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ABSTRACT 

Surface-wave over-the-horizon radars, especially ones located in 
tropical areas, such as Northern Australia, are usually strongly af- 
fected by external impulsive noise. Apart from thunderstorm activ- 
ity, man-made (industrial) noise over typically quite long coherent- 
integration time often is of impulsive nature as well. 

In this paper we analyse the efficiency of temporal and spatial 
adaptive techniques for impulsive noise mitigation. We demon- 
strate that for heavily contaminated dwells, new spatio-temporal 
adaptive processing is most effective. Initial impulsive noise mit- 
igation, produced by adaptive spatial processing is used for range 
and azimuth dependent sea-clutter spectrum estimation. Estimated 
sea-clutter spectrum is then used to "restore" the "missing" data, 
originally contaminated by impulsive noise. 

1. DESCRIPTION AND ANALYSIS OF MITIGATION 
TECHNIQUES 

The High Frequency Over-the-Horizon Radar (HF OTHR) proba- 
bly constitutes the most prominent example of radars subjected to 
severe impulsive noise interference. Tropical thunderstorms which 
are extremely active in equatorial regions such as Northern Aus- 
tralia, typically generate a significant number of lightning strikes 
within the operational range of HF OTHR due to relatively long 
coherent processing intervals. In [2] based on experimental data 
collected in Northern Australia, we introduced point process mod- 
els for atmospheric noise adequate to spatial and temporal adap- 
tive impulsive noise mitigation. It has been suggested that optimal 
mitigation technique should incorporate both spatial and temporal 
domains based on the properties of particular lightning strike. 

Our recent experimental trial conducted from May to Septem- 
ber 2000 in Northern Australia revealed that accidental human- 
made noise that quite often interferes with a HF radar, is in most 
cases also highly nonstationary. The atmospheric strike typically 
occupies a single repetition period or at most a few consecutive 
repetition periods (for high air-mode waveform repetition frequen- 
cies WRF=40 - 60 Hz), man-made impulsive interference typically 
occupies significantly longer intervals, measured in dozens of rep- 
etition periods (sweeps). Typical examples of atmospheric and 
man-made impulsive noise are presented in Fig. 1, 2. The am- 
plitude of the range processed data at the output of one particular 
beam are shown for different ranges (y-axis) as a function of repe- 

tition period (x-axis). One can see significant difference in number 
of sweeps contaminated by atmospheric and man-made impulsive 
noise. Another important feature demonstrated by these figures is 
the availability of "sea clutter-free ranges". These ranges allow 
for straight-forward identification of sweeps affected by impulsive 
noise. 

Obviously, analysis of impulsive noise mitigation efficiency 
should be expanded to man-made interference. Indeed, since only 
up to 30% of entire dwell is typically corrupted, there is a reason 
to compare spatial techniques with temporal onesfl]. 

In this paper we introduce comparative analysis of different 
temporal and spatial adaptive techniques, suitable for impulsive 
noise mitigation. 

Since the actual interval corrupted by impulsive noise is easily 
identified, temporal techniques are focused on a proper estima- 
tion of the missing sea-clutter data. For surface-wave radars with 
typically very high sub-clutter visibility that can range far above 
60 dB, an accurate estimation can become a problem. 

To address this problem two major approaches could be adopted. 
The first one is based on classical Weiner prediction filter. Compli- 
cated nature and range/azimuth variability of sea-clutter Doppler 
spectrum impose limitations on the actual accuracy of this ap- 
proach. 

The second technique is based on direct optimization of re- 
placement data to minimize the total power within the specified 
range of Doppler frequencies which are expected to be free of sea 
clutter. This technique has a different limitations, especially when 
the number of missing data is quite large and consecutive. How- 
ever, in attempt to minimize the overall power, strong targets could 
be suppressed and some important features of the sea-clutter spec- 
trum could be significantly damaged. Spatial techniques are effec- 
tive when strong impulsive interference impinges on a beampat- 
tem sidelobes. Meantime, when the entire coverage is important, 
there would always exist directions corrupted by impulsive noise 
propagated via the main beam. 

Comparative analysis of the above mentioned techniques was 
done firstly on uncorrupted SW OTHR data with subclutter visi- 
bility close to the limit. One selected example is shown in Fig. 
3. A certain number of sweeps has been nominated as being "cor- 
rupted" and two abovementioned temporal techniques have been 
used to restore the "missing" data. 

In order to apply the classic prediction (interpolation) approach, 
we first estimated the sea-clutter temporal covariance matrix. With 
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N = 1000 repetition periods typically used in ship mode, we se- 
lected M < N/2, M = 400 as adimension of prediction/interpolation 
filter in expectation that whatever the actual number of missing 
repetition periods is, there still should be a sufficient number of 
uncorrupted repetition periods (sweeps) within corresponding M- 
variate "sliding window" of our prediction filter. The M-variate 
(range-dependent) sea-clutter covariance matrix is estimated here 
by forward-backward averaging: 

tf-M+l 

*«=    E    (XfiXff+JX'iXfj) 

where 

Xj  — (Xj , Ij + i, ■ • • , 2j + M) 

"0,   ...   ,r 

1, ,0. 

(1) 

(2) 

(3) 

and xd is the complex number that corresponds to j-th repe- 
tition period and d-th range cell. Particular beam number is not 
essential for this temporal processing. 

Let us introduce an M x (M — m) variate incidence matrix 
Hm that is constructed as standard identity matrix with m deleted 
rows at positions that correspond to the "missing" sweeps. Then 
the adaptive prediction filter that generates an estimate of the k-th 
missing data is defined as 

w£ =   HmRdH„ Hmrk,   k = l,...,m (4) 

where rj! is k-th column of the M-variate matrix Rd. 
Correspondingly, the estimate xd,   k = 1,..., m of th k-th 

missing sweep is defined as 

xd
k = W£HHlXd,   * = 1 m (5) 

Our second approach is based on direct search for the m-variate 
vector Xm for "missing" data that with respect to the remaining 
(N — m) "valid" data results in the minimal total power within 
some designated range of Doppler frequencies. 

Specifically let us present the overall N-variate vector Xd as 

X   — Ao + n„ (6) 

here Xd is a N-variate vector with zeroes the positions of "miss- 
ing" data, Am is N x m-variate incidence matrix, where rows of 
the m-variate matrix are "spread" over N rows, corresponding to 
the positions of the missing data. 

Weighted Discrete Fourier Transform (DFT) over the vector 
Xd could be presented as 

FD(Xd + Amxm) (7) 

and with (N — n) x N selection matrix S, the (N — ro)-variate 
vector of selected Doppler bins within the d-th range Doppler spec- 
trum could be presented as 

SFD(X$ + Am£m) (8) 

where F is the N-variate DFT matrix, D is a diagonal weighting 
matrix (e.g. Blackman window). 

Finally, the overall power within this Doppler window could 
be presented as 

XdHDFHSSTFDXd + xmkmDFH SST DAmxm +     (9) 

crx^AZDFHSSTFDX^+XdHDFHSSTFDAmxm.  (10) 

Correspondingly the optimum solution is 

xm = -[t&DFHSSTFDkm]-lfl£DFHSSTDXZ.    (11) 

(For rank deficient matrix [AmDFHSSTFDAm] this solution is 
modified to operate on signal subspace of this matrix.) Now these 
techniques could be compared. Fig 4 presents the Doppler spectra 
for m = 100 of "missing" data for one range cut Both random 
(atmospheric like) and continuous (man-made like) distributions 
of "missing" data within the 400 sweeps long window have been 
analysed. Different number of missing sweeps have been analysed, 
m = 1,40,60,100, however only m = 100 continuous case pro- 
cessed with optimization filter is shown (the only one which shows 
any difference from the original). 

The results demonstrate that for randomly distributed "miss- 
ing" data both techniques provide equally good restoration. The 
prediction errors are equally small and sub-clutter visibility is re- 
stored to the original level in this case. However in the case of 
continuous "missing" data both methods work equally well only 
for a small number of "missing" sweeps. For increased number of 
consecutive missing data the difference between these two tech- 
niques becomes more significant. While classical prediction is 
still efficiently restoring missing data (up to 100 of missing data 
for 400-variate prediction filter), optimization (11) generates esti- 
mates xm significantly different from the true missing ones. These 
estimates lead to reduction in overall noise power within the spec- 
ified Doppler area, but the overall structure of the Doppler spec- 
trum changes significantly. For most practical applications these 
changes could not be tolerated. Moreover, with significant num- 
ber of "degrees of freedom", total power minimization could con- 
siderably reduce the target signal as well. Thus, for a randomly 
distributed missing data or small number of consecutive missing 
data (up to 20 consecutive sweeps) the optimization technique (11) 
could be recommended as a preferred option since it does not in- 
volve (adaptive) sea-clutter spectrum estimation. For typical man- 
made impulsive interferences, this approach is not appropriate and 
attention should be attracted to a practical implementation of adap- 
tive prediction technique (4)-(5). Main problem here is to get 
an accurate enough estimate for the sea clutter covariance matrix 
Rd- Since the dimension of this matrix (prediction filter) should 
be significantly greater than the number of missing sweeps - real 
(corrupted) data should not be used directly for sample matrix es- 
timation (1) in the way it has been done in our previous study 
with uncorrupted data. Since all ranges are usually equally cor- 
rupted by impulsive noise, spatial diversity could be explored to 
assist sea-clutter covariance matrix estimation. Indeed, in most 
cases truly dominant impulsive noise sources are well localized 
and even with conventional beamformer it is usually possible to 
find the least contaminated direction (beam). While Fig 2 displays 
the range map for the most occupied beam, the top line in Fig 6 
demonstrates distribution of this impulsive noise power-to-noise 
ratio across the beams. It is quite obvious, that in the "minimal" 
beam (N=7) the power of this noise is significantly smaller and 
range processed data of this beam could be used for covariance 
matrix estimation. Obviously, adaptive spatial processing is even 
more effective in terms of reduction of antenna pattern sidelobes 
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affected by impulsive noise. The bottom line in Fig 6 presents the 
similar impulsive noise to white noise ratio as a function of beam 
direction for spatial adaptive processing (SAP). Here sea clutter- 
free ranges are used to estimate sample spatial covariance matrix 
Ä„; 

A-* =£*£*# apH 

djee 

where 

*d,j - Kxd,j<---<xd,j ) 

(12) 

(13) 

9 is the sea-clutter free ranges area and SAP beamformer is defined 
as usual by 

WSAP(1) = 
S?R-slSi 

(14) 

with Si as a 32-variate steering vector. 
The most important issue that needs to be addressed to jus- 

tify this approach is sensitivity of this technique with respect to 
sea-clutter azimuthal variability. Indeed, we are prepared to use 
the sea clutter training data collected at the output of one particu- 
lar (adaptive) beam, but apply it to quite a different (conventional) 
beamformer output. In order to investigate the efficiency of such 
technique, we analysed our "clean" data with nominated "missing" 
data. For Weiner prediction filter there is no visible difference for 
one range-doppler cut between the original data and restored ones 
even for quite large number of missing data (m=100), regardless 
of the fact if the data are random or consecutive. For the opti- 
mization filter the same can be said for random distribution of the 
replaced sweeps However the same cannot be said for consecu- 
tive sweeps as the inverted matrix becomes ill conditioned. The 
Fig 4 demostraies. there is some degradation of the signal in the 
"sea clutter"' area 

Finall\ we illustrate the practical efficiency of our approach 
buy processing the real contaminated data shown in Fig 1,2. 

For uV dau shown in Fig I optimization technique (11) should 
be appropriate since onl> one dominant "strike" is recorded here. 

The results of this technique applied to one beam Fig 5 demon- 
strate quite impressive improvement in sub-clutter visibility. Par- 
ticular range profile shown in Fig 7 demonstrates 35 dB improve- 
ment in sub-clutter visibility while the standard SAP has delivered 
only mere S-lddB 

Our second example deals with the man-made impulsive noise, 
as per Fig 2 V« rule SAP is practically not effective for the data 
collected ai toe direction of impulsive noise arrival (beam 4) it 
provides quite reasonable improvement for beam 7 data that thus 
could be used as training one The above described approach with 
adapuve prediction filter "trained" on beam 7 data and applied to 
beam four data is illustrated by Fig 8. The particular range pro- 
file demonstrates improvement in sub-clutter visibility up to 20 
dB. Note that quite significant part of coherent processing interval 
(CPI) has been contaminated here. Interestingly enough, when the 
same predicuon filter is applied to the training data of the beam 
7 (Fig 9), still considerable additional improvement with respect 
to the SAP processing has been obtained. The reason behind be- 
comes clear when sea clutter free ranges processed by SAP are 
analysed: impulsive noise residues are still some 10 dB above the 
ambient noise floor. Therefore the replacement of these corrupted 
repetition intervals by predicted ones results in additional improve- 
ment in sub-clutter visibility. 

2. CONCLUSION 

Analysis of selected temporal and spatial adaptive techniques for 
atmospheric and man-made impulsive noise mitigation for SW 
OTHR has been performed. It has been demonstrated that tem- 
poral or spatial only processing could be effective only in special 
cases. For contaminated repetition periods which are randomly 
distributed over CPI, direct optimization method is shown to be 
very effective. For some beam directions affected by impulsive 
noise via antenna pattern sidelobes, standard spatial adaptive pro- 
cessing could be also quite effective on its own. In more general 
case, when the number of contaminated sweeps is quite signifi- 
cant and consecutive (man-made impulsive noise), and impulsive 
noise must be rejected in all directions, proposed spatio-temporal 
adaptive processing is shown to be most effective. Here spatial 
(adaptive) processing is used for initial impulsive noise mitiga- 
tion, and the beam where this reduction is maximal is used as a 
training one for sea-clutter (temporal) covariance matrix estima- 
tion. Adaptive Weiner filter trained by the spatially processed data 
is then applied to contaminated (conventionally) beamformed data 
with similar energetic content of Doppler spectra. 
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Figure 1: Atmospheric impulsive noise, beam 1. 

Figure 2: Man-made impulsive noise, beam 4. 

Figure 3: "Clean" data used for comparison. 
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Figure 4: Comparison of original data and optimization filter with 100 consecutive sweeps replaced. 
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Figure 5: Comparison of conventional, SAP and optimization beamformer. 
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Figure 6: Power distribution accross beams, top convetional beamformer, bottom SAP. 
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Figure 7: One range cross section, top-original,middle-SAP,bottom-optimization 

Figure 8: Weiner prediction filter trained on beam 7, used on beam 4. 

Figure 9: Weiner prediction filter trainde on beam 7, used on beam 7 top line - SAP bottom line - Weiner prediction filter. 
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