

(2.2.1)

with initial condition

x(t+0 ) = x0. (2.2.2)

First we define a solution to the impulsive differential equation where it is con-

tinuous and differentiable between impulses.

Definition 2.2.1 The function ϕ : (α, β) → R
n is said to be a solution of equation

(2.2.1) if:

1. (t, ϕ(t)) ∈ R × Ω for t ∈ (α, β);

2. for t ∈ (α, β), t 6= τk(ϕ(t)), k ∈ Z, the function ϕ(t) is differentiable and

dϕ

dt
(t) = f(t, ϕ(t));
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3. the function ϕ(t) is continuous from the left in (α, β) and if t ∈ (α, β), t =

τk(ϕ(t)) and t 6= β, then ϕ(t+) = ϕ(t−) + Ik(ϕ(t−)) and, for each j ∈ Z and

some δ > 0, s 6= τj(ϕ(s)) for t < s < t+ δ.

Definition 2.2.2 Each solution ϕ of (2.2.1) which is defined in an interval of the

form (t0, β) and satisfies the condition (2.2.2) is said to be a solution of the initial

value problem (2.2.1)-(2.2.2).

If t0 6= τk(x0) for k ∈ Z, then the existence and uniqueness conditions of the

solution of the initial value problem (2.2.1)-(2.2.2) depends only on the properties of

the function f . If t0 = τk(x0) for some k, then we need to impose additional conditions

on f and τk to guarantee the existence of a solution. The following theorem provides

such conditions to guarantee a finite impulse.

Theorem 2.2.3 Let the following conditions hold.

1. The function f : R × Ω → R
n is continuous in t 6= τk(x) (k ∈ Z).

2. For any (t, x) ∈ R × Ω there exists a locally integrable function l : R → R such

that, in a small neighbourhood of (t, x),

|f(s, y)| ≤ l(s).

3. For each k ∈ Z, the condition t1 = τk(x1) implies the existence of δ > 0 such

that

t 6= τk(x)

for all 0 < t− t1 < δ and |x− x1| < δ.

Then for each (t0, x0) ∈ R × Ω, there exists a solution ϕ : (t0, β) → R
n of the initial

value problem (2.2.1)-(2.2.2) for some β > t0.
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Note that the solution x(t) of the initial value problem (2.2.1)-(2.2.2) is unique

if there is a unique solution for the initial value problem dx/dt = f(t, x), x(t0) = x0;

that is, if f is locally Lipschitz continuous with respect to x in a neighbourhood of

(t0, x0).

If the impulses occur at fixed times, then the system is significantly simpler and

a great deal more can be said about continuation of solutions (Section 2.2.2). With

variable impulse times, different solutions will generally undergo impulsive effects at

different times, so we cannot ordinarily expect solutions to depend continuously on

initial data. For an example see Section 2.1.3, where initial conditions can either hit

a hypersurface or not for different initial conditions. The next sections will discuss

continuity of initial conditions for fixed impulse effect.

2.2.2 Fixed moments of impulse effect

Consider the impulsive differential equation

dx

dt
= f(t, x) t 6= τk

∆x = Ik(x) t = τk,

(2.2.3)

where τk < τk+1 (k ∈ Z) and lim
k→±∞

τk = ±∞.

The following theorem guarantees that, for a finite impulse effect, a solution

exists after the impulse.

Theorem 2.2.4 Let the function f : R×Ω → R
n be continuous in the sets (τk, τk+1]×

Ω (k ∈ Z). For each k ∈ Z and x ∈ Ω, suppose there exists the finite limit of f(t, y)

as (t, y) → (τk, x), t > τk.

Then, for each (t0, x0) ∈ R×Ω, there exists β > t0 and a solution ϕ : (t0, β) → R
n

of the initial value problem (2.2.2)-(2.2.3).



2. Overview of impulsive differential equations 13

If, moreover, the function f is locally Lipschitz continuous with respect to x in

R × Ω, then this solution is unique.

Now we consider the problem of continuability to the right of a given solution

ϕ(t) of equation (2.2.3). The following theorem imposes conditions such that ϕ(t) is

continuous after the impulse.

Theorem 2.2.5 (continuation of solutions) Let the following conditions hold.

1. The function f : R × Ω → R
n is continuous in the sets (τk, τk+1] × Ω (k ∈ Z)

and, for each k ∈ Z, the limit of f(t, y) as (t, y) → (τk, x), t > τk exists and is

finite.

2. The function ϕ : (α, β) → R
n is a solution of (2.2.3).

Then the solution ϕ(t) is continuable to the right of β if and only if the limit

lim
t→β−

ϕ(t) = η

exists, and one of the following conditions is fulfilled:

(a) β 6= τk for any k ∈ Z and η ∈ Ω;

(b) β = τk for some k ∈ Z and η + Ik(η) ∈ Ω.

Theorem 2.2.6 (right maximal interval) Let the following conditions hold.

1. Condition 1 of Theorem (2.2.5) is satisfied.

2. The function f is locally Lipschitz continuous with respect to x in R × Ω.

3. η + Ik(η) ∈ Ω for each k ∈ Z and η ∈ Ω.

Then, for any (t0, x0) ∈ R × Ω, there exists a unique solution of the initial value

problem (2.2.2)-(2.2.3) which is defined in an interval of the form (t0, β) and is not

continuable to the right of β.
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Under the conditions of Theorem (2.2.6), for each (t0, x0) ∈ R×Ω, there exists a

unique solution x(t; t0, x0) of the initial value problem (2.2.2)-(2.2.3) which is defined

on the interval (a, b) and is not continuable to the right of b or the left of a. Denote

by J(t0, x0) the maximal interval of the solution, and set J− = J−(t0, x0) = (a, t0]

and J+ = J+(t0, x0) = [t0, b). Then

x(t) =



















x0 +

∫ t

t0

f(s, x(s))ds+
∑

t0<τk<t

Ik(x(τk)) for t ∈ J+

x0 +

∫ t

t0

f(s, x(s))ds−
∑

t≤τk≤t0

Ik(x(τk)) for t ∈ J− .

Below is a straightforward verification of this solution.

Consider the impulsive differential equation with fixed moment of impulse effect

(2.2.3). For t+0 < t < t−1 , the solution is

x(t) − x0 =

∫ t

t0

f(s, x(s))ds

x(t) = x0 +

∫ t

t0

f(s, x(s))ds.

This means that

x(t−1 ) = x0 +

∫ t1

t0

f(s, x(s))ds.

After the impulse, we get

x(t+1 ) = x0 +

∫ t1

t0

f(s, x(s))ds+ I1(x(t1)).

For t+1 < t < t−2 , the solution is

x(t) = x(t+1 ) +

∫ t

t1

f(s, x(s))ds

= x0 +

∫ t1

t0

f(s, x(s))ds+ I1(x(t1)) +

∫ t

t1

f(s, x(s))ds.

This means that

x(t−2 ) = x0 +

∫ t2

t0

f(s, x(s))ds+ I1(x(t1)).
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After the impulse, we get

x(t+2 ) = x0 +

∫ t2

t0

f(s, x(s))ds+ I1(x(t1)) + I2(x(t2)).

For t+2 < t < t−3 , the solution is

x(t) = x(t+2 ) +

∫ t

t2

f(s, x(s))ds

= x0 +

∫ t2

t0

f(s, x(s))ds+ I1(x(t1)) + I2(x(t2)) +

∫ t

t2

f(s, x(s))ds.

This means that

x(t−3 ) = x0 +

∫ t2

t0

f(s, x(s))ds+ I1(x(t1)) + I2(x(t2)) +

∫ t3

t2

f(s, x(s))ds.

After the impulse, we get

x(t+3 ) = x0 +

∫ t3

t0

f(s, x(s))ds+ I1(x(t1)) + I2(x(t2)) + I3(x(t3)).

Assume

x(t+k ) = x0 +

∫ tk

t0

f(s, x(s))ds+ I1(x(t1)) + I2(x(t2)) + · · · + Ik(x(tk)).

Then for t+k < t < t−k+1, the solution is

x(t) = x(t+k ) +

∫ t

tk

f(s, x(s))ds

= x0 +

∫ tk

t0

f(s, x(s))ds+ I1(x(t1)) + I2(x(t2)) + · · · + Ik(x(tk)) +

∫ t

tk

f(s, x(s))ds

= x0 +

∫ t

t0

f(s, x(s))ds+ I1(x(t1)) + I2(x(t2)) + · · · + Ik(x(tk)).

Therefore, by mathematical induction, for t+0 < t < b, the solution is

x(t) = x0 +

∫ t

t0

f(s, x(s))ds+
∑

t0<tk<t

Ik(x(tk)).
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2.2.3 Continuity, differentiability and dependence on initial

data, on parameters

Consider the impulsive differential equation

dx

dt
= f(t, x, λ) φ(t, x, λ) 6= 0 (2.2.4)

∆x = Ik(t, x, λ) φ(t, x, λ) = 0, (2.2.5)

where t ∈ R, x ∈ R
n and λ ∈ Λ ⊂ R

m is a parameter.

Denote by x(t; t0, y, λ) the solution of the equation (2.2.4)-(2.2.5) satisfying the

initial condition

x(t+0 ; t0, y, λ) = y. (2.2.6)

Let φ(t0, x0, λ0) 6= 0 and ϕ(t) = x(t; t0, x0, λ0) be a solution of (2.2.4)-(2.2.5) for

λ = λ0 that is defined in the interval [t0, t1] and satisfies the relations

ϕ(t0) = x0 φ(t1, ϕ(t1), λ0) 6= 0.

We shall discuss the conditions under which the solution x(t; t0, y, λ) is a continuous

function at the point (t1; t0, y, λ).

Denote by u(t; t0, y, λ) the solution of the initial value problem

du

dt
= f1(t, u, λ) u(t0) = y,

where f1 : R × R
n × Λ → R

n, and consider the equation

φ(t, u(t; t0, y, λ), λ) = 0.

An immediate consequence of the implicit function theorem is the following

lemma, which imposes that f be continuous and that the jump condition be con-

tinuously differentiable.

Lemma 2.2.7 Let the following conditions hold.
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1. The function f1 : R × R
n × Λ → R

n is continuous in R × R
n × Λ.

2. The function φ : R×R
n×Λ → R is continuously differentiable in a neighbour-

hood of the point (τ1, x1, λ0), where τ1 > t0 and x1 = u(τ1; t0, x0, λ0).

3. φ(τ1, x1, λ0) = 0

4.
∂φ

∂t
(τ1, x1, λ0) +

∂φ

∂x
(τ1, x1, λ0)f1(τ1, x1, λ0) 6= 0.

Then there exists a neighbourhood U of the point (t0, x0, λ0) and a unique function

T = T (τ, y, λ) which is continuous in U and such that

T (t0, x0, λ0) = τ1

φ(T (τ, y, λ), u(T (τ, y, λ); τ, y, λ), λ) ≡ 0 (τ, y, λ) ∈ U.

Corollary 2.2.8 The function T (τ, y, λ) is Lipschitz continuous with respect to (τ, y, λ) ∈
U if f1 is continuously differentiable in R × R

n × Λ.

Introduce the following conditions that take the entire solution and split it up

between each impulse and then impose conditions for f and I to be continuous in

each partition.

H2.1 The function φ : R × R
n × Λ → R is continuously differentiable in R × R

n × Λ

and there exists δ > 0 such that for |λ − λ0| < δ the equation φ(t, x, λ) = 0

defines a smooth hypersurface S(λ) which partitions the space R × R
n into a

finite number of disjoint domains D1(λ), . . . , DN+1(λ) such that

D1(λ) ∪ · · · ∪DN+1(λ) ∪ S(λ) = R × R
n.

H2.2 The solution ϕ(t) = x(t; t0, x0, λ0) is defined for t ∈ [t0, t1], has moments of

impulse effect τk = τk(t0, x0, λ0) (k = 1, . . . , N) and the relations

(t, ϕ(t)) ∈ Dk(λ0), t ∈ △k (k = 1, . . . , N + 1)
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hold, where △1 = [t0, τ1), △N+1 = (τN , t1], △k = (τk−1, τk] (k = 2, . . . , N).

H2.3
∂φ

∂t
(τk, ϕ(τk), λ0) +

∂φ

∂x
(τk, ϕ(τk), λ0)f(τk, ϕ(τk), λ0) 6= 0 (k = 1, . . . , N).

Under these conditions, there exists a δ > 0 such that for |λ− λ0| < δ the sets

Sk(λ) = {(t, x) ∈ R × R
n : φ(t, x, λ) = 0, |t− τk| < δ, |x− ϕ(τk)| < δ} (k = 1, . . . , N)

are open smooth n-dimensional manifolds.

H2.4 There exists a δ > 0 such that for |λ − λ0| < δ and |y − x0| < δ the solution

x(t) = x(t; t0, y, λ) is defined for t ∈ [t0, t1] and the integral curve (t, x(t)) for

t ∈ [t0, t1] meets each successive Sk(λ) (k = 1, . . . , N) just once.

H2.5 In the domain Dk(λ) (k = 1, . . . , N + 1), the function f(t, x, λ) coincides with

some function fk : R × R
n × Λ → R, which is continuous in R × R

n × Λ.

H2.6 The function I : R × R
n × Λ → R is continuous in R × R

n × Λ.

The following theorem is based on Lemma (2.2.7).

Theorem 2.2.9 Let conditions H2.1-H2.6 hold. Then the solution x(t; τ, y, λ) of the

initial value problem (2.2.4)-(2.2.6) is a continuous function in some neighbourhood

of (t1, t0, x0, λ0).

Moreover, the moments of the impulse effect τk(τ, y, λ) (k = 1, . . . , N) of this

solution are continuous functions in some neighbourhood of (t0, x0, λ0).

Now let us consider the question of the differentiability of the solution x(t; τ, y, λ)

at the point of the impulse (t1, t0, x0, λ0) and consider the dependence on initial data

and parameters.

Introduce the following conditions.

H2.7 In the domain Dk(λ) (k = 1, . . . , N + 1), the function f(t, x, λ) coincides with

some function fk : R × R
n × Λ → R, which is continuously differentiable in

R × R
n × Λ.
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H2.8 The function I : R × R
n × Λ → R is continuously differentiable in R × R

n × Λ.

The following theorem is based on Lemma (2.2.7) as well.

Theorem 2.2.10 Let conditions H2.1-H2.4, H2.7 and H2.8 hold. Then:

1. The solution x(t; τ, y, λ) of the initial value problem (2.2.4)-(2.2.6) is a contin-

uously differentiable function in some neighbourhood of (t1, t0, x0, λ0) and the

moments of the impulse effect τk(τ, y, λ) (k = 1, . . . , N) of this solution are

continuously differentiable functions in some neighbourhood of (t0, x0, λ0).

2. The derivative u =
∂x

∂x0

(t; t0, x0, λ0) is a solution of the initial value problem

du

dt
=
∂f

∂x
(t, ϕ(t), λ0)u t 6= τk

∆u =
∂I

∂x
u+

[

f+ − f − ∂I

∂t
− ∂I

∂x
f
]

∂φ

∂x
u

∂φ

∂x
f +

∂φ

∂t

t = τk

u(t+0 ) = En.

3. The derivative v =
∂x

∂λ
(t; t0, x0, λ0) is a solution of the initial value problem

dv

dt
=
∂f

∂x
(t, ϕ(t), λ0) v +

∂f

∂λ
(t, ϕ(t), λ0) t 6= τk

∆v =
∂I

∂x
v +

∂I

∂λ
+
[

f+ − f − ∂I

∂t
− ∂I

∂x
f
]

∂φ

∂x
v +

∂φ

∂λ
∂φ

∂x
f +

∂φ

∂t

t = τk

v(t+0 ) = 0.

Here ∂I
∂x

, ∂I
∂λ

, ∂I
∂t

, ∂φ

∂x
, ∂φ

∂λ
, ∂φ

∂t
are computed at the point (τk, ϕ(τk), λ0) and f = fk(τk, ϕ(τk), λ0),

f+ = fk+1(τk, ϕ(τ+
k ), λ0).
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2.2.4 Definition of stability

The discontinuous nature of solutions of systems with impulsive effect means that we

must adjust our definitions of stability. Consider the impulsive system

dx

dt
= f(t, x) t 6= τk(x)

∆x = Ik(x) t = τk(x)

x(t+0 ) = x0.

(2.2.7)

The standard definitions are modified so that we can choose initial points suitably

close together so that trajectories remain arbitrarily close for all time, except in any

neighbourhood of the impulse points, no matter how small.

Definition 2.2.11 Let x̄ = x(t; t0, y0) be a given solution of (2.2.7) existing for t ≥ t0

and suppose that x̄(t) hits the surfaces Sk : t = τk(x) at the moments tk such that

tk < tk+1 and tk → ∞ as k → ∞. Then the solution x̄(t) of (2.2.7) is said to be

(S1η) stable, if, for each ǫ > 0, η > 0 and t0 ∈ R
+, there exists a δ = δ(t0, ǫ, η) > 0

such that |x0−y0| < δ implies |x(t)− x̄(t)| < ǫ for t ≥ t0 and |t− tk| > η, where

x(t) = x(t; t0, x0) is any solution of (2.2.7) existing for t ≥ t0;

(S2η) uniformly stable, if δ in (S1η) is independent of t0;

(S3η) attractive, if, for each ǫ > 0, η > 0 and t0 ∈ R
+, there exist δ0 = δ0(t0) > 0

and a T = T (t0, ǫ, η) > 0 such that |x0 − y0| < δ0 implies |x(t) − x̄(t)| < ǫ for

t ≥ t0 + T and |t− tk| > η;

(S4η) uniformly attractive, if δ0 and T in (S3η) are independent of t0;

(S5η) asymptotically stable, if (S1η) and (S3η) holds;

(S6η) uniformly asymptotically stable, if (S2η) and (S4η) holds.
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In the case of fixed moments of impulse, τk(x) = τk, definition (2.2.11) remains

the same except the values of η are omitted. For example, (S1η) becomes (S1); that

is, the solution to equation (2.2.7) with fixed moment of impulse is stable if for any

ǫ > 0 and t0 ∈ R
+, there exists a δ = δ(t0, ǫ) > 0 such that |x̄| < δ implies |x(t)| < ǫ

for t ≥ t0.

2.3 Linear systems with fixed moments of impulse

effect

2.3.1 Existence and uniqueness of solutions

Let τk (k ∈ Z) be fixed and satisfy

H3.1 τk < τk+1 (k ∈ Z), lim
k→±∞

τk = ±∞.

Let m,n ∈ N. Denote by PC(D,F ), the set of functions ψ : D → F which are

continuous for t ∈ D, t 6= τk, are continuous from the left for t ∈ D, and have discon-

tinuities at the points τk ∈ D.

Consider the linear homogeneous impulsive equation

dx

dt
= A(t)x t 6= τk

∆x = Bkx t = τk,

(2.3.1)

with the condition

H3.2 A ∈ PC(R,L(Rn)), Bk ∈ L(Rn) (k ∈ Z).

Theorem 2.3.1 Let H3.1, H3.2 hold. Then, for any (t0, x0) ∈ R×C
n, there exists a

unique solution x(t) of equation (2.3.1) with x(t+0 ) = x0, and this solution is defined

for all t > t0.
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If, moreover, det(E + Bk) 6= 0 (k ∈ Z), where E is the n × n identity matrix,

then the solution is defined for all t ∈ R.

The solutions of equation (2.3.1) can be written as:

x(t; t0, x0) = W (t, t+0 )x0, (2.3.2)

where

W (t, s) =































































Uk(t, s) for t, s ∈ (τk, τk+1]

Uk+1(t, τ
+
k )(E +Bk)Uk(τk, s) for τk−1 < s ≤ τk < t ≤ τk+1

Uk(t, τk)(E +Bk)
−1Uk+1(τ

+
k , s) for τk−1 < t ≤ τk < s ≤ τk+1

Uk+1(t, τ
+
k )

i+1
∏

j=k

(E +Bj)Uj(τj, τ
+
j−1)(E +Bi)Ui(τi, s) for τi−1 < s ≤ τi < τk < t ≤ τk+1

Ui(t, τi)
k+1
∏

j=i

(E +Bj)
−1Uj+1(τ

+
j , τj+1)(E +Bk)

−1Uk+1(τ
+
k , s) for τi−1 < t ≤ τi < τk < s ≤ τk+1

and where Uk(t, s) is the Cauchy matrix for the linear homogeneous equation when

t 6= τk. The Cauchy matrix is defined in the same manner as the fundamental

matrix in ODEs (i.e. U(t, s) = X(t)X−1(s) where X(t) is the fundamental matrix of

a homogeneous system). For a linear system with constant coefficients, the Cauchy

operator is defined by X(t, s) = eA(t−s). We will see more about the fundamental

matrix in the next section.

Note that W (t, s) is split into five cases. The first is without impulses; the

second is with one impulse going forward in time; the third is with one impulse going

backward in time; the fourth is with several impulses going forward in time, and the

fifth is with several impulses going backward in time.

2.3.2 Fundamental matrix

Definition 2.3.2 Let x1(t), ..., xn(t) be solutions to (2.3.1) defined on the interval

(0,∞). Let X(t) = {x1(t), ..., xn(t)} be a matrix-valued function whose columns are
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these solutions. Then x1(t), ..., xn(t) are linearly independent if and only if detX(t+0 ) 6=
0. In this case, we say that X(t) is a fundamental matrix of (2.3.1).

We also have the following analogue of Liouville’s formula for linear equations:

detW (t, t0) =



















∏

t0<τk<t

det(E +Bk) exp
(

∫ t

t0

TrA(s) ds
)

for t > t0

∏

t≤τk≤t0

det(E +Bk)
−1 exp

(

∫ t

t0

TrA(s) ds
)

for t ≤ t0 ,

where TrA(t) is the trace of the matrix A(t).

Lemma 2.3.3 Suppose H3.1, H3.2 hold and lim
k→∞

tk = ∞. Let X(t) be a fundamental

matrix of (2.3.1) in R+. Then

1. For any constant matrix M ∈ L(Cn), X(t)M is also a solution of (2.3.1).

2. If Y : R → L(Cn) is a solution of (2.3.1), there exists a unique matrix M such

that Y (t) = X(t)M . Furthermore, if Y (t) is also a fundamental matrix, then

detM 6= 0.

2.3.3 Variation of constants formula for non-homogeneous

equations

Consider the linear non-homogeneous impulsive equation

dx

dt
= A(t)x+ g(t) t 6= τk

∆x = Bkx+ hk t = τk,

(2.3.3)

where g(·) ∈ PC(R,Cn), hk ∈ R
n (k ∈ Z).
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The solution x(t) of equation (2.5.1) using the variation of parameters formula

is:

x(t) =



















W (t, t+0 )x(t+0 ) +

∫ t

t0

W (t, s)g(s)ds+
∑

t0<τk<t

W (t, τ+
k )hk for t > t0

W (t, t+0 )x(t+0 ) +

∫ t

t0

W (t, s)g(s)ds−
∑

t≤τk≤t0

W (t, τ+
k )hk for t ≤ t0.

In general, if det(E+Bk) 6= 0 (k ∈ Z) and φ(t) is the fundamental solution to (2.3.1),

then the function

x = c1ϕ1(t) + · · · + cnϕn(t)

is a solution of (2.3.1), and the general solution of (2.5.1) has the form

x = c1ϕ1(t) + · · · + cnϕn(t) + xp(t)

where xp(t) is a particular solution of (2.5.1).

2.4 Linear homogeneous periodic equations

Consider the linear T -periodic system with fixed moments of impulsive effect

dx

dt
= A(t)x t 6= τk

∆x = Bkx t = τk,

(2.4.1)

subject to the following assumptions:

H4.1 The matrix A(·) ∈ PC(R,L(Cn)) and A(t+ T ) = A(t) for t ∈ R.

H4.2 τk < τk+1 for k ∈ Z, Bk ∈ L(Cn) and det(E +Bk) 6= 0.

H4.3 There exists an integer q > 0 such that Bk+q = Bk, τk+q = τk +T for k ∈ Z and

q ∈ N.
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Theorem 2.4.1 Suppose conditions H4.1-H4.3 hold. Then each fundamental matrix

of (2.4.1) can be represented in the form

X(t) = ϕ(t)eΛt (t ∈ R)

for a non-singular, T -periodic matrix ϕ(·) ∈ PC1(R,L(Cn)) and a constant matrix

Λ ∈ L(Cn).

To the fundamental matrix X(t) there corresponds a unique matrix M such that

X(t+T ) = MX(t) for all t ∈ R. Here, M is called the monodromy matrix of equation

(2.4.1). The eigenvalues µ1, . . . , µn of M are called Floquet multipliers of (2.4.1). The

eigenvalues λ1, . . . , λn of Λ are called the characteristic exponents of (2.4.1).

Remark 2.4.2 In order to calculate the multipliers µ1, . . . , µn of (2.4.1), we have to

choose an arbitrary fundamental matrix X(t) of (2.4.1) and calculate the eigenvalues

of the matrix

M = W (t0 + T, t0) = X(t0 + T )X−1(t0) (2.4.2)

where t0 ∈ R is fixed. If X(0) = E then we can choose M = X(T ) as the monodromy

matrix.

See Chapter 4 for an application of a linear impulsive system.

Theorem 2.4.3 Let conditions H4.1-H4.3 hold. Then µ ∈ C is a Floquet multiplier

of (2.4.1) if and only if there exists a non-trivial solution ϕ(t) such that ϕ(t + T ) =

µϕ(t) for all t ∈ R.

Theorem 2.4.4 Let conditions H3.1-H3.3 hold. Then equation (2.4.1) has a non-

trivial kT -periodic solution if and only if the kth power of at least one of its multipliers

equals 1.
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Now we consider stability of the linear T -periodic impulsive equation. The mul-

tipliers of equation (2.4.1) completely characterize its stability. This is seen from the

following theorem and the relation

1

T
ln |µj| = Re(λj) (j = 1, . . . , n)

between the multipliers µj of the monodromy matrix M, and the real parts of the

eigenvalues λj of the matrix Λ.

Theorem 2.4.5 Suppose conditions H4.1-H4.3 hold. Then the solution to equation

(2.4.1) is

1. stable if and only if all multipliers µj satisfy |µj| ≤ 1; for those multipliers for

which |µj| = 1, the corresponding characteristic exponent (which has zero real

part) is a simple zero of the characteristic polynomial of Λ,

2. asymptotically stable if and only if all multipliers satisfy |µj| < 1, and

3. unstable if |µj| > 1 for some j.

2.4.1 Example

Linear homogeneous example using monodromy matrix

Consider
dx

dt
= ωy

dy

dt
= −ωx t 6= τk (t ∈ R)

∆x = 0 ∆y =
a

ω
x+ by t = τk (k ∈ Z).

(2.4.3)

Denote

A =





0 ω

−ω 0



 , B =





0 0
a

ω
b



 , E =





1 0

0 1



 .
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The monodromy matrix is

M = W (τ0 + T, τ+
0 )

= (E +B)eAT

=





1 0
a

ω
1 + b









cos(ωT ) sin(ωT )

− sin(ωT ) cos(ωT )





=





cos(ωT ) sin(ωT )
a

ω
cos(ωT ) − (b+ 1) sin(ωT )

a

ω
sin(ωT ) + (b+ 1) cos(ωT )





and its multipliers µj (j = 1, 2) satisfy the equation

µ2 −
[ a

ω
sin(ωT ) + (b+ 2) cos(ωT )

]

µ+ b+ 1 = 0. (2.4.4)

By means of Theorem 2.4.4, we shall investigate the existence of T - and 2T -

periodic solutions.

(i) Existence of T-periodic solutions. From Theorem 2.4.4, system (2.4.3) has

non-trivial T -periodic solutions if and only if µ = 1 is a root of (2.4.4); that is, if

a

ω
sin(ωT ) + (b+ 2) cos(ωT ) = b+ 2 (2.4.5)

or

sin
(1

2
ωT
)[ a

ω
cos
(1

2
ωT
)

− (b+ 2) sin
(1

2
ωT
)]

= 0. (2.4.6)

Let x = x(t), y = y(t) be a T -periodic solution of (2.4.3) and x(τ+
0 ) = x0,

y(τ+
0 ) = y0. Then z0 = [x0 y0]

T must satisfy the system Mz0 = z0 (since, by

Theorem 2.4.4, µ = 1) or, in detail, the system
(

cos(ωT ) − 1
)

x0 + sin(ωT )y0 = 0
[ a

ω
cos(ωT ) − (b+ 1) sin(ωT )

]

x0

+
[ a

ω
sin(ωT ) + (b+ 1) cos(ωT ) − 1

]

y0 = 0.

(2.4.7)

The following cases are possible.
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(i.1) Let sin
(

1
2
ωT
)

= 0; that is, T = 2kπ/ω (k ∈ N). Condition (2.4.6) is satisfied

and system (2.4.7) is reduced to the equation

a

ω
x0 + by0 = 0.

For τj < t ≤ τj+1, we have a solution





x(t)

y(t)



 = e(t−τj)A





x0

y0



 .

Solving, we get

x(t) = x0 cosω(t− τj) + y0 sinω(t− τj)

y(t) = −x0 sinω(t− τj) + y0 cosω(t− τj),

where x(τ−j+1) = x0, y(τ
−
j+1) = y0 due to periodicity. Thus, for t = τj+1,

∆x = 0, ∆y =
a

ω
x0 + by0 = 0;

that is, the T -periodic solutions starting at t = τ+
0 from the point (x0, y0) of

the straight line (a/ω)x+ by = 0 are continuous.

(i.2) Let sin 1
2
ωT 6= 0, a = 0 and b = −2. Condition (2.4.6) is satisfied for each

T > 0, T 6= 2kπ/ω and, from condition (2.4.7), we have

(

cos(ωT ) − 1
)

x0 + sin(ωT )y0 = 0

sin(ωT )x0 −
(

cos(ωT ) − 1
)

y0 = 0.

Using the identities

cos a+ 1 = 2 cos2 a

2

sin a = 2 sin
a

2
cos

a

2
,
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the T -periodic solutions start at t = τ+
0 from the point (x0, y0) of the straight

line

−x0 + cot
(1

2
ωT
)

y0 = 0.

(i.3) Let sin 1
2
ωT 6= 0, a 6= 0 and let T satisfy the condition

cot
1

2
ωT =

(b+ 2)ω

a
.

Then, from the first equation in condition (2.4.7), and the fact that 1− cos a =

2 sin2 a
2
, the T -periodic solutions of (2.4.3) start from the points (x0, y0) for

which

−ax0 + (b+ 2)ωy0 = 0.

(ii) 2T -periodic solutions of system (2.4.3). From Theorem 2.4.4, there exists

a non-trivial 2T -periodic solution if and only if the second power of at least one of

its multipliers equals 1. The eigenvalues of the matrix M2 are mj = µ2
j (j = 1, 2),

where µj are the eigenvalues of the monodromy matrixM and satisfy equation (2.4.4).

Hence they must satisfy m2 + (m1 +m2)m+m1m2 = 0, where

m1 +m2 = µ2
1 + µ2

2 = (µ1 + µ2)
2 − 2µ1µ2

=
[ a

ω
sin(ωT ) + (b+ 2) cos(ωT )

]2

− 2(b+ 1)

m1m2 = µ2
1µ

2
2 = (b+ 1)2;

that is, mj (j = 1, 2) satisfy the equation

m2 −
{[ a

ω
sin(ωT ) + (b+ 2) cos(ωT )

]2

− 2(b+ 1)
}

m+ (b+ 1)2 = 0. (2.4.8)

System (2.4.3) has non-trivial 2T -periodic solutions if and only if m = 1 is a solution

of (2.4.8); that is, if

[ a

ω
sin(ωT ) + (b+ 2) cos(ωT )

]2

= (b+ 2)2. (2.4.9)
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Then z0 = [x0 y0]
T must satisfy the system M2z0 = z0 or (M −M−1)z0 = 0.

In view of

M−1 =
1

b+ 1







a

ω
sin(ωT ) + (b+ 1) cos(ωT ) − sin(ωT )

− a

ω
cos(ωT ) + (b+ 1) sin(ωT ) cos(ωT )






,

the system (M −M−1)z0 = 0 takes the form

sin(ωT )
[ a

ω
x0 + (b+ 2)y0

]

= 0

(b+ 2)
[ a

ω
cos(ωT ) − (b+ 1) sin(ωT )

]

x0

+
[

(b+ 1)
a

ω
sin(ωT ) + b(b+ 2) cos(ωT )

]

y0 = 0.

(2.4.10)

The following cases are possible.

(ii.1) Let sinωT = 0; that is, T = kπ/ω (k ∈ N). In this case, condition (2.4.9) is

satisfied and system (2.4.10) is reduced to the equation

(b+ 2)
( a

ω
x0 + by0

)

= 0.

Then

(ii.1.1) If b = −2, then all solutions of (2.4.3) are periodic with period T1 = 2T =

2kπ/ω.

(ii.1.2) If b 6= −2, then T1 = 2kπ/ω is the period of the solutions starting at t = τ+
0

from the points (x0, y0) of the straight line (a/ω)x+by = 0. These motions

are continuous (case (i.1)).

(ii.2) Let sinωT 6= 0, a = 0 and b = −2. Then conditions (2.4.9) and (2.4.10) are

satisfied and all solution of (2.4.3) have period T1 = 2T 6= 2kπ/ω.

(ii.3) Let sinωT 6= 0, a 6= 0 and b 6= −2 and let T satisfy condition (2.4.9) which can
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be written in the form

a2

ω2
sin2(ωT ) + 2

a

ω
(b+ 2) sin(ωT ) cos(ωT ) = (b+ 2)2(cos2(ωT ) + 1)

2ωa(b+ 2) cos(ωT ) sin(ωT ) = sin2(ωT )ω2(b+ 2)2 − sin2(ωT )a2

cot(ωT ) =
ω2(b+ 2)2 − a2

2ωa(b+ 2)
.

Then equation (2.4.3) has 2T -periodic solutions starting from the points (x0, y0)

of the straight line

a

ω
x− (b+ 2)y = 0.

This is calculated using the first equation in condition (2.4.10).

When the solutions have a period of T (or 2T ), then the multipliers of equation (2.4.3)

are µ1 = 1, µ2 = b+ 1 (or m1 = 1, m2 = (b+ 1)2). (These are found by substituting

equation (2.4.5) into equation (2.4.4) and solving µ2 − (b+ 2)µ+ (b+ 1) = 0.) These

periodic motions are stable if |b+ 1| < 1 or −2 < b < 0.

Biological example: solving for a T -periodic solution

Consider a simple two-compartmental model of drug distribution in the human body.

It is assumed that the drug, which is administered orally, is first dissolved in the

gastro-intestinal tract. The drug is then absorbed into the so-called apparent volume

of distribution, and finally is eliminated from the system by the kidneys. Let x(t) and

y(t) denote, respectively, the amount of the drug at time t in the gastro-intestinal

tract and the apparent volume of distribution, and let µ > 0 and λ > 0 be relevant

rate constants. Then the dynamical system of this model is

dx

dt
= −µx dy

dt
= µx− λy.

At the moments of time τn (τn < τn+1, n ∈ N), let the sick person take doses δn > 0

of the medicine so that

∆x = δn △y = 0 t = τn. (2.4.11)
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For some diseases, it is necessary that the doses of medicine be taken periodically

(τn = nT ) and be fixed: δn = δ (n ∈ N). Some constraints are usually imposed

on the value of the dose δ. On the one hand, it must be large enough to produce

the desired therapeutic effect; on the other hand, it cannot exceed a certain bound

to avoid harmful effects of overdose of the medicine. The following problem arises:

Determine the dose δ > 0 so that the T -periodic solution x(t), y(t) of the impulsive

system
dx

dt
= −µx dy

dt
= µx− λy t 6= nT

∆x = δ △y = 0 t = nT,
(2.4.12)

satisfies the inequalities

x(t) ≤ x∗ y(t) ≥ y∗, (2.4.13)

where 0 < y∗ < x∗. We choose these inequalities so that the amount of drug dissolved

in the intestinal tract is small and that the amount of drug absorbed in the volume

of distribution (the entire body) is large. We set y∗ < x∗ so that the amount of

drug absorbed in the body is larger than the amount of drug being dissolved in the

intestinal tract.

Denote

z =





x

y



 , A =





−µ 0

µ −λ



 , b =





δ

0



 , z+
0 = z(0+) =





x+
0

y+
0



 .

First, note that the eigenvalues −µ and −λ of the matrix A are negative. Then

the homogeneous system z′ = Az is exponentially stable and has no non-trivial T -

periodic solution.



2. Overview of impulsive differential equations 33

z(τ
k

−
)

y

0

z(τ
k

+
)

xx+x−

Figure 2.5: Solution to the periodic orbit of equation (2.4.12), where the
dotted line is the impulse.

Solving for the fundamental matrix, we have

eAt =





e−µt 0
µ

λ− µ
(e−µt − e−λt) e−λt



 .

In order to determine the initial value, we use the condition of T -periodicity

z(T+) = z(0+) (see Figure 2.5), and the fact that z−1 = eAT z+
0 and z+

1 = z+
0 , which

implies that

z+
1 − z−1 =





δ

0



 = b

z+
0 − eAT z+

0 = b

(E − eAT )z+
0 = b.

Now we can determine z+
0 , which allows us to determine, for t ∈ (0, T ], the T -periodic

solution of (2.4.12), which has the form z(t) = eAtz+
0 since there are no nonlinear terms
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and we only have one impulse for t ∈ (0, T ]. We have

z+
0 =

1

(1 − e−µT )(1 − e−λT )





1 − e−λT 0
µ

λ− µ
(e−λT − e−µT ) 1 − e−µT









δ

0





and so

z(t) = eAt
δ

(1 − e−µT )(1 − e−λT )





1 − e−λT

µ

λ− µ
(e−λT − e−µT )



 .

Thus our solution is

x(t) =
δ

1 − e−µT
e−µt

y(t) =
δµ

λ− µ

[ e−µt

1 − e−µT
− e−λt

1 − e−λT

]

,

for 0 ≤ t ≤ T . We have that x(t) ≤ x(0+) and y(t) ≥ y(0+) since

(x+ y)′ = −λz

≥ λ(x+ y),

and

(x+ y) ≥ (x0 + yo)e
−λt,

meaning the min(x+ y) = (x0 + y0), and

x(t) + y(t) ≥ x0 + y0

y(t) ≥ y0 + x0 − x(t)

gives y(t) ≥ y(0+) since x(t) ≤ x(0+). Thus, conditions (2.4.13) are met if

y∗
(λ− µ)(1 − e−µT )(1 − e−λT )

µ(e−µT − e−λT )
≤ δ ≤ x∗(1 − e−µT ).
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2.5 Linear non-homogeneous periodic equations

Consider the linear non-homogeneous T -periodic impulsive differential equation

dx

dt
= A(t)x+ g(t) t 6= τk

∆x = Bkx+ hk t = τk.

(2.5.1)

Suppose that conditions H4.1-H4.3 hold, as well as the following condition:

H5 g(·) ∈ PC(R,Cn), hk ∈ C
n (k ∈ Z) and

g(t+ T ) = g(t), hk+q = hk (t ∈ R, k ∈ Z).

We shall investigate the question of existence of a T -periodic solution of equation

(2.5.1).

From the variation of constants formula in Section 2.3.3, it follows that the

solution x(t) of (2.5.1) has the form

x(t) = X(t)x(0) +

∫ t

0

X(t)X−1(s)g(s)ds+
∑

0≤τk<t

X(t)X−1(τ+
k )hk, (2.5.2)

where X(t) = W (t, 0) is the normalized (at t0 = 0) fundamental matrix of equation

(2.4.1).

The solution x(t) will be T -periodic if x(T ) = x(0), or if

(E −X(T ))x(0) =

∫ T

0

X(T )X−1(s)g(s)ds+
∑

0≤τk<T

X(T )X−1(τ+
k )hk. (2.5.3)

2.5.1 Non-critical case: det(E −X(T )) 6= 0

We have, from Remark 2.4.2, that M = X(T ) is the monodromy matrix of the

homogeneous equation (2.4.1) since t0 = 0. The condition det(E −X(T )) 6= 0 means

that all multipliers of equation (2.4.1) are distinct from 1; that is, equation (2.4.1)

has no T -periodic solutions other than x ≡ 0. In this case, equation (2.5.3) has a
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unique solution

x(0) = [E −X(T )]−1
[

∫ T

0

X(T )X−1(s)g(s)ds+
∑

0≤τk<T

X(T )X−1(τ+
k )hk

]

. (2.5.4)

Hence, equation (2.5.1) has a unique T -periodic solution

x̄(t) =X(t)[E −X(T )]−1
[

∫ T

0

X(T )X−1(s)g(s)ds+
∑

0≤τk<T

X(T )X−1(τ+
k )hk

]

+

∫ t

0

X(t)X−1(s)g(s)ds+
∑

0≤τk<t

X(t)X−1(τ+
k )hk.

(2.5.5)

Theorem 2.5.1 Suppose conditions H4.1-H4.3 and H5 hold and let the homogeneous

equation (2.4.1) have no non-trivial T -periodic solutions. Then the non-homogeneous

equation (2.5.1) has a unique T -periodic solution x̄(t).

Remark 2.5.2 If all multipliers µj of equation (2.4.1) are such that |µj| < 1, j =

1, . . . , n, then the T -periodic solution x̄(t) of (2.5.1) is exponentially stable.

See Chapter 4 for an application of a nonlinear impulsive system.

2.5.2 Critical case: det(E −X(T )) = 0

Consider the so-called critical case when the homogeneous equation (2.4.1) has a

nontrivial T -periodic solution; that is, when at least one of the multipliers of equation

(2.4.1) equals 1. Then det(E−X(T )) = 0 and equation (2.5.3) may have no solution.

In this case, equation (2.5.1) will not have a T -periodic solution either. The existence

of such a solution is determined by relations between the free terms g(t) and hk of

equation (2.5.1) and the T -periodic solution of the adjoint equation with respect to

equation (2.4.1):
dy

dt
= −A∗(t)y t 6= τk

∆y = −(E +B∗
k)

−1B∗
ky t = τk,

(2.5.6)
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where A∗(t) and B∗
k are the conjugate transposes of A(t) and Bk, respectively.

Note that the adjoint equation is a linear differential equation usually derived

integration by parts. If H(t, s) is the Cauchy matrix of the adjoint equation, then

H(t, s) = [U∗(t, s)]−1 where U(t, s) is the Cauchy matrix of the homogeneous equation

(2.4.1).

Lemma 2.5.3 Let A ∈ PC(R,L(Cn)), Bk ∈ L(Cn) and det(E + Bk) 6= 0 (k ∈ Z).

Then:

1. For any two solutions x(t) and y(t) of the mutually adjoint equations (2.4.1)

and (2.5.6), the following identity is valid

(x(t)|y(t)) = const. = (x(0)|y(0)) (t ∈ R), (2.5.7)

where (x|y) =
∑n

i=1 xiy
∗
i is the scalar product in C

n.

2. Two fundamental matrices X(t) and Y (t) of the mutually adjoint equations

(2.4.1) and (2.5.6) satisfy the identity

Y ∗(t)X(t) ≡ C (t ∈ R), (2.5.8)

where C ∈ L(Cn) is a constant matrix.

3. If identity (2.5.8) is valid, where X(t) is a fundamental matrix of equation

(2.4.1), C ∈ L(Cn) is a non-singular matrix, then Y (t) is a fundamental matrix

of equation (2.5.6).

Consider the following linear algebraic equations:

Ax = b (2.5.9)

Ay = 0 (2.5.10)

A∗z = 0 (2.5.11)

where A ∈ L(Cn) and b, x, y, z ∈ C
n.
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Lemma 2.5.4 The following assertions are valid.

1. The mutually adjoint homogeneous equations (2.5.10) and (2.5.11) have the

same number, m, of linearly independent solutions, and

m = n− rank(A) = n− rank(A∗).

2. If z1, . . . , zm are the linearly independent solutions of equation (2.5.11), then

the non-homogeneous equation (2.5.9) has a solution if and only if

(zj|b) = 0 (j = 1, . . . ,m).

3. If (zj|b) = 0 (j = 1, . . . ,m), then there exists a unique solution x = x̄ of equation

(2.5.9) which satisfies the conditions

(yj|x̄) = 0 (j = 1, . . . ,m),

where y1, . . . , ym are linearly independent solutions of equation (2.5.10). This

solution is defined by the formula

x̄ = Q−1b,

where Q = A − ZY ∗, Z = [z1, . . . , zm] ∈ L(Cn,Cm) and Y = [y1, . . . , ym] ∈
L(Cn,Cm).

This lemma comes directly from linear algebra. It allows us to take the solutions

of the homogeneous and adjoint equations and find a solution to the non-homogeneous

equation (assertion 3). Next we look at a similar theorem for an impulsive differential

equation with T -periodic solutions.

Theorem 2.5.5 Let conditions H4.1-H4.3 and H5 hold and let the homogeneous

equation (2.4.1) have m linearly independent T -periodic solutions ϕ1(t), . . . , ϕm(t)

(1 ≤ m ≤ n). Then:
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1. The adjoint equation (2.5.6) also has m linearly independent T -periodic solu-

tions ψ1(t), . . . , ψm(t).

2. Equation (2.5.1) has a T -periodic solution if and only if the following conditions

are met

∫ T

0

ψ∗
j (t)g(t)dt+

∑

0≤τk<T

ψ∗
j (τ

+
k )hk = 0 (j = 1, . . . ,m). (2.5.12)

3. If conditions (2.5.12) are met, then each T -periodic solution of equation (2.5.1)

has the form

x(t) = c1ϕ1(t) + · · · + cmϕm(t) + xp(t),

where xp(t) is a particular T -periodic solution of (2.5.1).

4. If conditions (2.5.12) are met, then equation (2.5.1) has a unique T -periodic

solution x̄(t) which satisfies the condition

(ϕi(0)|x̄(0)) = 0 (i = 1, . . . ,m). (2.5.13)

2.5.3 Examples

Scalar form

Consider the case when the T -periodic equation (2.5.1) is scalar; that is, it has the

form
dx

dt
= a(t)x+ g(t) t 6= τk

∆x = bkx+ hk t = τk, k ∈ Z,

(2.5.14)

where a(·), g(·) ∈ PC(R,C); bk, hk ∈ C, 1 + bk 6= 0 (k ∈ Z).

The Cauchy matrix for the corresponding homogeneous equation

dx

dt
= a(t)x t 6= τk

∆x = bkx t = τk

(2.5.15)
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is given by

X(t, s) =
∏

s≤τk<t

(1 + bk) exp
(

∫ t

s

a(u)du
)

(−∞ < s ≤ t <∞).

From Remark 2.4.2, the unique multiplier of equation (2.5.15) is calculated by

solving for the eigenvalues of M = W (t0 + T, t0), where t0 + T = τ+
q and t0 = τ+

0

for a periodic solution with q impulses, and W (t, s) is the Cauchy matrix of equation

(2.5.15).

Thus the multiplier of equation (2.5.15) is

µ = X(τ+
q , τ

+
0 ) =

q
∏

k=1

(1 + bk) exp
(

∫ τq

τ0

a(u)du
)

. (2.5.16)

Case 1. If µ 6= 1, then the homogeneous equation of (2.5.15) has no periodic

solutions and the non-homogeneous equation (2.5.14) has a unique T -periodic solution

x̄(t) =X(t, τ+
0 )

1

1 − µ

[

∫ τq

τ0

X(τ+
q , s)g(s)ds+

q
∑

k=1

X(τ+
q , τ

+
k )hk

]

+

∫ t

τ0

X(t, s)g(s)ds+
∑

τ0<τk<t

X(t, τ+
k )hk.

(2.5.17)

Moreover, the solution x̄(t) is exponentially stable if |µ| < 1 and unstable if |µ| > 1.

Note that x̄(t) is calculated using the properties of the fundamental matrix; ie,

X(t, s) = X(t)X−1(s) and X(0) = E and without loss of generality the property

x(τ+
0 ) = 1, which is an assumption made later in this thesis.

Case 2. If µ = 1, then all solutions of (2.5.15) are T -periodic. Then all solutions

of the adjoint equation
dy

dt
= −a∗(t)y t 6= τk

∆y = − b∗k
1 + b∗k

y t = τk
(2.5.18)
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are also T -periodic (from Theorem 2.5.5). In particular, the function

y = Ψ(t) =
∏

τ0≤τk<t

1

1 + b∗k
exp

(

−
∫ t

τ0

a∗(u)du
)

is a T -periodic solution of (2.5.18) for which Ψ(τ+
q ) = Ψ(τ+

0 ) = 1. This is a solution

to (2.5.18), since it is a form of the Cauchy matrix for the adjoint equation; ie, a

fundamental solution.

If, in this case, Condition 2 in Theorem 2.5.5

∫ τq

τ0

Ψ∗(t)g(t)dt+

q
∑

k=1

Ψ∗(τ+
k )hk = 0 (2.5.19)

is met, then all solutions of equation (2.5.14)

x(t) = X(t, τ+
0 )x(0) +

∫ t

τ0

X(t, s)g(s)ds+
∑

τ0<τk<t

X(t, τ+
k )hk

are T -periodic and stable.

Matrix form

Consider the second-order impulsive differential equation

ẍ+ 2αẋ+ β2x = f(t) t 6= τk

∆x = gk t = τk

∆ẋ = hk t = τk,

(2.5.20)

where x, α, β, gk, hk ∈ R, f(·) ∈ PC(R,R).

In matrix form, equation (2.5.20) can be written

dz

dt
= Az + F (t) t 6= τk

∆z = Ik t = τk,

(2.5.21)

where
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z =





x

ẋ



 , A =





0 1

−β2 −2α



 , F (t) =





0

f(t)



 , Ik =





gk

hk



 .

The eigenvalues λ1,2 of the matrix A are determined from the characteristic

equation

λ2 + 2αλ+ β2 = 0, (2.5.22)

so that λ1,2 = −α ±
√

α2 − β2. The normalized (at t = 0) fundamental matrix Φ(t)

of the homogeneous equation

dΦ

dt
= AΦ (2.5.23)

is determined in the various cases by the following formulae.

(i) If α2 − β2 > 0, then the roots of (2.5.22) are real and distinct, and

Φ(t) =









λ1e
λ2t − λ2e

λ1t

λ1 − λ2

eλ1t − eλ2t

λ1 − λ2

−λ1λ2
eλ1t − eλ2t

λ1 − λ2

λ1e
λ1t − λ2e

λ2t

λ1 − λ2









(2.5.24)

(ii) If α2 = β2, then the roots of (2.5.22) are real, λ1 = λ2 = −α and

Φ(t) =





(1 + αt)e−αt te−αt

−α2te−αt (1 − αt)e−αt



 (2.5.25)

(ii) If ω2 = β2 −α2 > 0, then the roots of (2.5.22) are complex, λ1 = λ∗2 = −α+ iω

and

Φ(t) =







e−αt

ω
[ω cosωt+ α sinωt]

e−αt

ω
sinωt

−ω
2 + α2

ω
e−αt sinωt

e−αt

ω
[ω cosωt− α sinωt]






. (2.5.26)
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The solution z(t) of (2.5.21) with z(τ+
0 ) =





x0

ẋ0



 has the form

z(t) = Φ(t− τ0)z(τ
+
0 ) +

∫ t

τ0

Φ(t− s)F (s)ds+
∑

τ0<τk<t

Φ(t− τk)Ik (t > τ0)

from which we find the solution x(t) of (2.5.20) with x(τ+
0 ) = x0, ẋ(τ

+
0 ) = ẋ0 is

x(t) =ϕ11(t− τ0)x0 + ϕ12(t− τ0)ẋ0 +

∫ t

τ0

ϕ12(t− s)f(s)ds

+
∑

τ0<τk<t

[ϕ11(t− τk)gk + ϕ12(t− τk)hk] (t > τ0) (2.5.27)

where ϕij, i, j = 1, 2, are the entries of the matrix Φ(t) defined by one of the formulae

(2.5.24), (2.5.25) or (2.5.26).

Let us discuss the question of the existence of T -periodic solutions of equation

(2.5.20) under the assumption that it is T -periodic; that is, that there exists a q ∈ N

such that

τk+q = τk + T, gk+q = gk, hk+q = hk, f(t+ T ) = f(t) (t ∈ R, k ∈ Z).

The equation for the initial condition z(τ+
0 ) of the T -periodic solution of (2.5.21)

is

(E − Φ(T ))z(τ+
0 ) =

∫ τq

τ0

Φ(τq − s)F (s)ds+

q
∑

k=1

Φ(τq − τk)Ik. (2.5.28)

or in coordinate form

(1 − φ11(T ))x0 − φ12(T )ẋ0 = Q1 (2.5.29)

−φ21(T ))x0 + (1 − φ22(T ))ẋ0 = Q2, (2.5.30)

where

Q1 =

∫ τq

τ0

φ12(τq − s)f(s)ds+

q
∑

k=1

[φ11(τq − τk)gk + φ12(τq − τk)hk]

Q2 =

∫ τq

τ0

φ22(τq − s)f(s)ds+

q
∑

k=1

[φ21(τq − τk)gk + φ22(τq − τk)hk].
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The following cases are possible.

(i) λ1 6= 2mπi/T , λ2 6= 2mπi/T for each m ∈ Z. Then the multipliers µi = eλiT

of equation (2.5.23) are distinct from 1, and equation (2.5.20) has a unique T -

periodic solution. The initial values x0, ẋ0 of this equation are determined from

system (2.5.28).

(ii) λ1 and λ2 are real and λ1λ2 = 0. The following subcases are possible.

(ii.1) λ1 = λ 6= 0 and λ2 = 0. Then equation (2.5.23) has one linearly indepen-

dent T -periodic solution

Φ1(t) =





1

0



 .

The adjoint equation to (2.5.23), Ψ′ = −A∗Ψ, also has one linearly inde-

pendent T -periodic solution

Ψ1(t) =





1

−1

λ





and the compatibility condition from Theorem 2.5.5 takes the form (with

Ψ∗(t) the matrix transpose of Ψ(t))

−
∫ τq

τ0

f(u)

λ
du+

q
∑

k=1

gk −
q
∑

k=1

hk
λ

= 0. (2.5.31)

If condition (2.5.31) is met, then the system (2.5.28) for the determination

of x0, ẋ0, using the fact that

Φ(t) =







1
eλt − 1

λ

0 eλt






,

is reduced to the equation

(1 − eλT )ẋ0 =

∫ τq

τ0

eλ(τq−u)f(u)du+

q
∑

k=1

eλ(τq−τk)hk,
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where x0 can be arbitrary. Thus, in this case, equation (2.5.20) has a

one-parameter family of T -periodic solutions.

(ii.2) λ1 = λ2 = 0. In this case, equation (2.5.23) and the adjoint equation

Ψ′ = −A∗Ψ each have one linearly independent T -periodic solution

Φ1(t) =





1

0



 and Ψ1(t) =





0

1



 ,

respectively. The compatibility condition from Theorem 2.5.5 takes the

form
∫ τq

τ0

f(u)du+

q
∑

k=1

hk = 0. (2.5.32)

If condition (2.5.32) is met, then x0 can be arbitrary and we have, from

equation (2.5.30),

T ẋ0 =

∫ τq

τ0

uf(u)du+

q
∑

k=1

τkhk −
q
∑

k=1

gk.

Consequently, also in this case, equation (2.5.20) has a one-parameter fam-

ily of T -periodic solutions.

(iii) λ1 = λ∗2 = iω = 2mπi/T for some m ∈ Z (α = 0). Equation (2.5.23) and

the adjoint equation Ψ′ = −A∗Ψ each have two linearly independent T -periodic

solutions; or, more concretely,

Φ(t) =





cosωt
1

ω
sinωt

−ω sinωt cosωt



 , Ψ(t) =





cosωt ω sinωt

− 1

ω
sinωt cosωt



 .

The compatibility condition from Theorem 2.5.5 takes the form
∫ τq

τ0

cosωu · f(u)du+

q
∑

k=1

ω sinωτk · gk +

q
∑

k=1

cosωτk · hk = 0,

∫ τq

τ0

sinωu · f(u)du−
q
∑

k=1

ω cosωτk · gk +

q
∑

k=1

sinωτk · hk = 0.

If these conditions are met, then system (2.5.20) is satisfied for all x0, ẋ0.

Consequently, in this case, all solutions of equation (2.5.28) are T -periodic.
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2.6 Nonlinear equations

Consider the T -periodic impulsive equation with unfixed moment of impulse effect

dx

dt
= f(t, x, ǫ) t 6= τk(x, ǫ)

∆x = Ik(x, ǫ) t = τk(x, ǫ),

(2.6.1)

where ǫ ∈ J = (−ǭ, ǭ) is a small parameter and τk(x, ǫ) < τk+1(x, ǫ) for x ∈ R
n,

ǫ ∈ J . Suppose that for ǫ = 0, equation (2.6.1) has a T -periodic solution x = φ(t)

with moments of impulse effect τk.

We associate with the solution φ(t) the variational equation

dz

dt
=
∂f

∂x
(t, φ(t), 0)z t 6= τk

∆z = Lkz t = τk,

(2.6.2)

where

Lk =
∂Ik
∂x

+
[∂Ik
∂x

fk + fk − f+
k

]

∂τk
∂x

1 − ∂τk
∂x

fk

,

and

fk = f(τ−k , φ(τ−k ), 0) f+
k = f(τ+

k , φ(τ+
k ), 0)

∂Ik
∂x

=
∂Ik
∂x

(φ(τ−k ), 0)
∂τk
∂x

=
∂τk
∂x

(φ(τ−k ), 0).

Remark 2.6.1 In the non-critical case, if the variational equation (2.6.2) is exponen-

tially stable then the T -periodic solution φ(t) of equation (2.6.1) is also exponentially

stable.

The following is valid to show sufficient conditions of the existence of a unique

T -periodic solution.

Consider the T -periodic impulsive equation

dx

dt
= A(t)x+ g(t) + f(t, x, ǫ) t 6= τk(x, ǫ)

∆x = Bkx+ hk + Ik(x, ǫ) t = τk(x, ǫ),

(2.6.3)
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where t ∈ R, k ∈ Z, x ∈ BH = BH(0) ⊂ R
n and ǫ ∈ J = (−ǭ, ǭ) is a small parameter,

and A(t), Bk, g(t) and hk satisfy conditions H4.1-H4.3 and H5, in which C is replaced

by R.

Introduce the following conditions.

H6.1 The function f : R×BH × J → R
n is continuous in the sets (τk, τk+1]×BH × J

(k ∈ Z), and for each k ∈ Z, x ∈ BH and ǫ ∈ J there exists a finite limit of

f(t, y, u) as (t, y, u) → (τk, x, ǫ), t > τk. Moreover,

f(t+ T, x, ǫ) = f(t, x, ǫ) (t ∈ R, x ∈ BH , ǫ ∈ J).

H6.2 The functions Ik : BH × J → R
n are continuous in BH × J and

Ik+q(x, ǫ) = Ik(x, ǫ) (k ∈ Z, x ∈ BH , ǫ ∈ J).

H6.3 There exists a non-negative function µ(ǫ) such that limǫ→0 µ(ǫ) = µ(0) = 0 and

|f(t, x, ǫ)| ≤ µ(ǫ), |Ik(x, ǫ)| ≤ µ(ǫ),

for t ∈ R, k ∈ Z, x ∈ BH and ǫ ∈ J .

H6.4 There exists a non-negative function λ(ǫ) such that limǫ→0 λ(ǫ) = λ(0) = 0 and

|f(t, x, ǫ) − f(t, y, ǫ)| ≤ λ(ǫ)|x− y|

|Ik(x, ǫ) − Ik(y, ǫ)| ≤ λ(ǫ)|x− y|,

for t ∈ R, k ∈ Z, x, y ∈ BH and ǫ ∈ J .

The following theorem is valid.

Theorem 2.6.2 Let the following conditions hold.

1. Conditions H4.1-H4.3, H5 and H6.1-H6.4 are met.

2. The homogenous equation (2.4.1) has no non-trivial T-periodic solutions.
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3. The following inequality is valid:

m = sup
t∈[0,T ]

∣

∣

∣

∣

∣

∫ T

0

G(t, s)g(s) ds+

q
∑

k=1

G(t, τ+
k )hk

∣

∣

∣

∣

∣

< H

where G(t, s) is the Green’s function of the homogenous equation (2.4.1).

Then there exists ǫ0 ∈ (0, ǭ) such that for |ǫ| ≤ ǫ0 equation (2.6.3) has a unique

T-periodic solution xǫ(t) satisfying the inequality

|xǫ(t) − x0(t)| < H −m.

Note that the Green’s function for the homogenous equation (2.4.1) is defined

by

G(t, s)=











































X(t)[E −X(T )]−1X−1(s) 0 < s < t ≤ T

X(t+ T )[E −X(T )]−1X−1(s) 0 < t ≤ s ≤ T

G(t− kT, s− jT ) (kT < t ≤ kT + T

jT < s ≤ jT + T

k ∈ Z, j ∈ Z)

2.7 Nonlinear autonomous equations

Consider the autonomous impulsive equation

dx

dt
= f(x, ǫ) x /∈ σ(ǫ)

∆x = Ik(x, ǫ) x ∈ σ(ǫ),

(2.7.1)

where ǫ ∈ J = (−ǭ, ǭ) is a small parameter and, for each ǫ ∈ J , the set σ(ǫ) is a

hypersurface in R
n.

Suppose that σ(ǫ) consists of q non-intersecting smooth hypersurfaces σk(ǫ) that

are given by the equations φk(x, ǫ) = 0 (k = 1, . . . , q). For ǫ = 0, let equation (2.7.1)
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have a T0-periodic solution x = ϕ(t) with moments of an impulse effect τk and

τk+q = τk + T0 (k ∈ Z),

φk(ϕ(τk)) = 0 (k = 1, . . . , q).

Associate with the solution ϕ(t) the variational equation

dz

dt
=
∂f

∂x
(ϕ(t), 0)z t 6= τk

∆z = Nkz t = τk,

(2.7.2)

where

Nk =
∂Ik
∂x

+
[

f+ − f − ∂Ik
∂x

f
]

∂φ

∂x
∂φ

∂x
f

and

f = f(ϕ(τ−k ), 0), f+ = f(ϕ(τ+
k ), 0),

∂Ik
∂x

=
∂Ik
∂x

(ϕ(τ−k ), 0),
∂φ

∂x
=
∂φ

∂x
(ϕ(τ−k ), 0).

Note that the variation equation is similar to a linearized system. We will use

this fact in order to look at stability of a periodic orbit.

A peculiarity of the autonomous equation (2.7.1) is that the derivative ϕ′(t) of

the solution ϕ(t) is a solution of the variational equation (2.7.2). Indeed, for t 6= τk

we have

[ϕ′(t)]′ = [f(ϕ(t), 0)]′ =
∂f

∂x
(ϕ(t), 0)ϕ′(t)

and for t = τk we successively obtain

∂φk
∂x

(ϕ(τ−k ), 0)ϕ′(τ−k ) =
∂φk
∂x

(ϕ(τ−k ), 0)f(ϕ(τ−k ), 0),

Nkϕ
′(τ−k ) =

∂Ik
∂x

ϕ′(τ−k ) +
[

f+ − f − ∂Ik
∂x

f
]

∂φ

∂x
ϕ′(τ−k )

∂φ

∂x
f

= f(ϕ(τ+
k ), 0) − f(ϕ(τ−k ), 0),
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△ϕ′(τk) = ϕ′(τ+
k ) − ϕ′(τ−k ) = f(ϕ(τ+

k ), 0) − f(ϕ(τ−k ), 0) = Nkϕ
′(τ−k ).

If ϕ′(t) 6≡ 0, then ϕ′(t) is a non-zero T0-periodic solution of (2.7.2), and then equation

(2.7.2) has a multiplier µ1 = 1.

We will consider the non-critical case when equation (2.7.2) has no nontrivial T0-

periodic solutions other than ϕ′(t); ie, just one of the multipliers of equation (2.7.2)

equals 1.

2.7.1 Stability in R
2

Consider the two dimensional autonomous system

dx1

dt
= P (x1, x2)

dx2

dt
= Q(x1, x2) φ(x1, x2) 6= 0

∆x1 = a(x1, x2) ∆x2 = b(x1, x2) φ(x1, x2) = 0,

(2.7.3)

where t ∈ R.

Let ~x = ϕ(t), t ∈ R+ be a solution of (2.7.3), with instants of impulsive effect

τk, such that

0 < τ1 < τ2 < ... lim
k→∞

τk = ∞

and let L+ = {~x ∈ R
2 : ~x = ϕ(t), t ∈ R+}. Denote by J+(t0, x0) the maximal interval

of the form (t0, ω) in which the solution x(t; t0, z0) of (2.7.3) is defined.

Let Bη(γ(τ1)) be the ball of radius η centered at ϕ(τ1).

Definition 2.7.1 The solution ~x = ϕ(t) of (2.7.3) is called

1. orbitally stable if, for all ǫ > 0, η > 0 and t0 ∈ R+, there exists δ > 0 such

that for all x0 ∈ R
2, d(x0, L

+) < δ and x0 6∈ B̄η(ϕ(τk)) ∪ B̄η(ϕ(τ+
k )) implies

d(x(t), L+) < ǫ for t ∈ J+(t0, x0) and |t − tk| > η, where x(t) = x(t; t0, x0) is

any solution of (2.7.3) for which x(t+0 ; t0, x0) = x0.

2. orbitally attractive if, for all ǫ > 0, η > 0 and t0 ∈ R+, there exists δ > 0 and

T > 0 such that t0 + T ∈ J+(t0, x0) and d(x0, L
+) < δ and x0 6∈ B̄η(ϕ(τk)) ∪
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B̄η(ϕ(τ+
k )) implies d(x(t), L+) < ǫ for t ≥ t0 +T , t ∈ J+(t0, x0) and |t−τk| > η,

where x(t) = x(t; t0, x0) is any solution of (2.7.3) for which x(t+0 ; t0, x0) = x0.

3. orbitally asymptotically stable if it is orbitally stable and orbitally attractive.

Definition 2.7.2 The solution ~x = ϕ(t) of (2.7.3) has the property of asymptotic

phase if, for all ǫ > 0, η > 0 and t0 ∈ R+, there exists δ > 0, c > 0 and T > |c|
such that t0 + T ∈ J+(t0, x0) and |x0 − ϕ(t0)| < δ implies |x(t + c) − ϕ(t)| < ǫ for

t ≥ t0 + T , t ∈ J+(t0, x0) and |t− τk| > η, where x(t) = x(t; t0, x0) is any solution of

(2.7.3) for which x(t+0 ; t0, x0) = x0.

Asymptotic phase is a nice property in which cycle times come into phase with

the period of the periodic orbit.

Suppose (2.7.3) has a T -periodic solution

p(t) =





ξ(t)

η(t)



 ,

with

∣

∣

∣

∣

dξ

dt

∣

∣

∣

∣

+

∣

∣

∣

∣

dη

dt

∣

∣

∣

∣

6= 0.

Assume further that the periodic solution ~p(t) has q instants of impulsive effect

in the interval (0, T ). Since we have a periodic orbit, one multiplier is equal to 1. The

other is calculated according to the formula

µ2 =

q
∏

k=1

∆k exp
[

∫ T

0

(∂P

∂x
(ξ(t), η(t)) +

∂Q

∂y
(ξ(t), η(t))

)

dt
]

, (2.7.4)

where

∆k =

P+

(

∂b

∂y

∂φ

∂x
− ∂b

∂x

∂φ

∂y
+
∂φ

∂x

)

+Q+

(

∂a

∂x

∂φ

∂y
− ∂a

∂y

∂φ

∂x
+
∂φ

∂y

)

P
∂φ

∂x
+Q

∂φ

∂y

.
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P , Q,
∂a

∂x
,
∂b

∂x
,
∂a

∂y
,
∂b

∂y
,
∂φ

∂x
and

∂φ

∂y
are computed at the point (ξ(τ−k ), η(τ−k )) and

P+ = P (ξ(τ+
k ), η(τ+

k )), Q+ = Q(ξ(τ+
k ), η(τ+

k )).

We then have the following theorem, from Bainov and Simeonov [1], which is an

analogue of the Poincaré criterion.

Theorem 2.7.3 The T -periodic solution ~p(t) of (2.7.3) is orbitally asymptotically

stable and has the property of asymptotic phase if the multiplier µ2 calculated by

(2.7.4) satisfies the condition |µ2| < 1.

The Floquet theory for impulsive dynamical systems in R
n, n ≥ 3, is also de-

veloped in Bainov and Simeonov [1] but calculation of the multipliers is much more

difficult. In practice, the theory is only useful in low-dimensional systems. If we are

in R
2 or the system can be reduced to a two-dimensional system, then we can apply

the results in this section.

2.7.2 Examples: Species-food example

In an isolated medium, let a given species be bred, being fed with a certain resource.

We assume that in the absence of the species the quantity of resource does not change,

and in the absence of resource the species dies out.

If we denote by y(t) and x(t) the absolute or relative quantities of the species

and the resource at the moment t, then the dynamics of the species-food system can

be simulated by the system of ordinary differential equations

dx

dt
= −γxy dy

dt
= −y(ǫ− δx), (2.7.5)

where (x, y) ∈ R
2
+ and γ > 0, δ > 0 are constants.

If x(0) = x0 > 0 and y(0) = y0 > 0, then the solution of system (2.7.5) remains

in R
2
+ (Figure 2.6) and

lim
t→+∞

x(t) = x∞ lim
t→+∞

y(t) = 0



2. Overview of impulsive differential equations 53

(x
0
, y

0
)

x∞

y

0 x

Figure 2.6: The solution to the differential equation (2.7.5) with no impulses.
Given an x0 and y0, the species, y, dies out if the food, x, is not regenerated.

[1]. This means that, if the resource is not regenerated, the species dies out. It turns

out, however, that under appropriately chosen impulse effects on the species-food

system a periodic regime of development of the species is possible.

Consider the following two cases.

Case 1: At certain moments, let the species-food system be subject to an impulsive

effect such that the quantity of food is increased by the amount λ > 0 and the pop-

ulation of the species is decreased by αy. Assume that 0 < α < 1; that is, the whole

species is not exhausted at any time. This system could be applied to water filtration.

A certain species is added to a specific amount of water containing waste (food eaten

by the species). At a specific time, a certain amount of the water containing species

is removed and new water containing waste is added. Thus, the amount of species

decreases while the amount of food increases at specific times.
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x
1

0

(ξ
0
, η

0
)

y

x

(ξ
1
, η

1
)

Figure 2.7: Periodic orbit to equation (2.7.6) with an impulse at x1.

Let these impulse effects occur when the quantity of food reaches a given level

x1 > 0. Thus we obtain the following impulsive system

dx

dt
= −γxy dy

dt
= −y(ǫ− δx) if x 6= x1

∆x = λ △y = −αy if x = x1.

(2.7.6)

Note that this is a state-dependent impulsive system and that the cycle time becomes

a dependent variable.

Let us investigate the questions of the existence of a T -periodic solution of system

(2.7.6) with one impulse effect per period and of the stability of this solution.

Let x = ξ(t), y = η(t) be such a T -periodic solution. Introduce the notation

ξ+
0 = ξ(0+), η+

0 = η(0+), ξ−1 = ξ(T−), η−1 = η(T−), ξ+
1 = ξ(T+), η+

1 = η(T+). Then,

from the condition of T -perodicity, ξ+
1 = ξ+

0 , η+
1 = η+

0 , we obtain

ξ−1 + λ = ξ+
0 (1 − α)η−1 = η+

0 , (2.7.7)

since η+ = −αη− + η−.

For t ∈ (0, T ], the solution x = ξ(t), y = η(t) of system (2.7.6) satisfies the
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relation

ẏ = −ǫy + δxy

γẏ =
( ǫ

x
− δ
)

ẋ

and integrating we get

γ(y − y+
0 ) = ǫ ln

( x

x+
0

)

− δ(x− x+
0 ) (2.7.8)

eγ(η(t)−η
+

0
) =

(x1

ξ+
0

)ǫ

e−δ(ξ(t)−ξ
+

0
). (2.7.9)

In particular, for t = T , we have (since η(T ) = η−1 and ξ(T ) = ξ−1 = x1)

eγ(η
−

1
−η+

0
) =

(x1

ξ+
0

)ǫ

e−δ(x1−ξ
+

0
),

and, in view of (2.7.7), we obtain

η+
0 =

1 − α

αγ

(

ǫ ln
x1

x1 + λ
+ δλ

)

.

From (2.7.7), it follows that η+
0 is positive if

x1 > x∗ =
λ exp(−δλ/ǫ)

1 − exp(−δλ/ǫ) . (2.7.10)

Thus, if condition (2.7.10) holds, then system (2.7.6) has a unique periodic solu-

tion with one impulse effect per period. The period T of this solution can be found,

taking into account the first equation of (2.7.6), (2.7.8) and (2.7.9):

T =

∫ T

0

dt =

∫ x1+λ

x1

1

−γxydx

=

∫ x1+λ

x1

dx
(

γη+
0 + ǫ ln x

x1+λ
− δ(x− x1 − λ)

)

x
. (2.7.11)

The trajectory of the solution x = ξ(t), y = η(t) is given in Figure 2.7.

From formula (2.7.4), we compute the multiplier µ2 of the system in variations

corresponding to the T -periodic solution x = ξ(t), y = η(t):
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∂P

∂x
= −γy ∂Q

∂y
= −ǫ+ δx

∂a

∂x
= 0

∂a

∂y
= 0

∂b

∂x
= 0

∂b

∂y
= −α

∂φ

∂x
= 1

∂φ

∂y
= 0

△1 =
P+(−α+ 1)

P

=
P (ξ+

0 , η
+
0 )(1 − α)

P (ξ−1 , η
−
1 )

=
−γξ+

0 η
+
0 (1 − α)

−γξ−1 η−1
=
ξ+
0 η

+
0 (1 − α)

ξ−1 η
−
1

∫ T

0

(∂P

∂x
+
∂Q

∂y

)

dt =

∫ T

0

(−γη(t) − ǫ+ δξ(t))dt

=

∫ T

0

[ξ′(t)

ξ(t)
+
η′(t)

η(t)

]

dt

=

∫ T

0

d

dt

(

ln(ξ(t)) + ln(η(t))
)

dt

=

∫ T

0

d ln(ξ(t)η(t)))

= ln
ξ−1 η

−
1

ξ+
0 η

+
0

µ2 = △1 exp
{

∫ T

0

(∂P

∂x
+
∂Q

∂y

)

dt
}

= (1 − α)
ξ+
0 η

+
0

ξ−1 η
−
1

ξ−1 η
−
1

ξ+
0 η

+
0

= 1 − α.
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Since µ2 = 1 − α ∈ (0, 1), the T -periodic solution x = ξ(t), y = η(t) of system

(2.7.6) is orbitally asymptotically stable.

Case 2: Let the species-food system be subject to an impulse effect when the

quantity of food reaches the level x1 satisfying condition (2.7.10). Let n > 0 be an

integer and assume that the quantity of food increases by λ under each impulse effect,

while the population of the species decreases by jumps only at the moments of the

impulse effect τk whose ordinal number k is a multiple of n; that is,

△x(τ−k ) = λ,

△y(τ−k ) =







0, if k is not divisible by n,

−αy(τ−k ), if k is divisible by n.

(2.7.12)

First, we shall discover under what initial conditions x(0) = x0 > 0 and y(0) = y0

the impulsive system (2.7.5), (2.7.12) has a periodic solution with period T = τn. Let

x−k = x(τ−k ), x+
k = x(τ+

k ), y−k = y(τ−k ), y+
k = y(τ+

k ) and τ0 = 0.

In view of (2.7.12), the condition of T -periodicity of x+
n = x+

0 , y+
n = y+

0 yields

x−n + λ = ξ+
0 , (1 − α)y−n = y+

0 . (2.7.13)

From equation (2.7.9), it follows that

eγ(y
−

k
−y+

k−1
) =

( x−k
x+
k−1

)ǫ

e−δ(x
−

k
−x+

k−1
) (k = 1, . . . , n)

and, in view of (2.7.12) and (2.7.13), we find successively

y−k − y+
k−1 =

1

γ

(

ǫ ln
x1

x1 + λ
+ δλ

)

≡ z (k = 1, . . . , n),

y−k = y+
0 + kz (k = 1, . . . , n),

y+
0 =

(1 − α)nz

α
.
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Figure 2.8: Solution to equation (2.7.14) with an impulse at x1. Here η∗ is a
threshold value.

From (2.7.10), it follows that y0 is positive. Hence, the solution x = ξ(t), y = η(t) of

system (2.7.5), (2.7.12) satisfying the initial condition ξ(0+) = x0, η(0
+) = y0 is the

unique nontrivial T -periodic solution of this system with n impulse effects per period.

Let us choose a level η∗ = 1
2
(yn−1 + yn) = z(n

α
− 1

2
) as the threshold which causes

the species to return back to the initial condition. Then x = ξ(t), y = η(t) is a

τn-periodic solution of the following autonomous impulsive system

dx

dt
= −γxy dy

dt
= −y(ǫ− δx) if x 6= x1

∆x = λ ∆y =







0 if y < η∗

−αy if y > η∗
if x = x1.

(2.7.14)

The trajectory of this solution is represented in Figure 2.8.

From formula (2.7.4), we compute the multiplier µ2 of the system in variations

corresponding to the τn-periodic solution x = ξ(t), y = η(t) of system (2.7.14):
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∂P

∂x
= −γy ∂Q

∂y
= −ǫ+ δx

∂a

∂x
= 0

∂a

∂y
= 0

∂φ

∂x
= 1

∂φ

∂y
= 0

∂b

∂x
= 0

∂b

∂y
=







0 if y < η∗

−αy if y > η∗

∆k =
P (ξ(τ+

k ), η(τ+
k ))

P (ξ(τ−k ), η(τ−k ))
(k = 1, . . . , n− 1)

=
P (x+

k , y
+
k )

P (x−k , y
−
k )

=
−γx+

k y
+
k

−γx−k y−k
=
x+

0

x−1

∆n =
P (x+

n , y
+
n )(−α+ 1)

P (x−n , y
−
n )

(k = 1, . . . , n− 1)

= (1 − α)
−γx+

n y
+
n

−γx−n y−n
= (1 − α)

x+
0 y

+
0

x−1 y
−
n

∫ T

0

(∂P

∂x
+
∂Q

∂y

)

dt =

∫ τk

τk−1

(−γy − ǫ+ δx)dt

= ln
x−k y

−
k

x+
k−1y

+
k−1

= ln
x−1 y

−
k

x+
0 y

+
k−1

µ2 =
n
∏

k=1

∆k exp
{

∫ τk

τk−1

(∂P

∂x
+
∂Q

∂y

)

dt
}

=
(x0

x1

· x1y1

x0y0

)(x0

x1

· x1y2

x0y1

)

· · ·
(x0

x1

· x1yn−1

x0yn−2

)((1 − α)x0y0

x1yn
· x1yn
x0yn−1

)

= 1 − α.



2. Overview of impulsive differential equations 60

Since µ2 = 1 − α ∈ (0, 1), the τn-periodic solution x = ξ(t), y = η(t) of system

(2.7.6) is orbitally asymptotically stable. The period of this solution can be calculated

from the formula

T =
n
∑

k=1

∫ x1+λ

x1

dx
(

γyk−1 + ǫ ln x
x1+λ

− δ(x− x1 − λ)
)

x
.



Chapter 3

Applications of impulsive

differential equations to the

Human Immunodeficiency Virus

Human Immunodeficiency Virus (HIV) is one of the most dangerous sexually trans-

mitted infections ever encountered. There have been many attempts to control the

virus (condoms, drugs, vaccines, microbicides, male circumcision, education). At the

end of 2010, an estimated 34 million people (31.6 million–35.2 million) were living with

HIV worldwide, up 17% from 2001 [6]. There were 2.7 million new HIV infections in

2010, which was 15% less than in 2001, and 21% below the number of new infections

at the peak of the epidemic in 1997 [6]. Of the 33.3 million infected, approximately

390 thousand are children [6, 7]. The number of people dying of AIDS-related causes

fell to 1.8 million in 2010, down from a peak of 2.2 million in the mid-2000s [6, 8].

Sub-Saharan Africa has the largest population of seropositive individuals, accounting

for approximately 70% of new infections in 2010 [6]. This extremely high number of

HIV cases is largely due to the lack of education, the high number of rape cases, glob-

alization, lack of resources, capitalism, poverty, etc [9, 10, 11]. Antiretroviral drugs
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have decreased the number of deaths by diminishing the viral load levels in infected

individuals. Unfortunately, the costs of antiretroviral drugs limit the number of HIV-

positive individuals in poor countries who can efficiently take therapy. More than

5 million people in low- and middle-income countries were receiving antiretroviral

therapy by the end of 2009, but that left more than 9 million untreated HIV-positive

people in these countries [8].

HIV is an infection that is accompanied by a profound depletion in the number

of CD4+ T lymphocytes, and can be transmitted by blood or other body fluids.

The number of years it takes HIV to cause a large depletion in T cells and lead

to AIDS (Acquired Immunodeficiency Syndrome) varies between individuals, but is

approximately 10 to 12 years [12].

The virus is carried in infected CD4+ T cells, dendritic cells and macrophages

[12]. It is also a free virus in blood, semen, vaginal fluids and breast milk, meaning

the virus can easily travel without integrating into a cell [12]. HIV is most commonly

spread by sexual intercourse, contaminated needles used for drug injections and from

mother to foetus [12]. Mothers with HIV who breastfeed transmit HIV 40% of the

time [12]. In 2009, around 53% of the 1.4 million HIV-positive, pregnant women

in low- and middle-income countries received antiretroviral therapy to prevent the

transmission of HIV to their babies [8].

Once a person is affected with HIV/AIDS, they are infected for life; there is no

cure for this disease. More people than ever are living with HIV, largely due to greater

access to treatment [6]. The antiretroviral coverage is increasing in sub-Saharan

Africa, raising 20% between 2009 and 2010 [6]. There are a number of antiretroviral

drugs that have been created in order to keep the CD4+ T cells at a high enough level

in order to combat any other antigen that may be encountered by an HIV-positive

patient. Drugs such as reverse transcriptase inhibitors, protease inhibitors, integrase

inhibitors and fusion inhibitors will stop the production of new infectious virions [14].

Reverse transcriptase inhibitors (RTIs) aim to stop the viral reverse transcriptase
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which is required for synthesis of the provirus. Protease inhibitors (PIs) aim to stop

the viral protease, which cleaves polyproteins to produce the virion proteins and

viral enzymes. PIs act at a very late maturation stage of the virus, producing non-

infectious virions. Integrase inhibitors block the integration of the viral DNA into the

host DNA. Fusion inhibitors block the fusion of the virus to the host, which blocks

viral entry.

For more information on the immunology and microbiology of the virus, drug

therapy, incidence, worldwide issues, and new and ongoing prevention strategies of

HIV, see Appendix A.

3.1 Modelling imperfect adherence to HIV induc-

tion therapy

Adherence to drug regimens is crucial in order to be certain a virus is being controlled.

Studies have shown that patients must have 95% adherence to drug therapy in order

to prevent biological resistance [15]. They also show that 40–60% of patients are less

than 90% adherent to their drugs, and adherence decreases over time [15]. Smith? [16]

developed an impulsive differential system answering an adherence question of how

many doses can be missed before drug-resistance emerges. He included susceptible

and infected T cells, virus and drug in his model. He was able to calculate the number

of doses that can be missed before drug-resistance emerges.

Many different HIV drug cocktails are being prescribed in order to minimize the

likelihood of mutant development and minimize the number of drugs a patient must

consume. Induction-maintenance therapy is a new form of treatment where patients

begin with an intense course of drugs for a short period of time (the induction phase),

followed by a long-term course of treatment that is less intense (maintenance). Since

patients take a more intense course of treatment during the induction phase, pill
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fatigue is more likely, thus causing imperfect adherence.

Previous mathematical work with induction therapy failed due to uncalculated

latently infected cells and imperfect adherence [17, 18]. Recently, however, Curlin

et al. [19] have shown that a longer induction phase decreases the probability that

viruses resistant to maintenance therapy will emerge. Their studies have shown that

the probability of success (maintaining a suppressed, circulating, free-virus population

for a period of at least 3 years after the end of induction therapy) varies with the

length and time of the induction phase [19]. Using a stochastic model, it was shown

that induction therapy would have to last at least 180 days for cocktails containing

two RTI-like drugs and a PI-like drug [19, 20].

We use impulsive differential equations to investigate the effect of imperfect ad-

herence during the induction phase. We answer not only the question of how many

doses can be missed during a drug holiday, but also how many drug holidays can

be taken during a finite time. Since previous work showed that induction therapy

failed due to latently infected cells, we extended the model presented in Smith? [16]

by including latently infected cells. The model is composed of ten ordinary differ-

ential equations describing the interaction between T-cells (susceptible, infected and

latently infected), virus and drug, coupled with a difference equation describing the

drug behaviour.

By solving for the endpoints of the impulsive periodic orbit, we were able to

theoretically determine the maximal length of a possible drug holiday and the minimal

number of doses that must subsequently be taken while still avoiding drug resistance.

We can then determine the number of drug holidays that can be taken during a 180-

day induction phase. We have found that a patient can take several drug holidays,

but then has to follow each drug holiday with a strict drug-taking regimen. These

results differ from that found by Smith? [16]; a much more strict drug-taking regimen

is required in order to avoid drug-resistance since the threshold is calculated in a

tighter way. We calculated the length and number of drug holidays for all fifteen
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protease-sparing triple-drug cocktails that have been approved by the US Food and

Drug Administration. Numerical simulations show that if the drug holidays are taken

as prescribed, resistant virus will not emerge. Simulation details, errata and extra

comments for the manuscript, as well as sensitivity analysis can be found in Appendix

B.

The contribution by each author is as follows. The first author developed and

analyzed the model, performed numerical simulations and wrote the manuscript. The

second author designed the project and edited the manuscript.

This paper is published in the journal Biomed Central Infectious Diseases [3];

Miron, R.E., Smith?, R.J. 2010. Modelling imperfect adherence to HIV induction

therapy. BMC Infectious Diseases 10:6.
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Abstract

Background: Induction-maintenance therapy is a treatment regime where patients are prescribed an intense

course of treatment for a short period of time (the induction phase), followed by a simplified long-term regimen

(maintenance). Since induction therapy has a significantly higher chance of pill fatigue than maintenance

therapy, patients might take drug holidays during this period. Without guidance, patients who choose to stop

therapy will each be making individual decisions, with no scientific basis.

Methods: We use mathematical modelling to investigate the effect of imperfect adherence during the inductive

phase. We address the following research questions: 1. Can we theoretically determine the maximal length of a

possible drug holiday and the minimal number of doses that must subsequently be taken while still avoiding

resistance? 2. How many drug holidays can be taken during the induction phase?

Results: For a 180 day therapeutic program, a patient can take several drug holidays, but then has to follow

each drug holiday with a strict, but fairly straightforward, drug-taking regimen. Since the results are dependent

upon the drug regimen, we calculated the length and number of drug holidays for all fifteen protease-sparing

triple-drug cocktails that have been approved by the US Food and Drug Administration.

Conclusions: Induction therapy with partial adherence is tolerable, but the outcome depends on the drug

cocktail. Our theoretical predictions are in line with recent results from pilot studies of short-cycle treatment

interruption strategies and may be useful in guiding the design of future clinical trials.
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Background

Currently, 33 million people worldwide are infected with HIV/AIDS, of whom 2.7 million were infected in

2007 [1]. HIV is a disease that is accompanied by a profound depletion in the number of CD4+ T cells and

can be transmitted by blood or other body fluids [2]. Most patients with HIV/AIDS are prescribed a

triple-drug cocktail with either three nucleoside-analogue reverse transcriptase inhibitors (RTIs), or two

RTIs and one protease inhibitor (PI) [3]. However, PI-sparing cocktails have been shown to have equivalent

potency to PI-containing cocktails [4] and may reduce the risk of metabolic and potential cardiovascular

consequences of PI-containing therapy, while providing similar or improved virologic control and durability

of effect [5].

The importance of adherence to HIV drug regimens presents challenges that arise from the biology of HIV,

the magnitude of the required therapeutic effort and the changing demography of HIV infection [6]. In

order to determine regimens for partial adherence, a number of mathematical models have attempted to

quantify how drug concentration levels in the body of an HIV patient affect viral replication [7–13].

Adherence to drug therapy is necessary in order to control HIV, but sometimes-overwhelming side effects,

as well as the inconvenience of following a strict regimen, deter patients from taking their drugs [14].

Imperfect or partial adherence can facilitate the emergence of drug-resistant mutations [15].

Induction therapy is a HIV/AIDS treatment regime that hopes to benefit patients by decreasing drug

resistance and reducing the overall number of drugs that must be taken. In order to minimise drug

resistance, induction-maintenance (IM) therapy strategies begin with a period of intensified antiretroviral

therapy (induction phase), followed by a simplified, long-term regimen (maintenance phase) [16–19].

Previous work with induction therapy failed due to uncalculated latently infected cells and imperfect

adherence [17, 19]. Recently, however, Curlin et al. [20] have shown that a longer induction phase decreases

the probability that viruses resistant to maintenance therapy will emerge. Their studies have shown that

the probability of success (maintaining a suppressed, circulating, free-virus population for a period of at

least 3 years after the end of induction therapy) varies with the length and time of the induction

phase [20]. Using a stochastic model, it was shown that induction therapy would have to last at least 180

days for cocktails containing two RTI-like drugs and a PI-like drug [20,21].
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Imperfect adherence has led to failure in suppressing viral replication and often mutations develop before

or during induction therapy [6]. Since induction therapy has a significantly higher chance of pill fatigue

than maintenance therapy, it is likely the patients will take some holidays during this period. Scientific

literature cautions patients against taking any holidays while on therapy [22], but many patients are

underadherent or nonadherent [23,24]. Without guidance, patients who choose to stop therapy will each be

making individual decisions, with no scientific basis. Recently, the question of short-term holidays (such as

weekends) have been examined. Patients were highly adherent to five days on/ two days off (FOTO)

therapy. When asked about their preference for this type of therapy versus continuous HAART (Highly

Active Antiretroviral Therapy), on a 10-point scale, the mean response was 9.7 [25].

Here, we examine the effects of imperfect adherence during the induction phase using a mathematical

model of impulsive differential equations. We use the model to address the following research questions: 1.

Can we determine the maximal length of a drug holiday and the number of subsequent doses that must be

taken to avoid resistance? 2. How many drug holidays can be taken during the induction phase?

Methods
Modelling drug therapy

When modelling drug therapy and trying to approximate the number of doses a patient can miss without

gaining drug resistance, it is important to have a reliable threshold that will guarantee that viral

replication will not exceed a safe limit and so that the mutant strain will not appear. The inhibition of

viral replication, s, can be described by

s(t) =
R(t)

R(t) + IC50
,

where R(t) is the drug and IC50 is the concentration of drug which inhibits viral replication by 50% [7].

Thus, when s ≈ 0, the drug has no effect, while if s ≈ 1, the drug completely inhibits viral replication. See

Figure 1.

Thus, the antiretroviral drug effect can be split into three regions: in Region 1, drug levels are insufficient

to control either the wild-type or the mutant strain. In Region 2, drug levels are sufficient to control the

wild-type strain but not a 10-fold mutant strain of the virus (ie a mutant strain that requires ten times the

amount of drug to be controlled). In Region 3, drug levels are sufficient to control replication of both virus

strains. These findings provide a threshold above which resistant viruses will be eradicated. We let R2 be

the threshold between Regions 2 and 3.
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The mathematical model

We adapt the mathematical model used from Smith & Wahl [26], to include latently infected cells [27]:

dVI
dt

= nIωTI − dV VI − rITSVI

dVY
dt

= nIωTY − dV VY − rY TSVY − rY TRIVY

dVNI

dt
= nI(1− ω)(TI + TY )− dV VNI

dTS
dt

= λ− rITSVI − rY TSVY − dSTS − θrP rRTSR+mRITRI

dTI
dt

= (1− ψ)rITSVI − dITI + pLTLI

dTLI

dt
= ψrITSVI − dSTLI − pLTLI

dTY
dt

= (1− ψ)rY TSVY − dITY + (1− ψ)rY TRIVY + pLTLY

dTLY

dt
= ψrY TSVY − dSTLY − pLTLY + ψrY TRIVY

dTRI

dt
= θrP rRTSR− rY TRIVY − (dS +mRI)TRI +mRY TRY − ηrQTRIR

dTRY

dt
= ηrQTRIR− (dS +mRY )TRY

for t 6= tk, where

θ =







0 if R < R1

1/rR if R1 < R < R2

1/rP if R > R2 ,

η =

{

0 if R < R2

1 if R > R2 .

In these equations, VI and VY denote the wild-type and mutant virus respectively, VNI denotes the

non-infectious virus, TS denotes the susceptible CD4+ T cells, TI denotes CD4+ T cells infected by the

wild-type virus, TLI denotes CD4+ T cells latently infected by the wild-type virus, TY denotes CD4+ T

cells infected by the mutant virus, TLY denotes CD4+ T cells latently infected by the mutant virus, TRI

denotes the noninfected CD4+ T cells which have absorbed enough drug so the wild-type strain is

inhibited, but not enough to prevent infection from the mutant strain, TRY denotes the noninfected CD4+

T cells which have absorbed enough drug to prevent infection from both virus strains, t is the time in days,

nI is the number of virions produced per infected cell per day, ω is the fraction of virions produced per day

by an infected CD4+ T cell, dV is the clearance rate of free virus, rI is the rate at which a susceptible cell

becomes infected by the wild-type strain, rY is the rate at which a susceptible cell becomes infected by the

mutant strain, dS is the death rate of noninfected CD4+ T cells, dI is the death rate of infected CD4+ T
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cells, ψ is the proportion of cells which become latently infected, pL is the rate at which latently infected

cells become productive, rP is the rate at which the drug inhibits the wild-type T cells when drug

concentrations are in Region 2, and rR and rQ are the rates at which the drug inhibits the wild- type and

drug-resistant T cells, respectively, when drug concentrations are in Region 3. The constant λ is the birth

rate of CD4+ T cells, while mRI and mRY are the rates at which the drug is cleared from the intracellular

compartment for intermediate and high drug concentrations, respectively. For parameter values and

references, see [26].

The dynamics of a drug can be modelled using impulsive differential equations. The exponential decay can

be written as a differential equation, where R(t) is the drug concentration during induction therapy. The

dynamics of the drug are

dR

dt
= −drR, t 6= tk

with impulsive conditions, at times t = tk,

△R =

{

Ri, if a dose is taken,
0, if no dose is taken.

The rate at which the drug is cleared is dr and Ri is the dosage. Assuming a drug is taken at time tk, by

the definition of an impulsive effect, we have

R(t+k ) = R(t−k ) +Ri .

Determining the Region 2 threshold

To find R2, the Region 2 threshold, we determined the time taken for resistance levels to reach a minimum.

The drug levels at this time were evaluated from the antiretroviral effect curves and used as the R2

threshold. This ensures that, when a drug holiday occurs, resistance levels are guaranteed to be low.

Missing several doses increases resistance, but, by using the local minimum values, we ensure that

resistance cannot emerge when patients are not taking a drug holiday.

To determine the threshold, note that

V ′

Y (0) = rITY (0)− dV VY (0)− rY VY (0)TS(0)− rY VY (0)TRI(0)

< 0

since TY (0) = 0 at the beginning of infection. It follows that the viral load is initially decreasing.

5



If the viral load reaches a minimum at time t̄, then define R2 = R(t̄). This ensures that V ′

Y (t) < 0 for

0 < t < t̄. If the viral load decreases indefinitely, then we could define R2 to be any value of R less than the

trough value of the periodic orbit of the drug dynamics. However, this case is not realistic, since the virus

does not clear on its own.

We define R1 to be the value of R such

R1

R1 + IC50
=

R2

R2 + 10IC50
.

Thus, R1 = 0.1R2. See Figure 1.

Impulsive differential equations

The dynamics of both the wild-type and the resistant strains can be modelled using impulsive differential

equations. Impulsive differential equations consist of a system of ordinary differential equations (ODEs),

together with difference equations. Between “impulses”, tk, the system is continuous, behaving as a system

of ODEs. At the impulse points, there is an instantaneous change in state in some or all of the variables.

This instantaneous change can occur when certain spatial, temporal or spatio-temporal conditions are met.

We refer the interested reader to Bainov & Simeonov [28–30] and Lakshmikantham et al. [31] for more

details on the theory of impulsive differential equations.

The change in drug concentration depends on whether a drug is taken or not. There is an instantaneous

increase in the drug concentration immediately after a dose is taken and then an exponential decay while

the drug is being absorbed in the body. The case of perfect adherence is illustrated in Figure 2A. However,

as long as the drug concentration level does not drop below R2, there is a sufficient amount of drug to

control both viral strains. We can thus determine the number of doses that can be missed and the number

of doses subsequently taken in order to stay above the R2 threshold. See Figure 2B.

The differential equations describing the virus and T cells depend on the dynamic behaviour of the drugs.

Thus, for example, the rate of change of susceptible T cells decreases in Regions 2 or 3 (at different rates),

but not in Region 1. The T cell and virus dynamics are continuous, but their derivatives are not, since

those derivatives depend on the drugs, which are discontinuous. Since the drug equations decouple from

the remaining equations, we develop theoretical results using the drug equations and apply those results

numerically to the entire model.
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Results
Theoretical results

We used our model to examine the effects of imperfect adherence on the induction phase of IM therapy.

First, it is necessary to model perfect adherence to locate the impulsive periodic orbit in the drug levels.

This provides a region where the drug concentration level must reach in order to sustain a low viral load.

As can be seen in Figure 2, drug levels start at zero during induction therapy (since induction therapy

starts at the beginning of drug therapy). Each time a drug is taken, the dose decays at a rate of

R(t) = R(t+k )e
−dr(t−tk), where R(t+k ) is the value at which the drug starts to decay instantaneously after

the drug is ingested. Since we assume perfect adherence, we get

R(t−1 ) = 0

R(t+1 ) = R(t−1 ) +Ri

= Ri

R(t−2 ) = R(t+1 )e
−dr(t2−t1)

= Rie−dr(t2−t1)

R(t+2 ) = R(t−2 ) +Ri

= Ri[e−dr(t2−t1) + 1]

R(t−3 ) = R(t+2 )e
−dr(t3−t2)

= Ri[e−dr(t2−t1) + 1]e−dr(t3−t2)

...

R(t−n ) = Rie−drτ (1 + e−drτ + e−2drτ + e−3drτ + · · ·+ e−(n−1)drτ )

= Rie−drτ
1− e−ndrτ

1− e−drτ

where τ = tk+1 − tk is the (fixed) time between doses for perfect adherence. We thus have

lim
n→∞

R(t−n ) =
Rie−drτ

1− e−drτ
.

Furthermore,

R(t+n ) = R(t−n ) +Ri

= Ri 1− e−(n+1)drτ

1− e−drτ

→
Ri

1− e−drτ
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as n→ ∞.

Therefore, assuming perfect adherence, the impulsive orbit has endpoints

Ri

1− e−drτ
and

Rie−drτ

1− e−drτ
.

Knowing the values of the endpoints for the impulsive orbit after n = n1 doses, we are able to incorporate

imperfect adherence and see its effects. In order to avoid Region 2 after missing many doses and to

maintain an average drug concentration level within Region 3, we impose conditions to ensure proper

therapy. To guarantee successful induction therapy, after the first n1 doses are taken, we will force the lower

endpoint of the drug concentration to be within a tolerance ǫ1 of the impulsive orbit. Thus, we require

R(t−n1
) >

Rie−drτ

1− e−drτ
− ǫ1

Rie−drτ
1− e−n1drτ

1− e−drτ
>

Rie−drτ

1− e−drτ
− ǫ1

−Ri e
−(n1+1)drτ

1− e−drτ
> −ǫ1

n1 >
1

drτ
ln

[

Ri

ǫ1(1− e−drτ )

]

− 1 .

Once the drug concentration level has reached the impulsive orbit, a patient may take a drug holiday. If h1

doses are subsequently missed (see Figure 2B), then

R(t−n1+h1) = R(t+n1)e
−h1drτ

= Rie−h1drτ
1− e−(n1+1)drτ

1− e−drτ
.

In order to avoid Region 2 after h1 doses are missed, we impose the condition R(t−n1+h1
) > R2. This will

allow us to find the maximum number of doses a patient can miss after being ǫ1 away from the impulsive

orbit. This results in

Rie−h1drτ
1− e−(n1+1)drτ

1− e−drτ
> R2

e−h1drτ >
R2

Ri

(

1− e−drτ

1− e−(n1+1)drτ

)

1

drτ
ln

[

Ri

R2

(

1− e−(n1+1)drτ

1− e−drτ

)]

> h1 . (1)

After a patient has missed h1 doses, in order to keep the viral replication low, they must take enough

doses, n2, to return to the impulsive orbit. In the worst-case scenario, the exponential decay has reached
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Region 2; thus, starting at R2, we get

R(t−n1+h1) = R2

R(t+n1+h1) = R2 +Ri

R(t−n1+h1+1) = (R2 +Ri)e−drτ

R(t+n1+h1+1) = R2e
−drτ +Ri(1 + e−drτ))

R(t−n1+h1+2) = R2e
−2drτ +Rie−drτ (1 + e−drτ )

R(t+n1+h1+2) = R2e
−2drτ +Ri(1 + e−drτ + e−2drτ )

R(t−n1+h1+3) = R2e
−3drτ +Rie−drτ (1 + e−drτ + e−2drτ )

...

R(t−n1+h1+n2) = R2e
−n2drτ +Rie−drτ (1 + e−drτ + · · ·+ e−(n2−1)drτ )

R(t−n1+h1+n2) = R2e
−n2drτ +Rie−drτ

(1− e−n2drτ

1− e−drτ

)

.

After n2 doses are taken, we must impose a new condition that forces the drug concentration level to be ǫ2

away from the impulsive orbit. We need

R(t−n1+h1+n2
) >

Rie−drτ

1− e−drτ
− ǫ2

R2e
−n2drτ +Rie−drτ

1− e−n2drτ

1− e−drτ
>

Rie−drτ

1− e−drτ
− ǫ2

R2e
−n2drτ −Ri e

−(n2+1)drτ

1− e−drτ
> −ǫ2

e−n2drτ > −
ǫ2(1− e−drτ )

R2(1− e−drτ )−Rie−drτ

n2 >
1

drτ
ln

[

Rie−drτ −R2(1− e−drτ )

ǫ2(1− e−drτ )

]

. (2)

In order to determine the number of times a patient can miss a fixed amount of doses, we must verify if

missing h2 doses is the same as missing h1 doses. After missing h2 doses, we have

R(t+n1+h1+n2) = R(t−n1+h1+n2) +Ri

= R2e
−n2drτ +Ri

(

1 + e−drτ
1− e−n2drτ

1− e−drτ

)

R(t−n1+h1+n2+h2) = R2e
−(n2+h2)drτ +Rie−h2drτ

(

1 + e−drτ
1− e−n2drτ

1− e−drτ

)

.

Patients are able to miss h2 doses as long as their drug concentration levels do not drop below Region 2.
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Thus we repeat the same condition on h2:

R(t−n1+h1+n2+h2
) > R2

R2e
−(n2+h2)drτ +Rie−h2drτ

(

1 + e−drτ
1− e−n2drτ

1− e−drτ

)

> R2

e−h2drτ

(

R2e
−n2drτ +Ri

(

1 + e−drτ
1− e−n2drτ

1− e−drτ

)

)

> R2

1

drτ
ln

[

e−n2drτ +
Ri

R2

(

1 + e−drτ
1− e−n2drτ

1− e−drτ

)

]

> h2 .

At the end of induction therapy, k doses must be taken to ensure that, before the start of maintenance

therapy, there is sufficient drug to control viral replication. After missing h2 doses and assuming we are at

Region 2, k subsequent doses are taken and the drug level becomes

R(t−n1+h1+n2+h2) = R2

R(t+n1+h1+n2+h2) = R2 +Ri

R(t−n1+h1+n2+h2+1) = (R2 +Ri)e−drτ

R(t+n1+h1+n2+h2+1) = R2e
−drτ +Ri(1 + e−drτ))

R(t−n1+h1+n2+h2+2) = R2e
−2drτ +Rie−drτ (1 + e−drτ )

R(t+n1+h1+n2+h2+2) = R2e
−2drτ +Ri(1 + e−drτ + e−2drτ )

R(t−n1+h1+n2+h2+3) = R2e
−3drτ +Rie−drτ (1 + e−drτ + e−2drτ )

...

R(t−n1+h1+n2+h2+k) = R2e
−kdrτ +Rie−drτ (1 + e−drτ + · · ·+ e−(k−1)drτ )

R(t−n1+h1+n2+h2+k) = R2e
−kdrτ +Rie−drτ

(1− e−kdrτ

1− e−drτ

)

.

As can be seen, because we started at the threshold after missing h2 doses,

R(t−n1+h1+n2) = R(t−n1+h1+n2+h2+k) as long as n2 = k. Finally, after k doses, a patient needs to return to

the periodic orbit. Thus, we impose

R(−n1+h1+n2+h2+k) >
Rie−drτ

1− e−drτ
− ǫ3

k >
1

drτ
ln

[

Rie−drτ −R2(1− e−drτ )

ǫ3(1− e−drτ )

]

,

which is the same as the constraint for n2 as long as ǫ2 = ǫ3. If these conditions are satisfied, we are able to

guarantee that the drug concentration levels do not enter Region 2 and significant drug resistance will not

emerge.
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Imperfect adherence

The number of missable and subsequent doses that must be taken to avoid significant drug resistance for

all FDA-approved drugs that are part of a PI-sparing cocktail is shown in Table 1. These are defined by

(1) and (2), respectively. However, we stress that these results are theoretical and have not been tested

clinically. In particular, it should be noted that pharmacokinetic parameters can vary from patient to

patient.

There are fifteen FDA-approved PI-sparing triple-drug cocktails, for which we calculated (a) the initial

number of doses that must be taken to be within a prescribed tolerance of perfect adherence, (b) the

number of doses that could be missed without significant drug resistance emerging and (c) the number of

doses that must be taken subsequently.

To determine the value of the prescribed tolerance, we examined two possibilities: a tolerance of 0.1µM

and a tolerance of 0.01µM . That is, the number of doses is considered sufficient if the trough value of the

periodic orbit of the drug dynamics is within 0.01µM of the trough value of therapy without drug holidays.

We imposed a further condition: that the mean drug concentration be larger than the trough value of

drugs when no drug holidays are taken. This is illustrated in Figure 3. This ensures that, over the length

of the entire induction phase, drugs are maintained at sufficiently high levels (see [26] for more discussion).

In Figure 3A, using a tolerance of 0.1µM , the overall mean drug concentration is below the trough value

during therapy. Using a tolerance of 0.01µM , as shown in Figure 3B, shows that the overall mean drug

concentration is above the trough value during therapy.

For the fifteen FDA-approved PI-sparing triple-drug cocktails, we identified the “weakest” drugs in each

cocktail; ie, those for which the least number of doses can be missed. These drugs are Abacavir (ABC),

Lamivudine (3TC), Stavudine (d4T), Emtricitabine (FTC), Zidovudine (ZDF), Didanosine (ddI) and

Nevirapine (NVP). Thus, for each cocktail, the maximal number of missable doses is the same as that of its

“weakest” drug. By combining the steps in (b) and (c) above, it was possible to theoretically calculate the

number of drug holidays that could be taken during the inductive phase, based on the regimen for the

“weakest” drug. See Table 2.

Since the minimum number of doses required to be taken and the maximum number of doses allowed to be

missed follow a reliable pattern, we can extend this to fit into a baseline induction phase of 180 days [20].

This means, for example, that a patient taking the triple-drug cocktail FTC/TDF/EFV can theoretically

have a 6 day holiday, as long as each holiday is followed by 17 days of perfect adherence; patients can take

seven such holidays during the induction phase, and are thus able to miss a total of 42 days out of 180. A
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patient taking ABC/3TC/NVP can theoretically have sixteen drug holidays of 3 days each in a 180 day

period, as long as each holiday is immediately followed by a 7 day period of strict adherence.

Numerical simulations

In order to determine the long-term effects of taking the prescribed drug holidays, we simulated the

worst-case scenario: monotherapy to the “weakest” drug in each combination from Table 2. This has the

effect of overestimating the development of resistance: if no resistance is predicted to emerge during

monotherapy, then it is unlikely to emerge during combination therapy. Conversely, if resistance does

emerge during monotherapy, then there is no guarantee that it would emerge during combination therapy,

due to the presence of the other two drugs.

We considered an extinction threshold of 2× 10−4 virions/mL. This corresponds to the concentration at

which the virus falls below 1 per body. Thus, missing the maximum number of doses would theoretically

lead to extinction of both strains (at least up to the level of detection), whereas missing more doses does

not. However, it should be noted that we did not curtail the viral dynamics at this threshold.

We used the model in Section (describing the dynamic interaction between virus, T cells and drugs) and

the calculations in Section (summarised in Tables 1 and 2) to illustrate our theoretical results. In order to

demonstrate the effects of taking the prescribed drug holidays, we first ran simulations where patients

missed the maximum number of doses and then took the required number of subsequent doses; this cycle

was repeated for 180 days. Next, we ran the same simulations, with the same parameters, except that one

additional dose of the drug was skipped during each drug holiday.

We performed these simulations for each of the “weakest” drugs identified in Table 2: ABC (Figure 4),

3TC (Figure 5), d4T (Figure 6), FTC (Figure 7), ZDV (Figure 8), ddI (Figure 9) and NVP (Figure 10).

The first figure in each case illustrates the case of missing the maximal drug holiday and taking the

minimum number of subsequent doses. The second figure in each case illustrates the same case, except that

one additional dose was missed during each drug holiday. The exception is NVP, in which resistance did

not emerge until three extra doses were missed (Figure 10B, inset).

For the first case, the wild-type virus oscillated at low levels during each drug holiday, but significant levels

of resistance did not appear. Thus, taking the required number of doses successfully keeps the mutant

strain at low levels. Conversely, missing one extra dose per holiday (three in the case of NVP) resulted in a

significant buildup of resistance by the end of the induction phase.

In this case, there is a tremendous increase in the mutant strain by the end of the inductive phase,
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indicating that therapy has failed. Resistance to Abacavir increases from 10−3 to 104; resistance to

Lamivudine increased from less than 10−3 to 104; resistance to Stavudine increased from 10−3 to 103;

resistance to Emtricitabine increased from 10−3 to 104; resistance to Zidovudine increased from 10−3 to

103; resistance to Didanosine increased from 10−3 to 102; and resistance to Nevirapine increased from 10−3

to 104.

Comparison with clinical results

A number of studies have attempted to characterise the safety of regular (and irregular) treatment

interruptions, generally referred to as structured treatment interruptions (STIs). Pai et al. [22] summarised

the to-date evidence of STIs in patients with chronic unsuppressed HIV infection due to drug-resistant

HIV. They concluded that there were no significant virologic or immunologic benefit to STIs and that there

is evidence that STIs have a prolonged negative impact on CD4 response and other disease events.

Subsequently, the SMART trial [32] examined CD4+ guided interruptions, of an average duration of 16

months. The DART trial [33] examined fixed 12 week interruptions. Both trials showed no benefit to these

treatment interruptions. Indeed, the SMART trial was halted prematurely, due to significant morbidity

and mortality among participants. Holkmann et al. [34] reported a two-fold risk of AIDS or death for

patients who underwent treatment interruptions that lasted three months or longer.

It should be noted that all these trials involved lengthy periods of treatment interruption, of the order of

weeks. Our results here recommend signficantly shorter periods of treatment interruption, of the order of

days. Furthermore, our results predict significant increase in resistance if these periods are exceeded,

consistent with the results from the majority of trials.

Shorter treatment interruptions have also been investigated. A study comparing interruptions of less than

7 days compared to longer interruptions showed that only 5% of men who discontinued HAART for short

periods increased their HIV RNA. Conversely, men with longer interruptions had significantly higher rates

(35.7 of HIV RNA increase [35]. Another study investigating cycles of 2-6 week fixed interruptions observed

no clinically significant benefit with regard to viral suppression when off HAART, but also observed no

evidence for an increase of viral resistance among patients undergoing repeated interruptions [36].

Recently, a pilot study examining five days on, two days off (FOTO) followed patients for 48 weeks [25].

Virologic suppression was maintained in 89.6% of patients. Combinations included 3TC/TDF/EFV, ABC/

TDF/EFV, ddI/3TC/EFV and ABC/ddI/TDF/EFV; 100% of subjects on EFV- based regimens on the

FOTO treatment schedule maintained virologic suppression at weeks 24 and 48. Combinations also
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included nevirapine- based regimens where one subject, on NVP/ABC/3TC/ZDV, had viral rebound at

week 12 that was confirmed at week 16 on the FOTO schedule. It was also noted that 30% of the subjects

on nevirapine-based regimens had blips of viral increase during therapy. Other combinations included

TDF/3TC/NVP, ZDV/ 3TC/NVP, d4T/3TC/TDF/NVP. They also observed excellent adherence to the

FOTO treatment schedule and a strong preference for this schedule compared to HAART. None of the

observed rebounds in viral load were associated with the reported adherence of more than 2 days off

therapy.

These preliminary results are in line with our theoretical recommendations. For regimens that include

EFV-based regimens, all therapies included NRTIs and NNRTIs that we recommend a maximum of more

than 2 days per drug holiday, followed by at least 5 days of subsequent therapy (Table 2). The NVP-based

regimen with viral rebound included ZDV; our results predict that drug holidays on such a regimen should

be no longer than 1.33 days (Figure 8). The three other NVP-based regimens with viral blips included

ZDV and d4T; our results predict that neither would allow drug holidays as long as two days (Table 1).

Sensitivity to variations

Since individual patients may respond differently to drugs, we explore the sensitivity of the number of

missable doses to variations in parameters. The number of missable doses depends on the dosing interval,

the drug decay rate, the drug concentration, the Region 2 threshold and the number of initial doses, which

itself depends on the prescribed tolerance. Since we have already explored variations in the dosing interval

and the prescribed decay rate, we now examine the variation with respect to the other parameters.

Figure 11 demonstrates the effect of variations in the drug decay rate, the Region 2 threshold and the drug

concentration. Since the slope of the curves is low for the second and third figures, we conclude that the

results are not highly sensitive to variations in the Region 2 threshold or the drug concentration, although

small fluctuations may decrease the number of missable days (Figure 11B and Figure 11C). The outcome is

more sensitive to variations in the drug decay rates, but is still not highly sensitive (Figure 11A).

Discussion

It is vital to provide HIV patients with an effective drug regimen. Not only is it important that the drugs

have a high efficacy, but it is also important that patients follow a regimen that will benefit both their

mental and physical states. Since there are such a large number of patients who are unable to take their

drugs regularly, it is important to understand the impact of drug holidays upon a patient’s ability to
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control the virus. Induction therapy provides patients with the chance to submit to a very strict, but short,

period of intense drug taking, followed by a long period of less-restrictive and more-relaxed therapy

(maintenance therapy). We have demonstrated the effects of taking drug holidays during induction

therapy. Instead of taking drugs two to three times a day for the entire length of the induction period, we

were able to show that a patient can have drug holidays with sometimes as much as six days off each time.

This form of treatment allows patients to take drug holidays with very little negative effect.

However, missing more doses than stated can highly affect the amount of resistant virus created. We have

demonstrated that there is a large increase of mutant virus by simply missing one extra dose during each

drug holiday (three for the TDF- FTC-NVP combination). Induction therapy with partial adherence works

as long as a patient does not exceed the maximum length of the drug holiday; if they follow the prescribed

regime, they can control the effects of drug resistance. It should be noted that Curlin et al. [20] showed

that an induction phase on the order of 180-days was ideal for a triple-drug therapy including two RTI-like

drugs and one PI-like drug. Since the results for a triple-drug therapy including three RTIs do not show a

dramatic increase in resistant virus while taking the patterns suggested, we used an 180 day induction

phase as a baseline.

These results apply to the fifteen FDA-approved, PI-sparing triple-drug cocktails, but simulations were

only performed for the drugs with the least number of missable doses: Abacavir, Lamivudine, Stavudine,

Emtricitabine, Zidovudine, Didanosine and Nevirapine. Missing one extra doses at the end of each drug

holiday (three for Nevirapine) drastically increases the amount of resistant virus. However, it should be

noted that the simulations were for monotherapy only and thus, in a triple-drug cocktail, the remaining

two drugs inure against resistance.

Efavirenz and nevirapine only require a single mutation to confer resistance, and cross resistance affecting

these three NNRTIs is common [37]. Both Lamivudine and Emtricitabine select for the M184V resistance

mutation, which confers high-level resistance to both drugs, a modest decrease in susceptibility to

Didanosine and Abacavir, and improved susceptibility to Zidovudine, Stavudine and Tenofovir [38]. It

should be noted that our model assumes that the mutant is always present. By simulating the results for

monotherapy, we illustrated the worst-case scenario; this is illustrated by Figure 10B, which shows that

missing one extra dose per holiday is not disastrous; in this example, the mutant only takes hold when

three extra doses are missed. Thus, our results are more conservative than is strictly necessary.

Double mutation happens less frequently; emergence of the M184V mutation is less frequent with

Tenofovir/Emtricitabine than with Zidovudine/Lamivudine, while selection of the Lamivudine-associated
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M184V mutation to the Zidovudine/Lamivudine combination has been associated with increased

susceptibility to Zidovudine [37]. It follows that, when the combinations are taken synchronously, the

selection of mutants will be signficantly less likely than under monotherapy.

Discontinuous dosing is, of course, not realistic. There is a delay, the time-to- peak, between taking a drug

and it reaching peak values in cells. Consequently, estimates based on maximal concentrations and

terminal plasma half-lives could overestimate drug exposure. However, such delays can be approximated by

an instantaneous change if the time-to-peak is sufficiently short, compared to the time between doses. This

approximation has been shown to be robust, even for quite large delays [39].

Other limitations to our model are the assumption that the CD4+ pool of lymphocytes is the most

significant source of HIV infection and that maintaining drug concentrations at clinical levels results in

maximal control of virus replication. However, not all HIV-susceptible tissues are equally susceptible to

antiretroviral drugs. For example, lymphoid cells in the gut are not completely suppressed [40]. These and

other reservoirs will contribute to the long-term generation of virus particles, both during therapy and

while undergoing a drug holiday. The relative rates of mutation or selection of resistant viruses for the

various drugs are modelled via the choice of infection rate, rY , compared to the infection rate, rI , for the

wild-type strain. For numerical simulations, we used the intracellular half-life of each drug, if known; in the

case of nucleosides, it is the cellular concentration of active nucleotide that is responsible for inhibition of

viral reverse transcription. Furthermore, we assume that all tissues harbouring HIV are exposed to the

same concentration of drug.

Previously [13], we showed how many doses can be missed for each PI- sparing drug, for only a single drug

holiday during any given therapy. Here, we extend this to the case of more than one drug holiday.

Furthermore, all previous mathematical models of adherence considered therapy without an endpoint.

Since induction therapy only occurs for a finite time, we have to consider the viral load when induction

therapy ends. In particular, if a drug holiday coincided with the end of induction therapy, then the

induction phase would functionally have ended at an earlier time and may thus be significantly less

effective. Some of the key differences between our earlier work and the results provided here occur due to

the fact that here we use 10-fold resistance, rather than 50- fold resistance; multiple holidays occur during

a finite time interval; and the tolerance used was 0.01µM instead of 1% of the minimum value of periodic

orbit; the tolerance we used here is more conservative.

Future work will investigate the effects of imperfect adherence to triple-drug cocktails involving protease

inhibitors. We will also investigate the compounding effects of combination therapy in slowing the
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emergence of resistance and the effect of inter-individual variances in pharmacokinetics. Our modelling

process could also be extended to additional treatment scenarios in which patients might be tempted to

take drug holidays due to a high pill burden, such as booster therapies or the initial year of HAART.

Conclusions

Using readily available pharmacokinetic data, we can theoretically determine the maximal length of drug

holidays and the number of subsequent doses that must be taken. Since the induction phase lasts for a

finite time, we can thus determine how many drug holidays can be taken within a 180-day induction

period. Our theoretical results are in line with recent results concerning five-days-on/two-days-off (FOTO)

for most cocktails, suggesting that drug holidays may be limited to very short breaks, rather than the

longer holidays previously examined.

We thus conclude that induction therapy with partial adherence is tolerable, but the outcome depends on

the drug cocktail. We have also demonstrated a robust method by which to determine therapy guidelines

for patients who are unable or unwilling to adhere completely. Treatment interruptions, if they occur, must

be short and followed by a strict period of dose taking. Thus, while continuous therapy is preferable,

FOTO therapy is acceptable for all RTI cocktails except those containing ZDV, d4T or DLV, which can

only tolerate extremely short drug holidays.
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Figures
Figure 1 - Dose-effect curves

Example of dose-effect curves for the wild-type (solid blue curve) and 10-fold resistance (dashed green

curve) virus strains. When drug concentration levels are in Region 1, the amount of drug is insufficient to

either control wild-type or mutant strains. When drug concentration levels are in Region 2, the amount of

drug is sufficient to block the wild-type virus but resistant virus may emerge. When drug concentration

levels are in Region 3, both virus strains are controlled. This example is for the reverse transcriptase

inhibitor Stavudine (d4T).

Figure 2 - Drug concentrations

Drug concentrations using impulsive differential equations. A. Example of drug concentration levels with

perfect adherence to therapy. Drug concentration levels fluctuate from lower endpoints (t−1 , t
−

2 , t
−

3 . . .) to

upper endpoints (t+1 , t
+
2 , t

+
3 . . .). Drug concentration levels increase instantaneously after a dose is taken

and decrease exponentially between doses. If all doses are taken, drug concentration levels monotonically

approach an impulsive orbit. B. Example of fluctuating drug concentration levels when missing drug doses.
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Once drug concentration levels have reached the impulsive orbit (t+n1
), missing h doses results in a long

exponential decay. Subsequent adherence returns drug concentration levels to the impulsive periodic orbit

before the next drug holiday occurs (t+n1+h1+n2). In this example, a patient has two drug holidays within a

30 day period.

Figure 3 - Determining the prescribed tolerance

Difference between a prescribed tolerance of (A) 0.1µM and (B) 0.01µM for the reverse transcriptase

inhibitor Didanosine (ddI). The red line plotted on both graphs is the average drug concentration while

taking drug holidays. This was calculated using the data from Table 2. The average drug concentration in

(A) is around 11µM and has not reached the trough values when drug holidays are excluded, whereas the

average drug concentration in (B) is around 12µM and thus exceeds the trough values during therapy.

Figure 4 - Adherence to ABC monotherapy

A. Long-term effects of adherence to ABC monotherapy, using the prescribed adherence breaks. The wild

type (solid blue curve, left axes) and mutant (dashed green curve, right axes) populations are shown. The

overall effect of the mutant remains low. Parameters used, in addition to those in Table 1, were nI = 262.5

day−1, ω = 0.7, rI = 0.01 day−1, rY = 0.001 day−1, dV = 3 day−1, dS = 0.1 day−1, dI = 0.5 day−1,

ψ = 0.2, pL = 0.05, rR = rQ = 80 µM−1day−1, λ = 180 cells µL−1 and mRI = mRY = log(2) day−1.

Initial conditions were VI(0) = 22000 virions mL−1, VY (0) = 5× 10−3 virions mL−1, TS(0) = 1000 cells

day−1 and all other initial conditions were zero. B. The effects of missing one extra dose per drug holiday.

The proportions of each type of uninfected T cell at the end of the simulation are shown in the insets.

Figure 5 - Adherence to 3TC monotherapy

A. Long-term effects of effects of adherence to 3TC monotherapy, using prescribed adherence breaks. B.

The effects of missing one extra dose. Drug parameters are as in Table 1, while all other parameters are as

in Figure 4. The proportions of each type of uninfected T cell at the end of the simulation are shown in the

insets.

Figure 6 - Adherence to d4T monotherapy

A. Long-term effects of effects of adherence to d4T monotherapy, using prescribed adherence breaks. B.

The effects of missing one extra dose. Drug parameters are as in Table 1, while all other parameters are as
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in Figure 4. The proportions of each type of uninfected T cell at the end of the simulation are shown in the

insets.

Figure 7 - Adherence to FTC monotherapy

A. Long-term effects of effects of adherence to FTC monotherapy, using prescribed adherence breaks. B.

The effects of missing one extra dose. Drug parameters are as in Table 1, while all other parameters are as

in Figure 4. The proportions of each type of uninfected T cell at the end of the simulation are shown in the

insets.

Figure 8 - Adherence to ZDV monotherapy

A. Long-term effects of effects of adherence to ZDV monotherapy, using prescribed adherence breaks. B.

The effects of missing one extra dose. Drug parameters are as in Table 1, while all other parameters are as

in Figure 4. The proportions of each type of uninfected T cell at the end of the simulation are shown in the

insets.

Figure 9 - Adherence to ddI monotherapy

A. Long-term effects of effects of adherence to ddI monotherapy, using prescribed adherence breaks. B.

The effects of missing one extra dose. Drug parameters are as in Table 1, while all other parameters are as

in Figure 4. The proportions of each type of uninfected T cell at the end of the simulation are shown in the

insets.

Figure 10 - Adherence to NVP monotherapy

A. Long-term effects of effects of adherence to NVP monotherapy, using prescribed adherence breaks. B.

The effects of missing one extra dose. Drug parameters as as in Table 1, while all other parameters are as

in Figure 4. In this case, both strains are controlled. Inset: The effects of missing three extra doses. In this

case, the wild-type strain is controlled, but the resistant strain emerges. The proportions of each type of

uninfected T cell at the end of the simulation are shown in the insets.

Figure 11 - Sensitivity to other parameters

Sensitivity of length of drug holiday to (A) the drug decay rate, dr, (B) the Region 2 threshold, R2, and (C)

the drug concentration, Ri. Dashed lines indicate values used in our calculations. This example is for ABC.
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Tables
Table 1 - Missable doses and subsequent adherence

Summary of data and theoretical results for reverse transcriptase inhibitors used for FDA-approved

triple-drug therapy. All results are calculated with a mutant that exhibits 10-fold resistance to the drug.

The decay rate dr was calculated using the formula dr = 24 log(2)/T1/2, where T1/2 is the half-life. The

last two columns are the number of doses that may be missed before significant drug resistance emerges

and the number that must subsequently be taken to return to within 0.01µM of perfect adherence. We

used the intracellular half-life for each drug, if known. Data for Column 1 was taken from [41–48], and data

from Columns 2 and 3 were taken from the Department of Health and Human Services 2008 Guidelines for

the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents [37].

Drug Ri τ T1/2 R1 R2 maximum missable minimum subsequent
(units) (µM) (days) (hours) (µM) (µM) days (theoretical) days (theoretical)
Abacavir (ABC) 12 1/2 15 10−1.0269 10−0.0269 3 7
Didanosine (ddI) 4.65 1/2 25 10−1.2218 10−0.2218 5 7.5
Emtricitabine (FTC) 7.2 1 39 10−0.9788 100.0212 6 17
Lamivudine (3TC) 6 1/2 20 10−1.1249 10−0.1249 3.5 8.5
Stavudine (d4T) 2.144 1/2 7.5 10−1.6383 10−0.6383 1 2.5
Tenofivir (TDF) 1.184 1 60 10−1.5229 10−0.5229 10 24
Zidovudine (ZDV) 4.24 1/3 7 10−1.6021 10−0.6021 1.33 2.67
Delavirdine (DLV) 26.6 1/3 5.8 10−1.4559 10−0.4559 1.67 2.67
Efavirenz (EFV) 12.9 1 45 10−0.8356 100.1644 9 22
Nevirapine (NVP) 7.5 1/2 27 10−1.0088 10−0.0088 5 12.5

Table 2 - Number of drug holidays

Summary of all FDA-approved, PI-sparing triple-drug combinations. Drugs marked with an asterisk are

the drug in their respective cocktail with the least number of doses that may theoretically be missed (see

Table 1). The number of drug holidays, the length of each holiday and the minimum number of subsequent

days of strict adherence is thus calculated from this drug’s missable and subsequent doses.
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FDA-approved Number of Length of each Minimum subsquent
combination drug holidays holiday (days) therapy (days)

(theoretical)
ABC* 3TC NVP 16 3 7
ABC* 3TC EFV 16 3 7
TDF 3TC* EFV 14 3.5 8.5
ddI 3TC* EFV 14 3.5 8.5
d4T* 3TC EFV 50 1 2.5
d4T* 3TC NVP 50 1 2.5
ddI* FTC EFV 13 5 7.5
TDF FTC* EFV 7 6 17
TDF FTC NVP* 9 5 12.5
ZDV* 3TC ABC 44 1.33 2.66
ZDV* 3TC EFV 44 1.33 2.66
ZDV* 3TC NVP 44 1.33 2.66
ZDV* 3TC TDF 44 1.33 2.66
ZDV* DLV 3TC 44 1.33 2.66
ZDV* DLV ddI 44 1.33 2.66
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3.2 Resistance to protease inhibitors in a model of

HIV-1 infection with impulsive drug effects

The effects of drug resistance have altered the history of disease progression. Drug

resistance can emerge with lack of adherence to any strict drug therapy. Mutation

development occurs quickly during HIV-1 drug therapy, and thus studying the be-

haviour of drug-resistant strains is crucial in controlling the spread of HIV.

Smith and Wahl [21] developed an impulsive differential system with one strain of

infectious virus, susceptible cells and infected cells. They included the drug dynamics

of both reverse transcriptase inhibitors and protease inhibitors by an exponential

decay between impulse times and a constant impulse each time a drug is taken. They

solved for stability of the non-impulsive system, and showed that insufficient dosing of

either drug corresponds to high viral load and large populations of infectious T cells.

They also showed that, if physiologically tolerable, sufficiently frequent dosing with

the reverse transcriptase inhibitor alone could theoretically maintain the T cell counts

close to the T cell count in the uninfected immune system. Later, Smith and Wahl

[22] developed a model describing the interactions between CD4+ T-cells, reverse

transcriptase inhibitors and two strains of virus: the wild-type strain, which initially

dominates in the absence of drugs, and the mutant strain, which is the less efficient

competitor, but has more resistance to the drugs. They included low, intermediate

and high drug inhibited T cells and T cells infected with a wild-type and mutant

strain. They also described three regions of drug behavior: Region 1 describes the

dynamics between cells and virus at low drug levels; Region 2 describes the dynamics

between cells and virus at an intermediate drug level, and Region 3 describes the

dynamics between cells and virus at high drug levels. At an intermediate level of drug,

the drug will affect the wild-type strain alone, whereas at high drug levels both strains

will be controlled. They used impulsive differential equations to represent the drug
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dynamics of each model and the relationship between them. Stability analysis was

computed for each region. They showed that it is theoretically possible to eliminate

HIV. They also predicted that protease-inhibitors alone could not do the same.

We develop and analyze a model including protease inhibitors, CD4+ T-cells and

two strains of virus. The dynamics between T cells and virus change from Smith and

Wahl [22] since protease inhibitors do not inhibit the infection of a T cell; they only

inhibit viral budding of infectious virions. We also consider the same three regions in

order to view the effect of having low, intermediate or high drug levels. Therefore, the

model presented in this chapter includes T cells inhibited with low, intermediate and

high drug levels, but each of these classes can be infected by either strain of virus; the

only difference between the classes is the budding of infectious virus. We use a system

of impulsive differential equations to model the drug dynamics as the drug changes

from one region to the next. Stability analysis of the ordinary differential equations

is computed, including the basic reproductive number for each region, and numerical

simulations show the effect of varying the drug with an impulse (see Appendices C,

D, E, F for more details on the development of results for each region and errata). We

show that Smith and Wahl’s [22] prediction about protease inhibitors was incorrect,

and that if physiologically tolerable, free-virus elimination is theoretically possible,

due to local stability. Simulation details and extra comments for the manuscript can

be found in Appendix G.

The contribution by each author is as follows. The first author developed and an-

alyzed the current model, performed numerical simulations and wrote the manuscript.

The second author designed the project and edited the manuscript.

This paper is in press in the journal of The Bulletin of Mathematical Biology [4];

Miron, R.E., Smith?, R.J. 2014. Resistance to protease inhibitors in a model of HIV-1

infection with impulsive drug effects. Bulletin of Mathematical Biology 76:1, 59–97.
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Abstract

Background: The emergence of drug resistance is one of the most prevalent reasons

for treatment failure in HIV therapy. This has severe implications for the cost of

treatment, survival and quality of life.

Methods: We use mathematical modelling to describe the interaction between T cells,

HIV-1 and protease inhibitors. We use impulsive differential equations to examine the

effects of different levels of protease inhibitors in a T cell. We classify three different

regimes according to whether the drug efficacy is low, intermediate or high. The model

includes two strains: the wild-type strain, which initially dominates in the absence of

drugs, and the mutant strain, which is the less efficient competitor, but has more

resistance to the drugs.

Results: Drug regimes may take trajectories through one, two or all three regimes,

depending on the dosage and the dosing schedule. Stability analysis shows that resis-

tance does not emerge at low drug levels. At intermediate drug levels, drug resistance

is guaranteed to emerge. At high drug levels, either the drug-resistant strain will

dominate or, in the absence of longer-lived reservoirs of infected cells, a region exists

where viral elimination could theoretically occur. We provide estimates of a range of

dosages and dosing schedules where the trajectories lie either solely within a region or

cross multiple regions.

Conclusion: Under specific circumstances, if the drug level is physiologically tol-

erable, elimination of free virus is theoretically possible. This forms the basis for

theoretical control using combination therapy and for understanding the effects of

partial adherence.

1 Introduction

The effects of drug resistance have altered the history of disease progression [1].
Drug resistance can emerge with lack of adherence to any strict drug therapy [2].
Mutation development occurs quickly at a rate of approximately 3 × 10−5 per

1



nucleotide base cycle of replication [2]. Since HIV is highly variable, it rapidly
develops resistance to antiretroviral drugs [2]. This results in the spread of a
different form of HIV, so that antiretroviral therapy can no longer control the
virus [3].

Many mathematical models have been developed to describe drug resistance
[4]-[9], but such models have focussed on the emergence of drug resistance dur-
ing continuous therapy [10]-[17]. A more recent tool to model drug dynamics is
impulsive differential equations. Smith and Wahl [18] used impulsive differen-
tial equations to model the interaction between cell/virus dynamics and reverse
transcriptase inhibitors, integrase inhibitors and fusion inhibitors. Smith and
Wahl [19] also used impulsive differential equations to model drug resistance by
considering immunological behaviour for HIV dynamics, including the effects
of reverse transcriptase inhibitors and other drugs that prevent cellular infec-
tion. Smith [20] answered the question of determining how many doses may be
skipped before HIV treatment response is adversely affected by the emergence
of drug-resistance using impulsive differential equations. Krakovska and Wahl
[21] developed a model that predicts optimal treatment regimens, and used this
model, coupled with impulsive differential equations, to investigate the effects
of adherence. Lou and Smith? [22] developed a mathematical model that de-
scribes the binding of the virus to T cells in the presence of the fusion inhibitor
enfuvirtide using impulsive differential equations. Lou et al. [23] used impulsive
differential equations to develop a rigorous approach to analyze the threshold
behaviours of nonlinear virus dynamics models with impulsive drug effects and
to examine the feasibility of virus clearance.

The other major class of antiretroviral drugs used to treat HIV-positive
patients are protease inhibitors (PIs). PIs aim to stop the viral protease, which
cleaves polyproteins to produce the virion proteins and viral enzymes [2]. This
decreases the number of infectious virions that bud from the infected CD4+

T cells and increases the number of non-infectious virions, which cannot infect
other susceptible T cells [2]. Modelling PIs is significantly different to modelling
reverse transcriptase inhibitors, integrase inhibitors and fusion inhibitors, since
cells still become infected and still cause budding even with drug present. Here
we examine the conditions required for the emergence of drug resistance to
protease inhibitors during HIV-1 drug therapy.

We consider two strains: the wild-type strain, which initially dominates in
the absence of drugs, and the mutant strain, which is the less efficient competi-
tor, but has more resistance to the drugs. At an intermediate level of drug,
the drug will affect the wild-type strain alone, whereas a high level of drug will
control both strains [12, 28]. We describe three models for each drug level and
use impulsive differential equations to model the drug dynamics flowing between
each model.

This paper is organised as follows. In section 2, we present the model de-
scribing the interactions between the CD4+ T cells, the wild-type and mutant
virus, and the drugs. In section 3, we fix the drug level as a constant and find
the equilibrium points, as well as the stability, for all three regions. In section 4,
numerical simulations are performed to show the effects of varying drug levels.

2



We conclude with a discussion.

2 The model

2.1 T cells

We use nine state variables describing CD4+ T cells in a variety of stages during
infection and while on drugs. The variable TS describes susceptible CD4+ T
cells, whereas TI and TY describe cells infected by wild-type or mutant virus,
respectively. Once an intermediate level of drug has entered the cells, we have
three new classes. TPN describes the susceptible cells that have an intermediate
level of drug. TPI and TPY describe the cells that are infected with the wild-
type or mutant strain, respectively, and that also have an intermediate level of
drug. As more drug is taken, a CD4+ T cell is inhibited with a high level of
drug. We have three such cell types: susceptible cells inhibited with high drug
levels, TPPN ; cells infected with the wild-type strain, TPPI ; and cells infected
with the mutant strain, TPPY . We also describe the virions by VI and VY for
the wild-type and mutant strains, respectively. Non-infectious virus is denoted
by VN . The interaction between the cells and virus can be seen in Figure 1,
and a description of the state variables is listed in Table 1. When low drug
levels are present, there is not enough drug to inhibit the T cells from being
infected by either the wild-type or the mutant strains. When intermediate
drug levels are present, there is not enough drug in the T cells to inhibit the
drug-resistant strain from producing infectious virus, but cells infected with the
wild-type strain will only produce non-infectious virus. When high drug levels
are present, T cells are unable to produce infectious virus, regardless of whether
they are infected with the wild-type or mutant strain.

2.2 Drugs

Similar to Smith and Wahl [18], we use P(t) to denote the intracellular con-
centration of the drug and its active metabolites. We assume that drugs are
taken at (not necessarily fixed) times tk. The effect of the drugs is assumed
to be instantaneous, resulting in a system of impulsive differential equations,
whereby solutions are continuous for t 6= tk (satisfying the associated system of
ordinary differential equations) and undergo an instantaneous change in state
when t = tk. This can be assumed since the time during which the drug is
absorbed is smaller than the time during which the drug is cleared [29].

According to impulsive theory found in the mathematical literature [30]-[33],
we can describe the nature of the impulse at time tk via a difference equation

∆P ≡ P (t+k )− P (t−k ) = f(tk, P (t−k )). (2.1)

where f(t, P ) is a mapping of the solution before the impulse, P (t−k ), to after
the impulse effect, P (t+k ).
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To model the effects of resistance mutation on drug efficacy, we consider the
dose-effect curve illustrated in Figure 2. Here the solid line shows a dose-effect
curve for the wild-type virus, while the dashed line shows the same curve for a
drug-resistant strain with 10-fold resistance; drug resistance implies an increase
in the half-maximal inhibitory concentration IC50 of the drug. The axis, or
effect, in the dose-effect curve is the probability that a given T cell absorbs
sufficient quantities of the drug to prevent the viral protease from being created
in order to stop viral budding. Thus when P < P1 (Region 1), this probability
is negligible for both viral strains. In some region P1 < P < P2 (Region
2), this probability remains negligible for the drug-resistant virus, but grows
monotonically with dose for the wild-type. Similarly, when P > P2 (Region 3),
the probability of blocking the viral protease is significant for both wild-type
and drug-resistant strains, although higher for the wild-type. In all three cases
where the probability that the viral protease will be blocked is non-negligible,
we assume that the probability grows linearly with increasing dose, although at
different rates for different strains and regions (note that the dose-effect curves
in these regimes are much closer to linear than suggested by this semilog plot).
The Region 1 and Region 2 thresholds (P1 and P2, respectively) are calculated
similarly to Miron and Smith? [34]. Our model of HIV dynamics therefore
consists of three distinct systems in which different drug actions are possible,
depending on the drug concentration P (see Figure 1).
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2.3 Combining T cell populations with virus and drugs

The dynamics of the CD4+ T cells and virus can be modelled by the following
set of ordinary differential equations:

dVI

dt
= nIωTI − dV VI − rITSVI − rITPNVI − rITPPNVI

dVY

dt
= nIω(TY + TPY )− dV VY − rY TSVY − rY TPNVY − rY TPPNVY

dVN

dt
= nI(1− ω)(TI + TY + TPY ) + nI(TPI + TPPI + TPPY )− dV VN

dTS

dt
= λ− rITSVI − rY TSVY − dSTS − α1rPPTS +mPTPN

dTI

dt
= rITSVI − dITI − α1rPPTI +mPTPI

dTY

dt
= rY TSVY − dITY − α1rPPTY +mPTPY

dTPN

dt
= α1rPPTS −mPTPN − rY TPNVY − rITPNVI − dSTPN − α2rPPPTPN +mPPTPPN

dTPI

dt
= rITPNVI + α1rPPTI −mPTPI − α2rPPPTPI +mPPTPPI − dITPI

dTPY

dt
= rY TPNVY + α1rPPTY −mPTPY − α2rPPPTPY +mPPTPPY − dITPY

dTPPN

dt
= α2rPPPTPN −mPPTPPN − rY TPPNVY − rITPPNVI − dSTPPN

dTPPI

dt
= rITPPNVI + α2rPPPTPI −mPPTPPI − dITPPI

dTPPY

dt
= rY TPPNVY + α2rPPPTPY −mPPTPPY − dITPPY ,

(2.2)

for t 6= tk (see impulsive conditions below). This model varies between the three
regions mentioned in Section 2.2 by simply changing α1 and α2. In Region 1,
α1 = 0 and α2 = 0. In Region 2, α1 = 1 and α2 = 0. In Region 3, α1 = 1 and
α2 = 1.

Here t is the time in days, nI is the number of virions produced per day, ω is
the proportion of infectious virions produced from an infected CD4+ T cell, and
rI and rY are the infection rates of CD4+ T cells with wild-type or mutant virus,
respectively. The constant λ is the rate at which new susceptible CD4+ T cells
are produced, while the death rates are denoted by dV , dS and dI for the virus,
the susceptible and infected CD4+ T cells, respectively. We denote by rP the
rate at which drug inhibits the T cells when drug concentrations are intermediate
and the drug concentration is denoted by P. Note that, once the wild-type virus
infects TPN , the new infected cell only produces non-infectious virus. The rate
mP is the clearance rate of the drug from an intermediate inhibited cell. The
rate at which drug inhibits the T cells when drug concentrations are high is
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denoted by rPP . The rate mPP is the clearance rate of the drug from a highly
inhibited cell to an intermediate inhibited cell.

All death rates, rates of infection and λ are assumed to be positive. We
assume 0 ≪ ω ≤ 1 and rI > rY (i.e., the wild-type is the more infectious strain
of the virus). Futhermore, dS < dI < dV [35].

In order to analyze this model, we consider each region separately and look
at submodels of system (2.2).

Consider Region 1 (α1 = 0 and α2 = 0). We assume here that the primary
difference between wild-type and mutant virus is the rate of infection and that,
in the absence of drugs, the wild-type strain is the better competitor. Also,
there is not enough drug to inhibit the T cells from being infected by either the
wild-type or the mutant strains. In this case, dTPPN

dt
is negative, meaning TPPN

decays to zero. This also means TPN , TPI , TPY , TPPI and TPPY decay to zero.
This then forces all terms in the first six equations of system (2.2) including
TPN , TPI , TPY , TPPN , TPPI , and TPPY to decay to zero. Thus our subsystem
excludes all the terms including TPN , TPI , TPY , TPPN , TPPI and TPPY .

The same can be concluded for the subsystem for Region 2 (α1 = 1 and
α2 = 0). Again dTPPN

dt
is negative, meaning TPPN decays to zero. This also

means TPPI and TPPY decay to zero. This then forces all terms in the first nine
equations of system (2.2) including TPPN , TPPI and TPPY to decay to zero.
Thus our subsystem excludes all the terms including TPPN , TPPI and TPPY .

In summary, we have the following subregions of system (2.2), for t 6= tk.
For P < P1 (Region 1, Fig. 1A), the dynamics of the CD4+ T cells and

virions are given by

dVI

dt
= nIωTI − dV VI − rITSVI

dVY

dt
= nIωTY − dV VY − rY TSVY

dVN

dt
= nI(1− ω)(TI + TY )− dV VN

dTS

dt
= λ− rITSVI − rY TSVY − dSTS

dTI

dt
= rITSVI − dITI

dTY

dt
= rY TSVY − dITY .

(2.3)

For P1 < P < P2 (Region 2, Fig. 1B), the dynamics of the CD4+ T cells
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and virions are given by

dVI

dt
= nIωTI − dV VI − rITSVI − rITPNVI

dVY

dt
= nIω(TY + TPY )− dV VY − rY TSVY − rY TPNVY

dVN

dt
= nI(1− ω)(TI + TY + TPY ) + nITPI − dV VN

dTS

dt
= λ− rITSVI − rY TSVY − dSTS − rPPTS +mPTPN

dTI

dt
= rITSVI − dITI − rPPTI +mPTPI

dTY

dt
= rY TSVY − dITY − rPPTY +mPTPY

dTPN

dt
= rPPTS −mPTPN − rY TPNVY − rITPNVI − dSTPN

dTPI

dt
= rPPTI −mPTPI + rITPNVI − dITPI

dTPY

dt
= rPPTY −mPTPY + rY TPNVY − dITPY .

(2.4)

For P > P2 (Region 3, Fig. 1C), the dynamics of the CD4+ T cells and
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virions are given by

dVI

dt
= nIωTI − dV VI − rITSVI − rITPNVI − rITPPNVI

dVY

dt
= nIω(TY + TPY )− dV VY − rY TSVY − rY TPNVY − rY TPPNVY

dVN

dt
= nI(1− ω)(TI + TY + TPY ) + nI(TPI + TPPI + TPPY )− dV VN

dTS

dt
= λ− rITSVI − rY TSVY − dSTS − rPPTS +mPTPN

dTI

dt
= rITSVI − dITI − rPPTI +mPTPI

dTY

dt
= rY TSVY − dITY − rPPTY +mPTPY

dTPN

dt
= rPPTS −mPTPN − rY TPNVY − rITPNVI − dSTPN − rPPPTPN +mPPTPPN

dTPI

dt
= rITPNVI + rPPTI −mPTPI − rPPPTPI +mPPTPPI − dITPI

dTPY

dt
= rY TPNVY + rPPTY −mPTPY − rPPPTPY +mPPTPPY − dITPY

dTPPN

dt
= rPPPTPN −mPPTPPN − rY TPPNVY − rITPPNVI − dSTPPN

dTPPI

dt
= rITPPNVI + rPPPTPI −mPPTPPI − dITPPI

dTPPY

dt
= rY TPPNVY + rPPPTPY −mPPTPPY − dITPPY .

(2.5)

The dynamics of the drug are modelled using impulsive differential equations.
The exponential decay can be written as a differential equation, where P (t) is
the drug concentration. The dynamics of the drug are

dP

dt
= −dPP t 6= tk

∆P = P i t = tk.
(2.6)

The rate at which the drug is cleared is dP and P i is the dosage. Assuming a
drug is taken at time tk, by the definition of an impulsive effect, we have

P (t+k ) = P (t−k ) + P i . (2.7)

Here we assume that P (0) = 0.
Thus (2.3)-(2.5), together with (2.6) describe our three-regime model of im-

pulsive differential equations. A list and description of all the parameters and
state variables can be found in Table 1.
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3 Analysis

3.1 Asymptotic Behaviour

In order to interpret system (2.2), we analyze each region separately. We in-
vestigate the stability of each equilibrium by fixing the drug concentration level
as a constant in order to approximate the effect of the impulsive periodic or-
bit. Region 1 has no effect from the drug concentration, but the analysis of
Regions 2 and 3 include P ∗ as the representative value of drug levels. Section 4
demonstrates numerically the effects of changing the drug concentration levels
(including the impulse condition).

3.1.1 Region 1: Low Drug Levels

System (2.3) has three equilibrium points.

Disease-free equilibrium

The disease-free equilibrium is

(VI , VY , VN , TS , TI , TY ) = (0, 0, 0,
λ

dS
, 0, 0).

The basic reproductive number of Region 1, R0,1, is computed using the
next-generation method [36, 37] at the disease-free equilibrium. Using the same
notation as [37], we find

F =









0 0 0 0
0 0 0 0

rITS 0 0 0
0 rY TS 0 0









V =









dV + rITS 0 −nIω 0
0 dV + rY TS 0 −nIω
0 0 dI 0
0 0 0 dI









,

where F is non-negative and V is a non-singular M-matrix. Then R0,1 is the
spectral radius of the FV −1 matrix. Thus

R0,1 = max{R0,1,a, R0,1,b}

= max
{ rIλnIω

dI(dV dS + rIλ)
,

rY λnIω

dI(dV dS + rY λ)

}

.

Note that R0,1,a > R0,1,b since rI > rY .

Theorem 3.1.1. The disease-free equilibrium is locally asymptotically stable in
Region 1 if R0,1 < 1 and unstable if R0,1 > 1.
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Proof. The Jacobian matrix for Region 1 is

J =

















−dV − rITS 0 0 −rIVI nIω 0
0 −dV − rY TS 0 −rY VY 0 nIω
0 0 −dV 0 nI(1− ω) nI(1− ω)

−rITS −rY TS 0 −rIVI − rY VY − dS 0 0
rITS 0 0 rIVI −dI 0
0 rY TS 0 rY VY 0 −dI

















.

For the disease-free equilibrium, V I = V Y = 0 and TS =
λ

dS
, so the character-

istic polynomial is

0 = det(J(V I , V Y , V N , TS , T I , TY )− µI6) (3.8)

= (−dV − µ)(−dS − µ)[µ2 + a1µ+ b1][µ
2 + a2µ+ b2],

where

a1 = dV + rITS + dI

b1 = dIdV + dIrY TS + nIωryTS

a2 = dV + rY TS + dI

b2 = dIdV + dIrITS − nIωrITS

=
dIdV dS + rIλdI

dS
(1−R0,1,a).

We have b2 > 0 if R0,1,a < 1. By the Routh-Hurwitz conditions [38, 39], the
Jacobian matrix has all eigenvalues with negative real part. Thus the disease-
free equilibrium is locally asymptotically stable when R0,1 < 1 and unstable
when R0,1 > 1.

Endemic equilibria

The wild-type equilibrium is

(VI , VY , VN , TS , TI , TY ) = (V I , 0, V N , TS , T I , 0),

where

V I =
dSdV + rIλ

rIdV
(R0,1,a − 1)

V N =
nI(1− ω)(dSdV + rIλ)

rIdV (nIω − dI)
(R0,1,a − 1)

TS =
λdV

(dSdV + rIλ)(R0,1,a − 1) + dS

T I =
dSdV + rIλ

rI(nIω − dI)
(R0,1,a − 1).
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The mutant equilibrium is

(VI , VY , VN , TS , TI , TY ) = (0, V Y , V N , TS , 0, TY ),

where

V Y =
dSdV + rY λ

rY dV
(R0,1,b − 1)

V N =
nI(1− ω)(dSdV + rY λ)

rY dV (nIω − dI)
(R0,1,b − 1)

TS =
λdV

(dSdV + rY λ)(R0,1,b − 1) + dS

TY =
dSdV + rY λ

rY (nIω − dI)
(R0,1,b − 1).

The wild-type equilibrium exists if R0,1,a > 1, and the mutant equilibrium exists
if R0,1,b > 1.

Theorem 3.1.2. When the endemic equilibria exist (R0,1,a > 1 and/or R0,1,b >
1), the wild-type equilibrium is locally asymptotically stable and the mutant equi-
librium is unstable.

Proof. For the wild-type equilibrium, V Y = 0, the characteristic polynomial is

0 = det(J(V I , V Y , V N , TS , T I , TY )− µI6)

= (dV + µ)[µ2 + a1µ+ b1][µ
3 + a2µ

2 + b2µ+ c2],

where

a1 = dV + rY TS + dI

b1 =
dIdV (rI − rY )

rI

a2 = rIV I + dS + dI + dV + rITS

b2 = (dV + rITS)dS + (rIV I + dS)dI + dV rIV I

c2 = (dIdV + rITSdI − nIωrITS)(rIV I + dS)− rITS(rIV IdI − rIV InIω)

= dI(dSdV + rIλ)(R0,1,a − 1).

Since rI > rY , we have a1, b1 > 0 meaning the quadratic equation µ2+a1µ+ b1
has no roots with non-negative real parts. We have a2, b2, c2 > 0 and a2b2−c2 >
0 if R0,1,a > 1. By the Routh-Hurwitz conditions [38, 39], the Jacobian matrix
has all eigenvalues with negative real part if R0,1 > 1, meaning the wild-type
equilibrium is locally asymptotically stable whenever it exists.

For the mutant equilibrium, V I = 0, the characteristic polynomial is

0 = det(J(V I , V Y , V N , TS , T I , TY )− µI6)

= (dV + µ)[µ2 + a1µ+ b1][µ
3 + a2µ

2 + b2µ+ c2],
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where

a1 = dV + rITS + dI

b1 =
dIdV (rY − rI)

rY

a2 = rY V Y + dS + dI + dV + rY TS

b2 = (dV + rY TS)dS + (rY V Y + dS)dI + dV rY V Y

c2 = (dIdV + rY TSdI − nY ωrY TS)(rY V Y + dS)− rY TS(rY V Y dI − rY V Y nY ω)

= (dSdV dI + rY λ)(R0,1,b − 1).

Since the mutant equilibrium has the same characteristic polynomial as the
wild-type equilibrium, except that rI and V I are interchanged with rY and
V Y , we have a1 > 0 and b1 < 0 since rY − rI < 0. By the Routh-Hurwitz
conditions [38, 39], the Jacobian matrix has an eigenvalue with positive real
part if R0,1 > 1, meaning the mutant equilibrium is unstable.

We can also show that no interior equilibria exist for realistic parameters
in Region 1. We assumed that rI > rY since since the mutant virus is less
infectious.

Theorem 3.1.3. For system (2.3), if rI 6= rY , there are no interior equilibria.

Proof. Let rI 6= rY . For an interior equilibrium, we have VI 6= 0 and VY 6= 0.
Setting the right-hand side of system (2.3) to zero, we get, from the fifth and
sixth equations of system (2.3),

TI =
rI
dI

TSVI (3.9)

TY =
rY
dI

TSVY . (3.10)

Setting the first equation of system (2.3) equal to zero, and substituting TI as
in equation (3.9), we get

rITSVI

nIω − dI
dI

− dV VI = 0.

Since VI 6= 0, we have

TS =
dV dI

rI(nIω − dI)
. (3.11)

Similarly, setting the second equation of system (2.3) equal to zero, and substi-
tuting TY as in equation (3.10), we get

TS =
dV dI

rY (nIω − dI)
, (3.12)

since VY 6= 0.
This implies that rI = rY , which is a contradiction.
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In summary, if R0,1 < 1, the disease-free equilibrium is locally asymptoti-
cally stable in Region 1, and if R0,1 > 1, the wild-type equilibrium is locally
asymptotically stable and the disease-free and mutant equilibria are unstable in
Region 1. Also, in Region 1, there are no interior equilibria.

3.1.2 Region 2: Intermediate Drug Levels

In this case, the drug concentration level affects the outcome of the system.
We denote the equilibrium solutions by X as those not affected by the drug
dynamics (Region 1), and denote the equilibria by X∗ as those that are affected
by the drug dynamics (Region 2 and 3). System (2.4) has four equilibria. In
all cases, we fix P ∗ constant such that P1 < P ∗ < P2, where P1 and P2 are the
Region 1 and Region 2 thresholds, respectively.

Disease-free equilibrium

The disease-free equilibrium is

(VI , VY , VN , TS , TI , TY , TPN , TPI , TPY , P ) = (0, 0, 0, T ∗

S , 0, 0, T
∗

PN , 0, 0, P ∗),

where

T ∗

S =
λ

dS + rPP ∗
+

mPT
∗

PN

dS + rPP ∗

T ∗

PN =
λrPP

∗

dS(mP + dS) + dSrPP ∗
.

The basic reproductive number in Region 2, R0,2, is computed as before
using the next-generation method and is given by

R0,2 = max{R0,2,a, R0,2,b},

where

R0,2,a =
nIω

(

rY T
∗

S + rY T
∗

PN

)

dI(dV + rY T ∗

S + rY T ∗

PN )

R0,2,b =
nIω

(

mP (rIT
∗

S + rIT
∗

PN ) + dIrIT
∗

S

)

dI(dI + rPP ∗ +mP )(rIT ∗

S + rIT ∗

PN + dV )
.

Theorem 3.1.4. The disease-free equilibrium is locally asymptotically stable in
Region 2 if R0,2 < 1 and unstable if R0,2 > 1.

Proof. The Jacobian matrix for Region 2 is J = [J1|J2], where
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J1 =

































−dV − rITS − rITPN 0 0 −rIVI

0 −dV − rY TS − rY TPN 0 −rY VY

0 0 −dV 0
−rITS −rY TS 0 −rIVI − rY VY − dS − rPP
rITS 0 0 rIVI

0 rY TS 0 rY VY

−rITPN −rY TPN 0 rPP
rITPN 0 0 0

0 rY TPN 0 0
0 0 0 0

































J2 =

































nIω 0 −rIVI 0 0 0
0 nIω −rY VY 0 nIω 0

nI(1− ω) nI(1− ω) 0 nI nI(1− ω) 0
0 0 mP 0 0 −rPTS

−dI − rPP 0 0 mP 0 −rPTI

0 −dI − rPP 0 0 mP −rPTY

0 0 −mP − rY VY − rIVI − dS 0 0 rPTS

rPP 0 rIVI −mP − dI 0 rPTI

0 rPP rY VY 0 −mP − dI rPTY

0 0 0 0 0 −dP

































.

For the disease-free equilibrium, V ∗

I = V ∗

Y = 0, so the characteristic polyno-
mial is

0 = det(J(V ∗

I , V
∗

Y , V
∗

N , T ∗

S , T
∗

I , T
∗

Y , T
∗

PN , T ∗

PI , T
∗

PY , P
∗)− µI10)

= (dV + µ)(dP + µ)[µ3 + a1µ
2 + b1µ+ c1]f(µ),

where

a1 = mP + dI + dV + rIT
∗

S + rIT
∗

PN + dI + rPP
∗

b1 = (dI + rPP
∗)(dV + rIT

∗

S + rITPN ) + (mP + dI)(dV + rIT
∗

S + rIT
∗

PN + dI + rPP
∗)

−mP rPP
∗ − nIωrIT

∗

S

c1 = dI(rIT
∗

PN + rIT
∗

S + dV )(dI + rPP
∗ +mP )(1−R0,2,b)

and where

f(µ) = det













−dV − rY TS − rY TPN 0 nIω 0 nIω
−rY TS −dS − rPP 0 mP 0
rY TS 0 −dI − rPP

∗ 0 mP

−rY TPN rPP 0 −mP − dS 0
rY TPN 0 rPP 0 −mP − dI













.
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The third-order polynomial µ3+a1µ
2+b1µ+c1 has a1, c1 > 0 and a1b1−c1 >

0 if R0,2,b < 1. Thus, by the Routh-Hurwitz conditions [38, 39], the third order
polynomial has all eigenvalues with negative real part.

Computing the determinant of f(µ), we get

det[f(µ)] = [µ2 + a2µ+ b2][µ
3 + a3µ

2 + b3µ+ c3],

where

a2 = 2dS + rPP
∗ +mP

b2 = dSrPP
∗ + dS(mP + dS)

a3 = rPP
∗ + 2dI + dV + rY T

∗

S + rY T
∗

PN +mP

b3 = −mP rPP
∗ − nIωrY (T

∗

S + T ∗

PN ) + (rPP
∗ + dI)(dV + rY T

∗

S + rY T
∗

PN )

+ (mP + dI)(rPP
∗ + dI + dV + rY T

∗

S + rY T
∗

PN )

c3 = (dV + rY T
∗

S + rY T
∗

PN )[−mP rPP
∗ + (mP + dI)(dI + rPP

∗)]− nIω[rY T
∗

S(mP + dI)

+mP rY T
∗

PN + rY T
∗

SrPP
∗ + rY T

∗

PN (dI + rPP
∗)]

= dI(rY T
∗

PN + rY T
∗

S + dV )(dI + rPP
∗ +mP )(1−R0,2,a).

We have a3, c3 > 0 and a3b3 − c3 > 0 if R0,2,b < 1. Hence, by the Routh-
Hurwitz conditions [38, 39], the Jacobian matrix has all eigenvalues with ne-
gaitve real part meaning the disease-free equilibrium is locally asymptotically
stable when R0,2 < 1 and unstable when R0,2 > 1.

Endemic equilibria

The wild-type equilibrium is

(VI , VY , VN , TS , TI , TY , TPN , TPI , TPY , P ) = (V ∗

I , 0, V
∗

N , T ∗

S , T
∗

I , 0, T
∗

PN , T ∗

PI , 0, P
∗),

where V ∗

I is the positive root of the quadratic equation

α1

ξ1
V ∗2
I +

β1

ξ1
V ∗

I + γ1 = 0,

for

ξ1 =
dV mP (rPP

∗ + dI)

(rPP ∗ + dI)[(mP − dI)(rPP ∗ + dI)− rPP ∗ + dI ]

α1 = r2I (dI + rPP
∗)

β1 = rI(dI + rPP
∗)(mP + dS −mP rPP

∗) + rI(rIλ− dV rIλ) + (mP + rPP
∗)(dI + rPP

∗)

− r2Iξ1rPP
∗λ

γ1 = rIrPP
∗λ

(

1

ξ1
−mP − dS + rPP

∗ + dI

)

+
mP + rPP

∗

ξ1
[rIλ− dV rIλ+ (dI + rPP

∗)(mP + dS −mP rPP
∗)]
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and where

V ∗

N =
nI(1− ω)T ∗

I + nIT
∗

PI

dV

T ∗

S =
λ+mPT

∗

PN

rIV ∗

I + dS + rPP ∗

T ∗

I =
dV V

∗

I + rIT
∗

SV
∗

I + rIT
∗

PNV ∗

I

nIω

T ∗

PN =
rPT

∗

SP
∗

mP + rIV ∗

I + dS

T ∗

PI =
rPP

∗T ∗

I + rIT
∗

PNV ∗

I

mP + dI
.

The mutant equilibrium is

(VI , VY , VN , TS , TI , TY , TPN , TPI , TPY , P ) = (0, V ∗

Y , V
∗

N , T ∗

S , 0, T
∗

Y , T
∗

PN , 0, T ∗

PY , P
∗),

where V ∗

Y is the positive root of the quadratic equation

α2

ξ2
V ∗2
Y +

β2

ξ2
V ∗

Y + γ2 = 0,

for

ξ2 =
(dI + rPP

∗)(mP + dI) +mP rPP
∗

nIω(dI + rPP ∗ +mP )(mP + dI)

α2 = rY

β2 = dS + rPP
∗ − ξrY (mP + dI)

γ2 = −ξdV (mP + dI)(dS + rPP
∗)− rY λ(mP + dI) + rY λ

and where

V ∗

N =
nI(1− ω)T ∗

Y + nI(1− ω)T ∗

PY

dV

T ∗

S =
λ+mPT

∗

PN

rY V ∗

Y + dS + rPP ∗

T ∗

Y =
rY V

∗

Y T
∗

S +mPT
∗

PY

dI + rPP ∗

T ∗

PN =
rPP

∗T ∗

S

dS + rY V ∗

Y +mP

T ∗

PY =
rPT

∗

Y P
∗ + rY T

∗

PNV ∗

Y

mP + dI
.

The interior equilibrium is

(VI , VY , VN , TS , TI , TY , TPN , TPI , TPY , P ) = (V ∗

I , V
∗

Y , V
∗

N , T ∗

S , T
∗

I , T
∗

Y , T
∗

PN , T ∗

PI , T
∗

PY , P
∗),
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where V ∗

Y is the positive root of the quadratic equation

δ1V
∗2
Y + δ2V

∗

Y + (α1 + α2) = 0,

for

α1 = rY λ

[

(nIω − (dI + rPP
∗) + η1rPP

∗)
(

mP + dS +
η3 − η2
a− b

)

+ rPP
∗η1(rPP

∗ + 1)(dI + rPP
∗)

]

α2 = (η1 + rPP
∗dV − dV (dI + rPP

∗))

[

(η3 − η2
a− b

+ dS + rPP
∗

)

(mP +
η3 − η2
a− b

+ dS)− rPP
∗mP

]

δ1 = r2Y

(

2b

b− a

)2

(η1 + rPP
∗dV − dV (dI + rPP

∗))

δ2 = r2Y λ

(

2a

a− b

)2

(η1rPP
∗ − rPP

∗ − dI + nIω))

η1 =
nIωmP + nIω(dI + rPP

∗)

m+ P + dI + nIωrPP ∗

η2 =
rY

η1rPP ∗dV − dV (dI + rPP ∗)

[

rPP
∗(η1(rPP

∗ + 1)(dI + rPP
∗)) + (nIω − (dI + rPP

∗)

+ η1rPP
∗)(mP + dS)

]

η3 =
rI(mP + dI)

dV (mP + dI)− rPP ∗dV

[

rPP
∗

(rPP
∗ + nIω

mP + dI
− (dI + rPP

∗)
)

+
(

nIω − (dI + rPP
∗)

+
rPP

∗

mP + dI

)

(mP + dS)
]

a =
rY

η1rPP ∗dV − dV (dI + rPP ∗)

[

nIω − dI − rPP
∗ − η1rPP

∗

]

b =
rI(mP + dI)

rPP ∗dV − dV (mP + dI)

[

nIω − dI − rPP
∗ +

rPP
∗

mP + dI

]

,
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and where

V ∗

I =
nIωT

∗

I

dV + rIT ∗

S + rIT ∗

PN

V ∗

N =
nI(1− ω)(T ∗

I + T ∗

Y + T ∗

PY ) + nIT
∗

PI

dV

T ∗

S =
λ(mP + rY V

∗

Y + rIV
∗

I + dS)

(rY V ∗

Y + rIV ∗

I + dS + rPP ∗)(rY V ∗

Y + rIV ∗

I + dS) +mP (rY V ∗

Y + rIV ∗

I + dS)

T ∗

I =
V ∗

I (dV + rIT
∗

S + rIT
∗

PN )

nIω

T ∗

Y =
rY V

∗

Y T
∗

S +mPT
∗

PY

dI + rPP ∗

T ∗

PN =
rPP

∗T ∗

S

mP + rY V ∗

Y + rIV ∗

I + dS

T ∗

PI =
rPP

∗TI + rIT
∗

PNV ∗

I

mP + dI

T ∗

PY =
rPP

∗V ∗

Y (dV + rY T
∗

S + rY T
∗

PN ) + rY T
∗

PNV ∗

Y

mP + dI + nIωrPP ∗
.

Theorem 3.1.5. When the endemic equilibria exist and we have that R0,2,a > 1
and R0,2,b > 1, the wild-type and resistant strains will coexist in Region 2.

Proof. For the wild-type equilibrium, V ∗

Y = 0, the characteristic polynomial is

0 = det(J(V ∗

I , V
∗

Y , V
∗

N , T ∗

S , T
∗

I , T
∗

Y , T
∗

PN , T ∗

PI , T
∗

PY , P
∗)− µI10)

= (−dV − µ)(−dP − µ)[µ3 + aµ2 + bµ+ c]f(µ),

where

f(µ) = det













−dV − rIT
∗

S − rIT
∗

PN −rIV
∗

I nIω −rIV
∗

I 0
−rIT

∗

S −rIV
∗

I − dS − rPP
∗ 0 mP 0

rIT
∗

S rIV
∗

I −dI − rPP
∗ 0 mP

−rIT
∗

PN rPP
∗ 0 −mP − dS − rIV

∗

I 0
rIT

∗

PN 0 rPP
∗ rIV

∗

I −mP − dI













and where

a = 2dI + rPP
∗ +mP + dV + rY T

∗

S + rY T
∗

PN

b = (dV + rY T
∗

S + rY T
∗

PN )[(mP + dI) + (dI + rPP
∗)] + (dI + rPP

∗)(mP + dI)

− rY T
∗

SnIω +mP rPP
∗ − rY T

∗

PNnIω

c = −nIωrY T
∗

S(mP + dI) + (dV + rY T
∗

S + rY T
∗

PN )(mP dI + d2I + dIrPP
∗)− rPP

∗nIωrY T
∗

S

− rY T
∗

PNnIωmP − rY T
∗

PNnIω(dI + rPP
∗)

= dI(rY T
∗

PN + rY T
∗

S + dV )(dI + rPP
∗ +mP )(1−R0,2,a).
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We have a > 0 and c < 0 if R0,2,a > 1. Hence, by the Routh-Hurwitz
conditions [38, 39], the Jacobian matrix has an eigenvalue with a positive real
part and thus the wild-type equilibrium is unstable.

For the mutant equilibrium, V ∗

I = 0, the characteristic polynomial is

0 = det(J(V ∗

I , V
∗

Y , V
∗

N , T ∗

S , T
∗

I , T
∗

Y , T
∗

PN , T ∗

PI , T
∗

PY , P
∗)− µI10)

= (−dV − µ)(−dP − µ)[µ3 + aµ2 + bµ+ c]f(µ),

where

f(µ) = det













−dV − rITS − rY TPN −rY VY nIω −rY VY nIω
−rY TS −rY VY − dS − rPP 0 mP 0
rY TS rY VY −dI − rPP 0 mP

−rY TPN rPP 0 mP − dS − rY VY 0
rY TPN 0 rPP rY VY −mP − dI













and where

a = 2dI + rPP
∗ +mP + dV + rIT

∗

S + rIT
∗

PN

b = (dV + rIT
∗

S + rIT
∗

PN )[(mP + dI) + (dI + rPP
∗)] + (dI + rPP

∗)(mP + dI)

− rIT
∗

SnIω −mP rPP
∗

c = −nIωrIT
∗

S(mP + dI) + (dV + rIT
∗

S + rIT
∗

PN )(mP + dI)(dI + rPP
∗)

− rPP
∗mP (dV + rIT

∗

S + rIT
∗

PN )−mPnIωrIT
∗

PN

= dI(rIT
∗

PN + rIT
∗

S + dV )(dI + rPP
∗ +mP )(1−R0,2,b).

In this case, a > 0 and c < 0 if R0,2,a > 1. It follows from the Routh-
Hurwitz conditions [38, 39] that the wild-type equilibrium has an eigenvalue
with a positive real part and is thus unstable.

Since the disease-free, wild-type and mutant equilibria are all locally unsta-
ble, this implies that the wild-type and resistant strains will co-exist.

In summary, if R0,2 < 1, the disease-free equilibrium is locally asymptotically
stable in Region 2, and if R0,2 > 1, the wild-type and resistant strains will co-
exist in Region 2. However, it should be noted that it is not necessarily the
interior orbit that trajectories approach. There may be other interior periodic
orbits or more complex behaviour in which both strains coexist. Nevertheless,
in this region, the mutant is not eliminated.

3.1.3 Region 3: High drug levels

If rP ≥ rPP , system (2.5) has three equilibria: disease free (extinction of virus
and infected cells), wild type (extinction of mutant) and mutant (extinction of
wild type). In all three cases, there is a P ∗ such that P ∗ > P2. If rP < rPP ,
then there is also an interior equilibrium, but we expect from the dose-effect
curves that this will not be the case [40].
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Disease-free equilibrium

The disease-free equilibrium is

(VI , VY , VN , TS , TI , TY , TPN , TPI , TPY , TPPN , TPPI , TPPY , P ) = (0, 0, 0, T ∗

S , 0, 0, T
∗

PN , 0, 0, T ∗

PPN , 0, 0, P ∗),

where

T ∗

S =
λ+mPT

∗

PN

dS + rPP ∗

T ∗

PN =
rPP

∗T ∗

S +mPPT
∗

PPN

mP + dS + rPPP ∗

T ∗

PPN =
rPPP

∗T ∗

PN

mPP + dS
.

The basic reproductive number in Region 3, R0,3, is computed as before
using the next-generation method and is given by

R0,3 = max{R0,3,a, R0,3,b} (3.13)

where

R0,3,a =
nIω

(

(dI + rPP
∗ +mP )(mPP (rY T

∗

S + rY T
∗

PN + rY T
∗

PPN ) + dI(rY T
∗

S + rY T
∗

PN )) + rY T
∗

SdIrPPP
∗

)

dI(dV + rY T ∗

S + rY T ∗

PN + rY T ∗

PPN )
(

dI(dI + rPP ∗ +mP + rPPP ∗ +mPP ) +mPmPP + rPP ∗mPP + rPP ∗rPPP ∗

)

R0,3,b =
nIω

(

(dI +mP )(mP (rIT
∗

S + rIT
∗

PN ) + dIrIT
∗

S) + dIrPPP
∗rIT

∗

S +mPmPP rIT
∗

PPN

)

dI(dV + rIT ∗

S + rIT ∗

PN + rIT ∗

PPN )
(

dI(dI + rPP ∗ +mP + rPPP ∗ +mPP ) +mPmPP + rPP ∗mPP + rPP ∗rPPP ∗

)

The Jacobian matrix for Region 3 is J = [J1|J2|J3], where

J1 =













































−dV − rITS − rITPN − rITPPN 0 0 −rIVI

0 −dV − rY TS − rY TPN − rY TPPN 0 −rY VY

0 0 −dV 0
−rITS −rY TS 0 −rIVI − rY VY − dS − rPP
rITS 0 0 rIVI

0 rY TS 0 rY VY

−rITPN −rY TPN 0 rPP
rITPN 0 0 0

0 rY TPN 0 0
−rITPPN −rY TPPN 0 0
rITPPN 0 0 0

0 rY TPPN 0 0
0 0 0 0












































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J2 =













































nIω 0 −rIVI 0
0 nIω −rY VY 0

nI(1− ω) nI(1− ω) 0 nI

0 0 mP 0
−dI − rPP 0 0 mP

0 −dI − rPP 0 0
0 0 −mP − rY VY − rIVI − dS − rPPP 0

rPP 0 rIVI −mP − dI − rPPP
0 rPP rY VY 0
0 0 rPPP 0
0 0 0 rPPP
0 0 0 0
0 0 0 0













































J3 =













































0 −rIVI 0 0 0
nIω −rY VY 0 0 0

nI(1− ω) 0 nI nI 0
0 0 0 0 −rPTS

0 0 0 0 −rPTI

mP 0 0 0 −rPTY

0 mPP 0 0 rPTS − rPPTPN

0 0 mPP 0 rPTI − rPPTPI

−mP − dI − rPPP 0 0 mPP rPTY − rPPTPY

0 −mPP − rIVI − rY VY − dS 0 0 rPPTPN

0 rIVI −mPP − dI 0 rPPTPI

rPPP rY VY 0 −mPP − dI rPPTPY

0 0 0 0 −dP













































.

The region of viral elimination

We now investigate the conditions under which the disease-free equilibrium be-
comes stable. We will consider a subset of Region 3, called Region 4, where
P ∗ is sufficiently large so that the disease-free equilibrium is asymptotically sta-
ble. We shall refer to this subset of Region 3 as the region of viral elimination.
Rearranging terms in T ∗

PN from the disease-free equilibrium, we get

T ∗

PN =
λrPP

∗(mPP + ds)

(d2S + dSrPPP ∗ + dSmPP )(dS + rPP ∗) + dSmP (mPP + dS)
.

If we divide the numerator and the denominator by P ∗2 and take P ∗ → ∞, we
get

T ∗

PN → 0
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in Region 4. Since T ∗

PN → 0 and P ∗ → ∞, this implies that T ∗

S → 0. Rearrang-
ing terms in T ∗

PPN from the disease-free equilibrium, we get

T ∗

PPN =
λrPP rPP

∗2

(d2S + dSrPPP ∗ + dSmPP )(dS + rPP ∗) + dSmP (mPP + dS)
.

Again, if we divide the numerator and the denominator by P ∗2 and take P ∗ →
∞, we get

T ∗

PPN →
λ

dS
.

Thus, in Region 4, when P ∗ → ∞, the disease-free equilibrium has T ∗

S → 0,

T ∗

PN → 0 and T ∗

PPN →
λ

dS
.

The basic reproductive number for Region 4 is such that R0,3 < 1. When
P ∗ → ∞, we see that R0,3 defined by (3.13) equals zero meaning in the limit of
P ∗ → ∞, the basic reproductive number certainly drops below unity.

Theorem 3.1.6. The disease-free equilibrium is locally asymptotically stable
when P ∗ → ∞.

Proof. Computing the Jacobian in Region 4 for the disease-free equilibrium,
V ∗

I = V ∗

Y = 0, we get the characteristic polynomial

0 = det
(

J(V ∗

I , V
∗

Y , V
∗

N , T ∗

S , T
∗

I , T
∗

Y , T
∗

PN , T ∗

PI , T
∗

PY , T
∗

PPN , T ∗

PPI , T
∗

PPY , P
∗)− µI13

)

= (−dP − µ)(−dV − µ)(µ7 + a1µ
6 + a2µ

3 + a3µ
4 + a4µ

3 + a5µ
2 + a6µ+ a7)f(µ)

where

f(µ) = det









−dV − rY TPPN − µ nIω nIω 0
0 −dI − rPP − µ mP 0
0 rPP −mP − rPPP − dI − µ mPP

rY TPPN 0 rPPP −mPP − dI − µ









.

When taking P ∗ → ∞, the seventh-order polynomial can be reduced to a
third-order characteristic polynomial µ3 + b1µ

2 + b2µ+ b3, where

b1 = 2mPP + dS + dI + dV + rIT
∗

PPN

b2 = mpp(dS + dV + rIT
∗

PPN ) + (dI +mPP )(dV + rIT
∗

PPN ) + dS(dI +mPP + dV + rIT
∗

PPN )

b3 = mPP dS(dV + rIT
∗

PPN ) + dS(dI +mPP )(dV + rIT
∗

PPN ).

By the Routh-Hurwitz conditions [38, 39], the third order polynomial has all
roots with negative real part if b1, b3 > 0 and b1b2 > b3. The Routh-Hurwitz
conditions are always satisfied when P ∗ → ∞, meaning the third order polyno-
mial has all eigenvalues with negative real part.
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Computing the determinant of f(µ) and taking P ∗ → ∞, the fourth-order
polynomial can be reduced to a second-order characteristic polynomial µ2 +
aµ+ b, where

a = dV + rY T
∗

PPN + dI

b = (dV + rY T
∗

PPN )dI .

By the Routh-Hurwitz condition [38, 39], f(µ) has all roots with negative real
part. Therefore, the disease-free equilibrium is locally asymptotically stable in
Region 4 for P ∗ → ∞.

Note that elimination of free virus for this model is not equivalent to clearing
the infection. See Discussion for more details.

It can also be shown that the wild-type equilibrium in Region 4 gives

V ∗

I = −
(rIλ+ dV dS

dV rI

)

V ∗

N =
nI(1− ω)T ∗

I + nI(T
∗

PI + T ∗

PPI)

dV

T ∗

S =
λ+mPT

∗

PN

rIV ∗

I + dS + rPP ∗

T ∗

PN =
rPP

∗T ∗

S +mPPT
∗

PPN

mP + rIV ∗

I + dS + rPPP ∗

T ∗

PPN =
rPPP

∗T ∗

PN

mPP + rIV ∗

I + dS

T ∗

I =
rIV

∗

I T
∗

S +mPT
∗

PI

dI + rPP ∗

T ∗

PI =
rIV

∗

I T
∗

PN + rPP
∗T ∗

I +mPPT
∗

PPI

mP + rPPP ∗ + dI

T ∗

PPI =
rIV

∗

I T
∗

PPN + rPPP
∗T ∗

PI

mPP + dI
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and the drug-resistant equilibrium in Region 4 gives

V ∗

Y = −
(rY λ(rPP + dS(rP + rPP )) + dSdV rPP

r2Y λ(rP + rPP ) + dV rY rPP

)

V ∗

N =
nI(1− ω)(T ∗

Y + T ∗

PY ) + nIT
∗

PPY

dV

T ∗

S =
λ+mPT

∗

PN

rY V ∗

Y + dS + rPP ∗

T ∗

PN =
rPP

∗T ∗

S +mPPT
∗

PPN

mP + rY V ∗

Y + dS + rPPP ∗

T ∗

PPN =
rPPP

∗T ∗

PN

mPP + rY V ∗

Y + dS

T ∗

Y =
rY V

∗

Y T
∗

S +mPT
∗

PY

dI + rPP ∗

T ∗

PY =
rY V

∗

Y T
∗

PN + rPP
∗T ∗

Y +mPPT
∗

PPY

mP + rPPP ∗ + dI

T ∗

PPY =
rY V

∗

Y T
∗

PPN + rPPP
∗T ∗

PY

mPP + dI
.

These are biologically meaningless in Region 4 since V ∗

I and V ∗

Y are negative.

In summary, if P ∗ → ∞, the disease-free equilibrium is locally asymptoti-
cally stable and viral elimination is theoretically possible.

3.1.4 Summary of asymptotic behaviour

In summary for this section, we find that, at low drug levels (Region 1), resis-
tance does not emerge and thus the wild-type strain dominates. In contrast, at
intermediate drug levels (Region 2), drug resistance is guaranteed to emerge.
Recall that we have defined intermediate drug levels as the regime in which the
drugs significantly inhibit replication of the wild-type strain but have negligible
effect on the drug-resistant strain.

For high drug levels (Regions 3), there exists a region (Region 4) where both
populations of free virus will be driven to extinction. (We note that our model
does not consider longer-lived reservoirs of virus, such as latent T cells, and thus
elimination of free virus in our model is not equivalent to clearing infection.)
Thus, if the drug level is very large, virus elimination is theoretically possible.

3.2 Equilibrium T cell counts

In this section, we examine the total uninfected T cell count at the stable equi-
librium predicted in low, intermediate and high drug concentrations.

For low drug levels (P < P1), we know from Section 3.1.1 that the wild-type
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virus dominates. The total uninfected T cell count in Region 1 is

TS =
dIdV

rI(nIω − dI)
.

Since nI is large, TS is small. Thus there are low levels of uninfected T cells in
Region 1.

For intermediate drug levels (P1 < P < P2), we use the results of Section
3.1.2 to show the total uninfected T cell count for the interior equilibrium is

T ∗

S + T ∗

PN = T ∗

S +
rPP

∗T ∗

S

mP + dS

= T ∗

S

(

1 +
rpP

∗

mP + dS

)

= T ∗

S(1 + ǫ),

where ǫ is small since mP is large compared to P ∗ in Region 2. For realistic
parameters in the intermediate drug levels (see Table 1), the total number of
uninfected T cells is only slightly larger than for low drug levels.

For high drug levels (P > P2), we examine the effect on the total uninfected
T cell count as the dosing interval shrinks to zero, or as the doses increase to
infinity, which we have defined as Region 4. The total number of uninfected T
cells in Region 4 approaches

T ∗

S + T ∗

PN + T ∗

PPN →
λ

dS
,

where T ∗

S → 0, T ∗

PN → 0 and T ∗

PPN →
λ

dS
when P ∗ → ∞ (described in Section

3.1.3). Thus the total number of uninfected T cells in Region 4 is identical to the
disease-free state as P ∗ → ∞. This implies that, if drug levels are sufficiently
high, the number of infected T cells approaches that of the uninfected patient.

Note that we do not explicitly have the total number of uninfected T cells
in Region 3. Based on numerical simulations shown in the inset of Figure 4C,
the total uninfected T cell count is not as high as in Region 4.

4 Including impulses

We demonstrate the effects of varying the drug concentration levels by including
an impulse (equation (2.7)). Adding this perturbation will cause drug concentra-
tion levels to fluctuate between regions. The endpoints of the impulsive periodic
orbit are used in order to bound the orbit to stay within a region meaning the
representative value P ∗ stays within a specific region. The endpoints are also
used in order to show the effects of trajectories crossing multiple regions; this
does not apply if P ∗ is constant.
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4.1 Region thresholds

We demonstrate the various T cell, virus and drug behaviours given that the
drug concentrations may move through all four regions. Based on the results
of stability with P constant in Section 3, we expect that, when including the
impulse condition and P (t) is low, the wild-type strain of the virus should
dominate. When P (t) increases (attaining intermediate levels), the wild-type
strain can co-exist with the mutant. When P (t) becomes high, the mutant
strain will dominate unless P (t) is very high, where we expect viral elimination.
Depending on the amount of time the drug spends in each region (if any),
trajectories will likely oscillate, with either coexistence, one or the other strain
gaining dominance, or the drugs eliminating both strains.

It was shown in Miron and Smith? [34], assuming perfect adherence, that
the impulsive periodic orbit has endpoints

P (t−n ) →
P ie−dP τ

1− e−dP τ

and

P (t+n ) →
P i

1− e−dP τ
,

as n → ∞. Here P i is the dosage, dP is the rate at which the drug is cleared
and τ = tk+1 − tk is the (fixed) time between doses for perfect adherence.

It follows that trajectories will remain solely in Region 1 if

0 < P i < P1(1− e−dP τ ).

Trajectories will remain solely in Region 2 if

P1e
dP τ (1− e−dP τ ) < P i < P2(1− e−dP τ ).

Finally, trajectories will remain solely in Region 3 if

P i > P2e
dP τ (1− e−dP τ ).

4.2 Numerical simulations

We now illustrate the dynamics of drug concentrations fluctuating between dif-
ferent regions. Figure 3 demonstrates the regions drug concentration trajecto-
ries will visit, for various combinations of dosing interval and dose. The curves
plotted are

P i = P1(1− e−dP τ )

P i = P1e
dP τ (1− e−dP τ )

P i = P2(1− e−dP τ )

P i = P2e
dP τ (1− e−dP τ ).
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The asterisk in Figure 3 is the FDA-approved dosage and dosing interval for the
protease inhibitor ritonavir. The recommended dose lies in Region 3.

Figures 4 and 5 illustrate phase-plane plots of the populations of cells able
to produce the wild-type or drug-resistant viral strains. Figure 4 illustrates the
drug concentrations remaining in one specific region whereas Figure 5 illustrates
the drug concentrations when two or more regions are crossed. In all cases,
parameters and initial conditions are as in Table 2, with only the dosing interval
τ and the dosage P i varied. The insets in Figure 4 show the total number
of uninfected T cells or T cells that only produce non-infectious virions. It
should be noted that the results from Figure 4 are similar if P is fixed or if
it’s oscillating, since the endpoints of the periodic orbit remain solely within a
region. Figure 5 occurs only if P oscillates between two or more regions.

In Region 1, the wild-type virus dominates. Initially, both strains of the virus
can infect cells (initial increase in Figure 4A), but if the system stays in Region
1, the wild-type strain will out-compete the mutant strain. The end result is
only wild-type-infected cells (Figure 4A) and low amounts of susceptible T cells
(inset of Figure 4A).

If the drug forces the system to stay within Region 2, the mutant strain is
the better competitor since it faces no evolutionary pressure, unlike the wild-
type. The distance between Region 1 and Region 2 is so small that it is likely
that the drug will never remain solely in Region 2. For Figure 4B, we increased
the Region 2 threshold to P2 = 101 in order to show numerically the effect of
staying in Region 2. The end result is coexistence of the wild-type and mutant
infected cells with high amounts of T cells able to produce resistant virus, and
low amounts of uninfected T cells (inset of Figure 4B).

If a large enough amount of drug is taken to enter and remain solely in Region
3, there are higher numbers of mutant-infected cells than wild-type-infected cells
(Figure 4C). There is also an increase in the number of mutant-infected T cells
inhibited with high drug concentrations (inset of Figure 4C).

If P is very large such that the system reaches Region 4, there are a large
number of uninfected T cells with high drug concentrations (inset of Figure 4D)
and all the T cells able to produce infectious virions are eliminated (Figure 4D).
Note that Figures 4A, 4C and 4D use the same parameters except the dosing
interval and the dosage.

More than likely, the drug will allow the system to cross multiple regions.
Figure 5 illustrates the dynamics when trajectories cross more than one region.

Figure 5A shows that, initially, both the wild-type and mutant virus infect
susceptible T cells; the curve mimics that of remaining solely in Region 1. Once
the drug fluctuates between Regions 1 and 2, the mutant strain is the better
competitor in Region 2, but the wild-type strain is better in Region 1. This can
be seen by the impulses shown in Figure 5A. The impulses are better shown by
the sharp edges in the inset of Figure 5A where we have discontinuities in the
derivatives. The end result is coexistence between strains but mostly all wild-
type-infected T cells, meaning the system behaves similarly to Region 1. Again,
we increase the Region 2 threshold to P2 = 101 in order to show numerically
the effect of staying below the Region 2 threshold since the distance between
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the Region 2 and 3 thresholds is so small.
When the system fluctuates between Regions 2 and 3, we observe impulses

in both the wild-type and mutant-infected T cells (Figure 5B). The end result is
a large number of mutant-infected T cells. Here, again, we increase the distance
between the Regions 1 and 2 thresholds in order to show the results of crossing
between Regions 2 and 3. We have coexistence, but mostly the mutant strain
dominates. The inset of Figure 5B shows the increase in wild-type-infected T
cells unable to produce infectious virions.

When the drug forces the system to move between Regions 1, 2 and 3, we
have near-viral elimination each time the system jumps into high levels of Region
3 (Figure 5C). The inset of Figure 5C shows how the trajectories enter Region
4 by causing the infected T cells to approach zero. Then an impulse occurs,
after which the mutant and wild-type strains increase, causing fluctuations in
the infected T cells and moving away from viral elimination. As a result, there
is coexistence but many more T cells infected by the mutant strain.

In summary, if we include a fluctuation of drug levels, the mutant either
dominates or coexists in all cases. Whenever Region 2 is entered, the mutant
gains a rapid advantage.

4.3 Sensitivity to variations

Since parameters may fluctuate, we explore the sensitivity of R0 to the pa-
rameter values using Latin Hypercube Sampling (LHS). LHS is a statistical
sampling method that allows for an efficient analysis of parameter variations
across simultaneous uncertainty ranges in each parameter [44, 45]; partial rank
correlation coefficients rank the coefficients by the degree of influence each has
on the outcome, regardless of whether that influence increases or decreases the
effect.

Figures 6A, 7A, 8A and 9A show the partial rank correlation coefficient
sensitivity analysis for 1000 runs. All relevant parameters are varied against R0

throughout the ranges given in Table 2. In all regions, R0 is the most sensitive
to the death rate for the infected CD4+ T cells, dI ; the effect of dI on R0 can
also be seen in Figures 6B, 7B, 8B and 9B for Regions 1, 2, 3 and 4 respectively.
In Regions 1, 2 and 3, R0 is also sensitive to the number of infectious virions
produced per day from an infected CD4+ T cell, nIω; the effect of nIω on R0

can also be seen in Figures 6C, 7C and 8C for Regions 1, 2 and 3 respectively.
In Region 3, R0 is also sensitive to the infection rate of susceptible CD4+ T cells
with mutant virus, rY ; the effect of rY on R0 in Region 3 can also be seen in
Figure 8D. In Region 4, R0 is sensitive to the clearance rate of the drug from a
highly inhibited cell, mPP , and the drug dosage, P ∗; the effect of mPP and P ∗

on R0 in Region 4 can also be seen in Figures 9C and 9D respectively. Figures
6, 7 and 8 B, C, and D run using a Monte Carlo simulation with parameters
drawn using LHS. The LHS of all remaining parameters not seen in Figures 6,
7, 8 and 9 are approximately uniformly scattered. Varying nIω and dI does not
reduce R0 below 1 in Regions 1 or 2. In Region 3 however, there are values
for which R0 < 1, corresponding to the region of viral elimination. As P ∗ gets
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very large, varying the parameters does make R0 increase beyond unity; R0 is
always below unity in Region 4. Note that the difference between variations in
P ∗ and the impulse effects are that P ∗ varies in an orderly way, whereas the
impulse occurs at a fixed, regular time. Thus if P ∗ varies slightly, it may not
have a big affect on R0 since the impulse may be the cause of the change.

5 Discussion

Drug therapy is crucial to the well-being and survival of HIV-infected patients.
The strict drug regimens are often difficult to follow due to major side effects
and pill fatigue. We have shown the different effects of having low, intermediate
and high levels of drug concentration in a cell, and shown that, in all cases,
entering Region 2 causes the mutant to gain rapid advantage.

Initially, we showed the effects on the wild-type and mutant virus populations
when drug concentrations in a cell are constant at either low, intermediate
or high levels. We conclude that, if the drug level is at an intermediate or
high state, then drug resistance will emerge. We also showed that there is a
theoretical region of free-virus elimination.

The number of uninfected T cells was also calculated in each region for a
constant drug concentration. This is important because a higher number of
uninfected T cells means a greater chance of controlling the virus and fighting
off opportunistic infections. We showed that the total uninfected T cell count in
Region 4 approaches that of the disease-free state. We also showed that Region
2 not only has low levels of uninfected T cells, it also has a large number of T
cells able to produce the mutant strain. Similar results apply numerically when
drug-concentration levels vary.

Numerical simulations showed the effects of varying the drug-concentration
levels. This perturbation, included in the impulse, allows us to examine the
effects of varying the drug-concentration levels either solely within a region or
across multiple regions. Entering Region 2 depends on the drug dosage and the
dosing interval. We have shown that T cells able to produce the mutant strain
will dominate if trajectories enter Region 2. This will cause drug resistance
and drug failure. It was also shown that crossing all 3 regions results in a high
number of T cells able to produce the mutant strain. We have also shown that
Region 1 has a high number of T cells able to produce the wild-type strain and
a low number of T cells able to produce the mutant strain. Thus it is better for
trajectories to remain in Region 1 than in Region 2 since the wild-type strain
can be controlled by antiretroviral therapy.

The recommended dosage and dosing interval for one of the FDA-approved
protease inhibitors, ritonavir, is shown in Figure 3. If taken with perfect ad-
herence, the recommended dosage and dosing interval would remain in Region
3, causing the mutant strain to remain very low. However, if the drug is not
administered at the recommended time (twice a day for ritonavir), then trajec-
tories would fall into Region 2 (by moving to the right in Figure 3) where a
rapid outbreak of mutant virus would occur. This can also be seen from Figure
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4. The high amount of mutant-infected T cells inhibited with high drug levels
in Region 3 (inset of Figure 4C) would rapidly become T cells that are able to
produce infectious mutant virions when the drug level lowers and enters Region
2. Thus adherence is crucial to avoid the development of resistance.

Both a high dosage and small dosing interval are necessary in order to avoid
drug resistance and theoretically attain viral elimination. Although drug tox-
icities may limit the extent to which this optimum can be approached, such a
scenario is theoretically possible for protease inhibitors. One limitation is that
the model does not include certain viral reservoirs such as latently infected cells
or reproductive reservoirs. These reservoirs would cause the virus to persist even
when in Region 4. Thus, elimination of free virus in our model is not equivalent
to clearing the infection. A further limitation is that we restricted P ∗ to be
constant in the analysis. Similar results can numerically be shown for varying
drug levels. Future work would be to develop and compute stability analysis
with varying drug levels in order to theoretically show the same results that
are shown numerically in the Figures 4 and 5. Another limitation is that the
system only includes protease inhibitors. In reality, most patients take triple
drug cocktails including protease inhibitors and reverse transcriptase inhibitors,
fusion inhibitors and/or integrase inhibitors. This would also change the dy-
namics of the system. Combination therapy can down-regulate the effectiveness
of certain drugs, meaning their half-life and IC50 values could change. Future
work would be to examine the effects of combination therapy using impulsive
differential equations.

It should be noted that our model considers monotherapy for a single pro-
tease inhibitor (or, equivalently, an aggregate of multiple protease inhibitors
with the same treatment cycle). Although monotherapy is not recommended,
it is often used in the developing world, especially where economics make com-
bination therapy impossible [24]. Monotherapy is sometimes used when other
treatments have failed, or used after prolonged viral suppression. Bierman et
al. [25] and Calza and Manfredi [26] showed that patients with prolonged viral
suppression on highly active antiretroviral therapy (HAART) can successfully
be treated with protease inhibitor monotherapy. Pillay et al. [27] showed that a
boosted protease inhibitor monotherapy following a 24 week second-line induc-
tion was associated with an increase in low level viraemia, although generally
in the absence of PI resistance. Furthermore, understanding monotherapy is a
useful precursor for developing complex models of combination therapy.

It is theoretically possible to eliminate free virus in this system if the drug
concentration level is very high. The total uninfected T cell count in Region 4 is
similar to that of the disease-free state. It was shown numerically that the results
for constant drug concentration are similar to varying drug concentrations. Thus
high dosage and low interval time between doses can theoretically lead to an
elimination of free virus and a disease-free uninfected T cell count.
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Figure 1. The model. A. The model for Region 1. TS , TI and TY are the sus-
ceptible, infected with wild-type strain and infected with mutant strain T cells,
respectively. VI and VY are the wild-type and mutant strains, respectively. λ
is the rate of new T cells produced. In Region 1, there is not enough drug to
inhibit the T cells from creating either wild-type or mutant virus. B. The model
for Region 2. TPN , TPI and TPY are the susceptible, infected with wild-type
strain and infected with mutant strain T cells, respectively, at intermediate drug
levels. P is the drug concentration and mP is the clearance rate. In Region 2,
there is not enough drug in the T cells to inhibit the mutant strain from pro-
ducing infectious virions, but the wild-type strain can be controlled, meaning it
will only produce non-infectious virions, VN . C. The model for Region 3. TPPN ,
TPPI and TPPY are the susceptible, infected with wild-type strain and infected
with mutant strain T cells, respectively, at high drug levels. In Region 3, there
are sufficient levels of drug in the T cells to inhibit infectious viral budding of
either strain.

Figure 2. Example of dose-effect curves for the wild-type (solid curve) and 10-fold
resistance (dashed curve) virus strains. When drug concentrations are in Region
1, the amount of drug absorbed is insufficient to control either the wild-type or
mutant strain. When the drug concentrations are in Region 2, drug absorbed
can block the wild-type strain, but the resistant strain still emerges. When
the drug concentration is in Region 3, both virus strains are controlled. This
example is for the protease inhibitor ritonavir.

Figure 3. The possible combinations of regions that drug concentrations may tra-
verse, for given dosages and dosing intervals. All parameters can be found in
Table 1. This example is for the protease inhibitor ritonavir. The asterisk is
the FDA-approved dosage and dosing interval for ritonavir. Note the log scale
on the y-axis.

Figure 4. Infected T cell populations when trajectories of drug concentration re-
main solely within a region. Values of TI and TY were estimated by numerical
integration of system (2.3), (2.4) and (2.5). The inset shows the total number of
uninfected T cells, and T cells unable to produce infectious virus. Note that the
threshold for Region 2 is adjusted in Figure 4B as mentioned in Section 4. A.
Region 1 (τ = 1, P i = 10−4). In this case, there are no cells infected with the
drug-resistant strain of the virus. T cells infected with the wild-type strain dom-
inate, with all other T cells approaching zero. B. Region 2 (τ = 0.1, P i = 0.5).
In this case both strains of the virus coexist. There are much higher levels of
mutant virus than wild-type virus strains. C. Region 3, where the dosing inter-
vals and dosages are not too extreme (τ = 0.1, P i = 4). In this case, there are
large amounts of the drug-resistant strain, and there is a large population of
infected T cells with the drug-resistant strain with high drug levels. D. Region
4, the region of viral elimination (τ = 0.0001, P i = 30). In this case, both
strains of the virus are eliminated. Uninfected T cells with the drug-resistant
strain with high drug levels dominate, with all other T cells approaching zero.
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Figure 5. The behaviour when trajectories of drug concentrations cross multiple
regions. All parameters except the dose and dosing interval are as for Figure
4. Note that the threshold for Region 2 is adjusted in Figures 5 and 5B as
mentioned in Section 4. The main panels illustrate the dynamics between T
cells able to produce wild-type and mutant virions. A. Regions 1 and 2 (τ = 1,
P i = 0.3). In this case, both strains of the virus coexist. T cells able to produce
the wild-type strain are significantly more numerous than T cells able to pro-
duce the mutant strain. The inset shows a closer look at the final time (shown
as a solid circle on the main panels). B. Regions 2 and 3 (τ = 0.5, P i = 0.6). In
this case, there is also coexistence, but the T cells able to produce the mutant
strain dominate. The inset shows the high number of wild-type infected T cells
unable to produce infectious virions. C. Regions 1, 2, 3 and 4 (τ = 1.5, P i = 3).
In this case, both strains of the virus coexist, but the number of T cells able to
produce the mutant strain is significantly higher. The inset shows that we do
not have viral elimination. Note that the values chosen for the dosing interval
and dosage allow trajectories to enter Region 4, but viral elimination does not
occur since trajectories do not remain in Region 4.

Figure 6. Sensitivity analysis for Region 1. (a) Partial rank correlation coefficients
for R0 for all parameters. (b) The effect of the death rate for the infected CD4+

T cells dI on R0. (c) The effect of the number of infectious virions produced
per day from an infected CD4+ T cell nIω on R0.

Figure 7. Sensitivity analysis for Region 2. (a) Partial rank correlation coefficients
for R0 for all parameters. (b) The effect of the death rate for the infected CD4+

T cells dI on R0. (c) The effect of the number of infectious virions produced
per day from an infected CD4+ T cell nIω on R0.

Figure 8. Sensitivity analysis for Region 3. (a) Partial rank correlation coefficients
for R0 for all parameters. (b) The effect of the death rate for the infected CD4+

T cells dI on R0. (c) The effect of the number of infectious virions produced
per day from an infected CD4+ T cell nIω on R0. (d) The effect of the infection
rate of susceptible CD4+ T cells with mutant virus rY , on R0.

Figure 9. Sensitivity analysis for Region 4. (a) Partial rank correlation coefficients
for R0 for all parameters. (b) The effect of the death rate for the infected CD4+

T cells dI on R0. (c) The effect of the clearance rate of the drug from a highly
inhibited cell mPP on R0. (d) The effect of the drug dosage P on R0.
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Table 1. Definition and units of parameters/state variables.
Parameter/state variable Units Description

nI day−1 number of virions produced by a susceptible CD4+ T cell
ω proportion of infectious virions produced
rI day−1 infection rate of CD4+ T cells with wild-type virus
rY day−1 infection rate of CD4+ T cells with mutant virus
dV day−1 death rate for the virus
dS day−1 death rate for the susceptible CD4+ T cells
dI day−1 death rate for the infected CD4+ T cells
rP µM−1 day−1 rate at which drug inhibits CD4+ T cells when drug concentra-

tions are intermediate
rPP µM−1 day−1 rate at which drug inhibits CD4+ T cells when drug concentra-

tions are high
dP day−1 drug clearance rate
λ cells µL−1 day−1 production rate of CD4+ T cells
mP day−1 clearance rate of the drug from an intermediate inhibited cell
mPP day−1 clearance rate of the drug from a highly inhibited cell
P1 µM Region 1 threshold
P2 µM Region 2 threshold
τ day dosing interval
P i µM drug dosage
VI virus µM−1 wild-type virus
VY virus µM−1 mutant virus
VN virus µM−1 non-infectious virus
TS cells µM−1 susceptible CD4+ T cells
TI cells µM−1 CD4+ T cells infected by the wild-type virus
TY cells µM−1 CD4+ T cells infected by the mutant virus
TPN cells µM−1 susceptible CD4+ T cells with an intermediate level of drug
TPI cells µM−1 CD4+ T cells infected by the wild-type strain also with an inter-

mediate level of drug
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Table 2. Range of parameters.
Parameter/state variable Range Initial/sample value References

nIω 102–104 105 × 0.01 [41, 18, 19]
rI 0.001–0.1 0.01 [15, 18]
rY 0.0003–0.03 0.0032 [19]
dV 1–5 3 [19, 42, 43]
dS 0.002–0.2 0.02 [15, 18, 19, 42, 43]
dI 0.05–1 0.5 [15, 18, 19, 42, 43]
rP 30–50 40 [19]
rPP 8–13 10.4 [19]
λ 100–250 180 [19]
mP 1–4 24 log(2)/6.2 [19]
mPP 1–4 24 log(2)/6.2 [19]
P i ∗∗R2: 10−2–10−1 (varied)

∗∗R3: 10–40
∗∗R4: 40–100

dP 24 log(2)/6.2 [19]
P1 10−3 Section 2.2
P2 10−2 Section 2.2
τ (varied)
VI 500 [19]
VY 5× 10−5 [19]
VN 0 [19]
TS 1000 [19]
TI 0 [19]
TY 0 [19]
TPN 0 [19]
TPI 0 [19]
TPY 0 [19]
TPPN 0 [19]
TPPI 0 [19]
TPPY 0 [19]
P 0 [19]

∗∗ R2, R3 and R4 denote Region 2, Region 3 and Region 4.
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Chapter 4

Two-dimensional impulsive

differential system

Determining stability of nonlinear impulsive differential equations presents many chal-

lenges. There are a few ways we can determine the stability of a periodic orbit. If

we have a two-dimensional autonomous system, we can use the theory presented in

Section 2.7, where we can solve for the non-trivial Floquet multiplier and determine if

this is greater or less than one in absolute value (unstable and stable, respectively). If

the system is non-autonomous (or autonomous with dimension higher than two), we

can find the variational equation presented in Section 2.6 and calculate the Floquet

multipliers. Solving this variational system can also be challenging if the T -periodic

solution is not explicitly known.

In this chapter, we analyze a two-dimensional model that is based on a reduced

system of the models presented in Sections 3.1 and 3.2. With this two-dimensional

model, we can find conditions for which stability of T -periodic solutions change. Each

term in the reduced system is linear except for one nonlinear infection term. The im-

portance of this nonlinear infection term has been studied with ordinary differential

equations [23]-[29]. A common drawback of many within-host infectious-disease mod-
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els is that they neglect the fact that a virion is lost when it infects a healthy cell (this

nonlinear infection term) [23], [30]-[34]. There is debate about whether this term

actually needs to be included in a system since it is very small, and some research

states that it can be absorbed into the viral-clearance term [23]. However, this non-

linear infection term may play an important role for the dynamic behavior in certain

individuals via the relationship between the CD4+ T cell population and the viral

load [24, 25]. It may also affect the probability of extinction of the initial viral load

[24, 27] and the viral dynamics [28, 29]. It has also been found that viral clearance

via drug therapy may explicitly depend on this nonlinear infection term, since the

viral load is very small when a patient is under drug therapy [29].

In this chapter, we will look at how this nonlinear infection term affects stabil-

ity in a simplified two-dimensional impulsive differential model that represents the

dynamics between T cells and virus. We will analyze both, a linear and nonlinear

two-dimensional impulsive differential system. We will first show how the models

presented in Sections 3.1 and 3.2 can be reduced to a two-dimensional model. For the

analysis of the two-dimensional impulsive system, we will first write a general system,

consisting of all linear terms except the nonlinear infection term described above. We

will also impose new impulsive conditions to account for drug therapy. With this

general impulsive system, we will evaluate stability of the linear system (without the

nonlinear infection term). We will also consider two subcases of the nonlinear general

impulsive system and see how stability may differ when including or removing the

nonlinear infection term.

4.1 The model without impulses

In this section, we analyze a reduced system of the model presented in Section 3.2.

It should be noted that the reduced system of the model in Section 3.1 can be found

in a similar fashion and yields the same results. We will first omit the non-infectious
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virus, VN , compartment since it is decoupled. The system without the non-infectious

compartment is

dVI
dt

= nIωTI − dV VI − rITSVI − rITPNVI − rITPPNVI

dVY
dt

= nIω(TY + TPY ) − dV VY − rY TSVY − rY TPNVY − rY TPPNVY

dTS
dt

= λ− rITSVI − rY TSVY − dSTS − α1rPPTS +mPTPN

dTI
dt

= rITSVI − dITI − α1rPPTI +mPTPI

dTY
dt

= rY TSVY − dITY − α1rPPTY +mPTPY

dTPN
dt

= α1rPPTS −mPTPN − rY TPNVY − rITPNVI − dSTPN − α2rPPPTPN +mPPTPPN

dTPI
dt

= rITPNVI + α1rPPTI −mPTPI − α2rPPPTPI +mPPTPPI − dITPI

dTPY
dt

= rY TPNVY + α1rPPTY −mPTPY − α2rPPPTPY +mPPTPPY − dITPY

dTPPN
dt

= α2rPPPTPN −mPPTPPN − rY TPPNVY − rITPPNVI − dSTPPN

dTPPI
dt

= rITPPNVI + α2rPPPTPI −mPPTPPI − dITPPI

dTPPY
dt

= rY TPPNVY + α2rPPPTPY −mPPTPPY − dITPPY .

(4.1.1)

Let C = TS + TI + TY + TPN + TPI + TPY + TPPN + TPPI + TPPY be the total

number of CD4+ T cells and V = VI + VY be the total virus population. Therefore,

from model (4.1.1), we get

dC

dt
= λ− dS(TS + TPN + TPPN) − dI(TI + TY + TPI + TPY + TPPI + TPPY ).

We have that

dS < dI < dV (4.1.2)

(reference Section 3.2 [4]). We will consider the case when the death rate of the CD4+
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T cells is the same for susceptible and infected cells. Therefore

dC

dt
≤ λ− dSC.

We also have

dV

dt
= nIω(TI + TY + TPY ) − dV (VI + VY ) − (rIVI + rY VY )(TS + TPN + TPPN)

≈ nIω(TI + TY + TPY ) − dV (VI + VY ) − rY (TS + TPN + TPPN)V

≈ nIωC − dV V − rYCV,

since rI > rY ; i.e., the wild-type is the more infectious strain of the virus (reference

Section 3.2 [4]).

System (4.1.1) can therefore be approximated by the two-dimensional system

dC

dt
= λ− dSC

dV

dt
= nIωC − dV V − rYCV,

(4.1.3)

where C is the total CD4+ T cell count, V is the total virus population. We have

that t is the time in days, nI is the number of virions produced per day, ω is the

proportion of infectious virions produced from an infected CD4+ T cell, and rY is the

infection rate of CD4+ T cells with mutant virus. The constant λ is the rate at which

new susceptible CD4+ T cells are produced, while the death rates are denoted by dV

and dS for the virus and susceptible CD4+ T cells, respectively.

In this case, we are overestimating the number of T cells with our two-dimensional

model during any stage of infection. The term nIω is the number of new infectious

virions produced. This value is overestimated at the beginning stages of infection

since most of the T cells are susceptible, and approximately accurate at the end

stages of infection (AIDS) since most of the T cells are infected. The term rYCV is

the number of virus lost to every cell (each time a cell is infected). At the beginning

stages of the infection, this term is approximately accurate since most of the T cells



4. Two-dimensional impulsive differential system 154

are susceptible, but is overestimated at the end stages of infection since most cells are

infected. Therefore, we assume that the change in virus is approximately equivalent

to the 13-dimensional system throughout infection.

It should be noted that the virus population in the reduced system (4.1.3) does

not affect the CD4+ T cell population. If V does not impact C, then one loses a

crucial aspect of the goal of this model. We will therefore generalize system (4.1.3)

by including the effect of virus in two ways: 1. By a linear term (Section 4.1.1) and

2. By an impulse (Section 4.2.4).

4.1.1 General two-dimensional non-impulsive model

We now present the dynamics between the total CD4+ T cell and virus populations

by a general two-dimensional system based on the reduced system (4.1.3). We assume

that the total CD4+ T cell count, C, includes both the susceptible and infected T

cells. We include only one aggregated virus population, V . Therefore the nonlinear

system is
dC

dt
= f(C, V )

dV

dt
= g(C, V ) − rCV, (4.1.4)

where r is the infection rate of the CD4+ T cells with virus, t ∈ R, f : R+ ×R+ → R,

g : R+ × R+ → R.

In order to view the effect of the nonlinear infection term, we assume that f and

g are linear. Then, without loss of generality, we have that

f(C, V ) = a1C + a2V + a3

g(C, V ) = b1C + b2V + b3,

where a1 is the death rate of the CD4+ T cell population, so a1 < 0; a2 is the

immunological response when virus is present. This implies that a2 is the difference

between the increased proliferation rate since virus is present and the infected T cells
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death rate. Here we assume that the interaction between T cells and virus is only

affected by the number of virions. Then a2 can be positive or negative depending

on whether the rate of proliferation is either greater or less than the death rate. We

have that a3 is a constant source of new CD4+ T cells, so a3 > 0; b1 is the rate at

which infectious virus is being produced from CD4+ T cells, so b1 > 0; b2 is the virus

death rate, so b2 < 0; b3 is a constant source of new virus, so b3 > 0. The value for

b3 is approximately zero in practice, but is included for completeness. Therefore the

following inequalities hold.

r, a3, b1, b3 > 0, a1, b2 < 0, b3 ≈ 0. (4.1.5)

We also have, from inequality (4.1.2), that

b2 < a1. (4.1.6)

We include the effect of drugs indirectly via impulses.

4.2 The model with impulses

Drug dynamics are often modelled by an exponential decay between the time at which

the drug is administered, and by an impulse when the drug is administered (reference

Chapter 3 for examples, and [21]-[38]). We will instead consider that the effect of the

drug reduces the virus by a proportion p when the drug is administered. We assume

that the time it takes for the drug to be absorbed into the CD4+ T cells is quick

compared to the overall dynamics of the drug. Assuming a drug is taken at time τk,

we have

∆C = 0

∆V = −pV
(4.2.1)

if τk = kT , where T is the period and 0 ≤ p < 1.
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4.2.1 Linear non-homogeneous impulsive differential system

We will first consider the general system (4.1.4) excluding the nonlinear term rCV .

In this case, the system with drug is given by the ordinary differential system (4.1.4),

coupled with the difference equation (4.2.1), and is denoted by the following

dC

dt
= a1C + a2V + a3

dV

dt
= b1C + b2V + b3 t 6= kT

∆C = 0 ∆V = −pV t = kT,

(4.2.2)

for t ∈ R+ and k ∈ Z.

Theorem 4.2.1 Let the inequalities (4.1.5)-(4.1.6) hold. Then the linear equation

(4.2.2) has a unique T -periodic solution with one impulse per period if

1. for a2 6= 0 and θ = (a1 − b2)
2 + 4b1a2 > 0 we have

p 6= 2
√
θ
(

eλ1T + eλ2T ±
(

1 + eλ1T eλ2T
))

√
θ (eλ1T + eλ2T ± (2eλ1T eλ2T )) − (a1 − b2)(eλ1T − eλ2T )

,

where

λ1,2 =
1

2

(

a1 + b2 ±
√
θ
)

;

2. for a2 < 0 and θ = 0 we have

p 6= eδ1T + eδ2T + eδ1T eδ2T − 4 ±
(

eδ1T + eδ2T
)

±(eδ1T ξ2 + eδ2T ξ1) − (eδ1T + eδ2T + eδ1T eδ2T )
,

where

δ1,2 =
1

2

(

a1 + b2 ±
√

2(a1 − b2)
)

;

3. for a2 < 0 and θ < 0 we have

p 6=
−ωe− 1

2
(a1+b2)T ± ω cos

(ω

2
T
)

− e
1

2
(a1+b2)T

(

ω2 cos2
(ω

2
T
)

− ((a1 − b2)
2 + 4b1a2) sin2

(ω

2
T
))

±ω
(

ω cos
(ω

2
T
)

− (a1 − b2) sin
(ω

2
T
))

− e
1

2
(a1+b2)T

(

ω2 cos2
(ω

2
T
)

− ((a1 − b2)2 + 4b1a2) sin2
(ω

2
T
)) ,

where

ω2 = |(a1 − b2)
2 + 4b1a2|.
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Proof: The homogenous equation of (4.2.2) is given by

dx

dt
= Ax t 6= τk

∆x = Bx t = τk,

(4.2.3)

where

A =





a1 a2

b1 b2



 B =





0 0

0 −p



 x =





C

V





The eigenvalues λ1,2 of the matrix A are determined from the characteristic

equation

λ2 − λ(a1 + b2) + a1b2 − b1a2 = 0, (4.2.4)

and the fundamental matrix Φ(t) of the homogeneous equation dΦ
dt

= AΦ is determined

from the eigenvalues

λ1,2 =
1

2

(

a1 + b2 ±
√

(a1 − b2)2 + 4b1a2

)

, (4.2.5)

in the following cases.

Case 1. If a2 6= 0 and θ = (a1 − b2)
2 + 4b1a2 > 0 then the roots of (4.2.4) are

real and distinct with

Φ(t) =
1

λ1 − λ2





1
2

(

eλ1t(a1 − b2 +
√
θ) + eλ2t(b2 − a1 +

√
θ)
)

a2(e
λ1t − eλ2t)

b1(e
λ1t − eλ2t) 1

2

(

eλ1t(b2 − a1 +
√
θ) + eλ2t(a1 − b2 +

√
θ)
)



 .

Case 2. If a2 < 0 and θ = 0 then λ1 = λ2 =
a1 + b2

2
and

Φ(t) =





ξ1e
δ1t + ξ2e

δ2t ξ3
(

eδ1t − eδ2t
)

ξ4
(

eδ1t − eδ2t
)

ξ2e
δ1t + ξ1e

δ2t



 ,
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where

ξ1 =
1

2
+

√
2

4

ξ2 =
1

2
−

√
2

4

ξ3 =

√
2|a2|

2(a1 − b2)

ξ4 =

√
2(a1 − b2)

8|a2|
δ1 =

1

2

(

a1 + b2 +
√

2(a1 − b2)
)

δ2 =
1

2

(

a1 + b2 −
√

2(a1 − b2)
)

.

Case 3. If a2 < 0 and θ < 0 then λ1 = λ∗2 = 1
2
(a1 + b2 + iω), where ω2 =

|(a1 − b2)
2 + 4b1a2|, and

Φ(t) =
e

1

2
(a1+b2)t

ω





(a1 − b2) sin
(ω

2
t
)

+ ω cos
(ω

2
t
)

2a2 sin
(ω

2
t
)

2b1 sin
(ω

2
t
)

(b2 − a1) sin
(ω

2
t
)

+ ω cos
(ω

2
t
)



 .

We will evaluate each case separately.

Case 1. Let

E =





1 0

0 1



 .

A fundamental matrix of the linear homogeneous system (4.2.3) is

X̃(T ) = (E +B)eAT

=
1

λ1 − λ2





1
2

(

eλ1T (a1 − b2 +
√
θ) + eλ2T (b2 − a1 +

√
θ)
)

a2(e
λ1T − eλ2T )

b1(1 − p)(eλ1T − eλ2T ) 1−p
2

(

eλ1T (b2 − a1 +
√
θ) + eλ2T (a1 − b2 +

√
θ)
)



 .

In order to calculate the multipliers µi for i = 1, 2 of (4.2.3), we have to calculate

the eigenvalues of the matrix M = X̃(T )X̃−1(0) (reference Chapter 2; Remark 2.4.2).

Since X̃−1(0) is the identity matrix, we have M = X̃(T ).
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The Floquet multipliers satisfy the characteristic equation

µ2 − µ

(

1

2(λ1 − λ2)

(

p(a1 − b2)(e
λ1T − eλ2T ) +

√
θ(2 − p)(eλ1T + eλ2T )

)

)

+ (1 − p)e(λ1+λ2)T = 0.

Therefore the Floquet multipliers µj (j = 1, 2) are

µ1,2 =
1

2

(

η ±
√

η2 − Φ
)

, (4.2.6)

where

η =
1

2(λ1 − λ2)

(

p(a1 − b2)(e
λ1T − eλ2T ) +

√
θ(2 − p)(eλ1T + eλ2T )

)

Φ = 4(1 − p)e(λ1+λ2)T .

Both η,Φ > 0 since λ1 > λ2. The multipliers are distinct from 1 if |µj| 6= 1, or

p 6= 2
√
θ
(

eλ1T + eλ2T ±
(

1 + eλ1T eλ2T
))

√
θ (eλ1T + eλ2T ± (2eλ1T eλ2T )) − (a1 − b2)(eλ1T − eλ2T )

,

and so the homogenous equation (4.2.3) has no non-trivial T -periodic solutions. Thus

the non-homogeneous equation (4.2.2) has a unique T -periodic solution x̃(t) (reference

Chapter 2; Theorem 2.5.1). The T -periodic solution to the linear impulsive system

(4.2.2) is given by

x̃(t) = X(t)[E −X(T )]−1

∫ T

0

X(T )X−1(s)g(s)ds+

∫ t

0

X(t)X−1(s)g(s)ds (4.2.7)

where X(T ) = M is the monodromy matrix of (4.2.3) and g(t) =





a3

b3



.

Case 2. A fundamental matrix of the linear homogeneous system (4.2.3) is

X̃(T ) = (E +B)eAT

=





ξ1e
δ1T + ξ2e

δ2T ξ3
(

eδ1T − eδ2T
)

ξ4(1 − p)
(

eδ1T − eδ2T
)

(1 − p)
(

ξ2e
δ1T + ξ1e

δ2T
)



 .
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The multipliers µi for i = 1, 2 of (4.2.3) are calculated in the same way as Case

1. We have that X−1(0) is the identity matrix, and so M = X̃(T ).

The Floquet multipliers satisfy the characteristic equation

µ2 − µ
(

eδ1T (ξ1 + (1 − p)ξ2) + eδ2T (ξ2 + (1 − p)ξ1)
)

+
1

4
(1 − p)

(

(

eδ1T
)2

+
(

eδ2T
)2

+ eδ1T eδ2T
)

= 0.

Therefore, the Floquet multipliers µj (j = 1, 2) are

µ1,2 =
1

2

(

η ±
√

η2 − Φ
)

, (4.2.8)

where

η = eδ1T (ξ1 + (1 − p)ξ2) + eδ2T (ξ2 + (1 − p)ξ1)

Φ = (1 − p)
(

(

eδ1T
)2

+
(

eδ2T
)2

+ eδ1T eδ2T
)

.

Both η,Φ > 0 since ξ1, ξ2 > 0. We have that the multipliers are distinct from 1 if

p 6= eδ1T + eδ2T + eδ1T eδ2T − 4 ±
(

eδ1T + eδ2T
)

±(eδ1T ξ2 + eδ2T ξ1) − (eδ1T + eδ2T + eδ1T eδ2T )
,

and so the homogenous equation (4.2.3) has no non-trivial T -periodic solutions. Thus

the non-homogeneous equation (4.2.2) has a unique T -periodic solution x̃(t) given by

equation (4.2.7).

Case 3. A fundamental matrix of the linear homogeneous system (4.2.3) is

X̃(T ) = (E +B)eAT

=
e

1

2
(a1+b2)T

ω









(a1 − b2) sin
(ω

2
T
)

+ ω cos
(ω

2
T
)

2a2 sin
(ω

2
T
)

2b1(1 − p) sin
(ω

2
T
)

(1 − p)
(

(b2 − a1) sin
(ω

2
T
)

+ ω cos
(ω

2
T
))









.

The multipliers µi for i = 1, 2 of (4.2.3) are calculated in the same way as Case

1. We have that X−1(0) is the identity matrix, and so M = X̃(T ).
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The Floquet multipliers satisfy the characteristic equation

µ2 − e
1

2
(a1+b2)T

ω
µ
(

(a1 − b2) sin
(ω

2
T
)

+ ω cos
(ω

2
T
)

+ (1 − p)
(

−(a1 − b2) sin
(ω

2
T
)

+ ω cos
(ω

2
T
)))

+
(1 − p)e(a1+b2)T

ω2

(

ω2 cos2
(ω

2
T
)

−
(

(a1 − b2)
2 + 4b1a2

)

sin2
(ω

2
T
))

= 0.

Therefore the Floquet multipliers µj (j = 1, 2) are

µ1,2 =
1

2

(

η ±
√

η2 − Φ
)

, (4.2.9)

where

η =
e

1

2
(a1+b2)T

ω

(

p(a1 − b2) sin
(ω

2
T
)

+ (1 − p)ω cos
(ω

2
T
))

Φ = 4
(1 − p)e(a1+b2)T

ω2

(

ω2 cos2
(ω

2
T
)

−
(

(a1 − b2)
2 + 4b1a2

)

sin2
(ω

2
T
))

.

Both η,Φ > 0 since a1 − b2 > 0 and (a1 − b2)
2 + 4b1a2 < 0. We have that the

multipliers are distinct from 1 if

p 6=
−ωe− 1

2
(a1+b2)T ± ω cos

(ω

2
T
)

− e
1

2
(a1+b2)T

(

ω2 cos2
(ω

2
T
)

− ((a1 − b2)
2 + 4b1a2) sin2

(ω

2
T
))

±ω
(

ω cos
(ω

2
T
)

− (a1 − b2) sin
(ω

2
T
))

− e
1

2
(a1+b2)T

(

ω2 cos2
(ω

2
T
)

− ((a1 − b2)2 + 4b1a2) sin2
(ω

2
T
)) ,

and so the homogenous equation (4.2.3) has no non-trivial T -periodic solutions. Thus

the non-homogeneous equation (4.2.2) has a unique T -periodic solution x̃(t) given by

equation (4.2.7).

Theorem 4.2.2 Under the conditions of Theorem 4.2.1, the unique T -periodic orbit

is exponentially stable if

1. a2 6= 0, θ = (a1 − b2)
2 + 4b1a2 > 0 and either

(1.1) we have, if η2 − Φ ≥ 0, that

−2(λ1 − λ2) − 2
√
θ(eλ1T + eλ2T )

(a1 − b2)(eλ1T − eλ2T ) −
√
θ(eλ1T + eλ2T )

< p <
2(λ1 − λ2) − 2

√
θ(eλ1T + eλ2T )

(a1 − b2)(eλ1T − eλ2T ) −
√
θ(eλ1T + eλ2T )

,
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(1.2) or we have, if η2 − Φ < 0, that

p > 1 − e−λ1T e−λ2T ,

where

η =
1

2(λ1 − λ2)

(

p(a1 − b2)(e
λ1T − eλ2T ) +

√
θ(2 − p)(eλ1T + eλ2T )

)

Φ = 4(1 − p)e(λ1+λ2)T

λ1,2 =
1

2

(

a1 + b2 ±
√
θ
)

;

2. a2 < 0, θ = 0 and either

(2.1) we have, if η2 − Φ ≥ 0, that

1 − (eδ1T + eδ2T )(ξ1 + ξ2)

ξ2eδ1T + ξ1eδ2T
< p <

1 + (eδ1T + eδ2T )(ξ1 + ξ2)

ξ2eδ1T + ξ1eδ2T
,

(2.2) or we have, if η2 − Φ < 0, that

p > 1 −
(

4

(eδ1T )2 + (eδ2T )2 + eδ1T eδ2T

)

,

where

η = eδ1T (ξ1 + (1 − p)ξ2) + eδ2T (ξ2 + (1 − p)ξ1)

Φ = (1 − p)
(

(

eδ1T
)2

+
(

eδ2T
)2

+ eδ1T eδ2T
)

δ1,2 =
1

2

(

a1 + b2 ±
√

2(a1 − b2)
)

;

3. a2 < 0, θ < 0 and either

(3.1) we have, if η2 − Φ ≥ 0, that

−ω
(

e−
1

2
(a1+b2)T + cos

(ω

2
T
))

(a1 − b2) sin
(ω

2
T
)

− ω cos
(ω

2
T
) < p <

ω
(

e−
1

2
(a1+b2)T − cos

(ω

2
T
))

(a1 − b2) sin
(ω

2
T
)

− ω cos
(ω

2
T
) ,
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(3.2) or we have, if η2 − Φ < 0, that

p > 1 −





ω2

e(a1+b2)T
(

ω2 cos2
(ω

2
T
)

− ((a1 − b2)2 + 4b1a2) sin2
(ω

2
T
))



 ,

where

η =
e

1

2
(a1+b2)T

ω

(

(a1 − b2) sin
(ω

2
T
)

+ ω cos
(ω

2
T
)

+ (1 − p)
(

−(a1 − b2) sin
(ω

2
T
)

+ ω cos
(ω

2
T
)))

Φ = 4
(1 − p)e(a1+b2)T

ω2

(

ω2 cos2
(ω

2
T
)

−
(

(a1 − b2)
2 + 4b1a2

)

sin2
(ω

2
T
))

ω2 = |(a1 − b2)
2 + 4b1a2|.

Proof: The proof of Theorem 4.2.2 requires the Floquet multipliers given by

equations (4.2.6), (4.2.8) and (4.2.9) for Cases 1, 2 and 3, respectively. We reference

Chapter 2; Remark 2.5.2 for exponential stability of the T -periodic solution.

Case 1. For the stability of the non-homogenous linear system (4.2.2), we have

(1.1) If η2 −Φ > 0, then µ1 > µ2, and the multipliers are by modulus smaller than 1

if |µ1| < 1. We have

|µ1| =
1

2
|η +

√

η2 − Φ|

<
1

2
|η +

√

η2|

=
1

2
|η + η|

= |η|.

Therefore |µ1| < 1 if |η| < 1 which implies that the T -periodic solution x̃(t) of

the non-homogeneous equation (4.2.2) is exponentially stable. Therefore

−2(λ1 − λ2) − 2
√
θ(eλ1T + eλ2T )

(a1 − b2)(eλ1T − eλ2T ) −
√
θ(eλ1T + eλ2T )

< p <
2(λ1 − λ2) − 2

√
θ(eλ1T + eλ2T )

(a1 − b2)(eλ1T − eλ2T ) −
√
θ(eλ1T + eλ2T )

.



4. Two-dimensional impulsive differential system 164

Note: When η2 − Φ = 0, we have µ1,2 = 1
2
η. Therefore we have

|µ1| =
1

2
|η|

< |η|.

This is the same criteria as before (when η2 − Φ > 0) meaning the T -periodic

solution is exponentially stable for η2 − Φ ≥ 0 if |η| < 1.

(1.2) If η2 − Φ < 0, then µ1,2 = 1
2

(

η ± i
√

Φ − η2
)

. The multipliers are by modulus

smaller than 1 if |µ1,2| < 1. We have

|µ1,2| =
1

2

√

η2 + (Φ − η2)

=
1

2

√
Φ.

Therefore |µ1,2| < 1 if 1
2

√
Φ < 1, which implies that the T -periodic solution x̃(t)

of the non-homogeneous equation (4.2.2) is exponentially stable. Therefore

p > 1 − e−λ1T e−λ2T .

Case 2. For the stability of the non-homogenous linear system (4.2.2), we have

similar conditions as in Case 1.

(2.1) If η2 − Φ ≥ 0, then µ1 > µ2. The multipliers are by modulus smaller than 1 if

|η| < 1, which implies that the T -periodic solution x̃(t) of the non-homogeneous

equation (4.2.2) is exponentially stable. Therefore

1 − (eδ1T + eδ2T )(ξ1 + ξ2)

ξ2eδ1T + ξ1eδ2T
< p <

1 + (eδ1T + eδ2T )(ξ1 + ξ2)

ξ2eδ1T + ξ1eδ2T
.

(2.2) If η2 − Φ < 0, then µ1,2 = 1
2

(

η ± i
√

Φ − η2
)

. The multipliers are by modulus

smaller than 1 if 1
2

√
Φ < 1, which implies that T -periodic solution x̃(t) of the

non-homogeneous equation (4.2.2) is exponentially stable. Therefore

p > 1 −
(

4

(eδ1T )2 + (eδ2T )2 + eδ1T eδ2T

)

.
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Case 3. For the stability of the non-homogenous linear system (4.2.2), we have

similar conditions as in Case 1.

(3.1) If η2 − Φ ≥ 0, then µ1 > µ2. The multipliers are by modulus smaller than 1 if

|η| < 1, which implies that the T -periodic solution x̃(t) of the non-homogeneous

equation (4.2.2) is exponentially stable. Therefore

−ω
(

e−
1

2
(a1+b2)T + cos

(ω

2
T
))

(a1 − b2) sin
(ω

2
T
)

− ω cos
(ω

2
T
) < p <

ω
(

e−
1

2
(a1+b2)T − cos

(ω

2
T
))

(a1 − b2) sin
(ω

2
T
)

− ω cos
(ω

2
T
) .

(3.2) If η2 − Φ < 0, then µ1,2 = 1
2

(

η ± i
√

Φ − η2
)

. The multipliers are by modulus

smaller than 1 if 1
2

√
Φ < 1, which implies that the T -periodic solution x̃(t) of

the non-homogeneous equation (4.2.2) is exponentially stable. Therefore

p > 1 −





ω2

e(a1+b2)T
(

ω2 cos2
(ω

2
T
)

− ((a1 − b2)2 + 4b1a2) sin2
(ω

2
T
))



 .

Remark. The existence, uniqueness and stability of T -periodic solutions for the

case when a2 = 0 will be examined in Section 4.2.3.

Positivity of the unique T -periodic solution can be shown numerically. We set

all the parameters equal to those described in Section 3.2 except for a2 and p since

changing these parameters affect stability in the general linear system (4.2.2) (see

Table 1).

In this section, we fix p = 0.5 and see the effect of changing a2. Different values

of a2 give ranges for p in which we have stability.
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The values chosen for a2 in Figures 4.1 and 4.2 show the trajectories of the T -

periodic solution when in Case 1, Figure 4.3 is for Case 2 and Figure 4.4 is for Case

3.
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Figure 4.1: The behaviour of the CD4+ T cell and virus populations when
a2 = 0.0001 and p = 0.5 (all other parameters are fixed at their sample value
in Table 1). In this case, condition (1.2) for stability in Theorem 4.2.2 is
satisfied and we have a stable positive T -periodic solution. The inset shows
a close up of the periodic orbit.

Figure 4.1 shows the case when a2 > 0 in the linear system (4.2.2) and the

stability condition (1.2) in Theorem 4.2.2 is satisfied (a2 = 0.0001). In this case, we

have a positive, stable T -periodic solution for p = 0.5.

The value a2 = 0.0032 used in Figure 4.2 shows an unstable impulsive periodic

orbit for p = 0.5. In this case, the values from Table 1 do not satisfy condition (1.1)

in Theorem 4.2.2.

For the parameters described in Table 1, Figures 4.3 and 4.4 show the case when

a2 < 0 in the linear system (4.2.2) and the stability conditions in Theorem 4.2.2 are

satisfied. Figure 4.3 shows the case when a2 < 0 in the linear system (4.2.2) and the

stability condition (2.2) in Theorem 4.2.2 is satisfied (a2 = −0.00222). Figure 4.4

shows the case when a2 < 0 in the linear system (4.2.2) and both stability conditions
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Figure 4.2: The behaviour of the CD4+ T cell and virus populations when
a2 = 0.0032 and p = 0.5 (all other parameters are fixed at their sample value
in Table 1). In this case, condition (1.1) for stability in Theorem 4.2.2 is not
satisfied and we have an unstable impulsive periodic orbit. The inset shows
the time dynamics for the populations.
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Figure 4.3: The behaviour of the CD4+ T cell and virus populations when
a2 = −0.0022 and p = 0.5 (all other parameters are fixed at their sample
value in Table 1). In this case, condition (2.2) for stability in Theorem 4.2.2
is satisfied and we have a stable positive T -periodic solution.
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Figure 4.4: The behaviour of the CD4+ T cell and virus populations when
a2 = −0.1 and p = 0.5 (all other parameters are fixed at their sample value
in Table 1). In this case, conditions (3.1) and (3.2) for stability in Theorem
4.2.2 are satisfied and we have a stable positive T -periodic solution.

(3.1) and (3.2) in Theorem 4.2.2 are satisfied (a2 = −0.1).

4.2.2 Nonlinear impulsive differential system

If we include the nonlinear term, the system with drug is given by the ordinary

differential system (4.1.4) coupled with the difference equation (4.2.1), and is denoted

by the following

dC

dt
= a1C + a2V + a3

dV

dt
= b1C + b2V + b3 − rCV t 6= kT

∆C = 0 ∆V = −pV t = kT,

(4.2.10)

for t ∈ R+ and k ∈ N.

Proving existence and uniqueness of T -periodic solutions for the nonlinear im-

pulsive system (4.2.10) is challenging (reference Section 2.6). In this general case, it

is not possible to compute stability analytically.

In the general impulsive system case, finding stability condition for the T -periodic

solution of the nonlinear impulsive system (4.2.10) is extremely complicated. Finding
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the variational equation to system (4.2.10) is possible (reference Section 2.6), but

solving the variational equation without knowing the explicit solution to the impulsive

orbit is not possible.

However, we can numerically show, for specific parameter values, the existence

and stability of positive T -periodic solutions for the general system (4.2.10). Again

we use the parameters in Table 1 to show how stability changes. In this case, we vary

both a2 and the parameter r.

The values chosen for a2 in Figures 4.5 and 4.6 show the trajectories of the

T -periodic solution of the nonlinear system (4.2.10) when the positive T -periodic

solution of the linear system (4.2.2) is stable in Case 1. Figures 4.7 and 4.8 show

the trajectories of the T -periodic solution of the nonlinear system (4.2.10) when the

positive T -periodic solution of the linear system (4.2.2) is stable in Case 3. Figures

4.9, 4.10 and 4.11 show the trajectories of the T -periodic solution of the nonlinear

system (4.2.10) when the positive T -periodic solution of the linear system (4.2.2) is

unstable in Case 1.

We will first look at the case when the stability conditions are satisfied for the

positive T -periodic solution of the linear system (4.2.2) when a2 > 0 (see Figure 4.1).

Figures 4.5 and 4.6 show the cases when a2 > 0 in the nonlinear system (4.2.10)

and the stability conditions for positive the T -periodic solution in the linear case are

satisfied. We choose the same value for a2 as in the linear case. The only difference

is varying the parameter r. Changing r does not seem to destroy stability. The value

of r seems to only affect the number of virus.

We will now look at the case when the stability conditions are satisfied for the

positive T -periodic solution of the linear system (4.2.2) when a2 < 0 (see Figure 4.4).

Figures 4.7 and 4.8 show the cases when a2 < 0 in the nonlinear system (4.2.10)

and the stability conditions for the positive T -periodic solution in the linear case are

satisfied. We see the same type of behaviour as before. The numerical simulations

show that the parameter r does not seem to destroy stability.
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Figure 4.5: The behaviour of the CD4+ T cell and virus populations when
a2 = 0.0001, p = 0.5 and r = 0.0032 (all other parameters are fixed at their
sample value in Table 1). In this case, stability conditions in the linear system
(Theorem 4.2.2; Case 1) are satisfied. We still have a stable positive T -
periodic solution in the nonlinear system. (a) CD4+ T cell population versus
virus population; inset: close up of periodic solution. (b) Time dynamics
versus populations.

We now investigate the effect of the parameter r when the positive T -periodic

solution of the general linear system (4.2.2) is unstable (see Figure 4.2). We can

observe that if we choose a2 > 0 such that the stability conditions for the positive

T -periodic solution of the linear system are not satisfied (Figure 4.2), there are values

of the parameter r such that the T -periodic solution for the nonlinear system is stable

(see Figures 4.9 and 4.10). Note that all the parameter values used to generate Figures

4.2 (linear), 4.9 and 4.10 (nonlinear) are the same except for the parameter r that

is varied in Figures 4.9 and 4.10. Therefore we can numerically observe that the

nonlinear infection term does seem to affect stability. We see that the value of r also

seems to affect the T cell population. Figure 4.11 show the case when the positive

T -periodic solution of the nonlinear system is unstable (see Figure 4.11). In this case,

we choose a value of r that is small and change the value of b1 in order to discern
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Figure 4.6: The behaviour of the CD4+ T cell and virus populations when
a2 = 0.0001, p = 0.5 and r = 2 (all other parameters are fixed at their
sample value in Table 1). In this case, stability conditions in the linear
system (Theorem 4.2.2; Case 1) are satisfied. We still have a stable positive
T -periodic solution in the nonlinear system. (a) CD4+ T cell population
versus virus population. (b) Time dynamics versus populations.

the effect of an unstable T -periodic orbit. The change in the parameter b1 allows for

more realistic values of r when running the simulations in order to obtain an unstable

T -periodic solution.

We can also numerically solve for the T -periodic solution in order to obtain the

Floquet multipliers of the general nonlinear system (4.2.10). In this case, we use the

parameters values in Table 1, except we set b1 = 100 (same value used in Figure 4.11

for instability). By solving for the Floquet multipliers numerically, we can obtain a

region in which the T -periodic solution is stable (when the largest multiplier is less

than one). Figure (4.12) shows that if the parameter r is bigger than 0.0011, the T -

periodic solution of the system (4.2.10) is stable. We also showed from Figure 4.11 that

if r = 10−10, the T -periodic solution of the system (4.2.10) is unstable. Therefore r is

a bifurcation parameter. We must note that even though r does change the stability
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Figure 4.7: The behaviour of the CD4+ T cell and virus populations when
a2 = −0.1, p = 0.5 and r = 0.0032 (all other parameters are fixed at their
sample value in Table 1). In this case, stability conditions in the linear system
(Theorem 4.2.2; Case 3) are satisfied. We still have a stable positive T -
periodic solution in the nonlinear system. (a) CD4+ T cell population versus
virus population; inset: close up of periodic solution. (b) Time dynamics
versus populations.

of the T -periodic solution, r = 0.0011 is not necessarily the bifurcation point. In

order to numerically solve for the Floquet multipliers, we must have the solution of

the T -periodic solution. A T -periodic solution can only be obtained numerically if the

solution is stable. Therefore, we can only guarantee that, for r greater than 0.0011,

that the T -periodic solution is stable. Since the value of r = 10−10 shows an unstable

T -periodic solution, we can assume that, between 10−10 < r ≤ 0.0011, a bifurcation

occurs.

We will now show analytically, under specific conditions (see the next sections),

the existence and sometimes uniqueness of T -periodic solutions, and how stability

can change under certain conditions when the nonlinear infection term is included.
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Figure 4.8: The behaviour of the CD4+ T cell and virus populations when
a2 = −0.1, p = 0.5 and r = 2 (all other parameters are fixed at their sample
value in Table 1). In this case, stability conditions in the linear system
(Theorem 4.2.2; Case 3) are satisfied. We still have a stable positive T -
periodic solution in the nonlinear system. (a) CD4+ T cell population versus
virus population. (b) Time dynamics versus populations.

4.2.3 Impulsive system without an immune response

We will consider a subcase of the general system (4.1.4). If we set a2 = 0 and b3 = 0

in equations (4.1.4), the ordinary differential equations are exactly the same as the

reduced system (4.1.3).

Linear non-homogeneous impulsive system

We will consider the case from (4.1.4) where a2 = 0. Variations in b3 do not affect

stability since it is a non-homogeneous term; it will only change the T -periodic solu-

tion. In this case, the results for stability when b3 = 0 will be the same as for b3 6= 0.

We get the following impulsive differential system

dC

dt
= a1C + a3

dV

dt
= b1C + b2V + b3 t 6= kT

∆C = 0 ∆V = −pV t = kT,

(4.2.11)

for t ∈ R+ and k ∈ N.
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Figure 4.9: The behaviour of the CD4+ T cell and virus populations when
a2 = 0.0032, p = 0.5 and r = 0.0032 (all other parameters are fixed at their
sample value in Table 1). In this case, stability conditions in the linear system
(Theorem 4.2.2; Case 1) are not satisfied, but we do have a stable positive T -
periodic solution in the nonlinear system. (a) CD4+ T cell population versus
virus population; inset: close up of periodic solution. (b) Time dynamics
versus populations.

Theorem 4.2.3 Let the inequalities (4.1.5)-(4.1.6) hold. Then model (4.2.11) has a

unique positive T -periodic solution with one impulse per period, and this T -periodic

orbit is exponentially stable.

Proof: Introduce the notation C(0+), V (0+), C(T+) and V (T+) as the solution

after the impulse effect at times 0 and T , respectively. We will construct a periodic

solution (C̃(t), Ṽ (t)) to equation (4.2.11) by explicitly solving the boundary value

problem C(0+) = C(T+), V (0+) = V (T+), which can be shown to have at most

one solution. So, for 0 < t < T , a T -periodic solution has the form

x(t) = X(t, 0+)x0 +

∫ t

0

X(t, s)g(s)ds, (4.2.12)
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Figure 4.10: The behaviour of the CD4+ T cell and virus populations when
a2 = 0.0032, p = 0.5 and r = 2 (all other parameters are fixed at their
sample value in Table 1). In this case, stability conditions in the linear system
(Theorem 4.2.2; Case 1) are not satisfied, but we do have a stable positive
T -periodic solution in the nonlinear system. (a) CD4+ T cell population
versus virus population. (b) Time dynamics versus populations.

where X(t, s) is the Cauchy matrix of the homogenous impulsive equation (reference

Chapter 2; Section 2.3). In this case, we have

C̃(t) = ea1t

(

C(0+) + a3

∫ t

0

e−a1sds

)

Ṽ (t) = eb2t
(

V (0+) +

∫ t

0

eb2s
(

b1C̃(s) + b3

)

ds

)

.

Since C(0+) = C(T+) and V (0+) = V (T+), we have

C(0+) = −a3

a1

V (0+) =
1

1 − (1 − p)eb2T

(

1 − p

|b2|

(

b3 +
b1a3

|a1|

)

(1 − eb2T )

)

.

Therefore we have

C̃(t) = −a3

a1

Ṽ (t) = eb2tV (0+) +
1

b3

(

b3 +
b1a3

|a1|

)

(1 − eb2t).
(4.2.13)
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Figure 4.11: The behaviour of the CD4+ T cell and virus populations when
a2 = 0.0032, p = 0.5, r = 10−10 and b1 = 100 (all other parameters are
fixed at their sample value in Table 1). In this case, stability conditions in
the linear system (Theorem 4.2.2; Case 1) are not satisfied, and T -periodic
solution in the nonlinear system is also unstable. The inset shows the time
dynamics for the populations.

This T -periodic orbit is positive since a1, b2 < 0.

The homogenous equation of (4.2.11) is given by

dx

dt
= Ax t 6= τk

∆x = Bx t = τk,

(4.2.14)

where

A =





a1 0

b1 b2



 B =





0 0

0 −p



 x =





C

V



 .
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Figure 4.12: The relationship between the infection term, r, and the stability
of the general nonlinear system (4.2.10). All parameters are fixed at their
sample value in Table 1, except p = 0.5, b1 = 100 and a2 = 0.0032. In this
case, for r > 0.0011, the Floquet multipliers of the nonlinear system (4.2.10)
are such that the T -periodic solution is stable.

A fundamental matrix of (4.2.14) is

X̃(T+) = (E +B)eAT

=





1 0

0 1 − p











ea1T 0
b1

a1 − b2
(ea1T − eb2T ) eb2T







=





ea1T 0

b1(1−p)
a1−b2

(ea1T − eb2T ) (1 − p)eb2T



 .

The multipliers µi for i = 1, 2 of (4.2.14) are given by the eigenvalues of the matrix

M = X̃(T+)X̃−1(0+) (reference Chapter 2; Remark 2.4.2) where X̃−1(0+) is the

identity matrix in this case. Therefore we have M = X̃(T+).

The Floquet multipliers µj (j = 1, 2) are given by

µ1 = ea1T

µ2 = (1 − p)eb2T .
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Since all the multipliers are distinct from 1, the homogenous equation (4.2.14) has

no non-trivial T -periodic solutions. Thus the non-homogeneous equation (4.2.11)

has a unique T -periodic solution x̃(t) (reference Chapter 2; Theorem 2.5.1) given by

equation (4.2.13).

Also, since all the multipliers µj of the homogeneous equation (4.2.14) are by

modulus smaller than 1 (since a1, b2 < 0), then the T -periodic solution x̃(t) of the non-

homogeneous equation (4.2.11) is exponentially stable (reference Chapter 2; Remark

2.5.2).

In this case, since a2 = 0 and r = 0, we always have a stable T -periodic solution.

Figure 4.13 shows, for parameters values in Table 1, that there is a stable T -periodic

orbit.
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Figure 4.13: The behaviour of the CD4+ T cell and virus populations when
a2 = 0 and r = 0 (all other parameters are fixed at their sample value in
Table 1). In this case, we have a stable positive T -periodic solution. (a)
CD4+ T cell population versus virus population. (b) Time dynamics versus
populations.



4. Two-dimensional impulsive differential system 180

Nonlinear impulsive system

If we include in equation (4.2.11) the nonlinear term found in equations (4.1.4), the

reduced system with drug is given by

dC

dt
= a1C + a3

dV

dt
= b1C + b2V + b3 − rCV t 6= kT

∆C = 0 ∆V = −pV t = kT,

(4.2.15)

for t ∈ R+ and k ∈ N.

Theorem 4.2.4 Let the inequalities (4.1.5)-(4.1.6) hold. Then model (4.2.15) has

a unique positive T -periodic solution with one impulse per period. The impulsive

periodic orbit is exponentially stable.

Proof: We will construct a periodic solution (C̃(t), Ṽ (t)) to equation (4.2.15) by

explicitly solving the boundary value problem C(0+) = C(T+), V (0+) = V (T+),

which can be shown to have at most one solution. The solution to the T -periodic

orbit is given by equation (4.2.12). So, for 0 < t < T , the T -periodic solution satisfies

C̃(t) = ea1t

(

C(0+) + a3

∫ t

0

e−a1sds

)

.

Since C(0+) = C(T+), we have

C(0+) = −a3

a1

.

From the V equation in model (4.2.15), we can write the Cauchy matrix for the

corresponding homogeneous equation

dV

dt
= (b2 − rC̃(t))V t 6= τk

∆V = −pV t = τk

(4.2.16)

as the function

X(t) = exp
[

∫ t

0

(b2 − rC̃(z))dz
]

0 < t < T. (4.2.17)



4. Two-dimensional impulsive differential system 181

Then

X(T+) = (1 − p) exp
[

∫ T

0

(b2 − rC̃(z))dz
]

. (4.2.18)

We have that

Ṽ (t) = X(t)

(

V (0+) +

∫ t

0

X−1(s)g(s)ds

)

. (4.2.19)

Therefore the T -periodic solution for 0 < t < T is given by

C̃(t) = −a3

a1

Ṽ (t) = e

“

b2+r
a3
a1

”

t
V (0+) +

(

b3 −
b1a3

a1

)





e

“

b2+r
a3
a1

”

t − 1

b2 + r a3

a1



 ,

where

V (0+) =

(

b3 −
b1a3

a1

)





e

“

b2+r
a3
a1

”

T − 1

b2 + r a3

a1





1 − (1 − p)e

“

b2+r
a3
a1

”

T
.

This is a positive T -periodic orbit since 0 ≤ p < 1 and a1, b2 < 0.

We now apply impulsive Floquet theory to the nonlinear system (4.2.15) to es-

tablish exponential stability of the periodic orbit (reference Section 2.6). For the

nonlinear equations (4.2.15), we associate with the solution φ(t) = (C̃(t), Ṽ (t)) with

moment of impulse effect τk, the variational equation

dz

dt
=
∂f

∂x
(t, φ(t))z t 6= τk

∆z = Lkz t = τk,

(4.2.20)

where

fk = f(τ−k , φ(τ−k )) f+
k = f(τ+

k , φ(τ+
k )) Lk =

∂Ik
∂x

(φ(τ−k )).
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We have that

∂f

∂x
=





a1 0

b1 − rṼ (t) b2 − rC̃(t)





∂Ik
∂x

=





0 0

0 −p



 fk =





a3 + a1C̃(τk)

b1C̃(τk) + b2Ṽ (τk) + b3 − rC̃(τk)Ṽ (τk)





In this case, the variational equation is reduced to

dz

dt
=





a1 0

b1 − rṼ (t) b2 − rC̃(t)



 z t 6= τk

∆z =





0 0

0 −p



 z t = τk.

(4.2.21)

This is a linear homogenous impulsive system. Since
∂f

∂x
(t, φ(t)) is a lower triangular

matrix and C̃(t) is constant, the exponents of the Floquet multipliers are the diagonal

entries of
∂f

∂x
(t, φ(t)). Since E − Lk is a diagonal matrix, the Floquet multipliers are

scaled accordingly. Therefore the Floquet multipliers are given by

µ1 = ea1T

µ2 = (1 − p)e
(b2+r

a3
a1

)T
.

Since the multipliers are such that |µi| < 1 for i = 1, 2 (since a1, b2 < 0), we have that

the variational equation is exponentially stable. This implies that the T -periodic

solution φ(t) = (C̃(t), Ṽ (t)) of the nonlinear system (4.2.15) is also exponentially

stable (reference Chapter 2; Remark 2.6.1).

Using the parameter values in Table 1, Figures 4.14 and 4.15 show that changing

the nonlinear infection rate r does not change stability.

For Figure 4.14, we set r such that the positive T -periodic solution of the general

nonlinear system (4.2.10) was stable. In this case, the positive T -periodic solution

of the nonlinear reduced system (4.2.15) is also stable. For Figure 4.15, we set r
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Figure 4.14: The behaviour of the CD4+ T cell and virus populations when
a2 = 0 and r = 0.0032 (all other parameters are fixed at their sample value
in Table 1). In this case, we have a stable positive T -periodic solution. (a)
CD4+ T cell population versus virus population. (b) Time dynamics versus
populations.

such that the positive T -periodic solution of the general nonlinear system (4.2.10)

was unstable. In this case, the positive T -periodic solution of the nonlinear reduced

system (4.2.15) is stable.

4.2.4 Impulsive system with an immune response as an im-

pulse

Since biologically we know that the T cells are affected by the presence of virus, we

will now consider a system where a2 = 0 but that the effect of the virus is included

in an impulse. We have

∆C = θV if t = τk. (4.2.22)

This means that when a drug is taken, the number of T cells will increase (or decrease

depending on the sign of θ) when virus is present. This change is similar to that of



4. Two-dimensional impulsive differential system 184

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.5

1

1.5

2

2.5

3
x 10

5

CD4
+
 T cell population

V
ir
u
s
 p

o
p
u
la

ti
o
n

(a)

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3
x 10

5

time (days)

P
o
p
u
la

ti
o
n
s
 (

T
 c

e
ll 

a
n
d
 v

ir
u
s
)

T cell

Virus

(b)

Figure 4.15: The behaviour of the CD4+ T cell and virus populations when
a2 = 0, r = 10−10 and b1 = 100 (all other parameters are fixed at their
sample value in Table 1). In this case, we have a stable positive T -periodic
solution. (a) CD4+ T cell population versus virus population. (b) Time
dynamics versus populations.

a2. The difference between the models with either a2 or θ as the immune response is

that the change in T cells is instantaneous when the immune response is an impulse.

Biologically, an impulse condition for the immune response is not as realistic as the

continuous case, but the inclusion of an immune response rate in this form will allow

for analytical results on the effect of the nonlinear infection term.

Linear non-homogeneous impulsive system

We will consider the case from (4.1.4) with a2 = 0. When a drug is taken, the T

cells undergo an impulse as described in (4.2.22). We get the following impulsive

differential system

dC

dt
= a1C + a3

dV

dt
= b1C + b2V + b3 t 6= kT

∆C = θV ∆V = −pV t = kT,

(4.2.23)

for t ∈ R+ and k ∈ N.
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Theorem 4.2.5 Let the inequalities (4.1.5)-(4.1.6) hold. Then model (4.2.23) has a

unique positive T -periodic solution with one impulse per period if

θ 6= (a1 − b2)
(

±1 − ea1T − (1 − p)eb2T
)

(1 ± ea1T ))

b1(ea1T − eb2T )

and

a3(1 − p)(1 − ea1T )

a1V (0+)
< θ <

(1 − (1 − p)eb2T )(1 − ea1T )(a1 − b2)

b1(ea1T − eb2T )
.

Proof: We will construct a periodic solution (C̃(t), Ṽ (t)) to equation (4.2.23) by

explicitly solving the boundary value problem C(0+) = C(T+), V (0+) = V (T+),

which can be shown to have at most one solution. The solution to the T -periodic

orbit is given by equation (4.2.12). So, for 0 < t < T , we have

C̃(t) = ea1t

(

C(0+) + a3

∫ t

0

e−a1sds

)

Ṽ (t) = eb2t
(

V (0+) +

∫ t

0

e−b2s
(

b1C̃(s) + b3

)

ds

)

.

Since C(0+) = C(T+) and V (0+) = V (T+), we have

C(0+) =
1

1 − ea1T

(

θ

1 − p
V (T+) − a3

a1

(1 − ea1T )

)

V (0+) =
eb2T (1 − p)

1 − (1 − p)eb2T

(

b1

∫ T

0

C̃(s)e−b2sds− b3
b2

(e−b2T − 1)

)

.

Therefore we have

C̃(t) = −a3

a1

+
θea1t

(1 − p)(1 − ea1T )
V (0+)

Ṽ (t) = eb2t
(

V (0+) +
θb1

(1 − p)(1 − ea1T )(a1 − b2)
(ea1t − eb2t)

)

− 1

b2

(

b3 +
b1a3

|a1|

)

(1 − eb2t),

(4.2.24)

where

V (0+) =
(1 − (1 − p)eb2T )(1 − p)(1 − ea1T )(a1 − b2)

(1 − (1 − p)eb2T )(1 − p)(1 − ea1T )(a1 − b2) − eb2T b1θ(1 − p)(e(a1−b2)T − 1)

×
(

(1 − eb2T )(1 − p)

1 − (1 − p)eb2T

(

b1a3 + |a1|b3
a1b2

))

.
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Therefore V (0+) > 0 if

(1 − (1 − p)eb2T )(1 − p)(1 − ea1T )(a1 − b2) > eb2T b1θ(1 − p)(e(a1−b2)T − 1)

or

θ <
(1 − (1 − p)eb2T )(1 − ea1T )(a1 − b2)

b1(ea1T − eb2T )
. (4.2.25)

We have that C(0+) > 0 when

θ

(1 − p)(1 − ea1T )
V (0+) − a3

a1

> 0,

or when

θ >
a3(1 − p)(1 − ea1T )

a1V (0+)
. (4.2.26)

When the conditions on C(0+) and V (0+) are satisfied, we have a positive T -periodic

solution.

The homogenous equation of (4.2.23) is given by

dx

dt
= Ax t 6= τk

∆x = Bx t = τk,

(4.2.27)

where

A =





a1 0

b1 b2



 B =





0 θ

0 −p



 x =





C

V



 .

A fundamental matrix of (4.2.27) is

X̃(T+) = (E +B)eAT

=





ea1T + b1θ
a1−b2

(ea1T − eb2T ) θeb2T

b1(1−p)
a1−b1

(ea1T − eb1T ) (1 − p)eb2T



 .
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We calculate the multipliers µi for i = 1, 2 of (4.2.27) by calculating the eigenvalues of

the matrixM = X̃(T+)X̃−1(0+) (reference Chapter 2; Remark 2.4.2) where X̃−1(0+)

is the identity matrix in this case. Therefore we have M = X̃(T+).

The Floquet multipliers satisfy the characteristic equation

µ2 − µ

(

ea1T + (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T )

)

+ (1 − p)e(a1+b2)T = 0. (4.2.28)

Therefore the Floquet multipliers µj (j = 1, 2) are

µ1,2 =
1

2

(

ea1T + (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T ) (4.2.29)

±
√

(

ea1T − (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T )

)2

+
4b1(1 − p)eb2T θ

a1 − b2
(ea1T − eb2T )

)

.

(4.2.30)

The multipliers are distinct from 1 in absolute value if

ea1T + (1 − p)eb2T (1 − ea1T ) +
b1θ

a1 − b2
(ea1T − eb2T ) 6= 1, (4.2.31)

or if

ea1T + (1 − p)eb2T (1 + ea1T ) +
b1θ

a1 − b2
(ea1T − eb2T ) 6= −1, (4.2.32)

and so in this case, the homogenous equation (4.2.27) has no non-trivial T -periodic

solutions. Thus the non-homogeneous equation (4.2.23) has a unique T -periodic so-

lution x̃(t) (reference Chapter 2; Theorem 2.5.1) given by equation (4.2.24).

We can also demonstrate numerically the positivity and uniqueness of T -periodic

solutions with the values in Table 1. In this case we have a2 = 0 and r = 0 and we

vary θ and T . Figure 4.16 shows the relationship between the time between doses

and the immune response rate. The values of T and θ such that uniqueness is not

satisfied (equations (4.2.31) and (4.2.32)) is represented by the dashed lines, whereas
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the solid and dotted lines represent the inequalities that need to be satisfied in order

to maintain positivity of solutions (The solid line represents equation (4.2.25) and the

dotted line represents equation (4.2.26)). We have that a bigger immune response

requires a larger period in order to maintain positivity. Note that certain positive

values for θ do not preserve positivity of T-periodic solutions.
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Figure 4.16: Regions in which we have a unique positive T -periodic solu-
tion. All parameters are described in Table 4.1. The dashed lines represent
the equalities that need to be satisfied for uniqueness of solutions (equations
(4.2.31) and (4.2.32)), whereas the solid and dotted lines represent the in-
equalities that need to be satisfied in order to maintain positivity of solutions,
equations (4.2.25) and (4.2.26) respectively.

Theorem 4.2.6 Under the conditions of Theorem 4.2.5, the unique positive T -periodic

orbit is exponentially stable if

1. θ > 0 and

∣

∣

∣

∣

ea1T + (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T )

∣

∣

∣

∣

< 1;
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2. θ < 0,

|θ| <
(a1 − b2)

(

ea1T − (1 − p)eb2T + b1θ
a1−b2

(ea1T − eb2T )
)2

4b1(1 − p)eb2T (ea1T − eb2T )
,

and

∣

∣

∣

∣

ea1T +
b1θ

a1 − b2
(ea1T − eb2T )

∣

∣

∣

∣

< 1;

3. θ < 0,

|θ| =
(a1 − b2)

(

ea1T − (1 − p)eb2T + b1θ
a1−b2

(ea1T − eb2T )
)2

4b1(1 − p)eb2T (ea1T − eb2T )
,

and

1

2

∣

∣

∣

∣

ea1T + (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T )

∣

∣

∣

∣

< 1;

4. θ < 0,

|θ| >
(a1 − b2)

(

ea1T − (1 − p)eb2T + b1θ
a1−b2

(ea1T − eb2T )
)2

4b1(1 − p)eb2T (ea1T − eb2T )
,

and

1

2

√

4b1(1 − p)eb2T |θ|
a1 − b2

(ea1T − eb2T ) < 1.

Proof: The proof of Theorem 4.2.6 requires that we know the Floquet multipliers.

They are given by equation (4.2.29). We use Chapter 2; Remark 2.5.2 for exponential

stability. The multipliers of the characteristic equation (4.2.28) are as follows.

(i) If θ > 0, the multipliers (µ1 > µ2) are distinct real numbers since a1 − b2 > 0

and ea1T − eb2T > 0.

(ii) If θ < 0, we have three cases.
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(ii.1) If

(

ea1T − (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T )

)2

>
4b1(1 − p)eb2T |θ|

a1 − b2
(ea1T − eb2T ),

then we have two distinct real numbers with µ1 > µ2.

(ii.2) If

(

ea1T − (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T )

)2

=
4b1(1 − p)eb2T |θ|

a1 − b2
(ea1T − eb2T ),

then we have one multiplier

µ =
1

2

(

ea1T + (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T )

)

.

(ii.3) If

(

ea1T − (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T )

)2

<
4b1(1 − p)eb2T |θ|

a1 − b2
(ea1T − eb2T ),

then we have complex numbers where

µ1,2 =
1

2

(

ea1T + (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T )

± i

√

4b1(1 − p)eb2T |θ|
a1 − b2

(ea1T − eb2T ) −
(

ea1T − (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T )

)2
)

.

For the stability of the non-homogeneous linear system (4.2.23), we have the

following cases.

1. If θ > 0, we have that the multipliers are by modulus smaller than 1 if |µ1| < 1.

Therefore

|µ1| <
1

2

∣

∣

∣

∣

∣

∣

ea1T + (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T ) +

√

(

ea1T + (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T )

)2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

ea1T + (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T )

∣

∣

∣

∣

≡ µ∗
1.
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Hence if µ∗
1 < 1, all the multipliers µj of the homogeneous equation (4.2.27)

are by modulus smaller than 1, and the T -periodic solution x̃(t) of the non-

homogeneous equation (4.2.23) is exponentially stable.

2. θ < 0 and we have case (ii.1), we have that the multipliers are by modulus

smaller than 1 if |µ1| < 1. Therefore

|µ1| <
1

2

∣

∣

∣

∣

∣

∣

ea1T + (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T ) +

√

(

ea1T − (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T )

)2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

ea1T +
b1θ

a1 − b2
(ea1T − eb2T )

∣

∣

∣

∣

≡ µ∗
2.

Hence if µ∗
1 < 1, all the multipliers µj of the homogeneous equation (4.2.27)

are by modulus smaller than 1, and the T -periodic solution x̃(t) of the non-

homogeneous equation (4.2.23) is exponentially stable.

3. If θ < 0 and we have case (ii.2), then

|µ| =
1

2

∣

∣

∣

∣

ea1T + (1 − p)eb2T +
b1θ

a1 − b2
(ea1T − eb2T )

∣

∣

∣

∣

≡ µ∗
3.

Hence if µ∗
3 < 1, all the multipliers µj of the homogeneous equation (4.2.27)

are by modulus smaller than 1, and the T -periodic solution x̃(t) of the non-

homogeneous equation (4.2.23) is exponentially stable.

4. If θ < 0 and we have case (ii.3), then

|µ1,2| =
1

2

√

4b1(1 − p)eb2T |θ|
a1 − b2

(ea1T − eb2T )

≡ µ∗
4.
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Hence if µ∗
4 < 1, all the multipliers µj of the homogeneous equation (4.2.27)

are by modulus smaller than 1, and the T -periodic solution x̃(t) of the non-

homogeneous equation (4.2.23) is exponentially stable.

We can also numerically illustrate these results with the values in Table 1. In

this case we have a2 = 0 and r = 0 and we vary θ. The value p = 0.8 is fixed,

but it should be noted that slight changes in p (0 ≤ p < 1) do not change stability.

Figures 4.17 and 4.18 show the T -periodic solution when the condition for stability

in Theorem 4.2.6 of the T -periodic solution of the linear system (4.2.23) is satisfied.
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Figure 4.17: The behaviour of the CD4+ T cell and virus populations when
a2 = 0, p = 0.8 and θ = 0.00005 (all other parameters are fixed at their
sample value in Table 1). In this case, the conditions for positivity and
stability in Theorems 4.2.5 and 4.2.6, respectively, are satisfied and we have
a stable positive T -periodic solution. (a) CD4+ T cell population versus virus
population; inset: close up of periodic solution. (b) Time dynamics versus
populations.
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Figure 4.18: The behaviour of the CD4+ T cell and virus populations when
a2 = 0, p = 0.8 and θ = −0.005 (all other parameters are fixed at their
sample value in Table 1). In this case, the condition for stability in Theorem
4.2.6 is satisfied and we have a stable T -periodic solution. Note that the
condition for positivity is not satisfied (Theorem 4.2.5). (a) CD4+ T cell
population versus virus population. (b) Time dynamics versus populations.

Figure 4.17 shows a positive, stable T -periodic solution since both the positiv-

ity and stability conditions in Theorems 4.2.5 and 4.2.6, respectively, are satisfied,

whereas in Figure (4.18), the stability conditions in Theorem 4.2.6 are satisfied but

the positivity conditions in Theorem 4.2.5 are violated. For the latter case, we have

a stable T -periodic solution, but it is not positive. Figures 4.19 and 4.20 show the

T -periodic solution when the condition for stability is not satisfied. In this case, we

have an unstable T -periodic solution.



4. Two-dimensional impulsive differential system 195

0 10 20 30 40 50
0

2

4

6

8

10

12
x 10

10

time (days)

P
o
p
u
la

ti
o
n
s
 (

T
 c

e
ll 

a
n
d
 v

ir
u
s
)

0 2 4 6 8 10 12
0

2000

4000

6000

8000

10000

T cellVirus

Virus

T cell

Figure 4.19: The behaviour of the CD4+ T cell and virus populations when
a2 = 0, p = 0.8 and θ = 0.01 (all other parameters are fixed at their sample
value in Table 1). In this case, the conditions for stability in Theorem 4.2.6
are not satisfied and we have an unstable T -periodic solution. The inset
shows a close up of the time dynamics for the populations.

0 5 10 15 20 25
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

11

time (days)

P
o
p
u
la

ti
o
n
s
 (

T
 c

e
ll 

a
n
d
 v

ir
u
s
)

0 1 2 3 4 5
0

1000

2000

3000

4000

T cell

Virus

T cell

Virus

Figure 4.20: The behaviour of the CD4+ T cell and virus populations when
a2 = 0, p = 0.8 and θ = −0.1 (all other parameters are fixed at their sample
value in Table 1). In this case, the conditions for stability in Theorem 4.2.6
are not satisfied and we have an unstable T -periodic solution. The inset
shows a closer up of the time dynamics for the populations.
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Nonlinear impulsive system

If we include in equation (4.2.23) the nonlinear term found in equation (4.1.4), the

reduced system including the impulse in C (equation (4.2.22)) is given by

dC

dt
= a1C + a3

dV

dt
= b1C + b2V + b3 − rCV t 6= kT

∆C = θV ∆V = −pV t = kT,

(4.2.33)

for t ∈ R+ and k ∈ N.

Theorem 4.2.7 Let the inequalities (4.1.5)-(4.1.6) hold. Then model (4.2.33) has a

positive T -periodic solution (C̃(t), Ṽ (t)) with one impulse per period, provided there

is a positive solution C̃(0+) of the equation

C(0+) =
θ

(1 − p)(1 − ea1T )

(

∫ T

0

f(s;C(0+))ds− a3(1 − p)(1 − ea1T )

a1θ

(

1

1 − p
exp

[

−
(

b2 +
a3r

a1

)

T

+
r

a1

(ea1T − 1)

(

C(0+) +
a3

a1

)

]

− 1

))

,

where

f(s;C(0+)) = exp

[

−
(

b2 +
ra3

a1

)

s+

(

rC(0+)

a1

+
ra3

a2
1

)

(ea1s − 1)

](

b1

(

ea1sC(0+) − a3

a1

(1 − ea1s)

)

+ b3

)

,

with θ 6= 0 and rṼ (t) < b1.

Proof: We will construct a periodic solution (C̃(t), Ṽ (t)) to equation (4.2.33) by

explicitly solving the boundary value problem C(0+) = C(T+), V (0+) = V (T+).

The solution to the T -periodic orbit is given by equation (4.2.12). Let rṼ (t) < b1.

So for 0 < t < T , we have

C̃(t) = ea1t

(

C(0+) + a3

∫ t

0

e−a1sds

)

Ṽ (t) = exp

[

b2t− r

∫ t

0

C̃(s)ds

](

V (0+) +

∫ t

0

exp

[

−b2s+ r

∫ s

0

C̃(w)dw

]

(

b1C̃(s) + b3

)

ds

)

.
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Since C(0+) = C(T+) and V (0+) = V (T+), we have

C(0+) =

ea1T
∫ T

0
e−a1sa3ds+

θ

1 − p
V (0+)

1 − ea1T

V (0+) =

∫ T

0
exp

[

−b2T + r
∫ s

0
C̃(w)dw

] (

b1C̃(s) + b3

)

ds

1
1−p

exp
[

−b2T + r
∫ T

0
C̃(w)dw

]

− 1
.

Solving, we have that C(0+) satisfies the implicit equation

C(0+) =
θ

(1 − p)(1 − ea1T )

(

∫ T

0

f(s;C(0+))ds− a3(1 − p)(1 − ea1T )

a1θ

(

1

1 − p
exp

[

−
(

b2 +
a3r

a1

)

T

+
r

a1

(ea1T − 1)

(

C(0+) +
a3

a1

)

]

− 1

))

,

(4.2.34)

where

f(s;C(0+)) = exp

[

−
(

b2 +
ra3

a1

)

s+

(

rC(0+)

a1

+
ra3

a2
1

)

(ea1s − 1)

](

b1

(

ea1sC(0+) − a3

a1

(1 − ea1s)

)

+ b3

)

.

Therefore if C(0+) > 0, then V (0+) > 0, and so the T -periodic solution is positive.

Theorem 4.2.8 Under the conditions of Theorem 4.2.7, the positive impulsive peri-

odic orbit is exponentially stable if

1. θ > 0 and

∣

∣

∣

∣

ea1T + z1
2(T+) +

θ

1 − p
(z2

2(T+) − z1
2(T+))

∣

∣

∣

∣

< 1;

2. θ < 0,

(

ea1T − z1
2(T+) +

θ

1 − p

(

z2
2(T+) − z1

2(T+)
)

)2

>
2|θ|z1

2(T+)

1 − p

(

z2
2(T+) − z1

2(T+)
)

,
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and

1

2

∣

∣

∣

∣

∣

ea1T + z1
2(T+) +

θ

1 − p

(

z2
2(T+) − z1

2(T+)
)

+

√

(

ea1T − z1
2(T+) +

θ

1 − p
(z2

2(T+) − z1
2(T+))

)2

+
2θz1

2(T+)

1 − p
(z2

2(T+) − z1
2(T+))

∣

∣

∣

∣

∣

< 1;

3. θ < 0,
(

ea1T − z1
2(T+) +

θ

1 − p

(

z2
2(T+) − z1

2(T+)
)

)2

=
2|θ|z1

2(T+)

1 − p

(

z2
2(T+) − z1

2(T+)
)

,

and

1

2

∣

∣

∣

∣

ea1T + z1
2(T+) +

θ

1 − p
(z2

2(T+) − z1
2(T+))

∣

∣

∣

∣

< 1;

4. θ < 0,
(

ea1T − z1
2(T+) +

θ

1 − p

(

z2
2(T+) − z1

2(T+)
)

)2

<
2|θ|z1

2(T+)

1 − p

(

z2
2(T+) − z1

2(T+)
)

,

and

1

2

√

2|θ|z1
2(T+)

1 − p
(z2

2(T+) − z1
2(T+)) < 1,

where

z1
2(T+) = (1 − p) exp

[∫ T

0

(b2 − rC̃(s))ds

]

z2
2(T+) = (1 − p) exp

[∫ T

0

(b2 − rC̃(s))ds

](

1 +

∫ T

0

exp

[

−
∫ s

0

(b2 − rC̃(w))dw

]

ea1s
(

b1 − rṼ (s)
)

ds

)

.

Proof: We now apply impulsive Floquet theory to the nonlinear system (4.2.33)

to establish exponential stability of the periodic orbit (reference Section 2.6). For the

nonlinear equations (4.2.33), we associate with the solution φ(t) = (C̃(t), Ṽ (t)) with

moment of impulse effect τk, the variational equation

dz

dt
=





a1 0

b1 − rṼ (t) b2 − rC̃(t)



 z t 6= τk

∆z =





0 θ

0 −p



 z t = τk.

(4.2.35)
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(see equation (4.2.20)). This is a linear homogenous impulsive system. A fundamental

solution for the system is X̃(t) =
[

v1(t) v2(t)
]

where

v1(t) =





z1
1(t)

z1
2(t)



 v2(t) =





z2
1(t)

z2
2(t)





are independent solutions to the variational equation (4.2.35). We have, if z1
1(t) ≡ 0,

that

z1
1(0+) = 0

z1
1(T+) = θz1

2(T ) =
θ

1 − p
z1
2(T+),

and we have that
dz1

2

dt
=
(

b2 − rC̃(t)
)

z1
2 t 6= τk

∆z1
2 = −pz1

2 t = τk,

(4.2.36)

where this homogeneous equation has a Cauchy matrix given by the same function

as (4.2.17). Then a solution to (4.2.36) for 0 < t < T is given by

z1
2(t) = z1

2(0+) exp

[∫ T

0

(b2 − rC̃(s))ds

]

,

where

z1
2(0+) = 1

z1
2(T+) = (1 − p) exp

[∫ T

0

(b2 − rC̃(s))ds

]

.

Therefore a solution to system (4.2.35) is

v1(0+) =





0

1





v1(T+) =







θ
1−p

z1
2(T+)

z1
2(T+)






.
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Now if z2
1 6= 0, then we have a solution given by

z2
1(t) = ea1t,

where

z2
1(0+) = 1

z2
1(T+) = ea1T + θz2

2(T )

= ea1T +
θ

1 − p
z2
2(T+).

We thus have

dz2
2

dt
= (b1 − rṼ (t))ea1t + (b2 − rC̃(t))z2

2 t 6= τk

∆z2
2 = −pz2

2 t = τk.

(4.2.37)

This is a linear, non-homogenous equation. The Cauchy matrix for the corresponding

homogenous equation

dz2
2

dt
= (b2 − rC̃(t))z2

2 t 6= τk

∆z2
2 = −pz2

2 t = τk

(4.2.38)

is given by the same function as (4.2.17). Therefore we have, for 0 < t < T , a solution

given by

z2
2(t) = exp

[∫ t

0

(b2 − rC̃(s))ds

](

z2
2(0+) +

∫ t

0

exp

[

−
∫ t

0

(b2 − rC̃(s))ds

]

(b1 − rṼ (s))ea1sds

)

,

(4.2.39)

where

z2
2(0+) = 1

z2
2(T+) = (1 − p) exp

[∫ T

0

(b2 − rC̃(s))ds

](

1 +

∫ T

0

exp

[

−
∫ T

0

(b2 − rC̃(s))ds

]

(b1 − rṼ (s))ea1sds

)
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We have that z2
2 > 0 since rṼ (t) < b1. Therefore a solution to system (4.2.35) is

v2(0+) =





1

1





v2(T+) =







ea1T + θ
1−p

z2
2(T+)

z2
2(T+)






.

In order to calculate the multipliers µi for i = 1, 2 of (4.2.35), we calculate the

eigenvalues of the matrix M = X̃(T+)X̃−1(0+) (reference Chapter 2; Remark 2.4.2).

We have

X̃(T+) =





θ
1−p

z1
2(T+) ea1T + θ

1−p
z2
2(T+)

z1
2(T+) z2

2(T+)



 X̃−1(0+) =





−1 1

1 0



 .

Therefore

M = X̃(T+)X̃−1(0+)

=





ea1T + θ
1−p

(z2
2(T+) − z1

2(T+)) θ
1−p

z1
2(T+)

z2
2(T+) − z1

2(T+) z1
2(T+)



 .

The Floquet multipliers satisfy the characteristic equation

µ2 − µ

(

ea1T + z1
2(T+) +

θ

1 − p

(

z2
2(T+) − z1

2(T+)
)

)

+ z1
2(T+)ea1T = 0.

Therefore the Floquet multipliers µj (j = 1, 2) are

µ1,2 =
1

2

(

ea1T + z1
2(T+) +

θ

1 − p

(

z2
2(T+) − z1

2(T+)
)

±
√

(

ea1T − z1
2(T+) +

θ

1 − p
(z2

2(T+) − z1
2(T+))

)2

+
2θz1

2(T+)

1 − p
(z2

2(T+) − z1
2(T+))

)

.

We have several cases similar to the ones presented in the linear system (4.2.23).

(i) If θ > 0, the multipliers are two distinct real numbers since z2
2(T+)−z1

2(T+) > 0

where µ1 > µ2.
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(ii) If θ < 0, we have three cases.

(ii.1) If
(

ea1T − z1
2(T+) +

θ

1 − p

(

z2
2(T+) − z1

2(T+)
)

)2

>
2|θ|z1

2(T+)

1 − p

(

z2
2(T+) − z1

2(T+)
)

,

then we have two real distinct numbers with µ1 > µ2.

(ii.2) If
(

ea1T − z1
2(T+) +

θ

1 − p

(

z2
2(T+) − z1

2(T+)
)

)2

=
2|θ|z1

2(T+)

1 − p

(

z2
2(T+) − z1

2(T+)
)

,

then we have one multiplier

µ =
1

2

(

ea1T + z1
2(T+) +

θ

1 − p

(

z2
2(T+) − z1

2(T+)
)

)

.

(ii.3) If
(

ea1T − z1
2(T+) +

θ

1 − p

(

z2
2(T+) − z1

2(T+)
)

)2

<
2|θ|z1

2(T+)

1 − p

(

z2
2(T+) − z1

2(T+)
)

,

then we have complex numbers, where

µ1,2 =
1

2

(

ea1T + z1
2(T+) +

θ

1 − p

(

z2
2(T+) − z1

2(T+)
)

± i

√

2|θ||z1
2(T+)|

1 − p
|z2

2(T+) − z1
2(T+)| −

(

ea1T − z1
2(T+) +

θ

1 − p
(z2

2(T+) − z1
2(T+))

)2
)

.

For the stability of the non-homogeneous nonlinear system (4.2.33), we have the

following cases.

1. If θ > 0, we have that the multipliers are by modulus smaller than 1 if |µ1| < 1.

Therefore

|µ1| <
1

2

∣

∣

∣

∣

∣

∣

ea1T + z1
2(T+) +

θ

1 − p

(

z2
2(T+) − z1

2(T+)
)

+

√

(

ea1T + z1
2(T+) +

θ

1 − p
(z2

2(T+) − z1
2(T+))

)2

∣

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

ea1T + z1
2(T+) +

θ

1 − p

(

z2
2(T+) − z1

2(T+)
)

∣

∣

∣

∣

≡ µ∗
1.
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Hence if µ∗
1 < 1, all the multipliers µj of the homogeneous equation (4.2.27)

are by modulus smaller than 1, and the T -periodic solution x̃(t) of the non-

homogeneous equation (4.2.23) is exponentially stable (reference Chapter 2;

Remark 2.5.2).

2. If θ < 0 and we have case (ii.1), we have that the multipliers are by modulus

smaller than 1 if |µ1| < 1. In this case it can not be simplified since the z1
2(T+)

and z2
2(T+) contain θ. So if |µ1| < 1, all the multipliers µj of the homogeneous

equation (4.2.27) are by modulus smaller than 1, and the T -periodic solution

x̃(t) of the non-homogeneous equation (4.2.23) is exponentially stable (reference

Chapter 2; Remark 2.5.2).

3. If θ < 0 and we have case (ii.2), then

|µ| =
1

2

∣

∣

∣

∣

ea1T + z1
2(T+) +

θ

1 − p

(

z2
2(T+) − z1

2(T+)
)

∣

∣

∣

∣

≡ µ∗
2.

Hence if µ∗
2 < 1, all the multipliers µj of the homogeneous equation (4.2.27)

are by modulus smaller than 1, and the T -periodic solution x̃(t) of the non-

homogeneous equation (4.2.23) is exponentially stable (reference Chapter 2;

Remark 2.5.2).

4. If θ < 0 and we have case (ii.3), then

|µ1,2| =
1

2

√

2|θ|z1
2(T+)

1 − p
(z2

2(T+) − z1
2(T+))

≡ µ∗
3.

Hence if µ∗
3 < 1, all the multipliers µj of the homogeneous equation (4.2.27)

are by modulus smaller than 1, and the T -periodic solution x̃(t) of the non-

homogeneous equation (4.2.23) is exponentially stable (reference Chapter 2;

Remark 2.5.2).
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We can also numerically illustrate these results with the values in Table 1. In

this case we set a2 = 0 and we vary θ and r. We again fix p = 0.8 to see the changes

when varying θ and r. In this case, Figures 4.21–4.24 and 4.26 all show a stable

T -periodic solution, whereas Figure 4.25 shows an unstable T -periodic solution.
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Figure 4.21: The behaviour of the CD4+ T cell and virus populations when
a2 = 0, r = 0.0032 and θ = 0.0001 (all other parameters are fixed at their
sample value in Table 1). In this case, the conditions for stability in Theorem
4.2.8 are satisfied and we have a stable positive T -periodic solution. (a) CD4+

T cell population versus virus population; inset: close up of periodic solution.
(b) Time dynamics versus populations.

When the T -periodic solution of the linear system (4.2.23) is stable, the T -

periodic solution of the nonlinear system (4.2.33) is also stable (Figures 4.21 and

4.22). When the T -periodic solution of the linear system (4.2.23) is unstable, the

nonlinear system (4.2.33) has a T -periodic solution that is stable (Figures 4.23 and

4.24). When the T -periodic solution of the linear system (4.2.23) is unstable and

θ < 0, the stability of the T -periodic solutions of the nonlinear system (4.2.33) changes



4. Two-dimensional impulsive differential system 205

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16
x 10

4

CD4
+
 T cell population

V
ir
u
s
 p

o
p
u
la

ti
o
n

(a)

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16
x 10

4

time (days)

P
o
p
u
la

ti
o
n
s
 (

T
 c

e
ll 

a
n
d
 v

ir
u
s
)

Virus

T cell

(b)

Figure 4.22: The behaviour of the CD4+ T cell and virus populations when
a2 = 0, r = 0.0032 and θ = −0.005 (all other parameters are fixed at their
sample value in Table 1). In this case, the conditions for stability in Theorem
4.2.8 are satisfied and we have a stable positive T -periodic solution. (a)
CD4+ T cell population versus virus population. (b) Time dynamics versus
populations.

based on r (Figures 4.25 and 4.26).

4.3 Summary

In summary, the general linear impulsive system (4.2.2) has a unique T -periodic

solution that is exponentially stable under the conditions presented in Theorems

4.2.1 and 4.2.2, respectively. For the general nonlinear impulsive system (4.2.10), we

can numerically show that, for the parameters in Table 1, a T -periodic solution exists

and that stability can change based on the value of the nonlinear parameter r. Hence

the nonlinear term changes a T -periodic solution from unstable to stable, but not

vice versa. Therefore the nonlinear term seems to enlarge the region of stability.

We also showed that varying the immune response rate (a2) in the general linear

system (4.2.2) changes the stability. We considered the following two subcases of the
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Figure 4.23: The behaviour of the CD4+ T cell and virus populations when
a2 = 0, r = 0.0032 and θ = 0.01 (all other parameters are fixed at their
sample value in Table 1). In this case, the conditions for stability in Theorem
4.2.8 are satisfied and we have a stable positive T -periodic solution. (a) CD4+

T cell population versus virus population; inset: close up of periodic solution.
(b) Time dynamics versus populations.

general impulsive system (4.2.10) in order to view the effect of the nonlinear infection

term and the immune response rate:

Case 1. We set the immune response rate to zero in the general differential equations

(4.1.4) (a2 = 0).

Case 2. We set the immune response rate to zero in the general differential equations

(4.1.4) (a2 = 0), but include an immune response by an impulse.

If we set a2 = 0 in the general impulsive system (4.2.10) (Case 1), both the linear

and nonlinear impulsive systems have a unique positive T -periodic solution that is

exponentially stable. Therefore we proved that, without an immune response, the
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Figure 4.24: The behaviour of the CD4+ T cell and virus populations when
a2 = 0, r = 2 and θ = 0.01 (all other parameters are fixed at their sample
value in Table 1). In this case, the conditions for stability in Theorem 4.2.8
are satisfied and we have a stable positive T -periodic solution. (a) CD4+ T
cell population versus virus population; inset: close up of periodic solution.
(b) Time dynamics versus populations.

nonlinear term has no effect on stability.

If we set a2 = 0 in the general impulsive system (4.2.10), but we include an

immune response represented by an impulse (equation (4.2.22)) (Case 2), a positive

T -periodic solution exists in both the linear and nonlinear cases. We also proved

that for certain conditions on θ (the impulsive immune response rate), the T -periodic

solution is exponentially stable in both the linear and nonlinear impulsive systems.

We numerically show that the nonlinear term can change an unstable periodic orbit

in the linear system to a stable one in the nonlinear system. This implies that, if

an immune response is included, the nonlinear term and the immune response may

affect stability.

The effect of this nonlinear infection term has been previously studied in or-

dinary differential equations for infectious disease systems. Though often the term
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Figure 4.25: The behaviour of the CD4+ T cell and virus populations when
a2 = 0, r = 0.0032 and θ = −0.1 (all other parameters are fixed at their
sample value in Table 1). In this case, the conditions for stability in Theorem
4.2.8 are not satisfied and we have an unstable T -periodic solution. The inset
shows the initial increase in the T cell population.

is neglected, it has been found that viral clearance via drug therapy may explicitly

depend on this nonlinear infection term since the viral load is low [29]. The work

previously done used ordinary differential systems to view the effect of the nonlinear

infection term when viral load was low. We were able to explicitly show that when

drug therapy is included, the nonlinear infection term does have an effect on the sta-

bility of T -periodic solutions. We only look at the effect of the nonlinear infection

term on a two-dimensional system, where every other term in the model is linear.

In practice, infectious disease systems are often of higher dimensions than two (for

example, including susceptible and infected T cells would be more realistic meaning a

three-dimensional system). Solving for higher-dimensional systems is challenging and

often not possible when nonlinear terms are included. Since the nonlinear infection

term plays a role in stability for a two-dimensional system, we certainly have argu-

ments to show that it would also play a role in the stability for higher-dimensional

systems. The analysis of the two-dimensional system gives us an indication that the
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Figure 4.26: The behaviour of the CD4+ T cell and virus populations when
a2 = 0, r = 2 and θ = −0.1 (all other parameters are fixed at their sample
value in Table 1). In this case, the conditions for stability in Theorem 4.2.8
are satisfied and we have a stable positive T -periodic solution. (a) CD4+ T
cell population versus virus population; inset: close up of periodic solution.
(b) Time dynamics versus populations.

nonlinear infection term does play an important role in the stability of T -periodic

solutions.



Chapter 5

Application of impulsive

differential equations to Rift Valley

Fever

Given the right circumstance, an emerging infectious disease has the potential to

devastate newly infected host populations [39]. Emerging diseases are infections that

have expanded their host or geographic range [39]. The emergence of these diseases is

mitigated by a number of factors, many of which are driven by anthropogenic change

including ecosystem modification, international travel, technology and health policy

[39]. Modification of existing ecosystems or the encroachments of human ecosystem

fronts create new interfaces for many zoonotic pathogens to interact with and infect

humans [40]. HIV, malaria and dengue are all examples of diseases that have prolif-

erated globally as a result of changing human demographics and behaviour such as

massive population growth, large-scale migration and urbanization [39]. Host-parasite

dynamics are intimately tied to climatic conditions, and there is growing concern that

the extreme weather events associated with global climate change may further exas-

perate the incidence and spread of emerging pathogens [41, 42]. This is especially
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true for diseases with water-breeding vectors such as mosquitoes [39, 41, 42, 43].

Following the emergence and increased virulence of West Nile virus (WNV) in

North America, much attention has been focused on the potential of other mosquito-

borne pathogens to expand their natural ranges [39, 42, 44, 45, 46]. Of the many

potential mosquito-borne pathogens able to invade North America like WNV, one

particular concern is Rift Valley Fever (RVF), an arthropod-borne viral zoonosis that

has seen an expansion in its geographic range and virulence since its formal identifi-

cation in Kenya’s Rift Valley in 1931 [44, 45, 46, 47]. Incidence of RVF is believed to

have a particularly strong connection to climate variation and has been linked with

El Niño-southern oscillation (ENSO) events or incidents of localized heavy rainfall

[41, 43, 47, 48]. Prior to 1977, incidents of RVF had primarily been concentrated in

sub-Saharan Africa and were mainly a concern of the agricultural industry; infection

was typically fatal in young domestic ruminants and initiated fetal death in pregnant

animals, while cases were typically mild in humans [45, 46, 47, 49]. In 1977, RVF’s

potential to spread beyond its endemic range in sub-Saharan Africa was confirmed

when it appeared without apparent precedent in Egypt; unlike previously documented

outbreaks, human infection was significant, with over 200 000 cases, 600 of which were

fatal [44, 47, 48, 49]. Since then, RVF has become endemic in previously unexposed

areas of Western and Eastern Africa; it has even reached the Arabian Peninsula as

of the early 21st century [50]. When considering RVF’s success at establishing its

endemicity in novel environments, and given the wide variety of arthropods capable

of acting as its vectors, it is no surprise that there is much interest in its potential to

spread elsewhere [46, 47, 51].

RVF is an arthropod-borne viral zoonosis, meaning that it is transmitted between

humans and animals by an arthropod vector [47, 49, 50]. RVF can infect a fairly wide

range of vertebrate hosts and has an even wider range of insect vectors, most of which

are mosquitoes [46, 47, 49, 50]. RVF’s success at establishing its endemicity in novel

environments is due in part to its flexibility in both hosts and vectors [52].
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For more information on the etiology of the virus, the vectors that transmit the

virus, the viable hosts and the epidemiology of the virus, see Appendix H.

5.1 A multi-season transmission model for Rift Val-

ley Fever: Invasion analysis in North America

For a vector-borne emerging infectious disease to become endemic in a new location,

there must be a sufficient number of susceptible hosts and competent vectors [53].

Due to RVF’s large range of viable hosts and vectors, its potential to establish itself

elsewhere is especially high compared to other vector-borne diseases. Gaff et al. [54]

modelled RVF’s transmission using an ordinary differential equation model for two

populations of mosquito species — those that can transmit vertically and those that

cannot — and one population of domestic livestock animals with disease-dependent

mortality. They analyzed the model to find the stability of the disease-free equilibrium

and tested which model parameters affect the stability most significantly.

It is important to note that Rift Valley Fever is a vector-borne disease transmitted

to domestic livestock and humans. We altered the Gaff et al. [54] model in order

to incorporate a human population. The effect of the human population is of great

interest to public health agencies, and so incorporating a human population in the

model can give us important and meaningful results. We also include fetal death

caused by RVF infection in the domestic livestock population, which is not included

in [54]. Gaff et al. [54] used standard incidence for the interaction terms in their

model. We know that human and livestock populations are unlikely to be well-mixed

(meaning that each infected individual does not have an equal chance of infecting

every susceptible individual), so we also use standard incidence for transmission. But

all other terms, including the interactions between mosquitoes and hosts, are mass-

action because the mosquito and host populations are assumed to be well-mixed.
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We assume that the number of bites per day per mosquito are proportional to the

fraction of bites on a susceptible host. The spread of RVF is much more likely between

mosquitoes and hosts than between hosts because the interaction between host and

mosquito populations is higher in a given area than host to host interaction. The

model is composed of eleven ordinary differential equations describing the interaction

between mosquito, human and livestock populations when the Rift Valley Fever virus

is present.

We use mathematical modelling in order to investigate the effect of decreasing

the mosquito survival time. Gaff et al. [54] showed that, by changing the values for

contact rates and death rates associated with cattle, for any given contact rate, there

is a low level of endemic prevalence, meaning the disease could persist if introduced

in an isolated system. We instead look at changing the survival time of mosquitoes

since the reduction can be done by spraying and has been proven to be a good way

of eradicating vector-bourne diseases such as malaria [55, 56, 57, 58].

The manuscript is split into two categories: a one-season model and a multiple-

season model. The one-season model only includes the ordinary differential equations

with no impulse effect. The equilibrium points and stability are found, as well as

the basic reproductive number. We address the following research questions: 1. Can

Rift Valley Fever invade North America? 2. If the virus does invade, is it likely to

be eradicated? 3. What are the effects of multiple seasons on a persistent outbreak?

The third research question is answered by including between-season effects as im-

pulses. The multiple-season model is composed of the ordinary differential equations,

coupled with difference equations that describe the effects on the human, livestock

and mosquito populations after a winter season. The effects of seasonal changes is

an important research question in North America, since the mosquito population is

highly affected by winter, and this is included in the model by imposing impulses.

Numerical simulations show that, in order to eradicate the disease, we must

decrease the survival time of mosquitoes below 8.67 days. Thus, mechanisms such



5. Application of impulsive differential equations to Rift Valley Fever 214

as aggressive spraying could contain an outbreak, if the mosquito population is suf-

ficiently controlled. Otherwise, Rift Valley Fever is likely to establish itself as a

recurring seasonal outbreak. Sensitivity analysis explored the relationship between

the basic reproductive number and the parameter values using Latin Hypercube Sam-

pling. We show that the basic reproductive number is most sensitive to the mosquito

death rate, meaning that changing the survival time has a big impact on lowering the

basic reproductive number below one. Simulation details, errata and extra comments

for the manuscript can be found in Appendix I.

The contribution by each author is as follows. The third author wrote the ini-

tial draft of the introduction. The first and second authors developed and analysed

an early version of the model. The first author developed and analysed the current

model, performed numerical simulations and wrote the manuscript. The fourth au-

thor designed the project and edited the manuscript.

This paper is in press in the journal Mathematical Population Studies [5];

Miron, R.E., Giordano, G.A., Kealey, A.D., Smith?, R.J. 2014. A multi-season trans-

mission model for Rift Valley Fever: Invasion analysis in North America. Mathemat-

ical Population Studies (in press).
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Abstract

Rift Valley Fever is a vector-borne disease transmitted to humans and domestic livestock that is primarily

found in West Africa. Its similarities to West Nile Virus suggest that establishment in the developed world

may be possible. Rift Valley Fever has the potential to invade North America, where seasons play a role

in disease persistence. The values for the basic reproductive number show that, in order to eradicate the

disease, the survival time of mosquitoes must decrease below 8.67 days. Mechanisms such as aggressive

spraying that decreases the mosquito population can contain an outbreak. Otherwise, Rift Valley Fever

is likely to establish itself as a recurring seasonal outbreak. Rift Valley Fever poses a potential threat

to North America that would require aggressive interventions in order to prevent a recurring seasonal

outbreak.

Keywords: Rift Valley Fever, mathematical model, impulsive differential equations, spraying, seasons

1 Introduction

The emergence of West Nile Virus in North America has drawn attention to the possibility for other

mosquito-borne pathogens to expand their natural ranges (Morse, 1995; Patz et al., 2005; Favier

et al., 2006; Moutailler et al., 2008; Turell et al., 2008a). West Nile virus (WNV) first appeared in

the United States in 1999, causing acute illness in 62 individuals, 7 of whom died (Roche, 2002).

Outbreaks of encephalitis caused by WNV have occurred in the late summer and early autumn

months yearly in New York City since 1999 (Karpati et al., 2004). By the end of 2002, West Nile

virus activity had been reported in all but four continential U.S. states, with more than 3, 500

human cases reported (Mostashari et al., 2003).

Of the many potential mosquito-borne pathogens able to invade North America like WNV, one

particular concern is Rift Valley Fever (RVF), an arthropod-borne viral zoonosis, which has seen an

expansion in its geographic range and virulence since its formal identification in Kenya’s Rift Valley
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in 1931 (House et al., 1992; Favier et al., 2006; Moutailler et al., 2008; Turell et al., 2008a). Incidence

of RVF is believed to have a particularly strong connection to climate variation and has been linked

with El Niño–southern oscillation events or incidents of localized heavy rainfall (House et al., 1992;

Traoré-Lamizana et al., 2001; Porphyre et al., 2005; Despommiers et al., 2007; Anyamba et al.,

2009). Prior to 1977, incidents of RVF had primarily been concentrated in sub-Saharan Africa

and were mainly a concern of the agricultural industry. Infection was fatal in young domestic

ruminants and initiated abortion in pregnant animals, while cases were mild in humans (Meegan,

1980; House et al., 1992; Moutailler et al., 2008; Turell et al., 2008a). In 1977, RVF’s potential to

spread beyond its endemic range in sub-Saharan Africa was confirmed when it appeared without

apparent precedent in Egypt. Unlike previously documented outbreaks, human infection exceeded

200,000 cases, 600 of which were fatal (Meegan, 1980; House et al., 1992; Traoré-Lamizana et al.,

2001; Favier et al., 2006; Gaff et al., 2007). Since then, RVF has become endemic in previously

unexposed areas of Western and Eastern Africa. It reached the Arabian Peninsula in the early 21st

century (Gerdes, 2004). RVF’s success at establishing its endemicity in novel environments, with

a wide variety of arthropods capable of acting as its vectors, constitutes a serious threat (House et

al., 1992; Turell et al., 2008a,b).

Rift Valley Fever is an arthropod-borne viral zoonosis: it is transmitted between humans and

animals by an arthropod vector (House et al., 1992; Meegan, 1980; Gerdes, 2004). RVF can infect a

fairly wide range of vertebrate hosts and has an even wider range of insect vectors: over 40 species

of mosquitoes from eight different genera have been isolated in the field (Meegan, 1980; House et

al., 1992; Gerdes, 2004; Turell et al., 2008a,b). RVF’s success at establishing its endemicity in

novel environments is due in part to its flexibility in both hosts and vectors (Balkhy and Memish,

2003). Mosquitoes belonging to the Aedes species are an important vector, as they may vertically

transmit infection to their young through transovarial transmission, enabling the maintenance of

RVF during inter-epizootic periods (House et al., 1992; Traoré-Lamizana et al., 2001; Bowman
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et al., 2005). Culex species and those belonging to Eretmapodites are believed to be strongly

involved with epizootic outbreaks (House et al., 1992; Traoré-Lamizana et al., 2001; Bowman et al.,

2005). Both the Aedes and Culex species are known to transmit West Nile Virus. RVF can also

be transmitted through aerosol exposure from handling infected carcasses. Laboratory workers,

veterinarians, and individuals involved with meat processing are particularly vulnerable to this

form of infection (House et al., 1992; Traoré-Lamizana et al., 2001; Moutailler et al., 2008; Turell

et al., 2008a,b).

RVF has a very wide range of viable vertebrate hosts, as might be expected, considering the

diversity of its vectors (Balkhy and Memish, 2003). RVF’s most significant host species are domestic

ruminants such as sheep and cattle (House et al., 1992; Balkhy and Memish, 2003; Turell et al.,

2008a,b). Newborn lambs and goats are most susceptible to disease, followed by calves and sheep.

Moderate disease occurs in adult cattle, sheep, goats, humans, water buffalo, and rats. Humans and

ruminants are capable of developing enough viremia to infect mosquitoes. Camels, horses, pigs, cats,

dogs, guinea pigs, rabbits, hedgehogs, and monkeys are susceptible, but do not necessarily display

clinical disease. Birds, with the exception of pigeons and chickens, and reptiles are believed to be

resistant to infection (House et al., 1992; Gerdes, 2004). Balkhy and Memish (2003) showed that

fatality in adult cattle and sheep can be as high as 30%, while young animals may experience 100%

fatality. Gerdes (2004) showed that the disease is most significant in young animals, particularly

lambs and goats, which may experience 70–100% mortality. Newborn animals experience 100%

fatality and most epidemics are defined by high incidences of abortion (Gerdes, 2004). Prior to the

Egyptian outbreak in 1977, the disease in humans had mostly been asymptomatic or mild, often

manifesting as influenza-like symptoms. Complications such as encephalitis may occur and less

than 1% of cases may present hemorrhagic fever (House et al., 1992; Balkhy and Memish, 2003;

Gerdes, 2004; Turell et al., 2008a).

In order for a vector-borne emerging infectious disease to become endemic in a new location,
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there must be enough susceptible hosts and vectors (House et al., 1992). Due to RVF’s large range

of viable hosts and vectors, its potential to establish itself is high compared to other vector-borne

diseases. Gaff et al. (2007) modeled RVF transmission using ordinary differential equations for two

populations of mosquito species — those that can transmit vertically and those that cannot —

and one population of domestic livestock animals with disease-dependent mortality. They found

the stability of the disease-free equilibrium and identified parameters affecting the stability. They

showed that, for any given contact rate, there is a low level of endemic prevalence, which implies

that the disease could persist if introduced into an isolated system.

Bicout and Sabatier (2004) and Zell (2004) demonstrated that the incidence of many vector-

borne infectious diseases shows seasonality, and extreme weather events are often accompanied

by additional outbreaks. Favier et al. (2006) assessed the possibility of endemicity without wild

animals providing a permanent virus reservoir. Using a deterministic model, endemicity without

a permanent virus reservoir is impossible in a single site except when there is a strictly periodic

rainfall pattern, but is possible when there are herd movements and sufficient inter-site variability

in rainfall, which drives mosquito emergence.

2 The Model

We use a compartmental model derived from Gaff et al. (2007) with three populations: the human,

domestic livestock, and mosquito populations (Figure 1). The model has four different classes: the

S classes are susceptible individuals, the E classes are infected but non-infectious individuals, the

I classes are infectious individuals, and the R classes are recovered and immune individuals. When

initially infected, the individual is non-infectious for a while; only individuals in class I can infect

the susceptible populations. Once recovered from the disease, the individual has lifelong immunity.
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Figure 1: The model. The index “H” refers to human, “L” to livestock, and “M” to mosquitoes.
SH , SL, and SM are the susceptible populations, EH , EL, and EM are the exposed populations, IH ,
IL, and IM are the infected populations, and RH and RL are the recovered populations (mosquitoes
do not recover from the disease). Other parameters are listed in Table 2.

The human population is described by















































S ′

H(t) = ΛH − dHSH(t) − βLH

SH(t)IL(t)

NL(t)
− βMHSH(t)IM(t)

E ′

H(t) = βLH

SH(t)IL(t)

NL(t)
+ βMHSH(t)IM(t) − dHEH(t) − ǫHEH(t)

I ′

H(t) = ǫHEH(t) − dHIH(t) − µHIH(t) − γHIH(t)

R′

H(t) = γHIH(t) − dHRH(t) ,

(1)

where NL(t) = SL(t) + EL(t) + IL(t) + RL(t).
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The domestic livestock population is described by







































S ′

L(t) = ΛL − dLSL(t) − βMLSL(t)IM(t)

E ′

L(t) = βMLSL(t)IM(t) − dLEL(t) − ǫLEL(t)

I ′

L(t) = ǫLEL(t) − dLIL(t) − µLIL(t) − γLIL(t)

R′

L(t) = γLIL(t) − dLRL(t) .

(2)

The Aedes mosquito population is described by



























S ′

M(t) = ΛM − dMSM(t) − βLMSM(t)IL(t) − βHMSM(t)IH(t)

E ′

M(t) = βLMSM(t)IL(t) + βHMSM(t)IH(t) − dMEM(t) − ǫMEM(t)

I ′

M(t) = ǫMEM(t) − dMIM(t) .

(3)

Each population has infection rate βj (j = H,L, M). The natural death rates are dj, the

disease-induced death rates µj, the rates at which a non-infectious individual becomes infectious

ǫj, and the recovery rates γj. The mosquito population contains no R class, because mosquitoes

never clear the infection once they are infected. A summary of the parameters and units are given

in Table 1.

The birth rates in the system are constant sources of susceptible individuals Λi for i = H,L, M ;

in the absence of disease, the susceptible populations converge to the disease-free equilibrium at

an exponential rate. We also include fetal death caused by RVF infection in the domestic livestock

population, which is not included in Gaff et al. (2007). Human and livestock populations are un-

likely to be well-mixed (meaning that each infected individual has equal chance of infecting every

susceptible individual), so we use standard incidence for transmission. All other terms, including

the interactions between mosquitoes and hosts, are mass-action because the mosquito and host pop-

ulations are assumed to be well-mixed. The spread of RVF is much more likely between mosquitoes
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Table 1: Definition of parameters.

Parameter Units Definition
ΛH population × days−1 Human birth rate
ΛL population × days−1 Immigration of livestock
ΛM population × days−1 Mosquito birth rate

1/dH days Human survival time
1/dL days Livestock survival time
1/dM days Mosquito survival time
µH days−1 Disease death rate for humans
µL days−1 Disease death rate for livestock

βMH (days × population)−1 Infection rate from mosquitoes to humans
βLH (days × population)−1 Infection rate from livestock to humans
βML (days × population)−1 Infection rate from mosquitoes to livestock
βLM (days × population)−1 Infection rate from livestock to mosquitoes
βHM (days × population)−1 Infection rate from humans to mosquitoes
1/ǫH days Human incubation time
1/ǫL days Livestock incubation time
1/ǫM days Mosquito incubation time
1/γH days Human recovery time
1/γL days Livestock recovery time
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and hosts than between hosts because the interaction between host and mosquito populations is

higher in a given area than host to host interaction.

3 Asymptotic behavior: one-season model

The model has two equilibria: the disease-free equilibrium and the endemic equilibrium (developed

in the Appendix). For the endemic equilibrium, several solutions could exist, resulting in a backward

bifurcation. If this is the case, then lowering the basic reproductive number below 1 may no longer

be sufficient for control (Li et al., 2011). This presents a serious complication when a disease is

already endemic because the outcome depends on initial conditions. In the case of RVF, we only

consider sufficiently small perturbations away from the disease-free equilibrium because the disease

is present in North America. This contrasts with the situation in Africa, where the disease is

already established, so more rigorous control efforts would be required.

The Jacobian matrix is computed at the disease-free equilibrium (expressed in the Appendix).

For fixed parameters and state variables, the stability changes as the mosquito death rate dM varies.

For the values used in Table 2, the Routh-Hurwitz conditions are satisfied for the characteristic

equation

f(α) = α6 + c1α
5 + c2α

4 + c3α
3 + c4α

2 + c5α + c6 , (4)

when 0.15 < dM < 0.68. The disease-free equilibrium is locally stable in this region.
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We calculated R0, the average number of secondary infections that any single infected individual

will cause by using the next-generation method (van den Driessche and Watmough, 2002). The

solution (developed in the Appendix) to the characteristic polynomial gives a cubic equation with

one real solution and two complex conjugates. The value for R0 is the largest modulus of our

eigenvalues (Greenhalgh, 1996).

4 Multiple-season model

4.1 Impulse conditions

In most of northern America, the mosquito population drops during the winter months. This fact

is taken into account though impulsive differential equations (Lakshmikantham et al., 1989; Bainov

and Simeonov, 1989, 1993, 1995). At impulse times tk:

∆x = x(t+k ) − x(t−k ) = f(tk, x(t−k )) , (5)

where f(t, x) maps the solution before the impulse, x(t−k ), to x(t+k ). We reset the mosquito, human,

and domestic livestock populations at the beginning of each summer.

We consider two seasons: the summer season, when the mosquitoes will infect hosts, and the

winter season, when the mosquitoes die from the cold weather. During the winter, there is no

vector to spread the disease; the domestic livestock and human populations increase, as abortions

no longer occur.

The mosquitoes decrease to zero with the cold, but reappear at the beginning of summer. The

Aedes mosquito has very few offspring surviving through the winter (Dohm et al., 2002). We

assume that all adult mosquitoes die during winter.
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At time tk,






































∆SH = r1S
−

H + p1(E
−

H + I−

H + R−

H)

∆EH = −E−

H

∆IH = −I−

H

∆RH = E−

H + I−

H − p1(E
−

H + I−

H + R−

H) ,

(6)

where SH , EH , IH , and RH are the susceptible, exposed, infected, and recovered human populations.

The susceptible population increases by a fraction r1. Because the infection period is short, by the

end of winter, the total infected population has recovered so that IH = 0. A fraction p1 of the

recovered offspring is susceptible.

At time tk,






































∆SL = r2S
−

L + c + p2(E
−

L + I−

L + R−

L )

∆EL = −E−

L

∆IL = −I−

L

∆RL = E−

L + I−

L − p2(E
−

L + I−

L + R−

L ) ,

(7)

where SL, EL, IL, and RL are the susceptible, exposed, infected, and recovered domestic livestock

populations. Because infection causes death in livestock, the susceptible livestock increases at a

fixed amount c, reflecting the purchase of livestock for breeding.

The opposite happens with the mosquito population. By the end of winter season 1, few

mosquitoes remain. At time tk,


























∆SM = −r3S
−

M + p3I
−

M

∆EM = −E−

M

∆IM = −(r3 + p3)I
−

M ,

(8)

where SM and IM are the susceptible and infected mosquito populations; r3 is the total decrease

in the mosquito population; and p3 is the proportion of mosquitoes who are born with no infection
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from an original infected mosquito. The total number of exposed mosquitoes who have offspring is

zero, because a mosquito only stays in the exposed class for a short period of time.

The basic reproductive number for the one-season model has similar properties to that of the

extended model. In the one-season model, R0 larger than 1 causes an outbreak of RVF in the

human and livestock populations. The dynamics in the first season of the extended model are the

same for subsequent seasons. The reset initial conditions for the second season do not change the

equilibrium points for this season and, because R0 is greater than 1, we have an outbreak in the

second season.

5 Simulations

5.1 One-season model

We calculated the effects on the human and domestic livestock populations by having infected

mosquitoes enter North America. The initial site of infection is a small, fictitious coastal city. All

the values used in the simulations are shown in Table 1. Each farmer buys one cow every 10 days,

so ΛL = 0.1. We take βHM 10 times smaller than βMH , because the infection rate from human to

mosquito is smaller than from mosquito to human. The infection rate from livestock to mosquito

is likewise smaller than mosquito to livestock. Mosquitoes infect humans and livestock at the same

rate.

Using the values in Table 2, Figure 2 shows the effect of decreasing the survival time of

mosquitoes. As the survival time of mosquitoes is decreased (due to mosquito spraying), R0 is

reduced below 1.

For Figure 3, we choose the mosquito survival time to be such that R0 < 1, which caused

no outbreaks within the year and led to eradication of the disease. For Figure 4, we choose the

mosquito survival time to be such that R0 > 1, which caused a disease outbreak at the beginning

13
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Figure 2: The effects of mosquito survival time on the basic reproductive number, R0. R0 drops
below 1 if the mosquito survival time is sufficiently small. All other parameters are set to their
median values listed in Table 2.

of the year, but the disease was still eradicated after the outbreak.

For R0 < 1, the mosquito population in Figure 3c decreases. Because mosquitoes do not

recover from the disease, and the mosquito survival time is such that R0 < 1, we take the death

rate to be large enough so that the mosquitoes do not have enough time to infect the human and

domestic livestock populations in order to have an outbreak. Because infection between humans

and livestock is nonexistent, it suggests that the disease-free equilibrium is stable and RVF does

not become endemic.

For a small value of dM resulting in R0 > 1, the disease causes a decrease in the susceptible

human and domestic livestock populations, which follows an increase in the recovered human and
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Figure 3: The behavior of (a) the human population, (b) the domestic livestock population, and
(c) the mosquito population when the mosquito survival time is such that R0 < 1 for one season
(assuming winter does not change the dynamics of populations). The solid lines represent the
susceptible populations, the dotted lines the exposed populations, the dashed lines the infected
populations, and the dash-dot lines are the recovered populations. (d) The initial behavior of the
mosquito population when R0 < 1.

domestic livestock populations, because both populations have lifelong immunity (Figures 4a and

4b). The infection does not completely eradicate the virus, which suggests that the endemic

equilibrium is stable.
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Figure 4: The behavior of (a) the human population, (b) the domestic livestock population and
(c) the mosquito population when the mosquito survival time is such that R0 > 1 for one season
(assuming winter does not change the dynamics of populations). The solid lines represent the
susceptible populations, the dotted lines the exposed populations, the dashed lines the infected
populations, and the dash-dot lines are the recovered populations.

5.2 Multiple-season model

We allow 2% of the second generation of susceptible mosquitoes to survive the winter. Meanwhile,

the susceptible human population increases by 10%, the infected population decreases to zero, and

10% of the recovered population becomes susceptible. The domestic livestock population grows at
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the same rate as the human population. The susceptible population increases by 40% during the

winter months, so 40% of the recovered population becomes susceptible. The domestic livestock

increases by 10% to account for the buying of livestock due to deaths in the previous season.

Figure 5 shows the effects of choosing the mosquito survival time to be such that R0 < 1, which

causes no outbreaks within five years and leads to eradication of the disease. Figure 6 shows the

effects of choosing the mosquito survival time to be such that R0 > 1, which causes a disease

outbreak every year in the human and domestic livestock populations.
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Figure 5: The behavior of (a) the human population, (b) the domestic livestock population, and (c)
the mosquito population when the mosquito survival time is such that R0 < 1 for multiple seasons.
The solid lines represent the susceptible populations, the dotted lines the exposed populations, the
dashed lines the infected populations, and the dash-dot lines the recovered populations. (d) The
initial behavior of the mosquito population when R0 < 1.
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Figure 6: The behavior of (a) the human population, (b) the domestic livestock population, and (c)
the mosquito population when the mosquito survival time is such that R0 > 1 for multiple seasons.
The solid lines represent the susceptible populations, the dotted lines the exposed populations, the
dashed lines the infected populations, and the dash-dot lines the recovered populations.

Figure 5c shows the effects of impulses on the mosquito population by decreasing 98% of all the

susceptible mosquitoes during the winter seasons when R0 < 1. For both the human and domestic

livestock populations, the disease-free equilibrium is stable (Figures 5a and 5b). The only difference

is a change in the susceptible populations due to the discontinuous increase in populations during

the winter months.

For R0 > 1, outbreaks occur every year. The first outbreak is larger than subsequent years,
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but the infected populations remain endemic. Infection persists in the mosquito population even

though 98% of the infected are removed from the model due to winter (Figure 6c).

5.3 Sensitivity

Latin Hypercube Sampling (LHS) is a statistical sampling that allows for an efficient analysis

of parameter variations across simultaneous uncertainty ranges in each parameter; partial rank

correlation coefficients rank the coefficients by the degree of influence each has on the outcome,

regardless of whether that influence increases or decreases the effect. LHS is most efficient if the

outcome variable is a monotonic function of each of the input parameters (Blower and Dowlatabadi,

1994). Stein (1985) showed that, for many simulations, LHS is the most efficient design, even if

the outcome variable is not monotonic. Figure 7a shows the partial rank correlation coefficient

sensitivity for all parameters for 1000 runs. R0 is most sensitive to the mosquito death rate dM , as

Figure 7b shows.

6 Conclusion

An outbreak of Rift Valley Fever in North America is theoretically possible. A very small number

of infected mosquitoes is enough to establish the virus in North America. As seen with West Nile

Virus, a disease can establish itself with a mosquito as a vector, and humans and livestock as

hosts. The virulence of West Nile Virus in North America demonstrates the potential of other

mosquito-borne pathogens.

We showed that reducing the survival time of mosquitoes below approximately 8.67 days would

be sufficient to control an imported outbreak of Rift Valley Fever. This could be achieved through

spraying insecticides. Insecticide control of mosquitoes has been effective in reducing malaria world-

wide between the 1940s and 1960s (Trigg and Kondrachine, 1998; Mabaso et al., 2004; Macintyre et
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Figure 7: (a) Partial rank correlation coefficient sensitivity analysis on R0 for all parameters. (b)
The effect of the disease death rate dM on R0 using Monte Carlo simulations with parameters drawn
using Latin Hypercube Sampling.
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al., 2006; Al-arydah and Smith?, 2011). Female mosquitoes live between two weeks and a month,

depending on warmth and moisture (CDC, 2012); reducing this duration to less than 8.67 days

results in disease eradication.

The multiple season model shows the same results. If RVF can enter North America, an outbreak

is likely to occur unless it can be controlled quickly. Furthermore, if RVF invades North America

once, it is likely to break out again each year. The sufficient condition given in Section A.2 to

have eigenvalues with negative real part (ensuring that the disease-free equilibrium is stable) is

dM > 0.15, where dM is the mosquito death rate. This threshold is different from the one found

using R0 (dM > 0.115). The difference is due to the condition used in Section A.2, which is sufficient

but not necessary in order to have all eigenvalues negative. A sufficient and necessary threshold

could be calculated from the Routh-Hurwitz conditions if fewer parameters were involved.

While the behavior of the system is consistent with expectations, most parameters have little

effect on R0. Density-independence and mass-action terms limit the model to small populations.

We used initial values corresponding to a small coastal population in North America instead of the

entire North American population. We ignored the presence of cities.

Our results suggest that countries in the developed world face ongoing threats of disease in-

troduction. As global travel increases the movement of humans, livestock, and vectors around the

world, the potential for new outbreaks is heightened. We must be ready to face these challenges.
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A Appendix

A.1 Equilibria

The model has two equilibria. The disease-free equilibrium is (S∗

H , E∗

H , I∗

H , R∗

H , S∗

L, E∗

L, I∗

L, R∗

L, S∗

M , E∗

M , I∗

M)

=
(ΛH

dH

, 0, 0, 0,
ΛL

dL

, 0, 0, 0,
ΛM

dM

, 0, 0
)

. The endemic equilibrium is

(S∗

H , E∗

H , I∗

H , R∗

H , S∗

L, E∗

L, I∗

L, R∗

L, S∗

M , E∗

M , I∗

M) , (9)

where I∗

M is the solution to

ρI3
M + ηI2

M + δIM + ω = 0 (10)

with

ξ1 =
βLMǫLβMLΛL

(dL + µL + γL)(dL + ǫL)
(11)

ξ2 =
βHMǫLΛL

(dH + µH + γH)(dH + ǫH)
(12)
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and

ρ = dM(dM + ǫM)
(

ξ1βMHβML + β2
MLdMβMH + ξ2βMHβ2

ML

)

(13)

η = d2
M(dM + ǫM)βML(ξ1 + βML + 2dLβMH)

+ dM(dM + ǫM)βML(ξ1ξ2 + ξ2βMHdL + ξ1dH) + ξ2
1dM(dM + ǫM)

−
(

βMLǫLΛL − dLdM(dM + ǫM)
)

(ξ1βMH + ξ2βMHβML) (14)

δ = d2
MdL(dM + ǫM)

(

ξ1 + 2βML + dLβMH

)

−
(

βMLǫLΛL − dLdM(dM + ǫM)
)

(ξ1ξ2 + ξ2βMHdL + ξ1dH)

− βMHdLǫMΛM(ξ1 + ξ2βML) − ξ2
1ǫMΛM (15)

ω = d2
Md2

L(dM + ǫM) − ξ1dHdLǫMΛM − ξ2βMHd2
LǫMΛM − ξ1ξ2dLǫMΛM , (16)
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where

S∗

H =
ΛH

dH + βMHI∗

M + βLHI∗

L

(17)

E∗

H =
βMHS∗

HI∗

M + βLHS∗

HI∗

L/N∗

L

dH + ǫH

(18)

I∗

H =
ǫHE∗

H

dH + µH + γH

(19)

R∗

H =
γHI∗

H

dH

(20)

S∗

L =
ΛL

dL + βMLI∗

M

(21)

E∗

L =
βMLS∗

LI∗

M

dL + ǫL

(22)

I∗

L =
ǫLE∗

L

dL + µL + γL

(23)

R∗

L =
γLI∗

L

dL

(24)

S∗

M =
ΛM

dM + βHMI∗

H + βLMI∗

L

(25)

E∗

M =
βHMS∗

MI∗

H + βLMS∗

MI∗

L

dM + ǫM

(26)

and where I∗

M is the solution to Eq. (10).
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A.2 Stability of the disease-free equilibrium

The Jacobian matrix evaluated at the disease-free equilibrium is JDFE =

(J
(1)
DFE|J

(2)
DFE), where

J
(1)
DFE =

































































−dH 0 0 0 0 0

0 −dH − ǫH 0 0 0 0

0 ǫH −dH − µH − γH 0 0 0

0 0 γH −dH 0 0

0 0 0 0 −dL 0

0 0 0 0 0 −dL − ǫL

0 0 0 0 0 ǫL

0 0 0 0 0 0

0 0 −βHMS∗

M 0 0 0

0 0 βHMS∗

M 0 0 0

0 0 0 0 0 0

































































(27)
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J
(2)
DFE =

































































−βLHS∗

H/S∗

L 0 0 0 −βMHS∗

H

βLHS∗

H/S∗

L 0 0 0 βMHS∗

H

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −βMLS∗

L

0 0 0 0 βMLS∗

L

−dL − µL − γL 0 0 0 0

γL −dL 0 0 0

−βLMS∗

M 0 −dM 0 0

βLMS∗

M 0 0 −dM − ǫM 0

0 0 0 ǫM −dM

































































. (28)

The matrix has the characteristic equation

0 = det(JDFE(S∗

H , E∗

H , I∗

H , R∗

H , S∗

L, E∗

L, I∗

L, R∗

L, S∗

M , E∗

M , I∗

M) − αI11) (29)

= (−dH − α)2(−dL − α)2(−dM − α)f(α) (30)
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where f(α) is the determinant of (M1|M2) where

M1 =

































−dH − ǫH − α 0 0

ǫH −dH − µH − γH − α 0

0 0 −dL − ǫL − α

0 0 ǫL

0 βHM

ΛM

dM

0

0 0 0

































(31)

M2 =



































βLH

ΛHdL

dHΛL

0 βMH

ΛH

dH

0 0 0

0 0 βML

ΛL

dL

−dL − µL − γL − α 0 0

βLM

ΛM

dM

−dM − ǫM − α 0

0 ǫM −dM − α



































(32)

and S∗

H , S∗

L, and S∗

M are the disease-free equilibrium values. Solving for f(α), we have

f(α) = α6 + c1α
5 + c2α

4 + c3α
3 + c4α

2 + c5α + c6 (33)
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where

c1 = 2dH + µH + γH + ǫH + 2dL + ǫL + µL + γL (34)

c2 = (dH + ǫH + γH)(dH + ǫH) + (2dH + ǫH + µH + γH)(2dL + ǫL + µL + γL)

+ (2dH + ǫH + µH + γH)(2dM + ǫM) + (dL + ǫL)(dL + µL + γL)

+ (2dL + ǫL + µL + γL)(2dM + ǫM) + dM(dM + ǫM) (35)

c3 = (dH + µH + γH)(dH + ǫH)(2dL + ǫL + µL + γL)

+ (dH + µH + γH)(dH + ǫH)(2dM + ǫM)

+ (dL + ǫL)(dL + µL + γL)(2dH + µH + ǫH + γH)

+ (2dL + µL + ǫL + γL)(2dM + ǫM)(2dH + µH + ǫH + γH)

+ dM(dM + ǫM)(2dH + µH + ǫH + γH)

+ (dL + ǫL)(2dM + ǫM)(dL + µL + γL)

+ dM(dM + ǫM)(2dL + ǫL + µL + γL) (36)

c4 = (dH + µH + γH)(dH + ǫH)(dL + ǫL)(dL + µL + γL)

+ (dH + ǫH)(dH + µH + γH)(2dM + ǫM)(2dL + ǫL + µL + γL)

+ dM(dM + ǫM)(dH + ǫH)(dH + µH + γH)

+ (dL + ǫL)(2dM + ǫM)(dL + µL + γL)(2dH + µH + ǫH + γH)

+ dM(dM + ǫM)(2dH + µH + ǫH + γH)(2dL + µL + ǫL + γL)

+ dM(dM + ǫM)(dL + ǫL)(dL + µL + γL) − ǫHǫMβHMβMH

ΛM

dM

ΛH

dH

− ǫLǫMβLMβML

ΛL

dL

ΛM

dM

(37)
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c5 = (dH + µH + γH)(dH + ǫH)(dL + ǫL)(2dM + ǫM)(dL + µL + γL)

+ dM(dM + ǫM)(dH + µH + γH)(dH + ǫH)(2dL + ǫL + µL + γL)

+ dM(dM + ǫM)(dL + µL + γL)(dL + ǫL)(2dH + ǫH + µH + γH)

− ǫHǫMβHMβMH

ΛM

dM

ΛH

dH

(2dL + ǫL + µL + γL)

− ǫLǫMβLMβML

ΛL

dL

ΛM

dM

(2dH + ǫH + µH + γH) (38)

and

c6 = dm(dM + ǫM)(dH + µH + γH)(dH + ǫH)(dL + µL + γL)(dL + ǫL)

− ǫLǫMβLMβML

ΛL

dL

ΛM

dM

(dH + µH + γH)(dH + ǫH)

− ǫHǫMβMHβHM

ΛH

dH

ΛM

dM

(dL + µL + γL)(dL + ǫL)

− ǫHǫLǫMβLHβMLβHM

ΛM

dM

ΛH

dH

. (39)

Necessary and sufficient conditions for all the zeros of f(α) to have negative real parts are that

c4, c5, and c6 be bigger than zero (because c1, c2, and c3 are strictly positive), and

a1a2a3 + a1a5 > a3
3 + a2

1a4 (40)

a1a6a2(2a1a5 − a2
3) + a2

1a6(a4a3 − a1a6) + a1a5(a4a5 − 3a3a6) + a6a
3
3

+ a2
5a1a4 > a2

1a5a
2
4 + a5(a3a4 − a5a2)(a3 − a1a2) . (41)

If these Routh-Hurwitz conditions are satisfied, the disease-free equilibrium is stable (Truccolo et

al., 2003; Allen, 2006). For the values used in Table 2, c4, c5, and c6 vary depending on parameter

values and the state variables S∗

H , S∗

L, and S∗

M . By fixing the state variables, the values for dM

(mosquito death rate) can be varied in order to change c4, c5, and c6 from positive to negative. The
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stability changes depending on the mosquito survival time. Numerically, c4, c5, and c6 are positive

when dM > 0.15 (Figure 8), and the two inequalities are satisfied when 0 < dM < 0.68. The

disease-free equilibrium is stable if 0.15 < dM < 0.68.
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c
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c
5

Figure 8: Sign change for certain parameters in f(α). When c6 becomes negative (at around 0.15),
both c4 and c5 are still positive. The values of c4 and c5 only become negative after c6 has already
fallen below zero.

30



A.3 Basic Reproductive Number

The model has six infected populations, EH , IH , EL, IL, EM , and IM . The vector F representing

new infections and the vector V representing transfers between compartments are given by

F =

































βLH
S∗

H
I∗
L

N∗

L

+ βMHS∗

HI∗

M

0

βMLS∗

LI∗

M

0

βLMS∗

MI∗

L + βHMS∗

MI∗

H

0

































(42)

V =

































(dH + ǫH)E∗

H

(dH + µH + γH)I∗

H − ǫHE∗

H

(dL + ǫL)E∗

L

(dL + µL + γL)I∗

L − ǫLE∗

L

(dM + ǫM)E∗

M

dMI∗

M − ǫME∗

M

































. (43)
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The matrices F and V are

F =

































0 0 0 βLHS∗

H/S∗

L 0 βMHS∗

H

0 0 0 0 0 0

0 0 0 0 0 βMLS∗

L

0 0 0 0 0 0

0 βHMS∗

M 0 βLMS∗

M 0 0

0 0 0 0 0 0

































(44)

V =

































dH + ǫH 0 0 0 0 0

−ǫH dH + µH + γH 0 0 0 0

0 0 dL + ǫL 0 0 0

0 0 −ǫL dL + µL + γL 0 0

0 0 0 0 dM + ǫM 0

0 0 0 0 −ǫM dM

































, (45)

where S∗

H , S∗

L, and S∗

M are the disease-free equilibrium values. Next, FV −1 = (FV −1
(1) |FV −1

(2) ) was
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calculated, and the eigenvalue with the largest modulus is the value of R0. We have

FV −1
(1) =



































0 0
βLHS∗

HǫL

S∗

L(dL + µL + γL)(dL + ǫL)

0 0 0

0 0 0

0 0 0

βHMS∗

MǫH

(dH + ǫH)(dH + µH + γH)

βHMS∗

M

dH + µH + γH

βLMS∗

MǫL

(dL + ǫL)(dL + µL + γL)

0 0 0



































(46)

FV −1
(2) =



































βLHS∗

H

S∗

L(dL + µL + γL)

βMHS∗

HǫM

dM(dM + ǫM)

βMHS∗

H

dM

0 0 0

0
βMLS∗

LǫM

dM(dM + ǫM)

βMLS∗

L

dM

0 0 0

βLMS∗

M

dL + µL + γL

0 0

0 0 0



































. (47)

The characteristic polynomial is

det(FV −1 − αI6) = α3g(α) (48)

where g(α) is the determinant of

















−α
βLHS∗

HǫL

S∗

L(dL + µL + γL)(dL + ǫL)

βMHS∗

HǫM

dM(dM + ǫM)

0 −α
βMLS∗

LǫM

dM(dM + ǫM)
βHMS∗

MǫH

(dH + ǫH)(dH + µH + γH)

βLMS∗

MǫL

(dL + ǫL)(dL + µL + γL)
−α

















. (49)
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Solving for α, we have:

−α3 + Aα + B = 0 (50)

where

A =
βLMS∗

MǫL

(dL + ǫL)(dL + µL + γL)

βMLS∗

LǫM

dM(dM + ǫM)

+
βHMS∗

MǫH

(dH + ǫH)(dH + µH + γH)

βMHS∗

HǫM

dM(dM + ǫM)
(51)

B =
βHMS∗

MǫH

(dH + ǫH)(dH + µH + γH)

βLHS∗

HǫL

(dL + µL + γL)(dL + ǫL)

βMLǫM

dM(dM + ǫM)
. (52)

Because A and B are positive, the equation α3 = Aα + B has a real solution (Figure 9).

Eq. (50) has solutions

α1 =
1

6
ξ

1

3 + 2Aξ−
1

3 (53)

α2 =
1

6

(

−
1

2
+ i

3
1

2

2

)

ξ
1

3 + 2A
(

−
1

2
− i

3
1

2

2

)

ξ−
1

3 (54)

α3 =
1

6

(

−
1

2
− i

3
1

2

2

)

ξ
1

3 + 2A
(

−
1

2
+ i

3
1

2

2

)

ξ−
1

3 (55)

where

ξ = 108B + 12
(

81B2 − 12A3
) 1

2 . (56)

The value for R0 is the largest modulus of the eigenvalues αi (Greenhalgh, 1996).
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Figure 9: Intersection of the line y = Aα + B with the cubic polynomial y = α3 when A and B are
positive.
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Case 1. If 81B2 − 12A3 > 0, with M = 1
6
ξ

1

3 and N = 2Aξ−
1

3 , then

α1 = M + N (57)

α2,3 = −
1

2
(M + N) ±

3
1

2

2
i(M − N) (58)

and the modulus of each eigenvalue is

|α1| =
(

(M + N)2
) 1

2 (59)

=
(

M2 + 2MN + N2
) 1

2 (60)

and

|α2,3| =

(

1

4
(M + N)2 +

3

4
(M − N)2

) 1

2

(61)

=
1

2

(

4N2 − 4MN + 4M2
) 1

2 (62)

=
(

M2 − 2MN + N2
) 1

2 (63)

where |α1| > |α2,3|. R
(1)
0 = |α1|, where R

(1)
0 is the basic reproductive number if 81B2 − 12A3

is positive.

Case 2. If 81B2−12A3 < 0 then |α1| = |α2,3|. R
(2)
0 = |α1|, where R

(2)
0 is the basic reproductive number

if 81B2 − 12A3 is negative. We use the fact that |α1| = (α1ᾱ1)
1

2 and polar coordinates to find

the modulus. Because r = ((108B)2 + 122|81B2 − 12A3|)
1

2 and cos θ =
108B

r
,

α1 =
1

6
r

1

3 exp

(

iθ

3

)

+ 2Ar−
1

3 exp

(

−
iθ

3

)

(64)

ᾱ1 =
1

6
r

1

3 exp

(

−
iθ

3

)

+ 2Ar−
1

3 exp

(

i
θ

3

)

(65)
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and so

R
(2)
0 = |α1| (66)

=
1

36
r

1

3 +
A

3
cos

2θ

3
+ 4A2r−

2

3 . (67)

We have

R0 = |α1| . (68)

A.4 The effects of reducing winter to an impulse

The seasonal changes occurring after an introduction of RVF to North America reduce the dynamics

of the human, livestock, and mosquito populations in the winter months to a single impulse. We

compare this seasonal-jump model to a continuous ODE model for both the summer and winter

months with impulses only at the end of each season.

In a continuous model for the winter with SM = EM = IM = ΛM = 0 at the end of winter, the

susceptible, exposed, and infected mosquitoes tend to zero exponentially fast. Figure 10 shows the

dynamics of the continuous winter season for the susceptible mosquito population.

At the end of summer, the susceptible mosquito population is at S−

M .

Throughout the winter, the mosquito population decreases exponentially. At the end of the winter

season, Sends
M = S−

M exp(−rT ), where T is the duration of winter. A proportion p3 of offspring of the

infected mosquitoes hatch at the end of winter which increases the total population of mosquitoes

before the next summer season to S+
M = S−

M exp(−rT ) + p3IM . If r3 = 1 − exp(−rT ), the two

models give the same results for the mosquito population. The same results apply to the human

and livestock populations.
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Winter Starts Winter Ends

Susceptible mosquito population (S
M

)

 

 

p
3

S
M

−
 

S
M

+

S
M

−
exp(−rt)

S
M

end

Figure 10: Comparison between full-time model and seasonal-jump model. The curve SM =
S−

M exp (−rt) reflects the dynamics of the susceptible mosquito population during the winter
months. At the end of the winter (Send

M ), the mosquito population increases by p3. S−

M is the
value before the impulse for the seasonal-jump model and S+

M is the value after the impulse .
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Chapter 6

Discussion, conclusion and future

work

6.1 Discussion

Impulsive differential equations are becoming a more popular way of describing bi-

ological systems. Three different applications of impulsive differential systems were

developed and analyzed. Each system was related to the spread of infectious diseases,

and each looked at the long-term outcomes either at an immunological or epidemio-

logical level. Two of the applications were viewed at an immunological level for HIV

and the third application was at an epidemiological level for the spread of Rift Val-

ley Fever. Impulsive differential equations allowed us to analyze the HIV models by

including drug therapy as an impulse. The development and analysis of such models

allowed us to make predictions about finite drug treatment and drug resistance. The

inclusion of an impulsive differential equation in the Rift Valley Fever model allowed

us to incorporate seasonal changes in the populations. In North America, winter

highly affects the mosquito populations, and so including a winter term and decrease

in the mosquito population is crucial to show more realistic results.

257
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In each application, the long-term behaviours were analysed either by solving

the impulsive differential equations or by looking at stability of the system. We

first looked at a protease-inhibitor-sparing HIV drug regimen on a finite time scale

(Section 3.1). We define a new way of determining the Region 2 threshold. Smith?

[16] defined the Region 2 threshold based on the point of inflection on the transformed

IC50 graph. This method is not precise and the cutoff is arbitrary. We define the

Region 2 threshold by determining the time taken for resistance levels to reach a

minimum in order to ensure that resistance cannot emerge when patients are not

taking a drug holiday. Since the time taken for resistance levels to reach a minimum is

time-dependant, it relies on initial conditions. Since we assume that initial conditions

are small for the drug-resistant-virus population, the local minimum values will only

be slightly affected by the initial conditions. We then found the endpoints of our

impulsive periodic orbit. (We use the endpoints since drugs decay exponentially,

and thus the solution between impulses is monotonic.) These endpoints allowed us

to calculate the number of drug holidays a patient may take while on a triple-drug

cocktail of antiretroviral drugs without allowing drug resistance to emerge.

The second application looks at the stability analysis for a protease inhibitor

HIV drug system for fixed drug concentration levels (Section 3.2). An impulse is

included to describe the drug dynamics. The stability analysis describes the inter-

action between wild-type and resistant viruses at either a low, intermediate or high

drug level. Including the impulse allows the drug concentration level to vary either

solely within a region or cross between multiple regions. This behaviour is more likely

to occur, and numerical simulations show the effects of drug levels crossing between

regions. We consider many time scales within this system. The virus life cycle is

fast compared to the T cell life cycle. The mutation rate of the virus and the drug

absorption rates are also on different time scales. The differences in the time scales

are investigated in Chapter 4.

A third application examines the differences between a one-season and multiple-
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season Rift Valley Fever model (Chapter 5). Stability conditions were computed

for the one-season model. The basic reproductive number, R0, was computed and

stability analysis was performed for the disease-free equilibrium. Figure 2 shows that

R0 < 1 if the mosquito survival time is below approximately 8.67 days. When solving

for stability of the disease-free equilibrium, we have a stable equilibrium point if

1/dM < 7.67 days. The discrepancy appears to be caused by a backward bifurcation.

The value of R0 can be misleading if a backward bifurcation occurs. If we have

sufficiently large initial conditions, this could cause an outbreak of the disease even

if R0 < 1. In our case, since we are introducing a completely new disease into North

America, the initial conditions are very small, and so the backward bifurcation will

not have an effect on our results.

Impulses were then used to describe a multiple-season model where outbreaks

occurred every season, depending on certain thresholds. We should note that, in the

ordinary differential equations, the growth rate is independent of the population size;

in the impulse conditions, the growth is proportional to the population size. Since we

are considering two different systems (ordinary differential equations and difference

equations), these do not need to be consistent. The ordinary differential equations

need to equilibrate (the reason why we make the growth rate independent). The

impulses are only used to mimic winter, and so they are simply used to jump across

the winter season.

Stability analysis was done using the system of ordinary differential equations.

Since the models are nonlinear and contain many equations, solving for stability of the

T -periodic solutions of the impulsive system is highly complicated. Therefore, from

the HIV models, we developed a general two-dimensional system of impulsive differ-

ential equations in order to explicitly solve for T -periodic solutions, and examined

stability when certain parameters change (Chapter 4). We reduce the HIV systems

presented in Chapter 3 to an almost linear model where only one term is nonlinear.

This nonlinear infection term has been studied in ordinary differential equations, and
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there is debate about whether this term needs to be included in a system since it

is very small and studies have assumed that it could be absorbed in to the viral-

clearance term. The reduced system excludes the effect of the virus on the CD4+ T

cell population. When virus is present and detected, the proliferation rate of T cells

increase. Also, when a virus enters a cell, the death rate of the T cells changes. In

order to have a model describing the interaction between CD4+ T cells and virus, this

interaction term is crucial. Therefore, we include the effect of the virus on the T cell

population in the general model as a linear term. We also included the effect of the

virus on the T cell population via an impulse. We looked at the effect of the nonlinear

infection term in our two-dimensional impulsive system. We were able to solve for the

linear system, and find conditions for stability that depend on the immune response

rate and the impulse condition. We were also numerically able to show that including

the nonlinear infection term may change stability (when it was unstable in the linear

system, including the nonlinear infection term made the T -periodic solution stable).

We thus analyzed two subcases. These subcases showed the effects of the nonlinear

infection term when an immune response rate is either not included or is included

via an impulse. Again we can show how the T -periodic solution is stabilized when

the nonlinear term is included when it was unstable in the linear case. This seemed

to lead to the conclusions that the nonlinear infection term does affect stability by

creating a larger area of stability. This system was a two-dimensional system, and so

more work needs to be done to see the effect of this term on higher dimensional sys-

tems. Another biological limitation to the two-dimensional model is that positivity of

solutions does not preserve under certain cases. However, since we are comparing the

linear to the nonlinear system, this limitation applies equally to both systems. In this

case, the effect of the nonlinear infection term is not caused by this limitation. The

two-dimensional system gives us an indication that excluding the nonlinear infection

term might change the results of the entire system when including impulses.

The use of impulsive differential equations is potentially unlimited. There are
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many real-world events that could be further analyzed by including an impulse. The

analysis of such systems can become very difficult if the impulses are state-dependent,

but the results found for fixed impulse effect can be of great insight. Impulsive

differential equations are becoming a more popular way of modelling biological events,

but a lot more work needs to be done on the subject.

6.2 Conclusion

The use of impulsive differential equations provides great insight into the behaviour

of systems. We predict long-term behaviour for three different biological systems,

and show how stability of T -periodic solutions change based on different factors for

a two-dimensional impulsive system. The first biological system described induction-

maintenance therapy, and was used to investigate the effects of imperfect adherence

during the inductive phase. By solving for the endpoints of the impulsive system, we

showed that induction therapy with partial adherence is tolerable, but the outcome

depends on the drug cocktail. The second biological system described the interaction

between T cells, HIV-1 and protease inhibitors. By computing the stability analysis

of the system with fixed drug concentration levels, a region was found where free virus

elimination is theoretically possible. These same results were numerically seen when

varying the drug concentration levels within a given region. Numerical simulations

also demonstrate the effects of crossing between regions. We also include a reduced

two-dimensional HIV model used to view the effects of stability on T -periodic solu-

tions. The two-dimensional model shows that the nonlinear infection term that is

often omitted in disease modelling with ordinary differential equations can change

stability of the T -periodic solutions. The third biological system investigated the

effects of decreasing the mosquito survival time in a Rift Valley Fever–infected popu-

lation. Stability was calculated for a one-season model, and the analysis of a multiple

season model was conducted by including impulsive differential equations. Rift Val-
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ley Fever poses a potential threat to North America that would require aggressive

interventions in order to prevent a recurring seasonal outbreak. The analysis of each

of the impulsive differential systems aids in solving real biological questions.

6.3 Future work

The use of impulsive differential equations can be extended to an extremely wide

variety of biological settings. In particular, many disease models including treatment

therapy are being modelled using impulsive differential equations.

6.3.1 Stability for systems with periodic drug regimens

Stability analysis and linearization in ordinary differential equations is widely used

in mathematical biology to predict long-term behaviours. Since impulsive differential

systems have periodic solutions, linearization does not necessarily imply results about

stability. However, it is interesting to note that, for the system described in Section

3.2 (where the drug dynamics is the only equation that included an impulse), the

behaviour of stability between regions for a fixed drug level is similar to the behaviour

when the drug level varied within a given region. Future work would be to analyze the

periodic solution of the system in Section 3.2 by looking at the variational equation

(similar technique as in Chapter 4). In this case, the disease-free periodic orbits would

be similar to the equilibrium points found in the article. The endemic periodic orbits

would be more challenging; since the impulse only occurs for the drug equation, and

this equation can be decoupled, we can easily solve for this. By plugging this solution

into the other equations, a periodic solution could be found, and analysis using the

variational equation may be possible.
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6.3.2 Finite drug therapies

We analyzed the effects of imperfect adherence to triple-drug cocktails excluding

protease inhibitors. Future work could investigate the effects of imperfect adherence

to triple-drug cocktails involving protease inhibitors while on induction-maintenance

therapy. This would change the dynamics between T cells, virus and drugs. The

drug would now affect both the rate at which the virus enters the cell, and the

number of infectious virions budding from an infected cell. The analysis could be

done in a similar manner when considering the drug dynamics; the only difference

would be the effects between impulses that would be seen in the ordinary differential

equations. Furthermore, all previous mathematical models of adherence considered

therapy without an endpoint. Since induction therapy only occurs for a finite time,

we had to consider the viral load when induction therapy ends. Future work could be

to apply these procedures to a variety of different drug therapies with finite endpoints,

such as drug therapy for tuberculosis, chlamydia and gonorrhea.

6.3.3 HIV drug treatment

We analyzed the immunological behaviour of T cells, HIV-1 and protease inhibitors.

In reality, most patients take triple-drug cocktails including protease inhibitors and

reverse transcriptase inhibitors, fusion inhibitors and/or integrase inhibitors which

would change the dynamics of the system. Future work would be to show the dynam-

ics of patients on combination therapy. The analysis of such a system would be similar

to that done in Section 3.2, but as mentioned in Section 6.3.2, the ordinary differential

equations would include more nonlinear terms since we would include multiple ways

to control the virus.

Another problem that arises in specific systems is the dual-layered system of

impulses where we have major and minor impulses. For example, we could have an

HIV patient taking a double-drug cocktail for 3 months, and then for one month
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taking a triple-drug cocktail, and then the next 3 months the same double-drug

cocktail as before and so on. In this case, we have minor impulses (time between

changing cocktails) and we have major impulses (the increase which occurs from

changing from a double to a triple-drug cocktail, or the decrease that occurs from

changing from a triple to a double-drug cocktail). Future work could be to develop a

general mathematical theory for dual-layered impulsive systems.

6.3.4 Rift Valley Fever

We analyzed the effect of decreasing the mosquito survival time using an impulsive

differential system in order to eradicate Rift Valley Fever if it were to invade North

America. Future work could be to examine the effects of discontinuous spraying on the

mosquito population using another impulsive differential equation. As with West Nile

virus and malaria, pesticides, adulticides, insecticides and larvicides are beneficial and

could be modelled for Rift Valley Fever using impulses. Optimal length of spraying

could also be analyzed.

We could also look at solving the impulsive differential system. We could look

at a reduced system of the RVF model by grouping the mosquito population into

only one equation. This would imply that all mosquitoes are infected, but it would

allow us to solve the impulsive differential system in a similar way as in Chapter 4.

With this reduction and solving the mosquito equation, this would turn our nonlinear

model into an almost linear model, where the analysis may be simplified, and results

for the stability of the impulsive differential system may be possible.

6.3.5 Multiple disease modelling and drug therapy

The possibility of having multiple infections at a given time is common, since the

immune system is compromised. The immune system is at a greater disadvantage

being infected with multiple diseases than with just one. Future work could be to
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combine multiple diseases to see the effects of drug therapy, and whether the efficacy

of the drug decreases when the immune system is compromised. Likely combination

of diseases to consider would be the Human papilloma virus (HPV) and HIV, HIV

and tuberculosis, and HIV and any hepatitis (A, B or C).



Appendix A

Human Immunodeficiency Virus

A.1 Immunology and Microbiology

Infection with HIV leads to an immune response similar to that of any other virus.

The problem is that the infection will not prevent ongoing replication of the virus

for various reasons. There are two main strains of HIV; most AIDS cases are caused

by the more virulent HIV-1, whereas HIV-2 is endemic in West Africa, and is now

spreading in India [12]. HIV-1 was spread to humans by chimpanzees Pan troglodytes,

whereas HIV-2 infected humans from the sooty mangabey Cercocebus atys [12]. New

strains of HIV are still being discovered. On August 2nd, 2009, a research team of the

University of Rouen, France announced there was a new strain of HIV discovered in

one HIV positive patient living in Cameroon, Africa [13]. This new strain appears to

be closely related to a form of simian virus recently discovered in wild gorillas [13].

During primary infection, HIV largely infects the immune CD4+ T cells, which

are necessary for an immune response. Cytotoxic T lymphocytes (CTLs) play an im-

portant role in the immune response to HIV during acute state of infection. Leviyang

[59] introduced a model of CTL attack during the acute stage. Leviyang showed that

early mutation events can have significant impact on HIV genealogies. Simonov et al.

266
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[60] modelled the adaptive regulatory T cell dynamics in early HIV infection. They

constructed a delay differential equation model to examine the possible existence of

two distinct regulatory T cell populations and their respective effects in limiting vi-

ral load. They observed oscillatory and steady state behaviours, which give insight

into the importance of downregulation of CD4+ cells by normal regulatory T cells on

viral load. Antibodies are formed when an HIV-negative person is infected, and are

the main method of identifying HIV-positive patients. If tested during the primary

stages, an individual may be misdiagnosed, since it takes approximately 3-4 weeks in

order for antibodies to be produced [12]. An example where misdiagnosis causes the

infection to spread was that of an HIV-negative individual receiving a transplant, and

then being identified as HIV-positive. The donor was initially tested and shown HIV

negative. It turned out the donor had died within 3-4 weeks of getting the infection,

meaning the antibodies for HIV had not produced, resulting in a false negative [61].

The uninfected CD4+ T cell count is approximately 1200 cells µl−1, but after an

initial infection it drops to approximately 800 cells µl−1. Once an individual reaches

200 cells µl−1, they are considered an AIDS patient [12]. Once you have AIDS,

the period of clinical latency ends, and opportunistic infections begin to appear. A

patient with AIDS lives, on average, for 1-2 years without treatment [12]. In very

few cases, genetic variation in either virus or host result in slower disease progression.

Genetic variation in HLA type of the host modifies the disease outcome: HLA-B57

and HLA-B27 are associated with better prognosis and HLA-B35 with more rapid

disease progression [62]. Homozygosity of HLA also leads to a more rapid progression

since T cell response to infection is less diverse [62]. There are people who are infected

with HIV yet remain disease free and virus negative. Some people are resistant to the

virus because they have a mutation in a cell-surface chemokine receptor that is used as

a co-receptor for viral entry. Lacerda et al. [63] developed a mutation-selection model

of T cell epitope evolution that allows HLA genotype of the host cell to influence the

evolutionary process. With a Markov model, they identified amino acid positions that
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appear to evolve under immune pressure in the presence of specific potential epitopes

on host immune cells.

As mentioned above, HIV can enter a host via body fluids. HIV is an enveloped

retrovirus that contains two copies of an RNA genome. These are reverse transcribed

into DNA in the infected cell, and then integrated into the host chromosome [12].

The RNA transcripts produced from the integrated viral DNA serve both as mRNA

to direct the synthesis of the viral proteins and later as the RNA genomes of new

viral particles [12]. New virions escape from the cell by budding from the plasma

membrane, each in a membrane envelope.

In order for the virus to enter the cell, specific receptors must bind. HIV enters a

cell by binding two glycoproteins, gp120 and gp41, and by binding with a co-receptor

[64]. The glycoprotein gp120 binds with high affinity to the cell-surface molecule

CD4+, which means gp120 binds to CD4+ T cells, dendritic cells and macrophages.

There are two chemokine co-receptors for HIV that allow the virus to enter the cell.

The two chemokine receptors are CCR5 (expressed on dendritic cells, macrophages

and CD4+ T cells) and CXCR4 (expressed on activated T cells) [64]. After binding

gp120 and its co-receptor, gp41 causes fusion of the viral envelope and the plasma

membrane of the cell, allowing the viral genome and associated viral proteins to enter

the cytoplasm [64]. Depending on when the infection occurs, different chemokine

co-receptors are activated. During primary infection, CCR5 binds with the CC

chemokines CCL3, CCL4 and CCL5 as a co-receptor [12]. These do not require high

levels of CD4+ on the cells they infect (this happens during sexual contact since it is

the primary response). When infecting only T cells, CXCR4 binds to the chemokine

CXCL12 co-receptor [12]. These require high levels of CD4+ on the cells they infect.

There are two different ways HIV can infect an individual. The first way is

by contact with mucosal epithelia. HIV can enter a host by coming into contact

with epithelial cell lining in the vagina, penis, cervix and anus; each of these areas

have several layers of epithelial cells [12]. When coming into contact, intraepithelial
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dendritic cells initiate infection by binding HIV and transporting it to the lymphoid

tissue, where it is transferred to CD4+ T cells. HIV attaches to dendritic cells by

the binding of viral gp120 to a dendritic cell-surface molecule DC-SIGN [12]. This

mediates the internalization of HIV into a mildly acidic endosomal compartment,

which protects the virus during the passage of dendritic cells to lymphoid tissue [12].

The second way HIV can enter a host is by the intestinal tracks such as the rectum

and the endocervix which are covered by a single layer of epithelial cells. These

epithelial cells express CCR5, and the binding of CCR5 to CD4+ T cells occurs early

in infection [12]. Later in infection, the viral phenotype switches and uses CXCR4 co-

receptors, which creates a decline in the CD4+ T cell count, and increases progression

to AIDS [12].

Once the virus binds gp120 and gp41 and its co-receptors, the viral genome and

the reverse transcriptase protein are integrated into the cell. The reverse transcriptase

protein transcribes the viral RNA into a complementary DNA copy (cDNA) [12]. The

viral cDNA (known as a provirus) is then integrated into the host cell genome by the

viral integrase, which also enters the cell with the viral RNA. In activated CD4+ T

cells, virus replication is initiated by transcription of the provirus. HIV can establish

a latent infection in which the provirus remains inactive [12]. This occurs in memory

T cells and in dormant macrophages.

The HIV genome consists of nine genes edged by long terminal repeat sequences

(LTR), which are required for the integration of the provirus into host cell DNA, and

contain binding sites for gene regulatory proteins that control the expression of the

viral genes [65]. HIV has three major genes: gag, pol and env [65]. It also has six

other smaller genes encoding proteins that affect viral replication and infectivity [65].

Gag gene encodes the structural proteins of the viral core, pol encodes the enzymes

involved in viral replication and integration, and env encodes the viral envelope gly-

coprotein. The gag and pol mRNAs are translated to give polyproteins-long peptide

chains that are then cleaved by the viral protease into individual functional proteins.
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The product of the env gene, gp160, has to be cleaved by a host cell protease into

gp120 and gp41, which are then assembled as trimers into the viral envelope [65].

The main reservoir of HIV is in the lymphoid tissue in which infected CD4+ T

cells, monocytes, macrophages and dendritic cells are found [12]. Infected memory

CD4+ T cells have a very long half life of about 44 months [12]. HIV generates an

adaptive immune response that contains the virus, but will very rarely eliminate it.

Infectious virus is low in the peripheral blood in the primary stages of an infected

individual, during which the virus is replicated persistently in lymphoid tissues. Dur-

ing this period, CD4+ T cell counts gradually decline, although antibodies and CD8

cytotoxic T cells directed against the virus remain at high levels [12]. The CD4+

T cells in an infected HIV patient decline in three ways. First, there is evidence for

direct killing of infected cells; second, there is increased susceptibility to the induction

of apoptosis in infected cells; third, there is killing of infected CD4+ T cells by CD8

cytotoxic lymphocytes that recognize viral peptides [12]. Eventually, the levels of an-

tibodies and cytotoxic T lymphocytes also decline, and there is a progressive increase

in infectious HIV in the blood. When the CD4+ T cell count drops below 200 cells

µl−1, the chance of infection by opportunistic microbes increases [66]. This causes

no activation of the TH1 or TH2 responses, and eventually leads to the individual’s

death.

HIV has a rapid replication rate of about 109 to 1010 new virions every day

coupled with a mutation rate of approximately 3 × 10−5 per nucleotide base cycle of

replication, which leads to the generation of many variants of HIV in a single infected

patient in the course of a day [12]. Since HIV is highly variable, it rapidly develops

resistance to antiretroviral drugs. New antiretroviral drugs are continuously being

tested, all of which hope increase the number of healthy T cells, and help increase

the number of years HIV/AIDS patients can live.
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A.2 Drug Therapy

Many mathematical models have been developed to describe drug resistance [68]-[73].

Some more recent models are Mohanty and Dixit [74] who presented a model show-

ing the dynamics between a fusion inhibitor and target cells, Bhunu et al. [75] who

presented a two-strain nonlinear HIV model with antiretroviral treatment, and Rosen-

bloom et al. [76] who presented a model that incorporates drug properties, fitness,

differences between susceptible and resistant strains, mutation and adherence in order

to explain the differences between adherence and likelihood of drug resistance. How-

ever, such models have focused on the emergence of drug resistance during continuous

therapy [76]-[80].

Since the mutation rate of HIV is so fast, some reverse transcriptase inhibitors

require only one or two mutations in order for HIV to build resistance towards the

drug, whereas protease inhibitors such as ritonavir need 7–9 mutations, meaning these

will take much longer for the virus to be resistant towards it [67]. Also, the reverse

transciptase inhibitor zidovudine (AZT) — the first drug created — needs only 3–

4 point mutations in the viral genome to become resistant, which only takes a few

months [67].

A more recent tool to model drug dynamics is that of impulsive differential

equations. Smith and Wahl [21] used impulsive differential equations to model the

interaction between cell/virus dynamics and reverse transcriptase inhibitors, integrase

inhibitors and fusion inhibitors. Smith and Wahl [22] also used impulsive differential

equations to model drug resistance by considering immunological behaviour for HIV

dynamics, including the effects of reverse transcriptase inhibitors and other drugs

that prevent cellular infection. Smith [16] answered the question of determining how

many doses may be skipped before HIV treatment response is adversely affected by

the emergence of drug-resistance using impulsive differential equations. Krakovska

and Wahl [35] developed a model that predicts optimal treatment regimens, and used
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this model, coupled with impulsive differential equations, to investigate the effects of

adherence. Lou and Smith? [37] developed a mathematical model that describes the

binding of the virus to T cells in the presence of the fusion inhibitor enfuvirtide using

impulsive differential equations. Lou et al. [38] used impulsive differential equations

to develop a rigorous approach to analyze the threshold behaviours of nonlinear virus

dynamics with impulsive drug effects and to examine the feasibility of virus clearance.

Drug treatment decreases the half life of the virus. Since CD4+ memory T cells

carry integrated provirus and are very long-lasting reservoirs of the infection, these

cells are resistant to HIV drug therapy. This is one of the many reasons the immune

system cannot completely eliminate HIV. The infection of HIV from mother to child

is easily preventable by simply taking the drug zidovudine or nevirapine [12]. The

nevirapine prophylactic regimen is particularly easy to use, with a single dose given

to the woman at the onset of labour, and one dose of syrup administered to the baby

within 72 hours of delivery, reducing transmission by around 40% [81].

The use of antiretroviral drugs among uninfected individuals has also been an-

alyzed. Cremin et al. [82] examined whether antiretroviral drugs can reduce HIV

acquisition among uninfected individuals (as pre-exposure prophylaxis) and reduce

onward transmission among infected individuals. They developed a mathematical

model of a hyperendemic setting with relatively low levels of condom use. They esti-

mated the prevention impact and cost of various pre-exposure prophylaxis interven-

tions. They showed that it is more efficient to provide antiretroviral therapy to more

infected individuals earlier rather than providing pre-exposure prophylaxis to unin-

fected individuals. They showed that antiretrovial therapy alone cannot reduce HIV

incidence to very low levels and pre-exposure prophylaxis can be used cost-effectively

in addition to earlier antiretroviral therapy.
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A.3 Increased Incidence of HIV

One of the problems with antiretroviral therapy is that it inflicts major side effects,

which deter patients from taking their drugs. The use of antiretroviral drugs reduces

the viral load in a patient, which in turn reduces the chance of spreading the disease.

Imperfect adherence creates an increase in drug resistance. Studies have shown that

patients must have 95% adherence to drug therapy in order to prevent biological re-

sistance [15]. They also show that 40–60% of patients are less than 90% adherent

to their drugs, and adherence decreases over time [15]. In order to determine reg-

imens for partial adherence, a number of mathematical models have attempted to

quantify how drug concentration levels in the body of an HIV patient affect viral

replication [16, 35], [83]-[88]. Wahl and Nowak [83] considered two types of treatment

failure: failure to eliminate the wild-type virus, and the emergence of drug-resistant

virus. They determined the conditions under which resistance dominates as a result

of imperfect adherence. Phillips et al. [84] gained insight into the consequences for

development of resistance as a result of different drug-use patterns. Tchetgen et al.

[85] extended previously developed models of antiretroviral therapy to include screen-

ing for adherence, and showed that new HIV infections in the population would likely

increase unless screening accuracy is extremely high.

Research on HIV is continuously being funded in order to eliminate the disease,

but may be controversial. In January 2008, a paper was published saying that if

you were a seropositive individual not suffering from any other STDs and following

a drug therapy with perfect adherence, then you would not and could not transmit

HIV [89]. It fails to mention that certain antiretroviral drugs are unable to enter the

male and female reproductive systems. Since the disease is spread by sexual inter-

course, this causes major problems. The use of antiretroviral drugs will lower the

number of virus particles in the peripheral blood and in the genital tract, but will not

eliminate HIV [90, 91]. This paper caused a lot of controversy because uninformed
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HIV-positive individuals may believe they can practice unsafe sex with no chance of

infecting others [92]. Boily et al. [93] investigated the various effects of antiretroviral

therapy on risk behaviours and sexually transmitted infections. They developed a

mathematical model of bacterial sexually transmitted diseases and treated/untreated

HIV/AIDS infection for an open homosexual population. They assumed that suscep-

tible and healthy HIV-positive individuals do not increase risk behaviour as a result

of antiretroviral therapy over time, but individuals with AIDS who are successfully

treated can resume activity. Over 10 years, they showed that 0-55% of new bacterial

sexually transmitted infections could be attributed to the widescale use of antiretro-

viral therapy as a result of more modest increases (0-25%) in risky sex occurring at

the population level rather than at the individual level.

Another major factor limiting the prevention dividend of HIV treatment is that

more than 60% of people living with HIV are unaware of their HIV status [6]. This

limits access to treatment and care services and hampers prevention efforts. According

to the US CDC (Centres for Disease Control), there are approximately 25% of people

in the US who are HIV positive, but unaware of their status, since there are few side

effects once initially infected with HIV [94]. Smith? and Aggarwala [95] compared

the number of infected HIV individuals in the United States with the number of HIV-

positive individuals their mathematical model predicts, and showed that the number

of people living with HIV, but not AIDS, in the United States is more than four times

larger than the current estimate.

A.4 Worldwide Issues

Women’s rights have always been a worldwide issue. Certain progress has been made,

but these issues still continue today. The proportion of women living with HIV has

remained stable at 50% globally, although women are more affected in sub-Saharan

Africa (59% of all people living in Sub-saharan Africa with HIV) and the Caribbean
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(53%) [6, 96]. There are ten million people infected with HIV from the ages 15-

34, where 78% are women and girls [96]. Marriage is actually a risk factor for HIV

[97]. A study in 2004 compared several underlying HIV risk factors, and explored

the counterintuitive finding that married adolescent girls in urban centers in Kenya

and Zambia have higher rates of HIV infection than do sexually active unmarried

girls [97]. Some countries allow men to be polygamous. In Senegal, for example,

nearly 47% of marriages are multiple [98]. Also, the spread of HIV in truck drivers

across Africa is high due to intercourse with sex workers [99, 100]. It also increases

the spread of sexually transmitted diseases such as chlamydia and gonorrhea, which

are known to severely increase the chance of transmission of HIV to a seronegative

individual [101, 102, 103].

Rape is also a factor that is included in the increased numbers of HIV. Men,

women and children all over the world can become victims of rape. Power, maturity

and lack of knowledge are but a few reasons rape occurs. Lack of knowledge can be

seen in some cases in South Africa where men rape female children with the mistaken

belief that sex with a virgin will cure the HIV-infected person [104]. Sexual violence

against children, including the raping of infants, has increased 400% over the past

decade [11]. A girl born in South Africa has a greater chance of being raped in her

lifetime than learning how to read [11]. The University of South Africa reports that

1 million women and children are raped in South Africa each year [105]. It may take

decades to change a society’s beliefs, but this is certainly required to prevent women

and children from continuously being infected.

Discrimination occurs in many communities, the gay community being one of

the most affected. HIV in the Western world started as a gay disease, or as the

media called it, “the gay plague” [106, 107]. Male-to-female heterosexual transmis-

sion of HIV is two to eight times more efficient compared to female-to-male, with

a male-to-female per contact infectivity estimated to be 0.0009, whereas receptive

anal intercourse results in an estimated per-contact infectivity of 0.0082 [108]. The



A. Human Immunodeficiency Virus 276

reason for the increased rate of infection from penile-anal sex compared to penile-

vaginal sex may be due to the differences in the architecture of the rectum/colon and

vagina/cervix. The rectum/colon is lined with simple columnar epithelial cells that

are involved in transportation and adsorption of molecules, secretion, and protection

[108]. Since the easiest way for the virus to enter a body is by the anus, gay men are

at higher risk for contacting HIV. Herek and Glunt [106] explain how, in the early

years of infection, the stigma of only gay people having HIV increased the spread of

the disease, since heterosexuals were not educated enough to know that HIV could

be spread by vaginal-penile intercourse. In 2003, Parker and Aggleton [109] describe

the stigma and issues that arise from the gay community, and how these problems are

still in the society years after the initial infection of HIV. Unless these issues can be

resolved, it will always be difficult to not only accept the gay community, but also to

eradicate HIV since, without knowledge of any disease, the general population may

think they are not prone to catching HIV. Some ways to prevent the spread of HIV

through the gay community have been with bath houses and the use of condoms,

which are houses geared towards men having sex with men, and trying focusing on

safe sex.

Another major cause of the spread of HIV is the lack of education. The World

Health Organization (WHO) states that levels of knowledge of safe sex and HIV re-

main low in many countries, even in countries with high incidence and growth of HIV

[110]. In 24 sub-Saharan countries (including Cameroon, Côte d’Ivoire, Kenya, Nige-

ria, Senegal and Uganda), two-thirds or more of young women (aged 15–24 years)

lacked comprehensive knowledge of HIV transmission [110]. There have been various

responses to the pandemic, led by Uganda, which has had the greatest success in

combating the disease, in part by a formalized information, education and communi-

cation strategy [111, 112]. Joshi et al. [113] formulated a mathematical model to show

the positive effects of information and education campaigns on the HIV epidemic in

Uganda. According to a major survey carried out in the Philippines in 2003 by the
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WHO, more than 90% of respondents still believed that HIV could be transmitted

by sharing a meal with an HIV-positive person [110]. Kassa and Ouhinou [114] con-

structed a mathematical model for human disease epidemics that takes into account

the human learning behaviour and self-protective measures. Their model assumed

that people start reacting against contracting a disease with self-protective measures

whenever they are informed about the disease and when the burden of the disease is

in a recognizable stage. They showed that increasing the average effectiveness of self-

protective measures is more important than increasing the proportion of individuals

in a population into which awareness is created in order to decrease the prevalence of

a disease. The lack of education causes societies to grow without prior knowledge of

important factors, and could have major impacts on the population as a whole. For

example in 2006, the South African president, was put on trial for raping a young

woman. When the president was told the woman had HIV, he reported that it didn’t

matter since he had showered after intercourse [115]. Many of these issues could be

avoided by sufficient education about the disease, but it is sometimes almost impos-

sible to transmit this information to a society with rooted beliefs. Another way of

contracting HIV is by oral sex, which many people believe is not possible. It may

be a low risk factor, but HIV can spread by oral sex with a population-attributable

risk percentage of 0.1% [116]. It is important for individuals all over the world to

understand the ways HIV can spread, and understand the consequences involved in

becoming infected. As many as one in three HIV-positive people continue unpro-

tected sexual practices after learning that they are HIV infected [117]. It was also

proven that the intervention to reduce risk of HIV transmission (educating people on

HIV) resulted in significantly less unprotected intercourse and greater condom use at

follow-up [118]. Transmission-risk behaviours with non-HIV-positive sexual partners

and estimated HIV transmission rates over a one-year horizon were also significantly

lower for the behavioural risk-reduction intervention group [117]. Mukandavir and

Garira [119] created a model showing the effects of education campaigns and the role
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of sex workers on the spread of HIV/AIDS among heterosexuals. Their model consid-

ered the movement of individuals from high to low sexual activity groups as a result

of public health education campaigns. They showed that sex workers enlarges the

epidemic threshold, and that public health educational campaigns reduces the basic

reproductive number.

A.5 New and Ongoing Strategies for Prevention

New HIV prevention strategies are being developed. A new HIV prevention strategy

is vaginal microbicides, which is a cream or gel applied inside the vagina that prevents

the spread of HIV and prevents pregnancy. A study was done in South Africa showing

that, if developed, 82% of men preferred a vaginal microbicide to a condom [120].

The downside is that the microbicides do not have as high an efficacy as using a

condom. A condom is 87% effective for the prevention of HIV [121], so if a less

effective microbicide is introduced in a country, it may decrease the use of condoms,

which could in turn increase the spread of HIV. An option would be to use both the

condom and the microbicide in order to achieve the best prevention results. Smith et

al. [122] presented a mathematical model to view the effects of introducing vaginal

microbicides to female sex workers, and to see which factor, microbicide efficacy

or microbicide use, is more important to maximize in order to reduce the risk of

female sex workers acquiring HIV. Risk equations were developed and Monte Carlo

simulations were performed to show that microbicide usage and efficacy are both

important factors in reducing the risk of acquiring HIV, but that usage has a higher

impact.

Another strategy for reducing the spread of HIV targets men with male circum-

cision. Clinical trials in Kenya, South Africa and Uganda indicate that voluntary

medical male circumcision reduces the risk of female-to-male sexual transmission by

about 60% [6, 123, 124]. Verguet [125] presented a mathematical model developed



A. Human Immunodeficiency Virus 279

with epidemiological and cost data from nine provinces of South Africa. Verguet de-

termined the outcomes of female to male HIV transmission with a male circumcision

intervention, and showed that an efficient intervention would reduce the infection

outcome by 20%, whereas a 50%-efficient intervention would reduce 6% in infection

outcome in a year.

Induction therapy is an HIV/AIDS treatment regime that hopes to benefit pa-

tients by decreasing drug resistance and reducing the overall number of drugs that

must be taken. In order to minimize drug resistance, induction-maintenance (IM)

therapy strategies begin with a period of intensified antiretroviral therapy (induction

phase), followed by a simplified, long-term regimen (maintenance phase) [126, 127,

128, 18]. Previous work with induction therapy failed due to uncalculated latently

infected cells and imperfect adherence [127, 18]. Havlir et al. [127] investigated

whether a less-intensive maintenance regimen could sustain viral suppression after

an initial response to combination therapy with indinavir, zidovudine and lamivu-

dine. HIV-infected subjects with fewer than 200 copies of HIV RNA per milliliter of

plasma after 16, 20 and 24 weeks were assigned to either continue triple-drug ther-

apy, indinavir alone, or a combination of zidovudine and lamivudine. They found

that 23% of those on either mono or dual therapy had a loss of viral suppression (at

least 200 copies of HIV RNA per milliliter on two consecutive measurements during

maintenance therapy), whereas only 4% had loss of viral suppression while main-

taining triple-drug therapy. Descamps et al. compared maintenance therapy with

the same triple-drug therapy, and looked at maintenance therapy with zidovudine-

lamivudine and zidovudine-indinavir therapy. They identified gene mutations during

maintenance therapy, but identified that early and late virologic failure appeared to be

related more to problems of adherence and antiretroviral potency, respectively, than

to selection of resistant mutant viruses. Subsequently, Curlin et al. [19] showed that a

longer induction phase decreases the probability that viruses resistant to maintenance

therapy will emerge. Their studies showed that the probability of success (maintain-
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ing a suppressed, circulating, free-virus population for a period of at least 3 years

after the end of induction therapy) varied with the length and time of the induction

phase [19]. They showed that induction therapy would have to last at least 180 days

for cocktails containing two RTI-like drugs and a PI-like drug [19, 20].

Vaccination has proven effective in reducing the spread of diseases such as Hep-

atitis A, Hepatitis B, measles, etc. A vaccine for HIV has not yet been created.

Vaccination against HIV is an attractive solution, but poses many difficulties [129].

The main problem is the nature of the infection itself. HIV is a virus that proliferates

extremely rapidly (half life of two days) and causes sustained infection in the face of

strong cytotoxic T cell and antibody responses [130]. Since mutation occurs in each

individual differently, recognition of the virus by antibodies and cytotoxic T lympho-

cytes is more difficult (or even impossible). Furthermore, the provirus that is invisible

to the immune system might prevent the T and B cells from clearing the virus even if

a vaccine is present [130]. Also, the main cause of HIV is still unknown, so creating a

vaccine that increases the level of the cytotoxic T lymphocytes for example may not

be enough. There are different kinds of vaccines that can be created. Creating a live,

attenuated vaccine might cause more harm than good, and causes concern over the

safety of pursuing this approach for HIV [131]. Another approach which is currently

being used is a DNA vaccine [131]. This vaccine is not as strong as a protein vaccine.

These new vaccines elicit T cells capable of recognizing and killing virus-infected cells

[131]. Another vaccine that was tested in 2007 used carriers, adjuvants and novel car-

bohydrate antigen constructs in order to overcome weak immunological responses to

carbohydrate-rich surface antigens [132]. The most common target to creating a vac-

cine for HIV/AIDS is by comparing it with the original source: chimpanzees. Chimps

carry the Simian Immunodeficiency Virus (SIV) but are not negatively affected by

the virus. The env genes of HIV-1 and SIV encode proteins bearing a high degree of

structural similarity, and sharing an identical suite of essential functions [133]. The

env complexes formed by these proteins are present on the surface of virus-producing
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cells and virions, where they are the primary targets of the host neutralizing anti-

body response [133]. Other studies have triggered a protein contained in the virus. A

protein such as tat does not mutate, but has been proven essential for the integration

of the virus in a cell [134]. Their work focuses on triggering a part of the protein

genome that will hopefully inhibit the effect of integration of the virus, and thus stop

the virus from entering an immune cell.

Since a vaccine has not yet been developed, many studies have shown the impact

of introducing an HIV vaccine. Dorigatti and Pugliese [135] analyzed a model to find

exact conditions under which vaccination may lead to a shift in competitive balance

in favour of a virus strain. They showed under certain conditions that there always

exists a range of vaccination rates under which a coexistence equilibrium exists. Lou

et al. [136] developed a mathematical model using a sex-role-preference framework to

predict HIV infection in the men who have sex with men population, and evaluated

different intervention strategies such as antiretroviral drugs and vaccination. They

showed that the effects of a potential vaccine are worse than that of antiretroviral

therapy, even if the vaccine efficacy is as high as 70%. Smith? and Schwartz [36] devel-

oped a mathematical model to describe a post-infection HIV vaccination program to

regularly boost cytotoxic T-lymphocytes. They showed that, for an asymptotically

stable periodic orbit, the vaccination frequency can be chosen so that the average

number of infected CD4+ T cells can be made arbitrarily low. Konrad et al. [137]

presented a model describing the interaction between cytotoxic T cells, wild-type

virus and resistant virus. They included mutation, and included the cytotoxic T cells

as an impulse. The impact of imperfect adherence to the vaccination regimen was

addressed, and the number of vaccinations that can be missed was calculated. Gumel

et al. [138] developed a staged-progression HIV model to investigate the potential

impact of an imperfect vaccine. They calculated the basic reproductive number, and

showed that an imperfect vaccine can eliminate HIV in a given community if it can

reduce the reproduction number to a value less than unity. Smith and Blower [139]
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showed that a disease-modifying HIV vaccine that provides only a low degree of pro-

tection against infection and/or generate high fitness ratio will have a high probability

of making the infection worse.

In very few cases, genetic variation in either virus or host show slower disease

progression. Genetic variation in HLA type of the host modifies the disease outcome

[140]. Studies show that individuals resistant to HIV secrete high levels of chemokines

CCL3, CCL4 and CCL5 in response to the inoculation with HIV [62]. This blocks

infection due to the competition of the chemokine co-receptors binding and the virus

for the cell-surface receptor CCR5. These individuals are usually homozygous for

a non-functional variant of CCR5 caused by a 32-base-pair deletion [62]. This may

help in finding a cure for HIV, and finding ways to stop infection through sexual

transmission. This genetic variation may also help to slow down the rate of progression

of the virus.

Even though HIV kills close to two million people worldwide every year, there

has been a lot of progress in controlling the spread of the disease. The World Health

Organization (WHO) estimates that half the proportion of people living in poor

countries will suffer from hunger by 2015 [8]. The percentage of underweight children

is estimated to have declined from 25% in 1990 to 16% in 2010 [8]. Malnutrition is a

major factor in disease death, meaning decreases in the number of people who suffer

from hunger will help control the spread of HIV. Health, HIV and human rights are

inextricably linked [107]. Also, WHO predicts that by 2015 the proportion of people

without sustainable access to safe drinking water and basic sanitation will be halved

[8]. Globally, the percentage of world’s population with access to safe drinking-water

increased from 77% to 87% [8]. These improvements have reduced the annual death

rates in children by 35% from 1990 [8].

Behaviour change is also averting new HIV infections, especially among young

people, sex workers and their clients, people who inject drugs, men who have sex

with men and transgender people [6, 141]. Access to HIV prevention services has
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empowered individuals and communities to act in earnest against the disease. In

countries with generalized epidemics, a combination of behaviour changes, including

reductions in numbers of sexual partners, increases in condom use, and delayed age of

first sex, have reduced new infections (incidence) in several countries [6, 141]. Glob-

ally, contraceptive use has been on the rise, annually increasing 0.2% since 2000 [8].

In Cambodia, condom use among sex workers and their clients increased from about

40% in 1997 to current levels of over 90%, and there are approximately 48 thou-

sand fewer new HIV infections annually [6]. In Dhaka, Bangladesh, harm-reduction

programmes have been credited with slowing the spread of HIV among young peo-

ple who inject drugs [6, 141]. People who inject drugs also need equitable access

to non-discriminatory health and social services. Marshall et al. [142] developed an

agent-based model to examine how combinations of interventions among injecting

and non-injecting drug users may reduce and potentially eliminate HIV transmission

among drug-using populations. The model included three populations: injecting and

non-injecting drug users, and non-drug users who interact with each other and within

risk networks and engage in sexual contact. They included HIV prevention interven-

tions such as syringe exchange programs, substance-abuse treatment and HIV testing.

Initial antiretroviral therapy is included in a stochastic manner. Their model closely

approximated HIV trajectories in injecting and non-injecting drug users observed in

New York city between 1992 and 2002 showing that a combination of interventions

dramatically reduces HIV prevalence.

While some countries have made impressive gains in achieving health-related

targets, others are falling behind [8]. Improvement has been made in the quality

of life of HIV-positive lives and reduction of AIDS-related deaths by introducing

antiretroviral treatment. Behaviour change programmes are crucial in order to bring

down new HIV infections. Smith? et al. [143] developed a mathematical model that

predicts eradication or persistence of HIV/AIDS on a world scale. They showed that

even if HIV/AIDS can be eradicated in a specific region (continent, country etc)
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independently, travel/immigration of susceptibles (not infectives) could still sustain

the epidemic. A lot more work needs to be done in order to fully control the spread

of HIV.



Appendix B

Additional information; Section 3.1

Simulation details and extra comments for the manuscript in Section 3.1; Miron and

Smith? [3]

Numerical Simulations: The software used to plot the figures in the manuscript

presented in Section 3.1 [3] was Matlab.

Figure 1 is a plot of the curve

s(t) =
R(t)

R(t) + IC50

,

the inhibition of viral replication (page 3 of manuscript). The values used to plot this

curve are presented in Figure 4 and Table 1.

Figures 2 and 3 are plots of an exponentially decaying function including im-

pulses. Between impulses, we plot an exponential decaying function (solutions to the

dynamics of the drug on page 5 of the manuscript). At an impulse, we increase the

drug by a factor of Ri, and then use this as the new initial condition. We run, with

these new initial conditions, the exponential decaying function until the next impulse,

and so on. We used Ri = 1.5, dR = 1 and τ = 0.5. The differences between the figures

is that for, Figure 2b, we allow for a longer period of time where no impulses occur.

Therefore, after taking n drugs, we plot an exponentially decaying function for 7

missed doses. And then we again reset the initial conditions by including an increase

285
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in the drug and continue in the same way as described above. Figure 3 includes a

line that indicates the average drug concentration.

The parameters and initial conditions used to plot Figures 4–10 are presented

in Figure 4 and Table 1. We used ode45 to solve the system of ordinary differential

equations between the three regions. Again, we reset the initial conditions when an

impulse occurs, meaning we add Ri to the solution of the drug and do not change any

other solution (since the impulse only affects the drug). We then run the ordinary

differential equations again.

Figure 11 is a plot of the curve described by Equation 1 (the number of missable

doses, h1) on page 8 of the manuscript. The parameter values are presented in Table 1.

Sensitivity Analysis: Since parameters vary from patient to patient, we explore a

more in-depth sensitivity analysis of the effect each parameter has on the number of

missable doses using Latin hypercube sampling (LHS). We also assess the variability

in the number of missable doses to key parameters using partial rank correlation

coefficients (PRCCs).

For each parameter in our model (there are n parameters), we assigned a uniform

probability distribution. Given the lack of available data to estimate parameters, this

is a reasonable choice [144]. We then generated a Latin hypercube sample of size

N for each parameter, which results in a Latin hypercube matrix (of size N × n)

representation for parameter space. A model output (in our case, the number of

missable doses, h1) is generated for each row of the Latin hypercube matrix; a new

column is appended to the Latin hypercube matrix, resulting in a new matrix of

size N × (n + 1). We then checked scatterplots of the model output against each

parameter to ensure that we obtained monotonic relationships. This is a necessary

step for PRCCs. To obtain PRCCs, each column is ranked; the lowest value gets

a rank of 1, next lowest a rank of 2, and so on, to reduce the effect of nonlinear

data. Repeated values are assigned an average rank. PRCCs measure the linear
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relationship between model output and one input parameter after the linear effects

of other parameters have been removed. Thus, to calculate PRCCs, we form two

regression models: one between output and the n− 1 parameters, the other between

the parameter of interest and the n−1 parameters. The PRCC is then the correlation

coefficient of the residuals of these two models.

Figure B.1 shows the partial rank correlation coefficient sensitivity analysis for

1000 runs. The range of parameters used are given in Table B.1 below. All relevant

parameters are varied against h1. The sample values, units and references can be

found in Table 1 in the manuscript [3].

Table B.1. Range of parameters.

Parameter/state variable Range

Ri 1 – 15

dR 0.5 – 1.5

τ 0.1 – 1

ǫ 0.01 – 0.5

R2 0.5 – 1.5

Clearly h1 is most sensitive to the time between doses, τ , the drug clearance rate,

dR, and the dosage, Ri (Figure B.1). The effect of each parameter on h1 can also be

seen in Figures B.2–B.6 for τ , dR, Ri, R2 and ǫ, respectively.

Figures B.2–B.6 show that increasing the time between doses or increasing the

dosage allows for a higher number of missable doses during a drug holiday (Figures

B.2 and B.4). We also see that increasing the drug clearance rate decreases the

number of missable doses that are allowed during a drug holiday (Figure B.3). The

LHS of the remaining two parameters are approximately uniformly scattered (Figures

B.5 and B.6).
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Figure B.1: Partial rank correlation coefficients for the number of missable
doses, h1, for all parameters.
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Figure B.2: The effect of the time between doses on h1.
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Figure B.3: The effect of the drug clearance rate on h1.
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Figure B.4: The effect of the dosage on h1.
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Figure B.5: The effect of the Region 2 threshold on h1.
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Figure B.6: The effect of the prescribed tolerance on h1.
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Errata:

1. The inequality before equation (2) is reversed (page 9). It should be

e−n2drτ < − ǫ2(1 − e−drτ )

R2(1 − e−drτ ) −Rie−drτ
.

2. On page 13, paragraph 4, line 5, the brackets should read (35.7% of HIV RNA

increase).



Appendix C

Region 1: Low drug levels; Miron

and Smith? [4]

The following Appendix shows more details of the work presented in Region 1 of the

manuscript in Chapter 3.2. We include many steps that are omitted in the manuscript.

This Appendix only includes extra details on finding the mathematical results, thus

it is only used to complete the manuscript. The Appendix does not include all of the

manuscript.

The subregion model for Region 1 is given by

dVI
dt

= nIωTI − dV VI − rITSVI

dVY
dt

= nIωTY − dV VY − rY TSVY

dVN
dt

= nI(1 − ω)(TI + TY ) − dV VN

dTS
dt

= λ− rITSVI − rY TSVY − dSTS

dTI
dt

= rITSVI − dITI

dTY
dt

= rY TSVY − dITY .

(C.0.1)

292
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C.1 Disease-free equilibrium

The disease-free equilibrium shown in the article is computed by setting the right

hand side of the equations (C.0.1) equal to zero.

C.1.1 Basic reproductive number

In order to compute the basic reproductive number, we compute the FV −1 matrix,

and find its eigenvalues. We have that

F =

















0 0 0 0

0 0 0 0

rIT S 0 0 0

0 rY T S 0 0

















V =

















dV + rIT S 0 −nIω 0

0 dV + rY T S 0 −nIω
0 0 dI 0

0 0 0 dI

















,

and that

V −1 =























1

dV + rIT S
0

nIω

dI(dV + rIT S)
0

0
1

dV + rY T S
0

nIω

dI(dV + rY T S)

0 0
1

dI
0

0 0 0
1

dI























.

We have that F is a non-negative matrix, and we need to show that V is a non-

singular M-matrix. We have, by definition (see [154]); if A is a real, square matrix with

non-positive off-diagonal elements, each of the following is a necessary and sufficient

condition for A to be an M-matrix:

a) Each principle minor of A is positive.
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b) A is nonsingular, and A−1 ≧ 0.

c) Each real characteristic root of A is positive.

d) There is a row vector x with positive entries such that xA > 0.

We will now prove that V is an M-matrix.

Proof: We have that V is a real, square matrix with non-positive off-diagonal

elements. We also have that

a) Since V is a square matrix, the principle minors of V are obtained by deleting

the n-k rows and the n-k columns with the same numbers. We have the following

principle minors:

D1 = dV + rIT S > 0,

D2 = det

∣

∣

∣

∣

∣

∣

dV + rIT S 0

0 dV + rY T S

∣

∣

∣

∣

∣

∣

> 0

D3 = det

∣

∣

∣

∣

∣

∣

∣

∣

∣

dV + rIT S 0 −nIω
0 dV + rY T S 0

0 0 dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0

D4 = det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dV + rIT S 0 −nIω 0

0 dV + rY T S 0 −nIω
0 0 dI 0

0 0 0 dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0

Therefore each of the principle minors of V are positive.

b) V is nonsingular since detV 6= 0, and V −1 ≧ 0 (see V −1 above).
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c) Each real characteristic root of V is positive since the roots of V are given by

dV + rIT S, dV + rY T S, dI , dI

d) Let x =

[

dI
nIω

dI
nIω

nIω

dI

nIω

dI

]

. Then

xV =

[

dI
nIω

dI
nIω

nIω

dI

nIω

dI

]

















dV + rIT S 0 −nIω 0

0 dV + rY T S 0 −nIω
0 0 dI 0

0 0 0 dI

















=





















dI
nIω

(dV + rIT S)

dI
nIω

(dV + rY T S)

nIω − dI

nIω − dI





















,

which is positive since nIω − dI > 0. Therefore, there is a row vector x with

positive entries such that xV > 0.

This results in the following

FV −1 =





















0 0 0 0

0 0 0 0

rIT S

dV + rIT S
0

nIωrIT S

dI(dV + rIT S)
0

0
rY T S

dV + rY T S
0

nIωrY T S

dI(dV + rY T S)





















.

The spectral radius of FV −1 shown in the article is the basic reproductive number.
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C.1.2 Local stability analysis

The Jacobian matrix at the disease-free equilibrium is given by

J =





























−dV − rITS 0 0 0 nIω 0

0 −dV − rY TS 0 0 0 nIω

0 0 −dV 0 nI(1 − ω) nI(1 − ω)

−rITS −rY TS 0 −dS 0 0

rITS 0 0 0 −dI 0

0 rY TS 0 0 0 −dI





























.

If we factor out (−dV −µ)(−dS −µ) knowing these eigenvalues are negative, we have

the following for the characteristic equation

0 = (−dI − µ)(−dV − rITS − µ) det

∣

∣

∣

∣

∣

∣

−dV − rY TS nIω

rY TS −dI

∣

∣

∣

∣

∣

∣

+ nIωrITS det

∣

∣

∣

∣

∣

∣

−dV − rY TS nIω

rY TS −dI

∣

∣

∣

∣

∣

∣

=
[

(−dI − µ)(−dV − rITS − µ) + nIωrITS

]

det

∣

∣

∣

∣

∣

∣

−dV − rY TS nIω

rY TS −dI

∣

∣

∣

∣

∣

∣

Solving the polynomial, we get

dIdV + dIrITS + µ(dV + rITSdI) + µ2 + nIωrITS = 0

where all coefficients of the second order polynomial are positive.

Solving the matrix, we get

0 = (−dV − rY TS − µ)(−dI − µ) − nIωrY TS

= µ2 + µ(dV + rY TS + dI) + dIdV + dIrY TS − nIωrY TS.

In this case, we have for the constant coefficient

dIdV + dIrY TS − nIωrY TS =
1

dS
(dIdV dS + rIλdI − dI(dV dS + rY λ)R0,1,b)

=
dIdV dS + rY λdI

dS
(1 −R0,1,b)
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The results in the article follow for the stability of the disease-free equilibrium.

C.2 Endemic equilibria

The endemic equilibria are computed by setting the right hand side of the equations

(C.0.1) equal to zero and having VI 6= 0 for the wild-type equilibrium and VY 6= 0 for

the mutant equilibrium.

Note: We state that the wild-type and mutant equilibria exist if R0,1 > 1. The

equilibria exist if R0,1 < 1 but are negative, meaning they are biologically irrelevant.

C.2.1 Local stability analysis

The Jacobian matrix at the wild-type equilibrium is given by

J =





























−dV − rITS 0 0 −rIVI nIω 0

0 −dV − rY TS 0 0 0 nIω

0 0 −dV 0 nI(1 − ω) nI(1 − ω)

−rITS −rY TS 0 −rIVI − dS 0 0

rITS 0 0 rIVI −dI 0

0 rY TS 0 0 0 −dI





























.
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If we factor out (−dV −µ) since this eigenvalue is negative, we have the following for

the characteristic equation

0 = (−dV − rY TS − µ) det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rITS −rIVI nIω 0

−rITS −rIVI − dS 0 0

rITS rIVI −dI 0

0 0 0 −dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ nIω

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rITS 0 −rIVI nIω

−rITS −rY TS −rIVI − dS 0

rITS 0 rIVI −dI
0 rY TS 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
[

(−dI − µ)(−dV − rY TS − µ) − nIωrY TS

]

det

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rITS −rIVI nIω

−rITS −rIVI − dS 0

rITS rIVI −dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

Solving the polynomial we get

0 = µ2 + µ(dV + rIT S + dI) + dI(dV + rY TS) − nIωrY TS

In this case, we have for the constant coefficient

dIdV + rY TS(dI − nIω) = dIdV − rY dV dI
rI(nIω − dI)

(nIω − dI)

=
dIdV (rI − rY )

rI

where all coefficients of the second order polynomial are positive.

Solving the matrix, we get

0 = rITS(−rIVI(−dI − µ) − rIVInIω) + (−rIVI − dS − µ)((−dV − rITSµ)(−dI − µ) − rITSnIω)

= µ3 + µ2(rIV I + dS + dI + dV + rIT S) + µ((dV + rIT S)dS + (rIV I + dS)dI + dV rIV I)

− dI(rIVI + dS + dV + rITS) + rIVITSdI + dSrITSnIω − dI(rI + dS)(dV + rITS)
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In this case, we have for the constant coefficient

dI(rIVIrIT S + rIVIdV + rITSdS + dSdS) − rIVIrITSdI − dSrITSnIω − dSrITS(nIω − dI)

= dIdV rIVI

= dIdV rI
dSdV + rIλ

rIdV
(R0,1,a − 1)

= dI(dSdV dI + rIλ)(R0,1,a − 1).

We also need to show that if we have µ3 + a2µ
2 + b2µ+ c2 = 0, that a2b2 − c2 > 0. In

this case, we have

a2b2 − c2 = (rIV I + dS + dI + dV + rIT S)(dS(dV + rIT S) + (rIV I + dS)dI + dV rIV I)

− dIdV rIVI

= (rIV I + dS + dI + rIT S)(dS(dV + rIT S) + (rIV I + dS)dI + dV rIV I)

+ dV (dS(dV + rIT S) + dSdI + dV rIV I)

> 0

The results in the article follow for the stability of the wild-type equilibrium.

The Jacobian matrix at the mutant equilibrium is given by

J =





























−dV − rITS 0 0 0 nIω 0

0 −dV − rY TS 0 −rY VY 0 nIω

0 0 −dV 0 nI(1 − ω) nI(1 − ω)

−rITS −rY TS 0 −rY VY − dS 0 0

rITS 0 0 0 −dI 0

0 rY TS 0 rY VY 0 −dI





























.

If we factor out (−dV −µ) since this eigenvalue is negative, we have the following for
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the characteristic equation

0 = (−dV − rITS − µ) det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rY TS −rY VY 0 nIω

−rY TS −rY VY − dS 0 0

0 0 −dI 0

rY TS rY VY 0 −dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− nIω

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −dV − rY TS −rY VY nIω

−rITS −rY TS −rY VY − dS 0

rITS 0 0 0

0 rY TS rY VY −dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
[

(−dI − µ)(−dV − rITS − µ) − nIωrITS

]

det

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rY TS −rY VY nIω

−rY TS −rY VY − dS 0

rY TS rY VY −dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

The characteristic polynomial for the mutant equilibrium is the same as the wild-type

equilibrium except rI and VI are interchanged with rY and VY . The results in the

article follow for the stability of the mutant equilibrium.



Appendix D

Region 2: Intermediate drug levels;

Miron and Smith? [4]

The following Appendix shows more details of the work presented in Region 2 of the

manuscript in Chapter 3.2. We include many steps that are omitted in the manuscript.

This Appendix only includes extra details on finding the mathematical results, thus

it is only used to complete the manuscript. The Appendix does not include all of the

manuscript.

The subregion model for Region 2 is given by

301
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dVI
dt

= nIωTI − dV VI − rITSVI − rITPNVI

dVY
dt

= nIω(TY + TPY ) − dV VY − rY TSVY − rY TPNVY

dVN
dt

= nI(1 − ω)(TI + TY + TPY ) + nITPI − dV VN

dTS
dt

= λ− rITSVI − rY TSVY − dSTS − rPPTS +mPTPN

dTI
dt

= rITSVI − dITI − rPPTI +mPTPI

dTY
dt

= rY TSVY − dITY − rPPTY +mPTPY

dTPN
dt

= rPPTS −mPTPN − rY TPNVY − rITPNVI − dSTPN

dTPI
dt

= rPPTI −mPTPI + rITPNVI − dITPI

dTPY
dt

= rPPTY −mPTPY + rY TPNVY − dITPY .

(D.0.1)

D.1 Disease-free equilibrium

The disease-free equilibrium shown in the article is computed by setting the right

hand side of the equations (D.0.1) equal to zero.
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D.1.1 Basic reproductive number

In order to compute the basic reproductive number, we compute the FV −1 matrix,

and find its eigenvalues. We have that

F =





























0 0 0 0 0 0

0 0 0 0 0 0

rIT S 0 0 0 0 0

0 rY T S 0 0 0 0

rIT PN 0 0 0 0 0

0 rY T PN 0 0 0 0





























V =





























dV + rIT S + rIT PN 0 −nIω 0 0 0

0 dV + rY T S + rY T PN 0 −nIω 0 −nIω
0 0 dI + rPP 0 −mP 0

0 0 0 dI + rPP 0 −mP

0 0 −rPP 0 mP + dI 0

0 0 0 −rPP 0 mP + dI





























,

and that V −1 = [V −1
1 |V −1

2 ] where

V −1
1 =



































1

dV + rIT S + rIT PN
0

nIω(mP + dI)

dI(dI + rPP ∗ +mP )(rIT ∗
S + rIT ∗

PN + dV )

0
1

dV + rY T S + rY T PN
0

0 0
mP + dI

dI(dI + rPP +mP )

0 0 0

0 0
rPP

dI(dI + rPP +mP )

0 0 0


































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V −1
2 =







































0
nIωmP

dI(dI + rPP ∗ +mP )(rIT ∗
S + rIT ∗

PN + dV )
0

nIω

dI(dV + rY T S + rY T PN)
0

nIω

dI(dV + rY T S + rY T PN)

0
mP

dI(dI + rPP +mP )
0

mP + dI
dI(dI + rPP +mP )

0
mP

dI(dI + rPP +mP )

0
dIrPP

dI(dI + rPP +mP )
0

rPP

dI(dI + rPP +mP )
0

dIrPP

dI(dI + rPP +mP )







































.

We have that F is a non-negative matrix, and that V is a non-singular M-matrix

(this can be shown in a similar fashion as was done in Appendix A).

This results in the following: FV −1 = [FV −1
1 |FV −1

2 ] where

FV −1
1 =





































0 0 0

0 0 0

rITS
dV + rITS + rITPN

0
nIωrIT S(mP + dI)

dI(dI + rPP ∗ +mP )(rIT ∗
S + rIT ∗

PN + dV )

0
rY T S

dV + rY T S + rY T PN
0

rITPN
dV + rITS + rY TPN

0
nIωrIT PN(mP + dI)

dI(dI + rPP ∗ +mP )(rIT ∗
S + rIT ∗

PN + dV )

0
rY TPN

dV + rY TS + rY TPN
0





































FV −1
2 =





































0 0 0

0 0 0

0
nIωrIT SmP

dI(dI + rPP ∗ +mP )(rIT ∗
S + rIT ∗

PN + dV )
0

nIωrY T S

dI(dV + rY T S + rY T PN)
0

nIωrY T S

dI(dV + rY T S + rY T PN)

0
nIωrIT PNmP

dI(dI + rPP ∗ +mP )(rIT ∗
S + rIT ∗

PN + dV )
0

nIωrY TPN
dI(dV + rY TS + rY TPN)

0
nIωrY TPN

dI(dV + rY TS + rY TPN)





































.

The spectral radius of FV −1 shown in the article is the basic reproductive number.
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D.1.2 Local stability analysis

The Jacobian matrix at the disease-free equilibrium is given by J = [J1|J2], where

J1 =





















































−dV − rITS − rITPN 0 0 0

0 −dV − rY TS − rY TPN 0 0

0 0 −dV 0

−rITS −rY TS 0 −dS − rPP

rITS 0 0 0

0 rY TS 0 0

−rITPN −rY TPN 0 rPP

rITPN 0 0 0

0 rY TPN 0 0

0 0 0 0





















































J2 =





















































nIω 0 0 0 0 0

0 nIω 0 0 nIω 0

nI(1 − ω) nI(1 − ω) 0 nI nI(1 − ω) 0

0 0 mP 0 0 −rPTS
−dI − rPP 0 0 mP 0 −rPTI

0 −dI − rPP 0 0 mP −rPTY
0 0 −mP − dS 0 0 rPTS

rPP 0 0 −mP − dI 0 rPTI

0 rPP 0 0 −mP − dI rPTY

0 0 0 0 0 −dP





















































.
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If we factor out (−dV −µ) and (−dP −µ) knowing these eigenvalues are negative, we

have the following for the characteristic equation

0 = (−dV − rITS − rITPN − µ)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rY TS − rY TPN 0 0 nIω 0 0 nIω

−rY TS −dS − rPP 0 0 mP 0 0

0 0 − dI − rPP 0 0 mP 0

rY TS 0 0 −dI − rPP 0 0 mP

rY TPN rPP 0 0 −mP − dS 0 0

0 0 rPP 0 0 −mP − dI 0

rY TPN 0 0 rPP 0 0 −mP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− nIω

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −dV − rY TS − rY TPN 0 nIω 0 0 nIω

−rITS −rY TS −dS − rPP 0 mP 0 0

rITS 0 0 0 0 mP 0

0 rY TS 0 −dI − rPP 0 0 mP

−rITPN rY TPN rPP 0 −mP − dS 0 0

−rITPN 0 0 0 0 −mP − dI 0

0 rY TPN 0 rPP 0 0 −mP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
[

(−dV − rITS − rITPN − µ)
(

(−dI − rPP − µ)(−mP − dI − µ) −mP rPP
)

+ nIω
(

rITS(mP + dI + µ) +mP rITPN

)]

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rY TS − rY TPN 0 nIω 0 nIω

−rY TS −dS − rPP 0 mP 0

rY TS 0 −dI − rPP 0 mP

−rY TPN rPP 0 −mP − dS 0

rY TPN 0 rPP 0 −mP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣



D. Region 2: Intermediate drug levels; Miron and Smith? [4] 307

Solving the polynomial, we get

0 = λ3 + λ2(mP + dI + dV + rIT
∗
S + rIT

∗
PN + dI + rPP

∗) + λ(−(dI + rPP
∗)(dV + rIT

∗
S + rITPN)

− (mP + dI)(dV + rIT
∗
S + rIT

∗
PN + dI + rPP

∗) +mP rPP
∗ + nIωrIT

∗
S)

−mP rPP (dV + rITS + rITPN) − nIωrITS(mP + dI)nIωmP rITPN

+ (mP + dI)(dV + rITS + rITPN)(dI + rPP )

In this case, we have for the constant coefficient

− nIω(mP (rITPN + rITS)) − dInIrITS + (rITS + rITPN)(dI(dI + rPP ) +mP + dI)

− dVmP rPP − dV (mP + dI)(dI + rPP )

= −R0,2,bdI(dI + rPP +mP )(rITPN + rITS + dV ) + dI(rITPN + rITS)(dI + rPP +mP )

− dVmP rPP − dV (mP + dI)(dI + rPP )

= dI(rIT
∗
PN + rIT

∗
S + dV )(dI + rPP

∗ +mP )(1 −R0,2,b)
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where the positivity conditions are as described in the article. We also need to show

that if we have µ3 + a1µ
2 + b1µ+ c1 = 0, that a1b1 − c1 > 0. In this case, we have

a1b1 − c1 = (mP + dI + dV + rIT
∗
S + rIT

∗
PN + dI + rPP

∗)((dI + rPP
∗)(dV + rIT

∗
S + rITPN)

+ (mP + dI)(dV + rIT
∗
S + rIT

∗
PN + dI + rPP

∗) −mP rPP
∗ − nIωrIT

∗
S)

− dI(rIT
∗
PN + rIT

∗
S + dV )(dI + rPP

∗ +mP )(1 −R0,2,b)

= (mP + dI + dV + rIT
∗
S + rIT

∗
PN + dI + rPP

∗)(dI(dV + rIT
∗
S + rITPN)

+ rPP
∗(dV + rIT

∗
S + rITPN) + dI(dV + rIT

∗
S + rIT

∗
PN + dI + rPP

∗)

+mP (dV + rIT
∗
S + rIT

∗
PN + dI) − nIωrIT

∗
S)

− dI(rIT
∗
PN + rIT

∗
S + dV )(dI + rPP

∗ +mP )(1 −R0,2,b)

= (mP + dI + dV + rIT
∗
S + rIT

∗
PN + dI + rPP

∗)(dI(dV + rIT
∗
S + rITPN)

+ rPP
∗(dV + rIT

∗
S + rITPN) + dI(dV + rIT

∗
S + rIT

∗
PN + dI + rPP

∗)

+mP (dV + rIT
∗
S + rIT

∗
PN + dI) − nIωrIT

∗
S)

− (dI(rIT
∗
PN + rIT

∗
S + dV )(dI + rPP

∗ +mP ) − nIω(mP (rIT
∗
PN + rIT

∗
S) + dIrITS))

= (mP + dI + dV + rIT
∗
S + rIT

∗
PN + dI + rPP

∗)dI(dI + dV + rIT
∗
S + rITPN +mP )

+ (mP + dI + dV + rIT
∗
S + rIT

∗
PN + dI + rPP

∗)
(

(rIT
∗
PN + rIT

∗
S + dV )

× (dI + rPP
∗ +mP ) − nIωrITS

)

−
(

dI(rIT
∗
PN + rIT

∗
S + dV )(dI + rPP

∗ +mP )

− nIω(mP (rIT
∗
PN + rIT

∗
S) + dIrITS)

)
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= (mP + dI + dV + rIT
∗
S + rIT

∗
PN + dI + rPP

∗)dI(dI + dV + rIT
∗
S + rITPN +mP )

+ (mP + dI + dV + rIT
∗
S + rIT

∗
PN + rPP

∗)
(nIω(mP (rIT

∗
PN + rIT

∗
S) + dIrITS)

dIR0,2,b

− nIωrITS

)

+ nIωmP (rIT
∗
PN + rIT

∗
S)

= (mP + dI + dV + rIT
∗
S + rIT

∗
PN + dI + rPP

∗)dI(dI + dV + rIT
∗
S + rITPN +mP )

+
mP + dI + dV + rIT

∗
S + rIT

∗
PN + rPP

∗

dIR0,2,b

(

nIωmP (rIT
∗
PN + rIT

∗
S)

+ nIωdIrITS(1 −R0,2,b)
)

+ nIωmP (rIT
∗
PN + rIT

∗
S),

which is greater than zero if R0,2 < 1. The results follow in the article.

Solving the matrix in the characteristic polynomial, we get

0 =

∣

∣

∣

∣

∣

∣

−dS − rPP mP

rPP −mP − dS

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rY TS − rY TPN nIω nIω

rY TS −dI − rPP mP

rY TPN rPP −dI −mP

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Solving the 2 × 2 - matrix, we get

0 = λ2 + λ(dS + rPP +mP + dS) + (dS +mP )(dS + rPP ) − rPPmP

= λ2 + λ(dS + rPP +mP + dS) + dS(dS + rPP ) +mPdS.

In this case, all the coefficients are positive. Solving the 3 × 3 - matrix, we get

0 = λ3 + λ2(rPP
∗ + 2dI + dV + rY T

∗
S + rY T

∗
PN +mP ) + λ(−mP rPP

∗ − nIωrY (T ∗
S + T ∗

PN)

+ (rPP
∗ + dI)(dV + rY T

∗
S + rY T

∗
PN) + (mP + dI)(rPP

∗ + dI + dV + rY T
∗
S + rY T

∗
PN))

−mP rPP (dV + rY T
∗
S + rY T

∗
PN) − nIωrY TS(mP + dI) − nIωmP rY TPN − nIωrY TSrPP

− nIωrY TPN(dI + rPP ) + (mP + dI)(dI + rPP )(dV + rY T
∗
S + rY T

∗
PN).
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In this case, we have for the constant coefficient

(dV + rY TS + rY TPN)(−mP rPP + (mP + dI)(dI + rPP )) − nIω
(

rY TS(mP + dI)

+mP rY TPN + rY TSrPP + rY TPN(dI + rPP )
)

= (dV + rY TS + rY TPN)(dI(dI + rPP ) +mPdI) − nIω(mP + dI + rPP )(rY TS + rY TPN)

= dI(rY T
∗
PN + rY T

∗
S + dV )(dI + rPP

∗ +mP )(1 −R0,2,a)

where the positivity conditions are as described in the article. We also need to show

that if we have µ3 +a3µ
2 + b3µ+ c3 = 0, that a3b3− c3 > 0. In this case, we have that

a3 and c3 are similar to a1 and c1 except that rY is interchanged with rI , respectively.

We also have that the only difference other than rY and rI being interchanged between

b3 and b1, respectively, is that the negative term −nIωrY (TS + TPN) in b3 replaces

the negative term −nIωrY TS in b1 (since the wild-type virus is only produced from

susceptible cells with low drug, whereas the mutant virus is produced from both the

susceptible cells with low and intermediate drug). Using these similarities, we get

a3b3 − c3 = (rPP
∗ + 2dI + dV + rY T

∗
S + rY T

∗
PN +mP )(−mP rPP

∗ − nIωrY (T ∗
S + T ∗

PN)

+ (rPP
∗ + dI)(dV + rY T

∗
S + rY T

∗
PN) + (mP + dI)(rPP

∗ + dI + dV + rY T
∗
S + rY T

∗
PN))

− (dV + rY T
∗
S + rY T

∗
PN)[−mP rPP

∗ + (mP + dI)(dI + rPP
∗)] − nIω[rY T

∗
S(mP + dI)

+mP rY T
∗
PN + rY T

∗
SrPP

∗ + rY T
∗
PN(dI + rPP

∗)]

= (mP + dV + rY T
∗
S + rY T

∗
PN + dI + rPP

∗)dI(dI + dV + rY T
∗
S + rY TPN +mP )

+ d2
I(dI +mP ) + d2

I(dV + rY TS + rY TPN) + (mP + dI + dV + rY T
∗
S + rY T

∗
PN

+ dI + rPP
∗)
(

(rY T
∗
PN + rY T

∗
S + dV )(dI +mP ) + dI(rY T

∗
PN + rY T

∗
S + dV )

− nIωrY (TS + TPN)
)

− dInIω(rY T
∗
PN + rY T

∗
S) + nIω(mP (rY T

∗
PN + rY T

∗
S) + dIrY TS)
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= (mP + dV + rY T
∗
S + rY T

∗
PN + dI + rPP

∗)dI(dI + dV + rY T
∗
S + rY TPN +mP )

+ (mP + dI + dV + rY T
∗
S + rY T

∗
PN + dI + rPP

∗)
(

(rY T
∗
PN + rY T

∗
S + dV )(dI +mP )

+ dI(rY T
∗
PN + rY T

∗
S + dV ) −R0,2,adI(dV + rY TS + rY TPN)

)

+ d2
I(dV + rY TS + rY TPN)

− d2
I(dV + rY TS + rY TPN)R0,2,a + d2

I(dI +mP ) + nIω(mP (rY T
∗
PN + rY T

∗
S) + dIrY TS)

= (mP + dV + rY T
∗
S + rY T

∗
PN + dI + rPP

∗)dI(dI + dV + rY T
∗
S + rY TPN +mP )

+ (mP + dI + dV + rY T
∗
S + rY T

∗
PN + dI + rPP

∗)(rY T
∗
PN + rY T

∗
S + dV )

× (mP + rPP
∗ + dI(1 −R0,2,a)) + d2

I(dV + rY TS + rY TPN)(1 −R0,2,a)

+ d2
I(dI +mP ) + nIω(mP (rY T

∗
PN + rY T

∗
S) + dIrY TS)

which is greater than zero if R0,2 < 1. The results in the article follow for the stability

of the disease-free equilibrium.

D.2 Endemic equilibria

The endemic equilibria are computed by setting the right hand side of the equations

(D.0.1) equal to zero and having VI 6= 0 for the wild-type equilibrium and VY 6= 0 for

the mutant equilibrium.
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D.2.1 Local stability analysis

The Jacobian matrix at the wild-type equilibrium is given by J = [J1|J2] where

J1 =





















































−dV − rITS − rITPN 0 0 −rIVI
0 −dV − rY TS − rY TPN 0 0

0 0 −dV 0

−rITS −rY TS 0 −rIVI − dS − rPP

rITS 0 0 rIVI

0 rY TS 0 0

−rITPN −rY TPN 0 rPP

rITPN 0 0 0

0 rY TPN 0 0

0 0 0 0





















































J2 =





















































nIω 0 −rIVI 0 0 0

0 nIω 0 0 nIω 0

nI(1 − ω) nI(1 − ω) 0 nI nI(1 − ω) 0

0 0 mP 0 0 −rPTS
−dI − rPP 0 0 mP 0 −rPTI

0 −dI − rPP 0 0 mP −rPTY
0 0 −mP − rIVI − dS 0 0 rPTS

rPP 0 rIVI −mP − dI 0 rPTI

0 rPP 0 0 −mP − dI rPTY

0 0 0 0 0 −dP





















































.

If we factor out (−dP −µ) since this eigenvalue is negative, we have the following for

the characteristic equation
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0 = rY TPNnIω

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rITS − rITPN −rIVI nIω −rIVI 0 0

−rITS −rIVI − dS − rPP 0 mP 0 0

rITS rIVI −dI − rPP 0 mP 0

0 0 0 0 0 mP

−rITPN rPP 0 −mP − rIVI − dS 0 0

rITPN 0 rPP rIVI −mP − dI 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− rY TPNnIω

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rITS − rITPN −rIVI nIω 0 −rIVI 0

−rITS −rIVI − dS − rPP 0 0 mP 0

rITS rIVI −dI − rPP 0 0 mP

0 0 0 −dI − rPP 0 0

−rITPN rPP 0 0 −mP − rIVI − dS 0

rITPN 0 rPP 0 rIVI −mP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− rPP (−dV − rY TS − rY TPN − µ)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rITS − rITPN −rIVI nIω −rIVI 0 0

−rITS −rIVI − dS − rPP 0 mP 0 0

rITS rIVI −dI − rPP 0 mP 0

0 0 0 0 0 mP

−rITPN rPP 0 −mP − rIVI − dS 0 0

rITPN 0 rPP rIVI −mP − dI 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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+ rPPnIω

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rITS − rITPN 0 −rIVI nIω −rIVI 0

−rITS −rY TS −rIVI − dS − rPP 0 mP 0

rITS 0 rIVI −dI − rPP 0 mP

0 rY TS 0 0 0 0

−rITPN −rY TPN rPP 0 −mP − rIVI − dS 0

rITPN 0 0 rPP rIVI −mP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rITS − rITPN −rIVI nIω 0 −rIVI 0

0 0 0 nIω 0 0

−rITS −rIVI − dS − rPP 0 0 mP 0

rITS rIVI −dI − rPP 0 0 mP

−rITPN rPP 0 0 −mP − rIVI − dS 0

rITPN 0 rPP 0 rIVI −mP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ (−mP − dI − µ)(−dI − rPP − µ)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rITS − rITPN 0 −rIVI nIω −rIVI 0

0 −dV − rY TS − rY TPN 0 0 0 0

−rITS −rY TS −rIVI − dS − rPP 0 mP 0

rITS 0 rIVI −dI − rPP 0 mP

−rITPN −rY TPN rPP 0 −mP − rIVI − dS 0

rITPN 0 0 rPP rIVI −mP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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=
(

rY TPNnIωmP − rY TPNnIω(−dI − rPP − µ) − rPPmP (−dV − rY TS − rY TPN − µ)

+ rPPnIωrY TS − rY TSnIω(−mP − dI − µ) + (−mP − dI − µ)(−dI − rPP − µ)

× (−dV − rY TS − rY TPN − µ)
)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rITS − rITPN −rIVI nIω −rIVI 0

−rITS −rIVI − dS − rPP 0 mP 0

rITS rIVI −dI − rPP 0 mP

−rITPN rPP 0 −mP − rIVI − dS 0

rITPN 0 rPP rIVI −mP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Solving the polynomial we get

0 = µ3 + µ2(2dI + rPP
∗ +mP + dV + rY T

∗
S + rY T

∗
PN) + µ((dV + rY T

∗
S + rY T

∗
PN)[(mP + dI)

+ (dI + rPP
∗)] + (dI + rPP

∗)(mP + dI) − rY T
∗
SnIω +mP rPP

∗ − rY T
∗
PNnIω)

− nIωrY T
∗
S(mP + dI) + (dV + rY T

∗
S + rY T

∗
PN)(mPdI + d2

I + dIrPP
∗) − rPP

∗nIωrY T
∗
S

− rY T
∗
PNnIωmP − rY T

∗
PNnIω(dI + rPP

∗)

In this case, we have for the constant coefficient

− nIωrY T
∗
S(mP + dI) + (dV + rY T

∗
S + rY T

∗
PN)(mPdI + d2

I + dIrPP
∗) − rPP

∗nIωrY T
∗
S

− rY T
∗
PNnIωmP − rY T

∗
PNnIω(dI + rPP

∗)

= −nIω(rY TS(mP + dI + rPP ) + rY TPN(mP + dI + rPP ))

+ dI(dV + rY T
∗
S + rY T

∗
PN)(mP + dI + rPP )

= dI(rY T
∗
PN + rY T

∗
S + dV )(dI + rPP

∗ +mP )(1 −R0,2,a)

The results in the article follow for the stability of the wild-type equilibrium.
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The Jacobian matrix at the mutant equilibrium is given by J = [J1|J2] where

J1 =





















































−dV − rITS − rITPN 0 0 0

0 −dV − rY TS − rY TPN 0 −rY VY
0 0 −dV 0

−rITS −rY TS 0 −rY VY − dS − rPP

rITS 0 0 0

0 rY TS 0 rY VY

−rITPN −rY TPN 0 rPP

rITPN 0 0 0

0 rY TPN 0 0

0 0 0 0





















































J2 =





















































nIω 0 0 0 0 0

0 nIω −rY VY 0 nIω 0

nI(1 − ω) nI(1 − ω) 0 nI nI(1 − ω) 0

0 0 mP 0 0 −rPTS
−dI − rPP 0 0 mP 0 −rPTI

0 −dI − rPP 0 0 mP −rPTY
0 0 −mP − rY VY − dS 0 0 rPTS

rPP 0 0 −mP − dI 0 rPTI

0 rPP rY VY 0 −mP − dI rPTY

0 0 0 0 0 −dP





















































.

If we factor out (−dP −µ) since this eigenvalue is negative, we have the following for
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the characteristic equation

0 = (−dI − rPP − µ)(−mP − dI − µ)(−dV − rITS − rITPN − µ)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rY TS − rY TPN −rY VY nIω −rY VY nIω

−rY TS −rY VY − dS − rPP 0 mP 0

rY TS rY VY −dI − rPP 0 mP

−rY TPN rPP 0 −mP − rY VY − dS 0

rY TPN 0 rPP rY VY −mP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− rY TSnIω(−mP − dI − µ)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rY TS − rY TPN −rY VY nIω −rY VY nIω

−rY TS −rY VY − dS − rPP 0 mP 0

rY TS rY VY −dI − rPP 0 mP

−rY TPN rPP 0 −mP − rY VY − dS 0

rY TPN 0 rPP rY VY −mP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−mP (−dV − rITS − rITPN − µ)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rY TS − rY TPN −rY VY 0 nIω −rY VY nIω

−rY TS −rY VY − dS − rPP 0 0 mP 0

rY TS rY VY 0 −dI − rPP 0 mP

−rY TPN rPP 0 0 −mP − rY VY − dS 0

0 0 rPP 0 0 0

rY TPN 0 0 rPP rY VY −mP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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+mPnIω

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −dV − rY TS − rY TPN −rY VY nIω −rY VY nIω

−rITS −rY TS −rY VY − dS − rPP 0 mP 0

0 rY TS rY VY −dI − rPP 0 mP

−rITPN −rY TPN rPP 0 −mP − rY VY − dS 0

rITPN 0 0 0 0 0

0 rY TPN 0 rPP rY VY −mP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
(

rITPNnIωmP − rPPmP (−dV − rY TS − rY TPN − µ) − rITSnIω(−mP − dI − µ)

+ (−mP − dI − µ)(−dI − rPP − µ)(−dV − rITS − rITPN − µ)
)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rY TS − rY TPN −rY VY nIω −rY VY nIω

−rY TS −rY VY − dS − rPP 0 mP 0

rY TS rY VY −dI − rPP 0 mP

−rY TPN rPP 0 −mP − rY VY − dS 0

rY TPN 0 rPP rY VY −mP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Solving the polynomial we get

0 = µ3 + µ2(2dI + rPP
∗ +mP + dV + rIT

∗
S + rIT

∗
PN) + µ((dV + rIT

∗
S + rIT

∗
PN)[(mP + dI)

+ (dI + rPP
∗)] + (dI + rPP

∗)(mP + dI) − rIT
∗
SnIω −mP rPP

∗) − nIωrIT
∗
S(mP + dI)

+ (dV + rIT
∗
S + rIT

∗
PN)(mP + dI)(dI + rPP

∗) − rPP
∗mP (dV + rIT

∗
S + rIT

∗
PN) −mPnIωrIT

∗
PN

In this case, we have for the constant coefficient

− nIωrIT
∗
S(mP + dI) + (dV + rIT

∗
S + rIT

∗
PN)(mP + dI)(dI + rPP

∗)

− rPP
∗mP (dV + rIT

∗
S + rIT

∗
PN) −mPnIωrIT

∗
PN

= −nIω(mP (rITS + rTTPN) + dIrITS) + dI(dV + rY T
∗
S + rY T

∗
PN)(mP + dI + rPP )

= dI(rIT
∗
PN + rIT

∗
S + dV )(dI + rPP

∗ +mP )(1 −R0,2,b)

The results in the article follow for the stability of the mutant equilibrium.



Appendix E

Region 3: High drug levels; Miron

and Smith? [4]

The following Appendix shows more details of the work presented in Region 3 of the

manuscript in Chapter 3.2. We include many steps that are omitted in the manuscript.

This Appendix only includes extra details on finding the mathematical results, thus

it is only used to complete the manuscript. The Appendix does not include all of the

manuscript.

Note: We have that rP ≥ rPP . Such is the case since drug absorption is greater

when the cell goes from no drug to intermediate levels, than from intermediate levels

to high levels (drug absorption saturates when drug levels are high). We also have

no transition from TS to TPPN . This is because when a cell with no drug initially

absorbs drug, the intake gradually increases from no drug, to intermediate drug, to

high drug. The cell will not go from no drug to high levels without passing through

intermediate levels.

The subregion model for Region 3 is given by

319
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dVI
dt

= nIωTI − dV VI − rITSVI − rITPNVI − rITPPNVI

dVY
dt

= nIω(TY + TPY ) − dV VY − rY TSVY − rY TPNVY − rY TPPNVY

dVN
dt

= nI(1 − ω)(TI + TY + TPY ) + nI(TPI + TPPI + TPPY ) − dV VN

dTS
dt

= λ− rITSVI − rY TSVY − dSTS − rPPTS +mPTPN

dTI
dt

= rITSVI − dITI − rPPTI +mPTPI

dTY
dt

= rY TSVY − dITY − rPPTY +mPTPY

dTPN
dt

= rPPTS −mPTPN − rY TPNVY − rITPNVI − dSTPN − rPPPTPN +mPPTPPN

dTPI
dt

= rITPNVI + rPPTI −mPTPI − rPPPTPI +mPPTPPI − dITPI

dTPY
dt

= rY TPNVY + rPPTY −mPTPY − rPPPTPY +mPPTPPY − dITPY

dTPPN
dt

= rPPPTPN −mPPTPPN − rY TPPNVY − rITPPNVI − dSTPPN

dTPPI
dt

= rITPPNVI + rPPPTPI −mPPTPPI − dITPPI

dTPPY
dt

= rY TPPNVY + rPPPTPY −mPPTPPY − dITPPY .

(E.0.1)

E.1 Disease-free equilibrium

The disease-free equilibrium shown in the article is computed by setting the right

hand side of the equations (E.0.1) equal to zero.
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E.1.1 Basic reproductive number

In order to compute the basic reproductive number, we compute the FV −1 matrix,

and find its eigenvalues. We have that

F =









































0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

rIT S 0 0 0 0 0 0 0

0 rY T S 0 0 0 0 0 0

rIT PN 0 0 0 0 0 0 0

0 rY T PN 0 0 0 0 0 0

rIT PPN 0 0 0 0 0 0 0

0 rY T PPN 0 0 0 0 0 0









































,

and V = [V1|V2]

V1 =









































dV + rIT S + rIT PN + rIT PPN 0 −nIω 0

0 dV + rY T S + rY T PN + rY T PPN 0 −nIω
0 0 dI + rPP 0

0 0 0 dI + rPP

0 0 −rPP 0

0 0 0 −rPP
0 0 0 0

0 0 0 −rPP








































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V2 =









































0 0 0 0

0 −nIω 0 0

−mP 0 0 0

0 −mP 0 0

mP + dI + rPPP 0 −mPP 0

0 mP + dI + rPPP 0 −mPP

−rPPP 0 mPP + dI 0

0 −rPPP 0 mPP + dI









































.

We also have that V −1 = [V −1
1 |V −1

2 |V −1
3 |V −1

4 ] where

V −1
1 =









































1
dV +rITS+rITPN+rITPPN

0

0 1
dV +rY TS+rY TPN+rY TPPN

0 0

0 0

0 0

0 0

0 0

0 0








































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V −1
2 =









































nIω(dI(dI+rPPP+mP +mPP )+mPmPP )
ψ1

0

0 nIω(dI(dI+rPP+mP ++rPPP+mPP )+(rPP+mP )mPP )
ψ2

dI(dI+rPPP+mP +mPP )+mPmPP

ψ3
0

0 dI(dI+rPPP+mP +mPP )+mPmPP

ψ3

rPP (mPP +dI)
ψ3

0

0 rPP (mPP +dI)
ψ3

rPPrPPP
ψ3

0

0 rPPrPPP
ψ3









































V −1
3 =









































nIωmP (mPP +dI)
ψ1

0

0 nIω(dI(mP +rPP+dI)+mPP (rPP+mP +dI))
ψ2

mP (mPP +dI)
ψ3

0

0 mP (mPP +dI)
ψ3

dI(rPP+dI+mPP )+rPPmPP

ψ3
0

0 dI(rPP+dI+mPP )+rPPmPP

ψ3

rPPP (rPP+dI)
ψ3

0

0 rPPP (rPP+dI)
ψ3









































V −1
4 =









































nIωmPmPP

ψ1
0

0 nIωmPP (rPP+mP +dI)
ψ2

mPPmP

ψ3
0

0 mPPmP

ψ3

mPP (rPP+dI)
ψ3

0

0 mPP (rPP+dI)
ψ3

dI(rPP+dI+mPP )+rPPmPP

ψ3
0

0 dI(rPP+dI+mP +rPPP )+rPPrPPP

ψ3









































,
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where

ψ1 = dI(dV + rIT
∗
S + rIT

∗
PN + rIT

∗
PPN)

(

dI(dI + rPP
∗ +mP + rPPP

∗ +mPP )

+mPmPP + rPP
∗mPP + rPP

∗rPPP
∗
)

ψ2 = dI(dV + rY T
∗
S + rY T

∗
PN + rY T

∗
PPN)

(

dI(dI + rPP
∗ +mP + rPPP

∗ +mPP )

+mPmPP + rPP
∗mPP + rPP

∗rPPP
∗
)

ψ3 = dI(dI(dI + rPP +mP + +rPPP +mPP ) +mPmPP ).

We have that F is a non-negative matrix, and that V is a non-singular M-matrix

(this can be shown in a similar fashion as was done in Appendix A).

This results in the following: FV −1 = [FV −1
1 |FV −1

2 |FV −1
3 |FV −1

4 ] where

FV −1
1 =









































0 0

0 0

rITS

dV +rITS+rITPN+rITPPN
0

0 rY TS

dV +rY TS+rY TPN+rY TPPN

rITPPN

dV +rITS+rITPN+rITPPN
0

0 rY TPN

dV +rY TS+rY TPN+rY TPPN

rITPPN

dV +rITS+rITPN+rITPPN
0

0 rY TPN

dV +rY TS+rY TPN+rY TPPN









































FV −1
2 =









































0 0

0 0

rITSnIω(dI(dI+rPPP+mP +mPP )+mPmPP )
ψ1

0

0 rY TSnIω(dI(dI+rPP+mP +rPPP+mPP )+mPP (mP +rPP ))
ψ2

rITPNnIω(dI(dI+rPPP+mP +mPP )+mPmPP )
ψ1

0

0 rY TPNnIω(dI(dI+rPP+mP +rPPP+mPP )+mPP (mP +rPP ))
ψ2
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FV −1
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







































0 0

0 0

rITSnIωmP (mPP +dI)
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0
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0
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
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ψ2

rITPNnIωmPPmP

ψ1
0
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0
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






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,

where ψ1, ψ2 and ψ3 are described as before. The spectral radius of FV −1 shown in

the article is the basic reproductive number.



Appendix F

Region 4: Region of viral

elimination; Miron and Smith? [4]

The following Appendix shows more details of the work presented in Region 4 of the

manuscript in Chapter 3.2. We include many steps that are omitted in the manuscript.

This Appendix only includes extra details on finding the mathematical results, thus

it is only used to complete the manuscript. The Appendix does not include all of the

manuscript.

Region 4 is a subset of the subregion model (E.0.1) for Region 3.

F.1 Disease-free equilibrium

The disease-free equilibrium in Region 4 shown in the article is found by letting

P ∗ → ∞ in the disease-free equilibrium for Region 3.

F.1.1 Local stability analysis

The Jacobian matrix at the disease-free equilibrium is given by J = [J1|J2|J3], where
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J1 =
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0 0 −dV 0
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If we factor out (−dV −µ) and (−dP −µ) knowing these eigenvalues are negative, we

have the following for the characteristic equation

0 =
[

(−mP − dS − rPPP − µ)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rY TPPN nIω nIω 0 0

0 −dI − rPP mP 0 0

0 rPP −dI −mP − rPPP 0 mPP

−rY TPPN 0 0 −mPP − dS 0

rY TPPN 0 rPPP 0 −mPP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rY TPPN nIω 0 nIω 0

0 −dI − rPP 0 mP 0

0 rPP 0 −dI −mP − rPPP mPP

−rY TPPN 0 rPPP 0 0

rY TPPN 0 0 rPPP −mPP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

×mPP

]

×
[

(−dV − rITPPN − µ)(−dS − rPP − µ)(−dI − rPP − µ)
(

− rPPPmPP

− (−mPP − dI − µ)(−mP − dI − rPPP − µ)
)

−mP rPP (−dV − rITPPN − µ)

× (−dS − rPP − µ)(−mPP − dI − µ) + nIωmPmPP rITPPN(−dS − rPP − µ)
]

− nIωmPmPP rITPPNmP rPP (−mPP − dS − µ)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rY TPPN − µ nIω nIω 0

0 −dI − rPP − µ mP 0
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=

[

(

(−dV − rITPPN − µ)(−dS − rPP − µ)(−dI − rPP − µ)
(

− rPPPmPP

− (−mPP − dI − µ)(−mP − dI − rPPP − µ)
)

−mP rPP (−dV − rITPPN − µ)

× (−dS − rPP − µ)(−mPP − dI − µ) + nIωmPmPP rITPPN(−dS − rPP − µ)
)

×
(

(−mP − dS − rPPP − µ)(−mPP − dS − µ) −mPP rPPP
)

− nIωmPmPP rITPPNmP rPP (−mPP − dS − µ)

]

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rY TPPN − µ nIω nIω 0

0 −dI − rPP − µ mP 0

0 rPP −mP − rPPP − dI − µ mPP

rY TPPN 0 rPPP −mPP − dI − µ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Solving the polynomial and dividing each term by P ∗4, we get

0 = µ3 + µ2(2mPP + dS + dI + dV + rIT
∗
PPN) + µ(mpp(dS + dV + rIT

∗
PPN)

+ (dI +mPP )(dV + rIT
∗
PPN) + dS(dI +mPP + dV + rIT

∗
PPN)) +mPPdS(dV + rIT

∗
PPN)

+ dS(dI +mPP )(dV + rIT
∗
PPN),

where the positivity conditions in the article are satisfied. We also need to show that

if we have µ3 + b1µ
2 + b2µ+ b3 = 0, that b1b2 − b3 > 0. In this case, we have

b1b2 − b3 = (2mPP + dS + dI + dV + rIT
∗
PPN)(mpp(dS + dV + rIT

∗
PPN)

+ (dI +mPP )(dV + rIT
∗
PPN) + dS(dI +mPP + dV + rIT

∗
PPN))

−mPPdS(dV + rIT
∗
PPN) − dS(dI +mPP )(dV + rIT

∗
PPN)

= (2mPP + dS + dI + dV + rIT
∗
PPN)(mpp(dS + dV + rIT

∗
PPN)

+ dI(dV + rIT
∗
PPN) + dS(dI +mPP )) + (2mPP + dI + dV + rIT

∗
PPN)

× (mPP (dI +mPP ) + dS(dV + rIT
∗
PPN)),

which is greater than zero. The results follow in the article.
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Solving the matrix in the characteristic polynomial, we get

0 = (−dI − rPP − µ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rY TPPN nIω 0

0 −mP − rPPP − dI mPP

rY TPPN rPPP −mPP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

−mP

∣

∣

∣

∣

∣

∣

∣

∣

∣

−dV − rY TPPN nIω 0

0 rPPP mPP

rY TPPN 0 −mPP − dI

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−dI − rPP − µ)(−dV − rY TPPN − µ)((−mP − rPPP − dI − µ)(−mPP − dI − µ)

−mPP rPPP ) + (−dI − rPP − µ)nIωmPP rY TPPN −mP rPP (−dV − rY TPPN − µ)

× (−mPP − dI − µ) −mPnIωmPP rY TPPN

If we divide each term by P ∗2 and take P ∗ → ∞, we get

0 = λ2 + λ(dV + rY T
∗
PPN + dI) + (dV + rY T

∗
PPN)dI .

The results in the article follow for the stability of the disease-free equilibrium.



Appendix G

Additional information; Section 3.2

Simulation details and positivity conditions for the manuscript in Section 3.2; Miron

and Smith? [4]

Numerical Simulations: The software used to plot the figures in the manuscript

presented in Section 3.2 [4] was Matlab.

Figure 2 is a plot of the curve

s(t) =
R(t)

R(t) + IC50

,

the inhibition of viral replication (page 3 of manuscript in Section 3.1). The values

used to plot this curve can be found in Table 2 of the manuscript in Section 3.2 and

in Table C.1 below.

Table C.1. Parameters used in Figure 2.

Parameter/state variable Units Range References

P i µM 15.5 [145]

dP days−1 24 ln(2)/(6.2) [22]

τ days 0.5 [145]

IC50 µM 0.02 [145]

Figure 3 plots the equations from page 26 of the manuscript [4]. All the param-

eters are presented in Table 2.
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The parameters and initial conditions used to plot Figure 4 are presented in

Table 2. We used ode45 to solve the ordinary differential system between the three

regions. We reset the initial conditions when an impulse occurs, meaning we add P i

to the drug equation and do not change any other solution (since the impulse only

affects the drug). We then run the ordinary differential equations again.

Figures 6–9 are derived from the same procedures as explained in Appendix B

(Sensitivity Analysis).

Positivity of Solutions: We will now show the positivity of solutions. We will

show this for the entire system, meaning the results follow for each subregion (Re-

gions 1, 2 and 3). We prove that if VI(0) ≥ 0, VY (0) ≥ 0, VNI(0) ≥ 0, TS(0) ≥
0, TI(0) ≥ 0, TY (0) ≥ 0, TPN(0) ≥ 0, TPI(0) ≥ 0, TPY (0) ≥ 0, TPPN(0) ≥ 0, TPPI(0) ≥
0, TPPY (0) ≥ 0, then these variables stay nonnegative in t > 0.

Proof of positivity: Note that we can write our equations as x′ = F (x)−G(x)

where F (x) = {nIωTI , nIω(TY + TPY ), nI(1 − ω)(TI + TY + TPY ) + nI(TPI + TPPI +

TPPY , λ+mPTPN , rITSVI+mPTPI , rY TSVY +mPTPY , α1rPPTS+mPPTPPN , rITPNVI+

α1rPPTI + mPPTPPI , rY TPNVY + α1rPPTY + mPPTPPY , α2rPPPTPN , rITPPNVI +

α2rPPPTPI , rY TPPNVY + α2rPPPTPY } and all remaining terms are in G(x). Now

notice that, in x ≥ 0, F (x) ≥ 0 and, for each xi, Gi(x) = 0 if xi = 0. Thus if the

moving point {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12} is in the nonnegative space,

then no compartment of F (x) is negative, and if the point is on any “plane” xi = 0,

then that compartment cannot become negative (because xi = Fi(x) − Gi(x) ≥ 0).

Considering that the right-hand sides are polynomials, this proves the invariance of

the positive space of our system.

Errata: Equilibrium T cell counts: The total uninfected T cell count for Region

2 (page 25, paragraph 2), should be an inequality instead of an equality. It should
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read

T ∗
S + T ∗

PN ≤ T ∗
S +

rPP
∗T ∗

S

mP + dS
.

Discussion Figures 4 and 5 (page 27): Figures 4 and 5 describe trajectories

either remaining within a region (Figure 4, page 42) or crossing multiple regions

(Figure 5, page 43). Since impulses are included, we expect sudden changes in the

behaviour of the trajectories when an impulse occurs. For example, in Figure 4(a),

the cusp is actually just a corner since no impulses occur (in Region 1). Figure 5(c)

appears to have two impulses, but this is misleading. The dynamics are such that

trajectories seem to increase in both the wild-type and mutant initially (mostly wild-

type, since we are moving from Region 1 to Region 2), then an impulse occurs that

drives the wild-type and mutant towards zero. There is a second cusp that seems to

occur where we do not have an impulse. In this case, we have a corner that seems

to indicate leaving Regions 3/4 (see Figure G.1 for a close up). We enter Region 2,

where we have an increase in the mutant population, and then fall into Region 1,

where we have an increase in the wild-type population.
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Figure G.1: Closer look at Figure 5(c) in manuscript: The behaviour when
trajectories of drug concentrations cross all regions.



Appendix H

Rift Valley Fever

H.1 Etiology

RVF is a member of the Bunyavridae family of viruses; all five genera in this family

are pathogenic [47, 50]. RVF belongs to the Phlebovirus genus, which is one of three

arthropod-borne genera in Bunyavridae [47, 50]. Most members of Phlebovirus are

transmitted by sandflies; however, RVF is typically transmitted by mosquitoes under

natural circumstances [46, 51]. RVF’s nucleocapsid is sphere-shaped, encased in a

bilayered lipid envelope and encrusted with glycoprotein spikes [50]. House et al.

state that RVF is approximately 90-100 nm in diameter [50], while Gerdes states that

it can reach 120 nm in diameter [47]. There are three segments to RVF’s single-

stranded ribonucleic genome [47, 50].

H.2 Vectors

RVF is transmitted to vertebrate hosts by an extremely wide variety of arthropod

vectors: over 40 species of mosquitoes from eight different genera have been isolated

in the field [46, 51]. Mosquitoes appear to be the primary vector in RVF transmission

336



H. Rift Valley Fever 337

and are involved with its maintenance; sandflies are capable of transmitting the virus

in a laboratory setting [46, 47, 51]. Mosquitoes belonging to the Aedes genus are an

important vector, as they may vertically transmit infection to their young through

transovarial transmission, enabling the maintenance of RVF during interepizootic

periods [47, 48]. Culex species and those belonging to Eretmapodites are believed to

be strongly involved with epizootic outbreaks; no evidence has been found to indicate

that Culex spp. are capable of transovarial transmission [47, 48]. RVF can also be

transmitted through aerosol exposure from handling infected carcasses; laboratory

workers, veterinarian, and individuals involved with meat processing are particularly

vulnerable to this form of infection [45, 46, 47, 48, 51].

A vector’s ability to transmit a virus is based on a number of intrinsic and extrin-

sic factors; as such, not all vectors are equally competent or capable of transmission

[47]. In order for a mosquito to successfully transmit the virus to a vertebrate host,

the mosquito itself must be susceptible to oral infection. Once the mosquito is in-

fected, the virus must be capable of disseminating beyond the mosquito’s midgut to

its salivary glands [46, 47, 51]. This is not always possible, as different mosquito

species have different biological barriers [46, 47, 51]. For example, Turell et al. found

that vector competence in Culex species was mostly determined by the midgut escape

barrier, while competence was limited by salivary gland barriers in Aedes [51]. Ex-

trinsic factors such as temperature and rainfall have an extremely important impact

on the vector capacity of different mosquitoes as they affect their susceptibility and

ability to transmit infection; these factors also influence host availability and density

[41, 43, 47, 48, 149].

H.3 Hosts

RVF has a very wide range of viable vertebrate hosts, as one might expect when

considering the diversity of its vectors [52]. RVF’s most significant amplifier hosts
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are domestic ruminants such as sheep and cattle [46, 47, 51, 52]. Newborn lambs and

kids are most susceptible to disease, followed by calves and sheep [47, 50]. Moderate

disease occurs in adult cattle, sheep, goats, humans, water buffalo and rats; humans

and ruminants are capable of developing enough viraemia to infect mosquitos [47, 50].

Camels, horses, pigs, cats, dogs, guinea pigs, rabbits, hedgehogs and monkeys are

susceptible, but do not necessarily display clinical disease [47, 50]. Birds, with the

exception of pigeons and chickens, and rerptiles are believed to be resistant to infection

[47, 50]. Balkhy & Memish [52] state that fatality in adult cattle and sheep can be as

high as 30%, while young animals may experience 100% fatality. Gerdes [50] states

that disease is most significant in young animals, particularly lambs and kids, which

may experience 70-100% mortality. Newborns typically experience 100% fatality and

most epidemics are defined by high incidences of fetal death, or as Gerdes wrote:

abortion storms [50].

RVF tends to localize in the liver of humans and animals; it may also localize

in other organs such as the brain and spleen [47, 50]. Both animals and humans

may experience fever and hepatitis [52]. Abortion is a medically and economically

significant manifestation of RVF in susceptible animal hosts [47, 50, 52]. Clinical

disease varies with host species and is generally most severe in younger hosts [47, 50].

For example, clinical disease in lambs is characterized by 90-100% mortality, weakness,

anorexia and listlessness, while adult cattle typically display fever and experience

mortality rates of 10% at most [47]. Prior to the Egyptian outbreak in 1977, clinical

disease in humans had mostly been asymptomatic or quite mild, often manifesting as

with influenza-like symptoms, febrile illness and occasionally retinitis [46, 47, 50, 52].

Although the majority of clinical disease continues to be mild, complications such as

encephalitis may occur and less than 1% of cases may present as a potentially fatal

haemorrhagic fever [46, 47, 50, 52].

In order for a vector-borne emerging infectious disease to become endemic in a

new location, there must be a sufficient number of susceptible hosts and competent
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vectors [53]. Due to RVF’s large range of viable hosts and vectors, its potential to

establish itself elsewhere is especially high compared to other vector-borne diseases.

Gaff et al. [54] modelled RVF’s transmission using an ordinary differential equation

model for two populations of mosquito species — those that can transmit vertically

and those that cannot — and one population of domestic livestock animals with

disease-dependent mortality. They analyzed the model to find the stability of the

disease-free equilibrium and tested which model parameters affect the stability most

significantly. By changing the values for contact rates and death rates associated

with cattle, the authors showed that, for any given contact rate, there is a low level

of endemic prevalence, meaning the disease could persist if introduced in an isolated

system.

H.4 Epidemiology

Outbreaks of RVF are cyclical and are characterized by epizootic periods and interepi-

zootic periods [47, 50, 51]. In order for an epizootic period to occur, there must be

a significant number and density of effective vectors and susceptible amplifying hosts

[47]. The duration and maintenance of the transmission cycle during interepizootic

periods are dependent on geographic location, climatic conditions and available host

and vector species [41, 47, 50, 51].

Interepizootic periods tend to be shorter in wetter climates [50]. RVF is believed

to be maintained during interepizootic periods through enzootic cycles, transovarial

transmission and possibly through ruminant migration [50]. Aedes mosquitoes are

floodwater mosquitoes that typically lay their eggs on dry substrate where they re-

main dormant for extended periods of time until flooding events; species capable of

transovarial transmission enable the persistence of the virus [41, 44, 47, 50, 51]. In

northern and western Africa, endemic cycles are enabled by vectors that breed on

stagnant water and are active year round [50].
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The effects of environmental conditions on the spread of the disease [150, 151],

demonstrate that the incidence of many vector-borne infectious diseases shows sea-

sonality, and extreme weather events are frequently accompanied by additional out-

breaks. Bicout and Sabatier [150] constructed a model showing the effects of rainfall

trajectories on RVF mosquito vectors in the course of time. They assessed the preva-

lence of RVF in a population of susceptible hosts as a consequence of rainfall. Spatial

spread of the virus was also examined by Favier et al. [152] to assess the possibility of

endemicity without wild animals providing a permanent virus reservoir. They showed

that endemicity without a permanent virus reservoir would be impossible in a single

site except when there is a strictly periodic rainfall pattern; however, it would be

possible when there are herd movements and there is sufficient inter-site variability

in rainfall, which drives mosquito emergence.

Epidemics are typically initiated by the appearance and increased activity of

large populations of vectors [50]. RVF’s vectors and the virus itself are ectothermic;

as such, their reproductive capacity and success are directly related to climate [42].

In sub-Saharan Africa where transovarial transmission occurs, epidemics are strongly

correlated with significant flooding events, such as those related to heavy rainfall from

warm ENSO events [41, 42, 44, 47, 50, 51]. In areas where transovarial transmission

does not occur, epidemics are not necessarily correlated with heavy rainfall events and

may be initiated by migration of infected animals, anthropogenic activity such as dam

building or irrigation, mosquitoes blown in by the wind from endemic areas or even as

a result of increased host susceptibility induced by other diseases [39, 45, 49, 50, 149].

Outbreaks may be controlled through costly vaccination and vector-control programs

[41, 47]. Gaff et al. [153] extended their original model [54] in order to compare

efficacy of vaccination with alternative countermeasures such as managing mosquito

population or destroying infected livestock. The model was also modified by including

logistic growth for the mosquito population. Their results suggested that livestock

vaccination and culling offered the greatest benefit in terms of reducing livestock
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morbidity and mortality.

H.5 Discussion: RVF’s Potential to Spread

RVF’s 1977 outbreak in Egypt established its potential as an emerging infectious

disease due to its expansion beyond its native sub-Saharan range and because of its

increased virulence in human hosts. The success of an emerging disease is defined by

its ability to disseminate and establish itself outside its natural boundaries [39].

In order for a vector-borne emerging infectious disease to become endemic in a

new location, there must be a sufficient number of susceptible hosts and competent

vectors [47]. Due to RVF’s large range of viable hosts and vectors, its potential to

establish itself elsewhere is especially high in respect to other vector borne diseases.

A number of studies have demonstrated that many European and North American

mosquitoes, including floodwater species possibly capable of transovarial transmis-

sion, can become viremic and are able to transmit the virus under laboratory settings

[45, 46, 47].

Dissemination from established populations to novel ones is called microbial traf-

fic, a process that is frequently exasperated by anthropogenic activity [39]. Increased

microbial traffic resulting from international trade and travel are particular concerns

for RVF due the virus’ ability to create significant viraemia in both livestock and

humans; Meegan, for example, postulated that RVF disseminated to Egypt via the

movement of UN troops [49]. In 1992, House et al. [47] wrote that the international

trade of live, and potentially viremic, animals posed a significant threat and deemed

it fortuitous that RVF had not yet established itself in the Arabian Peninsula. The

Arabian Peninsula’s fortunes changed in 2000 when not one, but two outbreaks of

RVF occurred with the highest human case fatality rate to date [52]. Anthropogenic

change to natural ecosystem processes is also a driving process behind the emergence

of infectious disease; in RVF’s case, dam construction and agricultural activity such as



H. Rift Valley Fever 342

irrigation have played a particularly important role in its success [39, 40]. Agricultural

and economic development can expose new populations to disease through proximity,

or create favourable conditions for an outbreak; in RVF’s case, dam construction and

irrigation can increase flooding, enabling an outbreak by allowing mosquito vectors to

reach a sufficiently high density [39, 44]. Flooding activity resulting from the comple-

tion of the Aswan dam is believed to have enabled the 1977 outbreak in Egypt [52].

This trend was also notably observed in the Mauritanian outbreak of 1987, which

followed the construction of the Diama dam along the Senegal River [39, 52]. Global

climate change also has great potential to affect incidences of RVF outbreaks as many

of its vectors are strongly affected by climatic variability [42].

H.6 Conclusion

Since its identification in 1931, RVF has spread from sub-Saharan Africa all the way to

the Arabian Peninsula. RVF’s potential to spread outside its current range is of great

concern due to the plausibility of that situation and because of its ability to cause

both economic and human loss. This potential is based on the availability of viable

hosts and vectors, as well as appropriate environmental conditions. Preparedness,

recognition of the clinical signs and an active disease-reporting system will all be

necessary to moderate the consequences of any outbreaks in novel environments [47].



Appendix I

Additional information; Section 5.1

Simulation details and extra comments for the manuscript in Section 5.1; Miron and

Smith? [5]

Numerical Simulations: The software used to plot the figures in the manuscript

presented in Section 5.1 was Matlab.

Figure 2 is a plot of the curve presented by equation (68) in the manuscript. The

total livestock population is assumed to be 1000. All the parameters are presented in

Table 2 of the manuscript.

The parameters used to plot Figure 3–6 are presented in Table 2 in the manuscript.

The initial conditions are assumed to be 1000 for the susceptible and livestock popula-

tions, 10,000 for the susceptible mosquito population and 10 for the infected mosquito

population. All other initial conditions are set to zero. For Figures 5 and 6, the im-

pulses occur after 230 days. We used d3 = 1/5 for the figures where R0 < 1, and we

used d3 = 1/20 for the figures where R0 > 1. We used ode45 to numerically solve the

ordinary differential equations. We reset the initial conditions when an impulse oc-

cured, meaning we add the impulse conditions presented by the difference equations

(6)–(8) in the manuscript. We then ran the ordinary differential equations again.

Table I.1 shows the parameters used for the impulse conditions.
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Table I.1. Range of parameters.

Parameter Value

r1 0.1

r2 0.4

r3 0.98

p1 0.1

p2 0.4

p3 0.01

c 10

Figure 7 is derived from the same procedures as explained in Appendix B (Sen-

sitivity Analysis). Figure 8 plots the coefficients described by equations (37)–(39).

The parameters used are presented in Table 2 of the manuscript. Figure 9 plots the

curves

y = x3

y = Ax+B,

where A and B are described by equations (51) and (52) in the manuscript. The

parameters used are presented in Table 2 of the manuscript.

Errata:

1. Table 1. The units for βLH should be days−1.

2. On page 9, paragraph 1 of Section 3, line 5, it should read “In the case of RVF,

we only consider sufficiently small perturbations away from the disease-free

equilibrium because the disease is not present in North America.”

3. On page 9, paragraph 2 of Section 3, line 2, it should read “For fixed parameters

and fixed state variables, the stability changes as the mosquito death rate

dM varies.”
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4. On page 12, first paragraph, line 3, it should read “A fraction p1 of the popu-

lation dies and is replaced with an equal fraction.”

5. On page 12, last paragraph, line 1, it should read “r3 is the fraction of decrease

in the mosquito population.”

6. In the last sentence of Section 5.1, bottom of page 15, we say “The infection does

not completely eradicate the virus, which suggests that the endemic equilibrium

is stable.” In this case, we are talking about how, when R0 > 1, the infection is

not completely eradicated. It is not the infection that eradicates a virus. This

sentence is meant to further explain that, since the infected populations persist

for R0 > 1, the endemic equilibrium is stable.

7. We also need to highlight a discrepancy in the last sentence of Section 5.3, pages

17–18. We say “R0 is most sensitive to the mosquito death rate, as Figure 7(b)

shows”. Figure 7(a) is the partial rank correlation coefficient sensitivity analysis

on R0 for all parameters, whereas Figure 7(b) is the the effect of the disease

death rate on R0 using Latin Hypercube Sampling. We thus have that Figure

7(a) shows that R0 is most sensitive to the mosquito death rate. Figure 7(b)

only shows the effect of the disease death rate on R0, and not that R0 is most

sensitive to the disease death rate.

8. On page 21, paragraph 2, there is a discrepancy from an earlier version of the

paper. It should read “The sufficient and necessary condition given in Section

A.2 to have eigenvalues with negative real part (ensuring that the disease-free

equilibrium is stable) is 0.15 < dM < 0.68, where dM is the mosquito death

rate.” The next three sentences should be ignored since this was later proven in

the recent version of the manuscript.
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