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1 Introduction

Wireless communication systems are usually designed assuming Gaussian noise. �is 

fundamentally impacts many solutions that are used in transmitters and receivers. �is 

is especially the case when it comes to the design of the receiver decision strategy which 

is typically directly derived from Gaussian assumptions. When these assumptions are 

not satisfied, or the interference is far from Gaussian, the receiver is significantly sub-

optimal in its performance. One frequently encountered type of noise is designated by 

the term impulsive. However, this term covers a lot of different statistical models and 

each model gives rise to many different communication strategies. In this paper, we aim 

to give insight in the choices that can be made to model the noise and design an adapted 

receiver. We want this receiver to be flexible enough in order to exhibit performance 

Abstract 

Interference is an important limitation in many communication systems. It has been 

shown in many situations that the popular Gaussian approximation is not adequate 

and interference exhibits an impulsive behavior. This paper surveys the different statis-

tical models proposed for such an interference, that can generally be unified using the 

class of sub-exponential family of distributions, and its impact on the receiver design. 

Visualizing the optimal decision boundaries allows one to show the non linear effect 

induced by impulsive noise models, which explains the significant loss in receiver 

performance designed under the standard Gaussian approximation. This motivates the 

need to develop new receivers. We propose a framework to design receivers robust to 

a variety of interference types, both Gaussian and non-Gaussian. We explore three ways 

of thinking about such receiver designs: a linear approach; by approximating the noise 

plus interference distribution; and by mimicking the decision rule distribution directly. 

Except for the linear approach, the other designs are capable of replicating the non-

trivial optimal decision regions to different extents. The new detection algorithms are 

evaluated via Monte Carlo simulations. We focus on four efficient architectures, includ-

ing the parameter estimations: Myriad, Normal Inverse Gaussian, p-norm and a direct 

estimation of the likelihood ratio function. They exhibit good performance, close to the 

optimal, in a large range of situations demonstrating they may be considered as robust 

decision rules in the presence of heavy tailed or impulsive interference environments.

Keywords: Interference, Impulsiveness, Robust receiver, Normal Inverse Gaussian 

distributions

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons .org/licen ses/by/4.0/.

RESEARCH

Clavier et al. J Wireless Com Network         (2021) 2021:13  

https://doi.org/10.1186/s13638-020-01868-1

*Correspondence:   

laurent.

clavier@imt-lille-douai.fr 
1 IMT Lille Douai, Univ. Lille, 

CNRS, UMR 8520 - IEMN, 

59000 Lille, France

Full list of author information 

is available at the end of the 

article

http://orcid.org/0000-0002-3279-930X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-020-01868-1&domain=pdf


Page 2 of 30Clavier et al. J Wireless Com Network         (2021) 2021:13 

close to the optimal in many situations, from purely Gaussian noise to highly impulsive 

situations.

Impulsive noises have an important impact in many communication settings, as can 

be seen in a very recent literature: power-line communications[1, 2] or digital subscriber 

loop [3]; wireless networks and OFDM [4, 5]; wireless sensor networks [6–8]; acoustic 

communication [9, 10]; it is also frequently encountered in different vehicular communi-

cations scenarios [11].

In the literature, a variety of statistical models have been proposed for the interference, 

but it remains challenging to unify these frameworks and to select between the different 

choices for a given application. One commonly encountered feature is that the noise can 

exhibit an impulsive behaviour. �is means that large noise values can appear from time 

to time [12, 13]. �ese large samples have a dramatic impact on the receiver which is not 

supposed to see such events and fails to recover the proper data.

In this paper, we first make a survey of interference statistical models and receiver 

designs that have been developed in the wireless communications literature since the 

works from Middleton in 1977. We then propose to characterize impulsiveness in a 

mathematical way according to an overarching family of models: the subexponential 

family. �is provides valuable insight into general properties of impulsive interference, 

which were previously proposed in seemingly unrelated studies.

We then consider the detection problem in a block fading scenario. Each data symbol 

is transmitted over wireless channels and K versions of each symbol are received. �is 

transmission structure can be motivated by many different practical wireless communi-

cation systems, for example transmission for a rake receiver [14], a single-input-multi-

ple-output system [15], in a cooperative communication system involving multiple relays 

[16] or in impulse radio Ultra Wide Band systems where repetitions of the transmitted 

symbol occur [17]. However the design rule that we propose can also be applied when 

channel coding [18, 19] or CDMA are implied which induce higher dimension problems. 

However, focusing on a simple scheme allows us to better understand the underlying 

phenomena in detail.

�e main objective of this paper is not to introduce new receiver designs but to explore 

the state of the art of receiver design from a wide variety of literatures in great detail with 

regard to their decision regions and performance, adaptibility, robustness and flexibil-

ity under varying impulsive environments. We attempt to explain behaviours of classes 

of existing receivers so that one can better understand their properties relative to each 

other and make appropriate choices in a specific context. �e main contributions can be 

summarized as: 

1 We first present a review of existing works about impulsive interference modelling 

and receiver design. We define three ways to design the receiver: linear approach, 

approximation of the interference PDF or approximation of the log-likelihood ratio 

(LLR).

2 We propose in Sect. 3.3 a definition for impulsive interference using the sub-expo-

nential family. It is important because impulsiveness in communication is widely 

used but rarely defined. We also propose in Sect. 3.4 to visualize the effect of impul-

sive noise on the decision regions of an optimal receiver.
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3 We propose in Sect. 4 design strategies for robust receivers. Some are already known 

(Myriad filter [20, 21], p-norm [22]) but we are interested by their efficiency, accu-

racy and robustness when the noise characteristics change. We introduce estimation 

algorithms to ensure their adaptation capabilities. We also extend the solution we 

introduced in [23] based on the Normal Inverse Gaussian (NIG) family and propose 

a receiver that directly estimates the log-likelihood ratio function [19, 24, 25].

4 We finally evaluate through simulations the robustness of several receivers when the 

interference impulsiveness varies or when the noise model is changed in the case of 

linear, myriad, p-norm, NIG and LLR-based receivers. We also study the impact of 

the length of the training sequence.

Since we do not assume that we know a priori the interference distribution or because 

general models result in complicated (or non existing) analytical expressions for the 

PDF, it is not possible to have a fully analytical performance study. We consequently rely 

on Monte Carlo simulations to assess the performance. However, in the analysis we pro-

vide we do consider a large spectrum of interference settings so that our results are gen-

eral and our findings wide ranging in their coverage. Besides our theoretical interference 

analysis makes clear the reasons why a receiver design works and when it will fail.

2  Method and organisation of the paper

�e work is organised in three main steps:

• an important effort was made to understand previous works on interference and 

receiver and especially to understand the impact of non Gaussian noises on the 

receiver design. First we did an extensive study of the state of the art on the interfer-

ence models, presented in Sect. 3.2. �is allowed us to identify properties of impul-

sive interference (sub-exponential family, Sect. 3.3). We then proposed a clear illus-

tration of the effect of non Gaussian noise on the optimal decision that the receiver 

should make (Sect. 3.4.1). Along with a review on receiver design (Sect. 3.4.2), we 

then proposed a classification of receivers (linear, interference PDF based or LLR 

based);

• we then proposed relevant receiver strategies (Myriad filter, p-norm, Normal Inverse 

Gaussian and LLR approximation) and the necessary parameter estimations (Sect. 4). 

If we assumed that the channel is known (perfect channel state information) at the 

receiver, on the contrary, no information about the noise is known a priori;

• the different approaches are finally evaluated through simulations under different 

interference scenarios and compared to a linear approach and to the optimal receiver 

(Sect. 5). We showed that the proposed receivers can adapt to a wide range of inter-

ference settings, but the myriad filter that do not adapt well to a decrease in impul-

siveness.

In the rest of the paper we use the following notation: a bold letter (for instance Y , h ) 

refers to a vector ; if not bold (for instance s, Y, h), it refers to a scalar. A random vector 

is an uppercase bold letter ( Y ) when a lowercase bold letter is a specific realization ( y ). 

PY(y|s;h) refers to the probability of the event Y = y knowing s and h . For a continuous 
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random variable it will be the probability density function denoted as fY(y) . ŝ is the esti-

mated value of s.

Y refers to the received vector, h to the channel realization, K is the number of rep-

etitions of the transmitted bit, s is the transmitted information bit, I is the interference 

vector ans N is the thermal noise vector. Each of the previously mentioned vector is of 

dimension K × 1.

3  System model, interference modeling and receiver review

3.1  System model

For a single transmitted symbol, the received signal Y ∈ R
K  is:

where s is the unknown transmitted symbol, h ∈ R
K  is the block fading channel coef-

ficients, I ∈ R
K  is the interference and N ∈ R

K  is the thermal noise with its elements 

Nk

i.i.d.
∼ N (0, σ 2).

�e optimal receiver in terms of minimizing the Bit Error Rate (BER) is the Maxi-

mum Likelihood (ML) detector. It is given by the solution to the following optimization 

problem:

the second equality assuming independent noise samples.

Calculating (2) requires the evaluation of the measure PY

(

y|s;h
)

 . In a general 

approach, this involves several steps: (a) specify the representation of the impulsive 

noise I , either by its characteristic function (CF) or distribution function (when it exists 

in closed form); (b) if I is known only through its CF (like for α-stable distributions), find 

its Probability Density Function (PDF) through the Fourier transform; (c) calculate the 

PDF of the total interference Ik + Nk , via a convolution:

(d) conditional on the channel state information, find the likelihood function as a func-

tion of s denoted by PY

(

y|s;h
)

 and choose s that maximizes the likelihood.

�e description of these different steps serves to highlight the difficulties one can 

encounter when designing a receiver. Firstly, specifying the PDF of the interference can 

simply be a priori impossible because the transmission environment is not predictable. 

Secondly complexity can be an important issue when deriving the likelihood, for exam-

ple with Middleton or α-stable PDF. �is challenges how one approaches receiver design.

We consider the binary case only and make the following assumptions: 

1 �e unknown transmitted symbol, s, is defined on a discrete support � = {−1, 1} 

with equally likely elements to be transmitted.

2 �e block fading channel coefficients define a random vector (RV) denoted by 

h ∈ R
K  . �e distribution of the coefficients depends on the considered channel 

(1)Y = sh + I + N,

(2)ŝ = arg max
s∈�

PY(y|s;h) = arg max
s∈�

K∑

k=1

log PYk (y|s; hk),

(3)fIk+Nk
(ζ ) =

1

2π

∫ ∞

−∞

fN (τ )

∫ ∞

−∞

ϕIk (t)e
−i(ζ−τ)t

dtdτ , ∀k ∈ {1, . . . ,K };
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model (e.g. Rayleigh, Nakagami, Rician etc.). We assume perfect channel state infor-

mation at the receiver.

3 �e impulsive interference is denoted by a RV I ∈ R
K  in which all elements are 

assumed independent and identically distributed (i.i.d.). �is assumption is verified 

in some settings [26] but is an open discussion and can depend on the scenario con-

sidered [27, 28]. �e physical layer and signal processing, like discussed in [29] for 

the passband-to-baseband conversion, can lead to different dependence structure. 

Treating the dependent case, however, remains out of the scope of this paper.

4 �e thermal noise at the receiver is a RV N ∈ R
K  in which all elements are assumed 

i.i.d. with a Gaussian distribution, Nk

i.i.d.
∼ N (0, σ 2).

5 �e interference is independent of the thermal noise, i.e., I⊥N.

With these assumptions, the ML detector in (2) is given by:

3.2  Standard interference modeling

In many previous papers, it has been shown that the interference term is not adequately 

modelled with a simple Gaussian distribution assumption. We present here some of the 

key results in this regard that we summarize in Table 1.

3.2.1  Middleton model

We can trace back some works on non Gaussian noise to 1960 [30] and 1972 [31] about 

atmospheric noise. Assuming Poisson distributed sources, the CF of the impulsive noise 

can be obtained. Furthermore, appropriate assumptions on the transmission medium 

and source waveforms allow one to obtain the interference PDF. A similar approach 

based on the CF was used by Middleton [32, 33] who obtained more general expressions 

based on series expansions. He classified interference in two main categories depending 

if the noise bandwidth is less than the useful signal (class A) or greater (class B). Class C 

is a sum of class A and B.

(4)

K∑

k=1

log
PYk (y|s = 1, hk)

PYk (y|s = −1, hk)

ŝ=1
≷

ŝ=−1

0.

Table 1 Di�erent interference models

Where does the model 
come from?

What are the main results? Examples, comments, 
simpli�cation

Work from Middleton [32, 33] Distribution expressed as infinite 
series

Simplification to the most significant 
terms: ǫ-contaminated [115, 116], 
Bernoulli–Gaussian [39, 40, 117, 
118], Gaussian mixtures [37, 54], 
Markov [41, 42]

Empirical approach based on fitting 
of data and improvement of the 
receiver

Many different distributions Laplace [50], Cauchy [17], Cauchy-
Gaussian mixture [55], Generalized 
Gaussian [51–53], Normal Inverse 
Gaussian [23]

Based on stochastic geometry 
[62–64, 119]

Distribution expressed as infinite 
series

If no near-field effect, falls in the 
attraction domain of an α-stable 
distribution [17, 65, 74]
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Middleton models have been widely used in different contexts [34, 35]. It is clear how-

ever that this popular model is challenging to work with in receiver design since the den-

sity function involves infinite sums. Furthermore, for the class B, the alternating sign 

of the series of summands make truncation challenging to ensure the truncated repre-

sentation is still a positive quantity for probability calculations. Besides, the individual 

summand terms can become for large indexes challenging computationally to evalu-

ate, hence not easily computable online in real receiver settings. Consequently, several 

approximation models have been proposed. �e main approach is to consider only the 

most significant terms. For instance, it is claimed in [36] that, in many situations for the 

class A, two or three terms can be sufficient to obtain a good approximation leading to a 

Gaussian mixture [37]. Moreover, in a different context but relevant for how interference 

characterization in Sect. 3.3, it is mentioned in [38] that a Gaussian mixture can cap-

ture multi-modality, asymmetry, heavy tails, which makes it an appealing solution. �e 

two terms case is often denoted as the ǫ-contaminated noise, see [35]. In this case the 

interference PDF is P(x) = (1 − p)N
(

0, σ 2
)

+ pN
(

0, κσ 2
)

 , where p denotes the prob-

ability to have an impulse, distributed from a Normal with variance κσ
2 while (1 − p) 

gives the probability to only have the Gaussian noise with variance σ 2 . Usually, p is small 

( p = 0.01 ) and κ large ( κ = 50, 100 ). �e ǫ-contaminated model can also be expressed 

in the form of a Bernoulli–Gaussian noise [39, 40]. Noise plus interference is expressed 

as n + bi , where n is the Gaussian noise, always present, and b a Bernoulli random vari-

able with parameter p = P(b = 1) representing the frequency of impulsive noise i occur-

rence. Usually, i is represented by a Gaussian random variable with a larger variance 

than n.

In [41–43], the class A model is represented by a Markov process: the noise distribu-

tion depends on the state of the process. It reduces to the ǫ-contaminated case when 

only two states are present, but with an additional feature of time dependence structure, 

see [44].

�e popular Class B model can be approximated by an α-stable distribution [33], still 

difficult to use in practice but that we will introduce in Sect. 3.2.3.

3.2.2  Empirical approaches

More recently, many works have been done concerning Time Hopping Ultra Wide Band 

(TH-UWB) [45]. After showing that the standard Gaussian model is not accurate [46], 

non Gaussian models were developed. To specify the representation of the impulsive 

noise I for TH-UWB, Forouzan et al. [47] have studied the perfect power control case, 

synchronized or unsynchronized, and derived a tractable expression for the total inter-

ference PDF. To do so, they approximated the interference generated by one user. Sabat-

tini et al. [48] have considered the CF. �ese works do not solve the complexity issues 

and remain very specific to the studied cases. Durisi and Benedetto [49] have simplified 

the analysis, only considering the moments to derive the error probability. However, this 

does not allow an efficient receiver design. Many works have also proposed empirical 

choices that allow analytical analysis of the receiver, justified by simulations, observa-

tions of the estimated PDF and/or gains in BER. �e main solutions that have been pro-

posed include Gaussian–Laplace mixture [50], Generalized Gaussian [51–53], Gaussian 

mixtures [54] or Cauchy-Gaussian mixture [55]. In this last paper it is mentioned that 
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the heavier tail of the Gaussian Mixture allows better performance than the Laplace 

approach. Some surveys can be found in [56, 57].

All these approaches target a specific class of interference and are not supposed to 

be robust or adaptive to changing interference environments. Another class of model 

of direct relevance to interference modelling is the α-stable. It has often been used 

in the UWB context [17, 56, 58–61]. But on the contrary to the previously discussed 

approaches, it relies (when no power control is done) on a theoretical derivation (that 

can be related to a physical interpretation), closely linked to the Middleton’s work and 

finding its foundation in stochastic geometry [62–64].

3.2.3  Stochastic geometry and α‑stable

Although the first papers were published in the nineties [65–67], the analysis of net-

works has recently attracted a lot of works relying on stochastic geometry. As in Mid-

dleton’s work, interferers are assumed spatially distributed according to a Poisson field. 

In this context, the distribution of interference is expressed as

where di is the distance between interferer i and the destination and l(d) the attenua-

tion as a function of the distance; a classical model is lγ ,ǫ(d) = d
−γ 1r≥ǫ , d ∈ R

+ where 

γ is the channel attenuation coefficient; ǫ accounts for a minimum distance between the 

receiver and the transmitter for physical reasons or due to some MAC layer protocol like 

carrier sensing; Qi accommodates various propagation effects such as multipath fading 

and shadowing as well as the physical layer of the transmitters and the receiver; and � is 

the set of interferers.

If applied in an ad hoc network, an unbounded received power assumption makes the 

interference fall in the attraction domain of a stable law. �is unbounded assumption 

means taking the limit as ǫ → 0 ; in that case the received power tends to infinity when d 

tends towards zero. �e accuracy of the approximation has been questioned in [68, 69], 

but working without the unbounded received power assumption does not allow an ana-

lytical derivation of the characteristic function [64, 70]. A truncated α-stable distribution 

is proposed in [13, 71] to solve the infinite variance problem.

�is result can be seen as a consequence of the generalized central limit theorem [72, 

73]. �e main advantage of the heavy tailed stable distributions is their ability to repre-

sent rare events. In many communication situations, these events are in fact those that 

will limit the system performance. �e traditional Gaussian distribution ignores them 

leading to poor results.

�e proof of this result is generally done considering the log-CF of the total interfer-

ence, see for instance [17, 65, 74], which can be written as:

where I is the total interference and T denotes the transpose. �e right term is the log-

characteristic function of a symmetric α-stable (Sα S) random variable with dispersion δ . 

Another solution for the proof, based on the Lepage series, was proposed in [67].

(5)
I =

∑

i∈�

l(di).Qi

(6)ψI (ω) = log
(

E

[

ejω
T I

])

= −δα|ω|α ,
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�is area of research is still active. Problems concerning the non homogeneous posi-

tion of users are studied, for instance based on cluster point process [75, 76] for gen-

eral ad hoc networks or Poisson hole process for cognitive radio [77]. �e dependence 

structure of interference is also attracting many works [78–80]: it is an important feature 

for the network analysis but difficult to handle. Mahmood et al. studied the dependence 

structure at the baseband between two α-stable interference sample [29, 81] and showed 

that with proper sampling they could be made independent.

If the proposed framework offers an efficient tool for the network performance evalu-

ation, a simple (with a tractable expression) and accurate model is still to be found [82]. 

It is probably unrealistic anyway to believe that one simple model will be able to cover 

all the possible situations. �erefore if we aim to design a robust receiver, we need it to 

adapt to the context and the changing interference environments that may be faced over 

space or time.

3.3  Impusive interference modelling under the uni�ed family of the sub-exponential 

models

�e previous discussions on background literature have detailed specific examples of 

impulsive interference models. Unifying these different concepts in a general class can 

help communication strategies, which are flexible and can adapt to a wide range of inter-

ference environments. In this section we propose a general class of mathematical mod-

els for impulsive interference which encompasses examples discussed previously: the 

sub-exponential family, extended to the entire real line (not only R+ ). In [12], interfer-

ence distributions are classified in superexponentially, exponentially or subexponentially 

decaying tails to explain the reason why a large deviation can appear in the total interfer-

ence: due to many small contributions or a single large one. Similarly, Weber et al. [83] 

justify the tightness of a lower bound on the transmission capacity in an ad hoc network, 

using the fact that a sum of iid random variables typically achieve large values due to one 

or more large summands rather than a large number of moderate value summands; such 

observations are aligned naturally with the property of distributions in the sub-exponen-

tial class of interference models.

A way to characterize impulsive interference is via considering probability distribu-

tions whose tails are not exponentially bounded: that is, they have heavier tails than the 

exponential distribution. Indeed, in impulsive interference we can observe large values 

that rarely appear. Such a behavior can be accurately represented with a so-called heavy 

tailed distribution. It is useful to relate this class of distributions to the behaviour of the 

moment generating function (MGF) as one often considers heavy tailed models as those 

with non-finite mean or variance or higher order moments. In doing so, we see that an 

interference distribution which is heavy-tailed under this characterization will have a 

MGF that is finite in some right neighborhood of the origin if and only if the following 

bound on the complementary cumulative distribution function F(x) = P(X > x) holds 

for some positive real numbers M and t,

Clearly, this links the moment existence directly to the tail behaviour. Hence, one may 

characterize heavy tailed distributions or processes with impulsive realizations either as 

(7)F(x) ≤ M exp(−tx), ∀x > 0.
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families which have infinite mean or variance. Or equivalently, via (7), as those distribu-

tions which have tails which fail to satisfy this bound for some positive constant M.

For instance some of the interference models discussed in Sect. 3.2 (such as the Mid-

dleton or the α-stable) can be characterized as sub-families of the sub-exponential class 

on the entire real line. �e knowledge of the properties of this class of distributions will 

allow us to get insight on how one can design receivers that will be robust to a wide 

range of interference settings.

We denote this sub-exponential class according to the general notation F  (see the 

original characterization in [84]). �is family of heavy tailed distributions has played an 

important role in many areas of science such as branching phenomena for positive ran-

dom variables in [85] and insurance contexts in [86]. Here, we introduce it as an over-

arching model framework for understanding different types of impulsive interference 

models in wireless communications, where existing models previously discussed can be 

considered as subfamilies in F .

�e original specification of the F  class of interference distributions involved distribu-

tions F with support F : R
+ �→ [0, 1] and is given by Definition 1.

Definition 1 (Sub-exponential Impulsive Noise [87]) �e sub-exponential family of 

distributions defines a class of heavy tailed severity models that satisfy the limits

if and only if,

where Fn⋆(x) is the n-fold convolution of distribution F with itself.

It was shown by [88] that a distribution is a member of this class (F ∈ F) if and only if 

it is long-tailed, i.e., it satisfies

�e extension of the family of sub-exponential distributions to the entire real-line is 

required for wireless communications applications. �is extension is a relatively recent 

result, see [89, Section  3.2], therefore we believe it will be highly informative for the 

wireless communications audience to have these results briefly brought to consideration. 

In particular it can be shown that an interference model is sub-exponential on the entire 

real line, denoted by F ∈ FR , if and only if it satisfies that F ∈ F  and F is long-tailed on 

R and therefore satisfies (10) and finally that given independent I ∼ G1 and N ∼ G2 with 

Gi = O(F(x)) as x → ∞ then one has the total interference in the tails given by

(8)lim
x→∞

1 − F
n⋆(x)

1 − F(x)
= n,

(9)lim
x→∞

1 − F
2⋆(x)

1 − F(x)
= 2,

(10)lim
x→∞

1 − F(x + y)

1 − F(x)
= 1, ∀y ∈ R

+

(11)P[I + N > x, I > g(x),N > g(x)] = o
(

F(x)
)

, as x → ∞
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where g(x) is a function that satisfies that g(x) → ∞ as x → ∞ and O(.) and o(.) are the 

big-Oh and little-Oh Landau notations.

To understand how such a general characterization of all interference models can be 

interpreted and becomes practically useful for things like receiver design, consider the 

following property: consider the noise plus interference distribution in (3) required for 

receiver design. �e impulsive noise term I has a distribution FI in the sub-exponential 

class. It can be shown that it dominates the Gaussian thermal noise N, with distribution 

FN , in the tails. �erefore, one can avoid to calculate any complicated convolutions and 

instead work with approximation of the heavy tailed interference. Put another way, if one 

considers the distribution of the maximum, for sub-exponential models one obtains

where ∼ denotes the asymptotic equivalence between the distributions. �e equivalent 

result can be obtained for the minimum also, i.e., the left tail. �is property implies that 

the partial sum is likely to get large when one of the random variables gets large. Impor-

tantly, for receiver design such a result tells us that asymptotically the interference dis-

tribution dominates so that we need to design receivers flexible enough to adapt to the 

interference tail behaviour, when receivers based on the Gaussian model are not pro-

ducing acceptable performance in the presence of impulsive noise because they do not 

handle the tail behaviour characteristic; this remark is general for all sub-exponential 

models.

Considering this general overarching characterization of impulsive interference mod-

els, we can state that a simple Gaussian approximation for the receiver design will fail to 

capture the tail behavior and, consequently, will not perform efficiently in practice. We 

therefore conclude that we must consider a new paradigm for receiver design if we truly 

wish to have a receiver strategy that is flexible enough to accommodate a variety of dif-

ferent impulsive noise environments and to be adaptive enough to work efficiently in all 

situations.

3.4  Receiver design

When it comes to receiver design, the first observation is the poor behaviour obtained by 

the linear receiver, which is optimal in a Gaussian noise but highly suboptimal in other 

interference settings. �e second observation is the difficulty in developing an optimal 

receiver. One reason is the variety of proposed interference models: which model should 

I design my receiver for and how will it perform if my environment changes? If empirical 

models, chosen to offer analytical solutions, are attractive, their ability to adapt to dif-

ferent contexts is to be proven. Another reason is that implementing a receiver can be 

complex for some specific interference distributions, for instance with the infinite series 

from Middleton’s model, stochastic geometry or the absence of closed-form α-stable 

PDF.

3.4.1  Impact of impulsiveness on the optimal decision

An efficient way to characterize and understand the influence of impulsive noise is to 

visualize the impact of the non linearities by representing the decision regions. �is was 

(12)P(max {I + N } > x) = F I (x)FN (x) ∼ 2F I (x), as x → ∞.
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proposed by Saaifan and Henkel [90] for the Middleton class A case and by Shehat et al. 

[91] and by Saleh et al. [92] for the α-stable case.

We represent in Fig. 1 four different examples of noise realizations. �en we show in 

Fig. 2 the decision regions that the optimal receiver must produce in a binary case under 

each of the different models, i.e., the regions that maximize the probability of having 

transmitted s when Y = (y1, y2) is received.

�e Generalized Gaussian distribution, when the shape parameter is less than 1, is 

sub-exponential in nature. �e Mixture of Gaussians, including the ǫ-contaminated, are 

not strictly sub-exponential. However, as noted in [93] one can approximate for instance 

an α-stable sub-exponential interference model to an arbitrary accuracy over any tail 

probabilities, eventually with enough Gaussian mixture components. It is in this con-

text that we consider such models as “impulsive”. �e α-stable distributions belong to the 

sub-exponential family.

It is well known that the optimal decision regions are linearly separated under interfer-

ence with exponential tail decay, such as the Gaussian case shown in Fig. 2. However, the 

optimal decision regions under heavy tailed sub-exponential interference produce non-

linear frontiers and disjoint regions, as seen with the α-stable noise. We can identify two 

operating regions: for small received values y1, y2 , boundaries are linear. However, when 

at least one value becomes larger, linear boundaries completely fail to recover the most 

likely transmitted symbol. �e point at which this non-linearities appear is linked to the 

heaviness of the tail: the heavier it is, the more reduced the linear frontiers are, since the 

sub-exponential tail asymptotic is dominant sooner.

In the ǫ-contaminated case, we see that for large values, the exponential tail makes the 

decision boundary become linear again. However, the impulses generated by the rare 

but large variance Gaussian component in the noise distribution create a non linear area; 

very similar to the α-stable case.

Finally, in the α-stable and Gaussian mixture, the heavy-tailed interference noise dom-

inates the light tailed Gaussian thermal noise in extremes and dictates the extent of the 

am
p
.

-2

0

2

Gaussian α-stable

time

am
p
.

-2

0

2

-contaminated

time

α-stable + Gaussian

Fig. 1 Realisation examples for different noise processes. The following parameters were used in each case: 

Gaussian case ( µ = 0 and σ 2
= 0.2 ); α-stable ( α = 1.5 , γ = 0.1 ); ǫ-contaminated case ( ǫ = 0.01 , κ = 100 , 

σ
2

= 0.2 ); sum of Gaussian and α-stable in a moderately impulsive case ( α = 1.5 , γ = 0.1 and σ 2
= 0.2 

( NIR = 0))
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non linearity in the decision boundaries, considerably increasing the complexity of the 

optimal receiver design.

3.4.2  Overview of receiver strategies

In the following we do not try to be exhaustive about the existing receiver strategies but 

we propose to classify the different receiver design approaches into three categories, see 

Table 2.

3.4.3  Linear approaches

Evaluating the LLR with a Gaussian noise assumption results in a linear operation for 

detection. We primarily consider this choice for its simple implementation structure 

(and also as a reference), though it is known to perform poorly in impulsive situations. 

Maximum Ratio Combining maximizes the Signal to Noise Ratio in Gaussian noise. 

Johnson [94] proposes a general study of linear optimal receivers in non Gaussian noise 

and takes the specific example of α-stable noise. �is is further studied for a rake receiver 

in [14, 95] and for diversity combining schemes in a multi-antenna receiver in [96] in 

presence of symmetric α-stable interference. However we found that the improvement 
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Fig. 2 Optimal decision regions for the different noise processes. We follow the framework proposed in 

[92] and use the same parameters defined in Fig. 1: the received vector Y is composed of two received 

samples (two dimensions, Y =

[

y1 y2
]

 ), the wireless channel is set to h = [1 1] , and we consider two possible 

transmitted values (ie. � = {−1, 1} ). The areas in black correspond to a decision ŝ = +1 , the areas in white to 

ŝ = −1
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over the standard linear approach is very limited and we have therefore omitted the cor-

responding BER curves in Sect. 5.

3.4.4  Noise distribution approximation

Another way to solve (4) is to find a distribution that would approximate well the true 

noise plus interference PDF fI+N (.) with an analytical expression and parameters that 

can be simply estimated. If I is sub-exponential and N Gaussian, I will dominate N, at 

least in the tails, so that it is important to increase the heaviness of the tail and several 

ways have been proposed to do so. Erseghe et al. used a Gaussian mixture for UWB com-

munications [97]. In [98], the ǫ-contaminated is used to study the impact of impulsive 

noise on Parity Check Codes. �e importance to take the real noise model into account 

during the decoding is underlined. A review in the UWB case can be found in [56]. For 

instance Fiorina [51] proposed a receiver based on a generalized Gaussian distribution 

approximation. Beaulieu and Niranjayan [50] considered a mixture of Laplacian and 

Gaussian noise. �e Cauchy model, based on a sub-exponential distribution, is proposed 

in [17]. Each solution is shown to significantly improve the performance in their specific 

context. We can wonder how robust they will be in case of a model mismatch.

In this paper, we propose two receivers based on this approach and taking into a 

account the sub-exponentional nature of the impulsive noise, which means our choices 

are able to capture the heaviness characteristic of the noise distribution. �e Myriad 

receiver [20, 99] is an improved version of the Cauchy receiver [17] for α  = 1 or a mix-

ture of stable and Gaussian interference; as a complement to the work started in [23], 

we also propose the use of NIG distributions. It is a flexible family of distributions that 

contains as limiting cases both the Myriad filters and standard linear Gaussian receiver.

Myriad receiver �is receiver is based on Cauchy distributions, which are a special 

case of S α S distributions that have an explicit PDF expression with dispersion γ and 

median µ:

(13)f1(x) =
γ

π [γ 2 + (x − µ)2]
.

Table 2 Receiver strategies discussed in this paper

Receiver strategies

Type of receiver Examples

Linear Linear combiner [14, 94–96]

Noise distribution approximation Gaussian mixture [97], ǫ-contami-
nated [98], Generalized Gaussian 
[51], mixture of Laplacian and 
Gaussian [50], Cauchy [17], Myriad 
[20, 92, 99], NIG[23]

LLR inspired Soft limiter and Hole puncher [66, 
73, 92, 100, 101], p-norm [105], LLR 
approximation [19], approximation 
of f ′

I+N
(.)/fI+N(.) [102–104]
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To improve the adaptability of a receiver based on the Cauchy distribution, the myriad 

filters have been discussed in [20, 92, 99]. �ey are based on the Cauchy density but with 

a modified dispersion parameter κ replacing γ in (13) so that the decision rule becomes:

�e so called “linearity parameter” κ was firstly used to adapt the receiver to interference 

with an α-stable distribution for α  = 1 . We discuss the estimation of κ in Sect. 4.2.

Normal Inverse Gaussian receiver family We propose the family of receivers speci-

fied by the Normal-inverse-Gaussian distributions (details about these distributions are 

given in “Appendix”). We implement a Symmetric NIG receiver, presented in details in 

Sect. 4.1. �e NIG distribution is denoted fNIG(x; α,β ,µ, δ) . We note that extension of 

the receiver can easily be developed for asymmetric cases.

3.4.5  LLR inspired solutions

When noise is impulsive with a sub-exponential distribution, the optimal LLR is no 

longer an monotonic increasing function but tends to reduce the weight of large val-

ues in the decision, as shown in [19] in the case of α-stable distributions. It means that 

we should not trust large positive or negative received values, contrary to the decision 

weight that the linear receiver would attribute. �is is illustrated in Fig. 3, which repre-

sents the LLR as a function of the received value for the four previously described noise 

settings.

Except for the Gaussian noise whose LLR is a linear function, the three other cases 

reaches a maximum and then decrease and tends towards zero. Once again we notice 

the strong resemblance between the pure α-stable and the mixture with the Gaussian 

noise, curves being nearly identical when superimposed on each other.

�is idea leads to a modification of the LLR function and classical examples are the 

soft limiter and the hole puncher [66, 73, 92, 100, 101]. For small received samples, a 

linear function is used and for large samples, respectively, a constant value or a zero are 

used as output of the LLR function. Another approximation is given by:

(14)

K∑

k=1

log
κ2

+ (yk + hk)
2

κ2 + (yk − hk)2

ŝ=1
≷

ŝ=−1

0.
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Fig. 3 LLR for the different noise processes. Gaussian case ( µ = 0 and σ 2
= 0.2 ); α-stable ( α = 1.5 , γ = 0.1 ); 

ǫ-contaminated case ( ǫ = 0.01 , κ = 100 , σ 2
= 0.2 ); sum of Gaussian and α-stable in a moderately impulsive 

case ( α = 1.5 , γ = 0.1 and σ 2
= 0.2 ( NIR = 0))
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where sign(x) is the sign of x. It was proposed in [19] for Low Density Parity Check 

codes. �e model fits the linear part of the LLR for small values of x and the 1/x approx-

imation is inspired from the limit of the likelihood ratio for high values of x in the α

-stable case. Parameters a and b are estimated with different methods. Good results are 

obtained in α-stable and Middleton class A interferences.

Other works for weak signal detection approximate the function f ′

I+N (.)/fI+N (.) where 

f ′(.) is the derivative of f(.). Zozor et al. [102] for instance used a polynomial approxima-

tion of the function. Spaulding and Middleton [103, 104] proposed optimal and subop-

timal strategies for coherent and non coherent detection in Middleton Noises. In the 

coherent case, the optimal detector necessitates to evaluate a ratio of infinite sums, too 

complex to be implemented. A locally optimum detector is proposed, using a series 

expansion for small signal. It results in applying a logarithm to the received signal fol-

lowed by the linear operation.

Another way to analyse detection is to consider that the likelihood measures a distance 

between the received signal and the possible transmitted signals. Optimal in Gaussian 

noise, the Euclidean distance is not adapted to the impulsive case. To improve the per-

formance, a solution is then to modify this metric and to use the p-norm, which is a dis-

tance measurement in α-stable situations with p < α , see [105],

where C(α, p) = 2p+1Ŵ((p+1)/2)Ŵ(−p/α)

α
√

πŴ(−p/2)
 , and Ŵ(.) is the gamma function. In [106], an inter-

ference suppression scheme for DS-CDMA systems in the presence of additive S α S 

interference is proposed based on the Lp-norm instead of the standard Least Mean 

Square based on the L2-norm.

�is expression is of interest as it does not depend on any estimation of distribution 

parameters and a rough knowledge of α can be sufficient if the condition 0 < p < α is 

fulfilled. We can therefore utilize the p-norm metric in our decision statistic as,

We can notice that this metric would be optimal in a Generalized Gaussian noise.

We present in Fig.  4 the proposed approximations: p-norm, soft limiter and hole 

puncher and from (15).

We see that the p-norm and the solution from (15) offer a wider flexibility. �e p-norm 

can also mimic the linear case when p = 2 . �is aspect is confirmed in the perfor-

mance evaluation that is why we are not going to represent the performance of the hole-

puncher nor the soft-limiter.

(15)LLR(y) = sign
(

y
)

min

(

a
∣

∣y
∣

∣,
b
∣

∣y
∣

∣

)

(16)||X − Y ||α =

{

[E|X − Y |p/C(α, p)]1/p, 1 ≤ α ≤ 2,

[E|X − Y |p/C(α, p)]α/p, 0 < α < 1,

(17)�p(Y) =

K∑

k=1

(∣∣yk + hk
∣∣p −

∣∣yk − hk
∣∣p

) ŝ=1

≷
ŝ=−1

0.
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4  Proposed robust receivers

In this section we first detail the NIG receiver and the necessary parameters’ estimation. 

We then propose estimation procedures for the parameters κ in the Myriad, p in the 

p-norm receivers and a and b for the LLR approximation.

4.1  Receiver based on the Normal Inverse Gaussian approximation

In order to develop a flexible receiver that can accommodate high performance in a 

wide variety of impulsive interference environments, as characterized by the sub-expo-

nential family, we need a receiver which has three practical characteristics: (1) it should 

have heavy tailed properties commensurate with the sub-exponential characterization 

in Sect.  3.3; (2) it should be easy to perform online real time estimation the receiver 

parameters; and (3) wide range of skew-kurtosis property for the density. We will show 
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below that the family of distributions known as the NIG model has these three desirable 

characteristics.

In particular, estimation via Method of Moments is trivially achieved in general for 

NIG models if one restricts to a subfamily of the NIG distributions, through constrain-

ing on the existence of the first four cumulants [107] (see “Appendix”, (24)–(27) for the 

moment expression). �e expressions for the parameters of the NIG distribution are 

then given in (18).

Method of moments closed form parameter estimation for NIG models Given i.i.d. dis-

tributed NIG(α,β ,µ, δ) random variables, the sample mean, variance, skewness and 

excess kurtosis, denoted by M̂ , V̂ , Ŝ and K̂ respectively can be utilized to estimate the 

model parameters with a constraint imposed. Assume that the following constraint 

applies to the kurtosis 3K̂ > 5 and the skewness Ŝ2
> 0 , then the method of moments 

estimators for the parameters are given by

where ρ̂ = 3K̂Ŝ−2 − 4 > 1.

We can further simplify these expressions for the Symmetric case ( β = µ = 0 ). 

�is results in simpler parameter estimators given by α̂ =
√
3V̂−1/2K̂−1/2 and 

δ̂ =
√
3V̂1/2K̂−1/2.

Remark 1 We note that special care has to be taken due to the high order moment 

calculation, especially in the illustration we take involving stable distribution for the true 

impulsive interference distribution. To ensure the validity of the obtained parameters, 

the training data has to respect some restrictions. Another way is to reduce the impact 

of large samples in the training sequence by a soft thresholding method known widely 

in statistics as tempering the empirical distribution of the data before calculating the 

moments. �is can also be known as exponential tilting and it ensures the approximate 

NIG receiver model is always well defined, see discussions in [108].

To illustrate how flexible the proposed NIG receiver behaves in an impulsive noise 

environment, we plot in Fig. 5 the decision regions as in Sect. 3.2, considering the maxi-

misation problem in (2) with the density fNIG(x; α, 0, 0, δ) given in (22).

We notice that the impact of impulsiveness is well taken into account and modifying 

the parameters will allow to adjust the “linear part” of the receiver. We can expect that 

this receiver will be able to adjust to different impulsiveness degrees approximating well 

a wide variety of sub-exponential impulsive noise models, such as those illustrated in 

Fig. 1.

4.2  Estimation steps for the Myriad �lter

�e myriad filter relies on one parameter κ . An empirical estimator 
(

κ̂α =

√

α
2−α

γ 1/α
)

 

was developed in [20] for an α-stable noise. It was further modified by Niranjayan and 

(18)

α̂ = 3ρ̂1/2(ρ̂ − 1)−1
V̂

−1/2|Ŝ|−1
,

β̂ = 3(ρ̂ − 1)−1
V̂

−1/2
Ŝ

−1
,

µ̂ = M̂ − 3ρ̂−1
V̂
1/2

Ŝ
−1

,

δ̂ = 3ρ̂−1(ρ̂ − 1)1/2V̂1/2|Ŝ|−1
,
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Beaulieu [99] in the case of a sum of α-stable and Gaussian noises. However, these solu-

tions necessitate to estimate the noise parameters which is not trivial. Consequently we 

have chosen to directly estimate κ . �is can be done by maximizing the LLR �0 given by 

(we consider the case of a symmetric distribution so that µ = 0):

where x = (x1, x2, . . . , xN ) are the i.i.d thermal noise plus interference samples 

( xi = Ni + Ii ) which can be obtained when the source is silent. κ can be obtained 

through the derivative by solving:

and κ2 is simply obtained for instance via a simple univariate root search procedure.

4.3  Estimation steps for the p-norm

To adapt to different contexts, we propose to estimate p using a similar framework as 

for estimating the shape parameter of a generalized Gaussian distribution based on the 

maximum likelihood method [109]. We use a univariate root search procedure method 

to find the p value that verifies [110]:

where ψ(.) is the digamma function. When the estimated p is larger than 2, we set it to 2.

4.4  Estimation for the LLR inspired approach

We use the approximation given in (15). We will estimate a and b based on a training 

sequence. We first estimate the probability density function of the noise using a classi-

cal kernel based approach. We then estimate the LLR directly by computing (4) using 

the density estimate. We cannot use the estimated LLR, ˆLLR(x) , directly to make a deci-

sion because of the numerous numerical uncertainties. So we extract from ˆLLR(x) the 

two parameters a and b by considering linear approximations for small values to get a 

and for the inverse of the large values to get b. Defining what are the small and what are 

the large values remains tricky. We use the empirical rules that small values are x < hi 

and large values are x > 1.5hi (where hi is the channel attenuation). �is leads to good 

results if we take care of problems due to the division and to the log in (4). When noise 

is low and for short training sequences, we can still have problems to evaluate one of the 

two parameters due to missing values. In that case we choose an empirical value that we 

fixed at two.

(19)

�0 = log fI+N (x) =

N
∑

i=1

log(fI+N (xi))

=

N
∑

i=1

log

(

κ

π [κ2 + x2]

)

.

(20)
d�0

dκ

= 0 ⇔

N
∑

i=1

(

κ
2

x
2
i

+ κ
2

)

−
N

2
= 0,

(21)1 +
ψ(1/p)

p
−

∑N
i=1 |xi|

p log |xi|
∑N

i=1 |xi|p
+

log(
p
N

∑N
i=1 |xi|

p)

p
= 0,
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If the proposed approach shows good results, it fails when the noise is too low giving a 

noise floor when bit error rate reaches approximately 10−5 . �is could be improved with 

more efficient estimation steps.

5  Simulation results

An analytical evaluation of our framework is difficult because we want to be flexible on 

the noise model. Consequently we have preferred to perform extensive simulations to 

compare the performance of the proposed detection solutions.

�e network configuration is set as follows: K = 8 repetitions are available at the des-

tination. �e channels are i.i.d. Rayleigh block fading, with a different coefficient per rep-

etition. We study four representative cases, the same as presented in Fig. 1: 

1 A pure Gaussian case; it is important that the proposed receivers behave well when 

no impulsive noise is present.

2 A pure α-stable noise with α = 1.5 ; this represents a highly impulsive situation and 

an interference limited regime where the Gaussian noise is negligible. �is can be 

representative of Network interference as described in [27].

3 A mixture of α-stable and Gaussian noises with α = 1.5 and the noise to interference 

ratio NIR= σ 2/(2γ ) = 0 dB; this represents a more complex situation with a noise 

whose density has no explicit form. It is a similar situation as the previous case but 

the contribution of both impulsive interference and Gaussian thermal noise are sig-

nificant. �e optimal receiver is based on the inverse Fourier transform of the char-

acteristic function.

4 ǫ-contaminated noise with ǫ = 0.01 , κ = 100 , reflecting rare but strong impulses 

(highly impulsive noise). �is case is not strictly in the sub-Gaussian family and it 

is interesting to see how receivers will then behave. It is a simplification of the Mid-

dleton model thant can be used to model for impulsive noise caused by atmospheric 

man-made partial discharge, switching effect, electromagnetic interference [35].

We consider four receivers: Gaussian, Myriad, symmetric NIG, p-norm and LLR-

approximation. �ey have been selected because they exhibit a good behaviour in the 

different situations.

In a first step we evaluate the performance of the estimation steps, before compar-

ing the receiving strategies with the BER curves. When the noise involves an α-stable 

impulsive interference, the BER is measured as a function of the inverse dispersion of the 

S α S distributions ( 1/γ ), since the increase of inverse dispersion indicates the decrease 

of the noise strength, reflecting the conventional signal-to-noise ratio. When the noise 

is purely Gaussian or ǫ-contaminated, the SNR at the receiver is used for the x-axis. �e 

number of training sequence for NIG, Myriad, p and LLR-approximation estimations is 

set to 200 bits per dimension, so 1600 bits.

5.1  Estimation

Estimation performance is good, even if it is difficult sometimes to evaluate because we 

do not know what the optimal values should be. So we mainly study the variability, given 

by the standard deviation, and the evolution of the BER as a function of the training 
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sequence length. We only present results for the Gaussian and Stable mixture in Table 3 

and similar tendency are obtained for the other noises.

• p-norm receiver the estimator converges but tends to over estimate p when the train-

ing sequence is short and the estimation exhibits an important variability, which 

degrades the BER. A long training sequence is necessary to reach the optimal perfor-

mance

• Myriad receiver the estimator of κ is certainly the most robust one. �e standard 

deviation of the estimated value is very low, even for short training sequences and 

the mimimum BER is rapidly reached.

• NIG receiver values of the parameters, as well as the standard deviation, decrease 

when the training length increases. However the lower BER is reached for rather 

short training sequences ( ∼ 100 bits) but increases with longer training sequences. 

�is is due to the difficult estimation of the higher order moments in sub-exponen-

tial noises. Longer sequences increase the risk of restriction violation (see Remark 1) 

in the estimation process, inducing the error degradation.

• LLR-approximation: It exhibits a large variability in the estimated parameters as the 

training sequence length increases. Long sequences are necessary to reach low BER. 

However, it is the one reaching the lowest BER. �e estimation procedure in that 

case has to be optimized.

In the following, we take a long training sequence (1600 bits), ensuring the convergence 

of the algorithms. Shorter sequences may modify the optimal receiver choice. �e noise 

approximations work better when the training sequence is short and rapidly exhibit good 

performance. �e LLR approximations converge much slower but reaches better perfor-

mance for long training sequence and, as seen in Fig. 8 attains the optimal performance.

Table 3 Estimated parameters in  the  mixture of  Gaussian and  α-stable noise (α =  1.5, 

γ = 0.3, σ2 = 0.6 (NIR = 0))

The value mean ± standard deviation is given for the estimated parameters. The BER has to be multiplied by 10−3

L Myriad NIG

κ BER α γ BER

40 0.412 ± 5.8e-2 1.7 1.1 ± 0.52 0.64 ± 0.29 1.4

80 0.413 ± 4.2e-2 1.6 0.869 ± 0.48 0.560 ± 0.35 1.3

200 0.410 ± 1.8e-2 1.5 0.418 ± 0.32 0.328 ± 0.14 1.4

1000 0.410 ± 1.3e-2 1.5 0.273 ± 0.23 0.245 ± 0.14 2.3

L p-norm LLR

p BER a b BER

40 1.42 ± 0.47 7.9 2.68 ± 1.3 4.1 ± 0.96 2.3

80 1.280 ± 0.41 6.4 3.27 ± 1.06 4.93 ± 0.80 1.6

200 1.05 ± 0.23 4.0 4.13 ± 0.35 6.27 ± 1.06 1.2

1000 0.99 ± 0.17 1.7 4.2 ± 0.24 7.03 ± 0.96 1.0
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5.2  Performance in Gaussian noise

In Fig. 6, the linear combiner (maximum ratio combining) is the optimal receiver. �e 

p-norm receiver reaches the same performance as the optimal one, meaning that in that 

case the estimation of p works well, always giving values close to 2, which corresponds 

to the optimal receiver. �e values slightly less than two do not introduce errors and we 

have set to 2 estimated values larger than 2.

�e NIG and LLR approximation perform very close to the optimal. Only the Myr-

iad receiver exhibits a slight degradation of the performance. �is is naturally explained 

because it is based on a modified version of the Cauchy distribution [see (13) and (14)] 

and the receiver has difficulties to well behave in noises with exponential tails.

5.3  Performance in α-stable noise

In Fig.  7, α is set to 1.5, corresponding to a rather impulsive noise. All receivers per-

form well but the linear receiver, which exhibits a very significant performance degrada-

tion. �is last solution is indeed badly affected by large, but rare, values. �e four other 

proposals (p-norm, Myriad, NIG, LLR approximation) behave well and very close to the 

optimal solution.
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5.4  Performance in a mixture of α-stable and Gaussian noise

In Fig. 8, α is set to 1.5 for network interference and NIR is 0 dB. �is case includes both 

a sub-exponential type component and a more traditional thermal noise. Once again the 

linear receiver can not handle large received noise samples and its performance are sig-

nificantly degraded.

�e four other solutions behave well, close again from the optimal. �e LLR approxi-

mation is in this case very close to the optimal. In the LLR, the linear part corresponds 

to the Gaussian noise for small values and the 1/x part to the tails of the distribution 

which is dominated by the sub-exponential contribution.

We notice in the example that, as suggested by the discussion about (12), the sub-

exponential component dictates the tail behaviour and it is important that the receiver 

takes this into account.

5.5  Performance in ǫ-contaminated noise

Finally we consider in Fig.  9 the ǫ-contaminated environment with epsilon = 0.01 and 

κ = 100 . �is situation represents a highly impulsive noise but without a heavy tail rep-

resentation. Again, the linear receiver sees its performance far below the optimality 
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when the others tend to get very close. �e LLR approximation is once again the most 

efficient approach when the NIG exhibits a slight loss.

5.6  Summary

From the preceding figures, and also considering other approaches we did not include 

here, we make the following comments: 

1 Linear receivers only behave well in Gaussian noise. When an impulsive component 

is present, the degradation in comparison to receivers that take this component into 

account is significantly poorer as seen in Fig. 8. �is is especially clear when the noise 

is purely sub-exponential (Fig. 7) but it is also true with models having exponential 

tails, like the ǫ-contaminated in Fig. 9 when rare but large samples are present. �is 

conclusion would be similar, even if optimal linear receivers [94] were considered.

2 Approaches trying to approximate the noise distribution give good performance. We 

evaluated two flexible families of distributions with parameters that can be easily and 

efficiently estimated: (a) the Myriad with a single parameter to be estimated with 

a quick and efficient root search; (b) the NIG distribution family presents both the 

required flexibility and an easy parameter estimation procedure based on moment 

estimation. Both approaches are robust and adaptive but the NIG outperforms the 

myriad in Gaussian noise. For short training sequences they are more efficient than 

LLR based approaches, due to efficient estimation algorithms. It would be needed to 

further study the complexity issue, especially for the NIG receiver that relies on more 

complex function, including a Bessel function.

3 LLR approximation based approaches have a good potential. �ey have been less 

studied in the literature and more work has to be done in that direction. �e intui-

tive approaches are the soft limiter and the hole puncher that limits the impact of the 

large values. If they improve the performance in comparison to the linear approach 

when impulsive interference is present and have a limited impact when impulsive-

ness decreases, their performance remains far from the optimal [101] and we did 

not include them in our result section. We studied two other alternatives. If they 

increase the complexity, they significantly outperform the soft limiter. �e p-norm 

allows either a “close to linear” or linear behaviour when the Gaussian noise is the 

main contribution to the noise and also approaches the sharp shape of the LLR when 

impulsiveness increases. A single parameter has to be estimated with a root search 

numerical procedure. �e LLR-approximation is also very efficient. It is the receiver 

that adapts the best to configuration mixing different distributions. Especially the lin-

ear part adapt to low noise value corresponding to the Gaussian part and the 1/x part 

correspond to the tail of the interference, dominated by the sub-exponential compo-

nent of the total noise. It is however more complex to estimated but recent proposals 

allow to address this task [25, 111].

It is important to consider the non Gaussian nature of the noise in the receiver design. 

Having in mind the sub-exponential class of distribution can give hints for the design 

of a receiver, either by approaching the noise distribution or approximating the LLR. 

If both approaches tend to give close results, some research questions are still opened. 
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Complexity is an issue but implementation of each solution has to be optimized. We 

have shown that the receiver can be defined by a limited set of parameters. �is is espe-

cially true for the p-norm and the myriad filter which only require a single parameter. 

Besides, making assumptions on the noise distribution allows one to rely on well-stud-

ied algorithms for the parameter estimation, ensuring an accurate result with a shorter 

training sequence.

Adaptability and robustness to different situations are also important. For instance, if 

the Myriad filter seems to be very efficient, performance is not so good when the noise 

is just Gaussian. And this could happen when the activity in the network is varying with 

time. LLR approximation and p-norm seem very flexible and attractive but require a 

longer training sequence. However, the estimation has not been optimized and further 

research is needed, as proposed in [111] for instance.

6  Conclusion

Interference is a significant limiting factor in many communication situations. Besides it 

is not Gaussian distributed in many cases. A large amount of papers have dealt with such 

contexts for many different physical layers and many different applications and the topic 

is still very active.

We proposed in this paper a study of impulsive noise models. We defined impulsive 

interference thanks to a broad class of models, the sub-exponential family, and showed 

the impacts interference has on the optimal signal detection regions, resulting in non lin-

ear decision boundaries, not even contiguously joined. To design receivers, we proposed 

to classify the different approaches (linear, flexible density functions, LLR-inspired). 

Based on it, we evaluated the p-norm, the NIG, the Myriad and a LLR-approximation 

receivers. We included the estimation steps of the receivers and tested them in different 

contexts, modifying the impact of impulsiveness and the models for interference. �e 

four solutions under test outperform the traditional linear approach. �ey offer simple 

parameter estimation and robustness in environments that are impulsive or not.

�e wireless communication environment has significantly changed in the last dec-

ades. However engineers are generally still using the Gaussian assumption for receiver 

designs. �is is significantly sub-optimal in many cases. �e difficult point is that the 

receiver has to adapt to many different scenarios depending on space and time and the 

transmission conditions are generally unpredictable. We showed with only one or two 

parameters, a robust and adaptive receiver can be designed but it is still to be imple-

mented in real systems and the impact of the hardware part is also to be studied and 

probably adapted. Another important issue is to model the space, time and frequency 

dependence [27] of the interference and to link it with the resource allocation strategy 

[112] to improve the scalability and coexistence of networks.
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Appendix: NIG distribution

�e NIG distributional family is characterized by four parameters α , β , µ and δ (the same 

letters as the stable family which are used in a similar manner): α is inversely related to 

the heaviness of the tails, where a small α corresponds to heavy tails that can accom-

modate outlying observations; skewness is directly controlled by the parameter β , where 

negative (positive) values of β result in a left (right) skew, and β = 0 is the symmetric 

model; location (or translation) of the distribution is given by the parameter µ ; scale of 

the distribution is given by the parameter δ . Notably, when β = 0 and µ is arbitrary, the 

NIG model asymptotically approaches the Gaussian model X ∼ N
(

µ, δ
α

)

 as α → ∞ . 

Hence one could approximate the optimal linear receiver when only Gaussian thermal 

noise is incident on the received signal. In addition, when α = β = 0 with µ and δ arbi-

trary, the NIG model approaches the Cauchy distribution. It can also approximate the 

skewness and kurtosis of the log-normal, Student’s t, and gamma distributions, among 

others [113].

�e NIG model takes its name from the fact that it represents a normal variance-mean 

mixture that occurs as the marginal distribution for a random variable X when consid-

ering a pair of random variables (X ,Z) where Z is distributed as an inverse Gaussian 

Z ∼ IG(δ,
√

α2
− β2) , and X conditional on Z is (X |Z = z) ∼ N (µ + βz, z) , see [114]. 

�e resulting density function is given in the following definition:

De�nition 2 (Normal Inverse Gaussian Density) A random variable X ∼ NIG(α,β ,µ, δ) 

is characterized by the density function

where the functions g(·) and h(·) are defined as g(x) = δ
√

α2 − β2 + β(x − µ) , and 

h(x) = [(x − µ)2 + δ2]1/2 and K1[·] is a modified Bessel function of the second (or third) 

kind with index 1. �e parameters have the constraints µ ∈ R , δ > 0 , 0 ≤ |β| ≤ α.

We can study the distribution function tail behaviour of the NIG receiver model, 

showing that indeed it satisfies the properties required for sub-exponential models.

(22)fNIG(x; α,β ,µ, δ) =
αδ

π

exp
(

g(x)
)

h(x)
K1(αh(x)),



Page 26 of 30Clavier et al. J Wireless Com Network         (2021) 2021:13 

Property 1 Consider a NIG random variable. �e tail behaviour for the density and dis-

tribution functions can be characterized asymptotically as x → ∞ as follows:

�ese asymptotics then show that indeed the NIG receiver model can be shown to 

be long-tailed and therefore an admissible sub-family of the subexponential impulsive 

interference models. To see this we consider the definition given in (10). We apply it to 

the NIG case and see that the asymptotic of the numerator for any y ∈ R
+ is given by 

considering for instance the right tail asymptotic ratio

Hence, if one sets α = β then the resulting distribution has limit of 1 and the receiver 

model we propose clearly captures the class of sub-exponential models. When α  = β , 

one gets other more general approximations which can also be achieved in addition to 

heavy tailed sub-exponential interference models, clearly demonstrating the flexibility of 

the NIG receiver model we propose.

�e final characteristic is that it is easily calibrated and can adaptively alter its charac-

teristics to time changing or varying ranges of impulsive interference environment. �is 

means that, in practice, the resulting receiver model is easily estimated online. �e ease 

of estimation arises from the fact that the NIG distributional family has sufficient sta-

tistics given by the first four moments (mean, variance, skewness and kurtosis) and the 

ability to explicitly solve for the parameters in terms of the cumulants of the distribution 

using Method of Moments:

fNIG(x; α,β ,µ, δ) ∼ |x − µ|−3/2 exp (−α|x − µ| + β(x − µ))

P(X − µ > x) ∼ x−3/2 exp(−(α − β)x)

P(X − µ < −x) ∼ x−3/2 exp(−(α + β)x)

(23)

limx→∞

1−F(x+y)
1−F(x)

= limx→∞

(x+y)−3/2 exp(−(α−β)(x+y))

x−3/2 exp(−(α−β)x)

= exp((β − α)y).

(24)
E(X) =µ +

δ

(

β
α

)

(

1 −

(

β
α

)2
)1/2

,

(25)
Var(X) =

δ

α

(

1 −

(

β
α

)2
)3/2

,

(26)
Skew(X) =

3

(

β
α

)

(δα)1/2

(

1 −

(

β
α

)2
)1/4

,
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