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Impulsive Stabilization for Control and
Synchronization of Chaotic Systems:
Theory and Application to Secure
Communication

Tao Yang,Member, IEEE,and Leon O. ChuaFellow, IEEE

Abstract—Impulsive control of a chaotic system is ideal for method for modulating digital information onto a chaotic
designing digital control schemes where the control laws are carrier signal for spread spectrum applications. However,

generated by digital devices which are discrete in time. In this due to a lack of effective tools for analyzing impulsive
paper, several theorems on the stability of impulsive control

systems are presented. These theorems are then used to find th&lifferential equations [1], most impulse control schemes had
conditions under which the chaotic systems can be asymptotically been designed mainly by trial-and-error. The study of the
controlled to the origin by using impulsive control. Given the stability of an impulsive differential equation is much more
parameters of the chaotic system and the impulsive control law, gificyit than that of its “corresponding” differential equation

an estimation of the upper bound of the impulse interval is given. 101, E | ider the i Isi t
We also present a theory of impulsive synchronization of two [10]. For example, consider the impulsive system
x = Ax, t# 1,

chaotic systems. A promising application of impulsive synchro-

nization of chaotic systems to a secure communication scheme is { (1)
presented. In this secure communication scheme, the transmitted Ax|t=ﬂ- = Bx

signals are divided into small time frames. In each time frame, .

the synchronization impulses and the scrambled message signalWhere AA and B are two constant matrices, and
are embedded. Conventional cryptographic methods are used to Ax|i—,, = x(7;7) — x(r;7), x(r;7), and x(7;}) being

@ @ @

scramble the message signal. Simulation results based on a typicakhe |eft and right limit ofx(t) att = 7;. The solution of the
chaotic system; namely, Chua’s oscillator, are provided. above system is given by

Index Terms—Chaotic secure communication, Chua’s oscilla-
tor, continuous cryptographic function, impulsive control, impul- x(t, xo) = X(t, x0)Xo (2)
sive synchronization.

where
I. INTRODUCTION X(t, xo) = M=) H (I + B)eA(mi—mi-1)
INCE THE seminal paper of Ott, Grebogi, and Yorke to<Ty<t
OGY) [2], several methods for control and stabilization T = to, T <t < Tigg. 3)

of chaotic motions have recently been presented [3]-[6]. In

) . . . .. As can be seen from this formula, it is not possible in
view of the rich dynamics of chaotic systems, there exist . - .
i . the general case to give necessary and sufficient conditions
a large variety of approaches for controlling such syste

X . r stability of solutions of the above system in terms of the
Some of these approaches include adaptive control [4], [5], ; . o .

. genvalues of the matrix of this system, which is possible
error-feedback control [7], time-delay feedback control [7 or systems of ordinary differential equations with constant
OGY method [2], predictive Poincarcontrol [8], occasional y y q

. . ; coefficients.
proportional feedback control [9], and impulsive control [6], In this paper, we investigate the stability of impulsively

[151-{20]. . L . controlled chaotic systems. First, the stability of the trivial
In fact, the predictive Poincarcontrol and the occasional : : ; . . . L )
olution of a kind of impulsive differential equation is studied.

roportional feedback control are two impulsive contr . o
prop . N : pUISTy hen the theoretical results are used to study the conditions
schemes with varying impulse intervals. Impulsive control

is attractive because it allows the stabilization of a chaot%lcnder which an impulsive control of Chuas oscillator is

. : : : a;ymptotically stable. An estimate of the upper bound of the
system using only small control impulses, and it offers a direC A X
impulsive interval is also presented.

Then, an impulsive control theory is used to study the im-
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Fig. 1. The Chua’s double scroll attractor. . . . ) o
Fig. 2. Estimate of the boundaries of stable regions with diffe¢&nused

in simulation 1.
an impulsive synchronization scheme, the information redun-
dancy in the transmitted signal is reduced. In this sense, ew@ithe “jump” in the state variable at the time instantThen
low-dimensional chaotic systems can provide high security. {Ris impulsive system is described by
this paper, we will use impulsive synchronization to develop .
a new framework for chaotic secure communication. x =f(t, 3)’ b7
The organization of this paper is as follows. In Section II, Ax=U(, x), t=m , ) (©)
+y _
a theory on the stability of impulsive differential equations is x(tg) = o, fo20,i=1,2, -
given. In Section I, a stability criterion for impulsive controlThis is called an impulsive differential equation [1]. To study
of Chua'’s oscillator is presented. In Section IV, simulatiothe stability of the impulsive differential equation (6) we use
results on the impulsive control of Chua's oscillator arthe following definitions and theorems [1].
provided. In Section V, the theory and simulation results of Definition 1: Let V: R4 x R"™ — Ry, thenV is said to
impulsive synchronization of Chua’s oscillators are presentdzklong to class), if
In Section VI, application of impulsive synchronization to 1) V is continuous in(r;_;, 7;] x R™ and for eachx € R",
secure communication is presented. In Section VI, some § =1,2, ...,
concluding remarks are given.

lim V(t,y)=V(r, x) @)
(t,y)— (7 %)
Il. BASIC THEORY OF IMPULSIVE DIFFERENTIAL EQUATIONS exists;
Consider the general nonlinear system 2) V is locally Lipschitzian inx.

Definition 2: For (¢, x) € (71, ] x R™, we define
X = f(tv X) (4) A . 1
DtV(t, x) = lim sup - {V[t+ h, x + hf(t, x)]
wheref: R, x R™ +— R™ is continuousx € R" is the state —V(t, x)}. (8)
variable, and ’
Definition 3. Comparison Systentet V € V, and assume

A ax that
S dt’
{D+V(t7 X) < g[tv V(tv X)]7 13 7£ Ti (9)
Consider a discrete st} of time instants, where Vit x+ U@ )] < iVt X)), t=7

whereg: Ry x R4 — R is continuous and);: Ry — Ry

0<r <mp <o <7 < Ty <oy is nondecreasing. Then the system
T; — 00 aS? — OQ. w:g(t,w), t}é'f—z
Let w(r;") = Pifw(m)] (10)

w(td) =wo >0

U, x) = AX|i=r, 2 x(7F) = x(777) (5) is called the comparison system of (6).
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Definition 4: where
n - o 0
S, =[x e R[] < o} a1 A:< N 1>7

where|| - || denotes the Euclidean norm @&". 0 —f —v

Definition 5: A function « is said to belong to clask’ if —af(z)
a € C[R, Ry], a(0) = 0, and «(z) is strictly increasing e(x)=| O a7)
i 0
in .
. Asiumptions:f(t, 0) =0, Uz, 0) = 0, andg(t, 0) = 0 The impulsive control of a Chua’s oscillator is then given by
or all .

Remark: With the above assumptions, we find that the {XI Ax+ O(x), t#7i (18)
trivial solutions of (6) and (10) are identical for all time except Ax|i=r, = Bx

at the discrete setr;}. Since the system in (18) has the general form of a kind of
Theorem 1. [1, Theorem 3.2.1, p. 13%ssume that the poplinear system, we can give a general result in following

following three conditions are satisfied. lemma.
1) ViRy xS, — Ry, p>0,V ey, DTV(E x) < Lemma 1: Let n x n matrix I' be symmetric and positive
glt, V(t, x)], t # 7. definite, and\; > 0, A\, > 0 are, respectively, the smallest

2) There exists @o > 0 such thatx € S, implies that and the largest eigenvalues Bf Let
x+U(i, x) € S, forall i and V[t, x + U(i, x)] < T
YilV(t, X t = 71 x € S, @=TA+A'T (19)
3) Alllxl) < V(t, x) < oflix])) on Ry x S, where \ynere AT js the transpose ofd, and s is the largest
a(), A() 6_ .’C- _ . _ eigenvalue ol Q. ®(x) is continuous and|®(x)|| < L||x||
Then the stability properties of the trivial solution of theyhere L > 0 is a constant), is the largest eigenvalue of
comparison system (10) imply the corresponding stabilifhe matrix

properties of the trivial solution of (6). . T
Theorem 2. [1, Corollary 3.2.1., p. 142]tet g(t, w) = = +B")I'(I+B). (20)

3 1 ‘ — ‘ i
Atyw, A € C[Ry, Ry, 9i(w) = diw, d; = 0for all i. g o oummetric and the spectral radius i+ B, p(I +
Then the origin of system (6) is asymptotically stable if th%) < 1. Then the origin of impulsive control system (18)

conditions is asymptotically stable if

)\(Ti+1) +In (’ydz) < )\(Ti), for all i, wherey > 1 (12) b
As + 2L,/A—2 (Thg1 — 1) < —In(yA), ~v>1 (21)
1

and
At) 20 (13) and
/A
are satisfied. A3+ 2L )\—i >0. (22)

Proof: Construct a Lyapunov functiofr (x) = x?T'x,

I1l. STABILIZATION OF CHUA'S
whent # 7, we have

OSCILLATOR USING IMPULSIVE CONTROL
In this section, we study the impulsive control of Chua’s DHV(x) =x"(ATT + D A)x + [@7 (x)I'x + x" T P(x)]

oscillators [11] by applying the theory presented in the pre- =xTQx + [T (x)I'x + xI T (x)]

vious section. The dimensionless form of a Chua’s oscillator A

is given by [11] <[ As+2L N V(x), t # Tx. (23)
xi a[?_J _j; — /@) (14) Hence, condition 1 of Theorem 1 is satisfied witft, w) =
7 ﬁyy_ ; (A3 + 2L/ Do /A1 )w.

SinceB is symmetric, we know that+ B is also symmetric.
where f(z) is the piecewise-linear characteristics of th8Y using Euclidean norm we have
Chua'’s diode, which is given by p(I+ B) = ||I + B (24)

fl@)=be+ 35 (@a=0)(|z+ 1| = |z — 1)) (15) Given anyp, > 0 andx € S,,, we have

wherea < b < 0 are two constants. x4+ Uk, x)|| =|lx+ Bx|| < |[I + BJ| [|<]]
Letx? = (z,v, #), then we can rewrite the Chua’s oscillator =p(I + B)||x| < ||x]|- (25)

equation into the form
The last inequality is in view op(I + B) < 1. From which

x = Ax + (%) (16) we know thatx + U(k, x) € S,,.
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Fig. 3. Simulation results. (a) Unstable results outside the stable region. (b) Stable results inside the predicted stable region.

Whent = 715, we have It follows from Theorem 2 that if
V(x4 Bx)|t=r, =(x+ Bx)"TI'(x + Bx) Thg1 N

—x[I + (B0 + B)x /Tk <)\3 + 2L\/)\il> dt+1In(vAy) <0, ~v>1 (29)
< V(). (26)

Hence, condition 2 of Theorem 1 is satisfied with(w) = He

Auw- And <)\ +2L\/§> (g1 — ) < —=In(yA\y),  v>1 (30)

Al < V() < Aol en \" AT v
From which one can see that condition 3 of Theorem 1 ?@d
also satisfied with3(z) = A1z and a(z) = Agz. It follows Az + 2L\/% >0 (31)

from Theorem 1 that the asymptotic stability of the impulsive
control system in (18) is implied by that of the following, o satisfied, then the origin of (18) is asymptotically stahle.

comparison system: Since this lemma is too general, in practical application,
Con A2 we want to deal with a simple case which is given in the
wit) = <)‘3 +2L V )\_1>w(t)’ 7T following theorem.

(28) We use the following theorem in order to guarantee the
asymptotic stability of the origin of the controlled Chua'’s
w(td) =wo >0 oscillator.

w(r) = Aw(n)
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Theorem 3:Let d; be the largest eigenvalue dff +
BTY(I + B), whereB is a symmetric matrixp(I + B) < 1,
where p(-) denotes the spectral radius 6f+ B. Let ¢ be
the largest eigenvalue d¢fA + A7) and let the impulses be
equidistant from each other and separated by intedvalf

0.< g+ 2laa] < - ¢ (&),

where¢ > 1 (32)

then the origin of the impulsively controlled Chua'’s oscillator

is asymptotically stable.
Proof: Let us construct the Lyapunov functiéf(z, x) =
xx. Fort # 7;, we have

DTV (t, x) =xF Ax + xTATx + xT'o(x) + o7 (x)x
<gxPx + 2aalxtx

=(q+ 2|aa|)V (¢, x). (33)

Hence, condition 1 of Theorem 1 is satisfied witft, w) =
(¢ + 2|oal)w.

Since B is symmetric, we knowI + B) is also symmetric.
By using Euclidean norm we have

p(I +B) =1+ BJ|. (34)

Given anypy > 0 andx € S,,,, we have
Ix + Bx|| < [|I + Bl|[[x]| = p({ + B)||x|| < [jx]|. (35)

The last inequality follows fronp(I + B) < 1. Consequently,
x4+ Bx € 5.
For ¢t = 7;, we have

V(ri, x + Bx) = (x + Bx)T(x + Bx)
=xT(I+B")(I+ B)x

<diV(m, x). (36)

Hence, condition 2 of Theorem 1 is satisfied with(w)

d1w. We can see that condition 3 of Theorem 1 is also satisfied.
It follows from Theorem 1 that the asymptotic stability of the

(Continued) Simulation results. (c) Stable results outside the predicted stable region.

impulsively controlled Chua’s oscillator in (18) is implied by
that of the following comparison system

w={(q+2a)w, t#mn
w('ri) = dlw(n)
w(to) = Wwo Z 0

From (32), we have

37

Tit1
/ (¢ +2|cal)dt +1n(éd;) <0, E>1 (38)
and A(t) = ¢+ 2|aa| > 0. It follows from Theorem 2 that the
trivial solution of (18) is asymptotically stable. |

Theorem 3 also gives an estimate for the upper bapg,
of A; namely,

In (édy) £ —
q+2|aal|’

Observe that the upper bound given by (39) is sufficient but
not necessary. Consequently, we can only say that we have
a predicted stable region, which is usually smaller than the
actual stable region because we can not assert that all other
regions are unstable.

AmaX = ‘ 1+ .

(39)

IV. SIMULATION RESULTS OFIMPULSIVE CONTROL

In the following simulations, we choose the parameters of
Chua’s oscillator agr = 15,3 = 20,y = 0.5,a = 12, b =
—7—7" A fourth-order Runge—Kutta method with step sife®
is used. The initial condition is given by:(0), ¥(0), z(0)]
(—2.121304,-0.066 170, 2.881090). The uncontrolled
trajectories are shown in Fig. 1, which is the Chua’s double
scroll attractor.

A. Simulation 1: Strong Control
In this simulation, we choose the matri as

E 0 0
B=|0 -1 o0 (40)
0 0 -1
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where the impulsive control is “strong.” It follows from

981

Theorem 3 thap(/+B) < 1 should be satisfied, which implies 4 — :
that—2 < k < 0. By using thisB matrix, it is easy to see that xi=1.0
dy = (k4 1)% (41)
We have 3
-15 15 0 o5l
A= 1 -1 1|,
0 -20 -0, 8
D 2r
—-30 16 0 o
A+AT = 16 -2 -19 (42) o5l
0 -19 -1 '
from which we findg = 20.162 180. Then an estimate of the 17
boundaries of the stable region is given by
2 057" stable region
()SAS_[lIlS—i-ln(k—i-l)]7 a<k<o. (43) ;
q + 2|aal 0 . . ‘
-2 -15 -1 -0.5 0

Fig. 2 shows the stable region for differefis. The entire
region below the curve corresponding&e- 1 is the predicted

k

Fig. 4. Estimate of the boundaries of stable region used in simulation 2.

stable region. Wheyy — oo, the stable region shrinks to a

line k = —1.

The simulation results are shown in Fig. 3. Fig. 3(a) shows

instability for k = —1.5 andA = 1. The solid waveform, the

dash-dotted waveform, and the dotted waveform correspo

to z(¢), y(t), and z(¢), respectively. Fig. 3(b) shows stabl
results within the stable region fér= —1.5 andA = 0.002.
One can see that the system asymptotically approaches

origin with a settling time of about 0.05. However, the true
stable region is larger than that predicted in Fig. 2. In order )
demonstrate this fact, we show in Fig. 3(c) the stable resu S

for £ = —1.5 andA = 0.05. We can also see that the syste
asymptotically approaches the origin with a settling time

about 1.4 which is much larger than that shown in Fig. 3(b?C

B. Simulation 2: Weak Control

In this simulation, we choose the matrE as

k0 0
B=|0 -01 0 (44)
0 0 -01

where the impulsive control is much weaker than that chosen

in simulation 1.
It is easy to see that

_ [ (k1)
dl_{osL

(k+1) > 081

elsewhere. (45)

ebecauseg has to satisfyl < £ <

Fig. 4 shows the stable region. The entire region below the
curve corresponding t6 = 1 is the predicted stable region. In
tl%s caseA is always bounded. It seems that we can’t control
the system to the origin with an arbitrarily prescribed speed
180 This is different from
%e case shown in Fig. 2, where any valu€ of 1 is possible.
Sln‘he simulation results are shown in Fig. 5. Again, the
lid waveform, the dash—dotted waveform, and the dotted
veform correspond ta:(¢), y(¢), and z(¢), respectively.
Ig. 5(a) shows the instability results fér= —1 and A =
4. Fig. 5(b) shows the stable results in the stable region for
= —1 andA = 3x 10~%. The control system asymptotically
approaches the origin with a settling time of about 0.05. Also,
the true stable region is larger than that predicted in Fig. 4. To
demonstrate this fact, we show in Fig. 5(c) the stable results
for k = —1 andA = 0.01. We can also see that the system
asymptotically approaches the origin with a settling time equal
approximately to 1, which is much larger than that shown in
Fig. 5(b).

V. SYNCHRONIZATION OF CHUA'S
OSCILLATORS USING IMPULSIVE CONTROL

In this section, we study the impulsive synchronization of
two Chua’s oscillators. One of the Chua’s oscillators is called
thedriving systemand the other is called thdriven systemin
an impulsive synchronization configuration, the driving system

An estimate of the boundaries of the stable region is give§ given by (14). The driven system is given by

by
2
—mgff;kTD (k+1)2 > 0.81
aa
0<A< 1

_W elsewhere

q + 2|l
—2<k<O. (46)

X = A% + (%) (47)
where X' = (z, g, 2) is the state variables of the driven
system.

At discrete instantsg;, ¢ = 1, 2, - - -, the state variables of

the driving system are transmitted to the driven system and
then the state variables of driven system are subject to jumps
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Fig. 5. Simulation results. (a) Unstable results outside the stable region. (b) Stable results in the stable region. (c) Stable results oabd&lectiiorst
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Fig. 6. Simulation results of impulsive synchronization: (a) stable synchronization results inside our predicted stable region and (b) atianhcaniz
not be achieved whem\ is too large.

at these instants. In this sense, the driven system is describetiheorem 4:Let d; be the largest eigenvalue aff +

by the impulsive differential equation BT)(I + B), where B is a symmetric matrix. Assume the
s . ‘ spectral radiug of I 4+ B satisfieso({ + B) < 1. Let g be the
{Zf Ax tq)(g)’ tf? 5 (48) largest eigenvalue dfA + A7) and assume the impulses are
Xli=r, = —Be, i=1,2 - equidistant from each other and separated by an intexva
whereB is a 3x 3 matrix, ande? = (e,, ¢, .) = (z — 7, 1
y — §, z — %) is the synchronization errarlf we define 0<g+2aala < —1ln(éd),  £>1  (51)
. . —af(z) +af(@) then the impulsive synchronization of two Chua’s oscillators
U(x, x) =2(x) - (%) = 0 (49) is asymptotically stable.
0 Proof: Observe that the error system in (50) is almost

then the error system of the impulsive synchronization is givéhe same as the system in (18) except¥gx, x). Similarly,
let us construct the Lyapunov functiori(, e) = e’'e. For

by
t # 7;,, we have
e=Ae+V(x,X), t#£m (50)
Aeli=,, = Be, =12, - DtV(t,e) =el Ae + el ATe+ el U(e) + Ul(e)e
We use the following theorem to guarantee that our impul- <gete+2[al|f(z) = f(Z)]es

sive synchronization is asymptotically stable. < ge’'e + 2|aale?
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<(q+ 2|aal)e’e \ e

|, message

[y

For the rest of this section, we present our simulation resultg| chaotic __|synchronization- |
'l system "‘lmpulses

We choose the matriB as | T J ‘

15 0 0
B=| 0 -1 o0]. (53)

1

. J

=(g+ 2]aa))V(t, e). (52)  I|signal | Transmitter |

[ !

!

Hence, condition 1 of Theorem 1 is satisfied witft, w) = | cryptographic sorambled’ - }

(¢ + 2|aal)w. The rest of this proof is the same as that of“lsch?me "'{,S,i,gj!gli [77’7‘ l
& composition —

Theorem 3. o L 4] ‘

!

!

The initial conditions are given byz[0), y(0), z(0)] =

(—2.121304,-0.066 170, 2.881090) and:(0), #(0), 2(0)] 7

= (0, 0, 0). The other parameters are the same as those us
sign

sage
al

in Section IV. Since the stability boundary estimates are the Receiver |
same as those in Section IV, we do not repeat them here.
Fig. 6 shows our simulation results. Fig. 6(a) shows the stabl?ecryptographic |, [scrambied .- : |
results within our predicted stable region with= —1.5 and | 5™ sgnal_| [Gecomposition Fl
A =0.002. The solid line, the dash—dotted line, and the dotted _ N '
line show e, (), ¢,(t), and e.(t), respectively. We can see || Shactel. | aga 2atien - | |

J

that impulsive synchronization was achieved rapidly. Fig. 6(b}———— - —————

shows that ifA = 5 then our impulsive synchronization isrig. 7. Block diagram of the impulsive-synchronization based chaotic secure
unstable. communication system.

VI. APPLICATION OF IMPULSIVE o ) ) .
SYNCHRONIZATION TO SECURE COMMUNICATION n F|g 7. The transm|tted S|gna| consists Of a Sequence Of

. L . . time frames. Every frame has a length ®f seconds and
Since the publication of several chaotic cryptanalysis re- y 9

. . .2~ .~ consists of two regions. In Fig. 8, we show the concept
sults of low-dimensional chaos-basexkcure communication . . . .
of a time frame and its components. The first region of

systems [12], [13], there existed an illusion that such com- .. . L . o
. r%e time frame is a synchronization region consisting of
munication schemes were not secure enough. It may be

reasonable to exploit hyperchaos based secure communicaﬁ%ﬂcmomzatlon_ impulses. Th_e synchronlz_atlon mpuls_es are
systems, but such systems may introduce more difficultieslfged t(_) impulsively ;ynchronlze the chaqtlc _systems in both
synchronization. tr_ansmltter_ and receiver. The second region is the s_crambled
On the other hand, we can enhance the security of |O\§)gnal region wh_ere_ the scrambled signal |s_c<_3nta|ned. To
dimensional chaos-based secure communication scheme<SByHIe Synchronization, we hafe < Aumax. Within every
combining conventional cryptographic schemes with a chaof|f™€ frame, the synchronization region has a lengtii)and
system [14]. To overcome the low security objections agairfSié remaining time interval” — @ is the scrambled signal
low-dimensional continuous chaos-based schemes, we shd&@o"- N o _ _
overcome the following problems: 1) make the transmitted 1€ composition block in Fig. 7 is used to combine the
signal more complex and 2) reduce the redundancy in tR¥nchronization impulses and the scrambled signal into the
transmitted signal. To achieve the first goal, it is not necessafye frame structure shown in Fig. 8. The simplest combina-
to use hyper-chaos. In [14], we have presented a metHén method is to substitute the beginnitgseconds of every
to combine a conventional cryptographic scheme with loWime frame with synchronization impulses. Singeis usually
dimensional chaos to obtain a very complex transmitted signggry small compared witti", the loss of time for packing
To achieve the second goal, impulsive synchronization offelsmessage signal is negligible. The decomposition block is
a very promising approach. used to separate the synchronization region and the scrambled
In this section, we combine the results in [14] and impulsiv@gnal region within each frame at the receiver end. Then
synchronization to give a new chaotic secure communicatiéte separated synchronization impulses are used to make the
scheme. The block diagram of this scheme is shown in Fig.Ghaotic system in the receiver to synchronize with that in the
From Fig. 7, we can see that this chaotic secure coiansmitter. The stability of this impulsive synchronization is
munication system consists of a transmitter and a receivgraranteed by our results in Section V.
In both the transmitter and the receiver, there exist two In the transmitter and the receiver, we use the same cryp-
identical chaotic systems. Also, two identical convention&bgraphic scheme block for purposes of bidirectional com-
cryptographic schemes are embedded in both the transmitt@mication. In a bidirectional communication scheme, every
and the receiver. Let us now consider details of each blockllular phone should function both as a receiver and a
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Number 4 5
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Id T-Q
(0T T

Fig. 8. lllustration of the concept of a time-frame and its components.

The simulation results are as follows. We use an FM
scheme to modulate the synchronization impulses such that
the synchronization region is located in the initial 1% of every
time frame. We choose the frame length’Bs= 1 s. In the
synchronization region of every time frame, we transmit the
impulses of the three state variables of the Chua’s oscillators.

o (X The parameter of the encrypted signal is choseh as0.4. A
continuous 10-shift cipher was used. We chopsadz as the
key signals and normalized them to fall within the amplitude
range 0.4, 0.4].

Fig. 10 shows the simulation results of the above proposed
secure communication system for transmitting a speech
signal. Fig. 10(a) shows the waveforms of the sampled
transmitter. Here, the key signal is generated by the chaotigeech of four Chinese digits “NING”(zero)—"YI"(one)—

Fig. 9. Nonlinear function used in the continuous shift cipher.

system. The cryptographic scheme is as follows [14]: “ER"(two)—"SANG”(three). The sampling rate is 8k,
We use a continuous-shift cipher to encrypt the plain Fig. 10(b) shows the spectrograms of the original speech
signal(message signal). Theshift cipher is given by signal in Fig. 10(a), from which we can see the structure
of the speech signal. Fig. 10(c) shows the waveforms of the
elp®] = fi(--+ flAlp@), kB, k@)Y, -, k(t received scrambled speech signal and the additive channel
p(®) ‘1( ~ Afr(®) ‘( ) M )i ®) noise with SNR = 16 dB. This additive noise cannot change

the value of the synchronization impulses which are modulated
by FM. Fig. 10(d) shows the spectrograms for the scrambled
) o speech signal and the additive channel noise. We can see that
wheref is chosen such tha(?) ar}dk(t) lie within (—#, h.)' the structure of the signal in Fig. 10(b) was totally covered by
Here,p(.t) andk(t) denote the plain signal and Fhe key S|gna5n almost uniformly distributed noise-like spectrum. Fig. 10(e)
respectively, andy(#) denotes the encrypted signal. The ke¥>hows the waveforms of the descrambled speech signal.
signalk(¢) is chosen as a state variable of the chaotic systemg_ 10(f) shows the spectrograms of the descrambled speech
The no'Fationfl(-,_-) denotes a scalar nonlinear function ofsignal. We can see that some noises were introduced into
two variables defined as follows: the recovered results due to the channel noise, and that the
spectrograms became a little blurry. But the structure of the
speech signal was perfectly recovered.

=y(t) (54)

(x4+k)+2h, —2h<(z+k)<—h
Jilz, k) =< (z+ k), —h<(x+k)y<h . (55)
(x+k)—2n, h<(z+k)<2h VIl. CONCLUDING REMARKS

This function is shown in Fig. 9 In this paper, we have_ presented a theory_of impulsive
. s . control of chaotic dynamical systems. An estimate of the
Th? corresponding decryption rule is the same as the eunp'per bound of the impulse interval is also presented. Since
cryption rule . . .
all of our results are based on rigorous theoretical analysis
and proofs, the results in this paper provide a framework
p(t) =dly(t)] and foundation for future works. We then use this theory to
= fi(-++ AlAaly®), =k@®)], =k@®)}, -+, —=k(t)). (56) impulsively control and synchronize Chua’s oscillators. An
— h application of impulsive chaotic synchronization to secure
communication is presented. The chaotic secure communica-
To decode the encrypted signal, the same key signal shotitth scheme presented here is a combination of a conventional
be used. cryptographic method and impulsive synchronization.

v~
n n
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Fracquancy

B0 100 150 200 2 980 0 300 350 400
Time (x0.013)

(b)

Fig. 10. The simulation results. (a) The time-domain waveform of the speech signal. (b) The spectrogram for the original speech signal. (c)ohtnime-d
waveform of the scrambled speech signal.
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Fig. 10. (Continued) The simulation results. (d) The spectrogram of the scrambled speech signal. (e) The time-domain waveform of the descrambled
speech signal. (f) The spectrogram of the descrambled speech signal.
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