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Abstract—Impulsive control of a chaotic system is ideal for
designing digital control schemes where the control laws are
generated by digital devices which are discrete in time. In this
paper, several theorems on the stability of impulsive control
systems are presented. These theorems are then used to find the
conditions under which the chaotic systems can be asymptotically
controlled to the origin by using impulsive control. Given the
parameters of the chaotic system and the impulsive control law,
an estimation of the upper bound of the impulse interval is given.
We also present a theory of impulsive synchronization of two
chaotic systems. A promising application of impulsive synchro-
nization of chaotic systems to a secure communication scheme is
presented. In this secure communication scheme, the transmitted
signals are divided into small time frames. In each time frame,
the synchronization impulses and the scrambled message signal
are embedded. Conventional cryptographic methods are used to
scramble the message signal. Simulation results based on a typical
chaotic system; namely, Chua’s oscillator, are provided.

Index Terms—Chaotic secure communication, Chua’s oscilla-
tor, continuous cryptographic function, impulsive control, impul-
sive synchronization.

I. INTRODUCTION

SINCE THE seminal paper of Ott, Grebogi, and Yorke
(OGY) [2], several methods for control and stabilization

of chaotic motions have recently been presented [3]–[6]. In
view of the rich dynamics of chaotic systems, there exists
a large variety of approaches for controlling such systems.
Some of these approaches include adaptive control [4], [5],
error-feedback control [7], time-delay feedback control [7],
OGY method [2], predictive Poincaré control [8], occasional
proportional feedback control [9], and impulsive control [6],
[15]–[20].

In fact, the predictive Poincaré control and the occasional
proportional feedback control are two impulsive control
schemes with varying impulse intervals. Impulsive control
is attractive because it allows the stabilization of a chaotic
system using only small control impulses, and it offers a direct
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method for modulating digital information onto a chaotic
carrier signal for spread spectrum applications. However,
due to a lack of effective tools for analyzing impulsive
differential equations [1], most impulse control schemes had
been designed mainly by trial-and-error. The study of the
stability of an impulsive differential equation is much more
difficult than that of its “corresponding” differential equation
[10]. For example, consider the impulsive system

,
(1)

where and are two constant matrices, and
, , and being

the left and right limit of at . The solution of the
above system is given by

(2)

where

(3)

As can be seen from this formula, it is not possible in
the general case to give necessary and sufficient conditions
for stability of solutions of the above system in terms of the
eigenvalues of the matrix of this system, which is possible
for systems of ordinary differential equations with constant
coefficients.

In this paper, we investigate the stability of impulsively
controlled chaotic systems. First, the stability of the trivial
solution of a kind of impulsive differential equation is studied.
Then the theoretical results are used to study the conditions
under which an impulsive control of Chua’s oscillator is
asymptotically stable. An estimate of the upper bound of the
impulsive interval is also presented.

Then, an impulsive control theory is used to study the im-
pulsive synchronization of two chaotic systems. We first show
that the impulsive synchronization problem is an impulsive
control problem. Then a theorem is given for guaranteeing the
asymptotic stability of impulsive synchronization. Since only
the synchronization impulses are sent to the driven system in
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Fig. 1. The Chua’s double scroll attractor.

an impulsive synchronization scheme, the information redun-
dancy in the transmitted signal is reduced. In this sense, even
low-dimensional chaotic systems can provide high security. In
this paper, we will use impulsive synchronization to develop
a new framework for chaotic secure communication.

The organization of this paper is as follows. In Section II,
a theory on the stability of impulsive differential equations is
given. In Section III, a stability criterion for impulsive control
of Chua’s oscillator is presented. In Section IV, simulation
results on the impulsive control of Chua’s oscillator are
provided. In Section V, the theory and simulation results of
impulsive synchronization of Chua’s oscillators are presented.
In Section VI, application of impulsive synchronization to
secure communication is presented. In Section VII, some
concluding remarks are given.

II. BASIC THEORY OF IMPULSIVE DIFFERENTIAL EQUATIONS

Consider the general nonlinear system

(4)

where is continuous, is the state
variable, and

Consider a discrete set of time instants, where

as

Let

(5)

Fig. 2. Estimate of the boundaries of stable regions with different�’s used
in simulation 1.

be the “jump” in the state variable at the time instant. Then
this impulsive system is described by

(6)

This is called an impulsive differential equation [1]. To study
the stability of the impulsive differential equation (6) we use
the following definitions and theorems [1].

Definition 1: Let , then is said to
belong to class if

1) is continuous in and for each ,
,

(7)

exists;
2) is locally Lipschitzian in .

Definition 2: For , we define

(8)

Definition 3. Comparison System:Let and assume
that

(9)

where is continuous and
is nondecreasing. Then the system

(10)

is called the comparison system of (6).
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Definition 4:

(11)

where denotes the Euclidean norm on .
Definition 5: A function is said to belong to class if

, , and is strictly increasing
in .

Assumptions: , , and
for all .

Remark: With the above assumptions, we find that the
trivial solutions of (6) and (10) are identical for all time except
at the discrete set .

Theorem 1. [1, Theorem 3.2.1, p. 139]:Assume that the
following three conditions are satisfied.

1) , , ,
, .

2) There exists a such that implies that
for all and

, , .
3) on , where

.

Then the stability properties of the trivial solution of the
comparison system (10) imply the corresponding stability
properties of the trivial solution of (6).

Theorem 2. [1, Corollary 3.2.1., p. 142]:Let
, , , for all .

Then the origin of system (6) is asymptotically stable if the
conditions

for all where (12)

and

(13)

are satisfied.

III. STABILIZATION OF CHUA’S

OSCILLATOR USING IMPULSIVE CONTROL

In this section, we study the impulsive control of Chua’s
oscillators [11] by applying the theory presented in the pre-
vious section. The dimensionless form of a Chua’s oscillator
is given by [11]

(14)

where is the piecewise-linear characteristics of the
Chua’s diode, which is given by

(15)

where are two constants.
Let , then we can rewrite the Chua’s oscillator

equation into the form

(16)

where

(17)

The impulsive control of a Chua’s oscillator is then given by

(18)

Since the system in (18) has the general form of a kind of
nonlinear system, we can give a general result in following
lemma.

Lemma 1: Let matrix be symmetric and positive
definite, and , are, respectively, the smallest
and the largest eigenvalues of. Let

(19)

where is the transpose of , and is the largest
eigenvalue of . is continuous and
where is a constant. is the largest eigenvalue of
the matrix

(20)

is symmetric and the spectral radius of ,
. Then the origin of impulsive control system (18)

is asymptotically stable if

(21)

and

(22)

Proof: Construct a Lyapunov function ,
when we have

(23)

Hence, condition 1 of Theorem 1 is satisfied with
.

Since is symmetric, we know that is also symmetric.
By using Euclidean norm we have

(24)

Given any and , we have

(25)

The last inequality is in view of . From which
we know that .
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(a)

(b)

Fig. 3. Simulation results. (a) Unstable results outside the stable region. (b) Stable results inside the predicted stable region.

When , we have

(26)

Hence, condition 2 of Theorem 1 is satisfied with
. And

(27)

From which one can see that condition 3 of Theorem 1 is
also satisfied with and . It follows
from Theorem 1 that the asymptotic stability of the impulsive
control system in (18) is implied by that of the following
comparison system:

(28)

It follows from Theorem 2 that if

(29)

i.e.,

(30)

and

(31)

are satisfied, then the origin of (18) is asymptotically stable.
Since this lemma is too general, in practical application,

we want to deal with a simple case which is given in the
following theorem.

We use the following theorem in order to guarantee the
asymptotic stability of the origin of the controlled Chua’s
oscillator.
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(c)

Fig. 3. (Continued.) Simulation results. (c) Stable results outside the predicted stable region.

Theorem 3: Let be the largest eigenvalue of
, where is a symmetric matrix, ,

where denotes the spectral radius of . Let be
the largest eigenvalue of and let the impulses be
equidistant from each other and separated by interval. If

where (32)

then the origin of the impulsively controlled Chua’s oscillator
is asymptotically stable.

Proof: Let us construct the Lyapunov function
. For , we have

(33)

Hence, condition 1 of Theorem 1 is satisfied with
.

Since is symmetric, we know is also symmetric.
By using Euclidean norm we have

(34)

Given any and , we have

(35)

The last inequality follows from . Consequently,
.

For , we have

(36)

Hence, condition 2 of Theorem 1 is satisfied with
. We can see that condition 3 of Theorem 1 is also satisfied.

It follows from Theorem 1 that the asymptotic stability of the

impulsively controlled Chua’s oscillator in (18) is implied by
that of the following comparison system

(37)

From (32), we have

(38)

and . It follows from Theorem 2 that the
trivial solution of (18) is asymptotically stable.

Theorem 3 also gives an estimate for the upper bound
of ; namely,

(39)

Observe that the upper bound given by (39) is sufficient but
not necessary. Consequently, we can only say that we have
a predicted stable region, which is usually smaller than the
actual stable region because we can not assert that all other
regions are unstable.

IV. SIMULATION RESULTS OFIMPULSIVE CONTROL

In the following simulations, we choose the parameters of
Chua’s oscillator as 15, 20, 0.5, ,

. A fourth-order Runge–Kutta method with step size
is used. The initial condition is given by [ , , ]

2.121 304, 0.066 170, 2.881 090). The uncontrolled
trajectories are shown in Fig. 1, which is the Chua’s double
scroll attractor.

A. Simulation 1: Strong Control

In this simulation, we choose the matrix as

(40)
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where the impulsive control is “strong.” It follows from
Theorem 3 that should be satisfied, which implies
that . By using this matrix, it is easy to see that

(41)

We have

(42)

from which we find 20.162 180. Then an estimate of the
boundaries of the stable region is given by

(43)

Fig. 2 shows the stable region for different’s. The entire
region below the curve corresponding to 1 is the predicted
stable region. When , the stable region shrinks to a
line 1.

The simulation results are shown in Fig. 3. Fig. 3(a) shows
instability for 1.5 and 1. The solid waveform, the
dash-dotted waveform, and the dotted waveform correspond
to , , and , respectively. Fig. 3(b) shows stable
results within the stable region for 1.5 and 0.002.
One can see that the system asymptotically approaches the
origin with a settling time of about 0.05. However, the true
stable region is larger than that predicted in Fig. 2. In order to
demonstrate this fact, we show in Fig. 3(c) the stable results
for 1.5 and 0.05. We can also see that the system
asymptotically approaches the origin with a settling time of
about 1.4 which is much larger than that shown in Fig. 3(b).

B. Simulation 2: Weak Control

In this simulation, we choose the matrix as

(44)

where the impulsive control is much weaker than that chosen
in simulation 1.

It is easy to see that

elsewhere.
(45)

An estimate of the boundaries of the stable region is given
by

elsewhere

(46)

Fig. 4. Estimate of the boundaries of stable region used in simulation 2.

Fig. 4 shows the stable region. The entire region below the
curve corresponding to is the predicted stable region. In
this case, is always bounded. It seems that we can’t control
the system to the origin with an arbitrarily prescribed speed
because has to satisfy . This is different from
the case shown in Fig. 2, where any value of 1 is possible.

The simulation results are shown in Fig. 5. Again, the
solid waveform, the dash–dotted waveform, and the dotted
waveform correspond to , , and , respectively.
Fig. 5(a) shows the instability results for 1 and
0.4. Fig. 5(b) shows the stable results in the stable region for

1 and . The control system asymptotically
approaches the origin with a settling time of about 0.05. Also,
the true stable region is larger than that predicted in Fig. 4. To
demonstrate this fact, we show in Fig. 5(c) the stable results
for 1 and 0.01. We can also see that the system
asymptotically approaches the origin with a settling time equal
approximately to 1, which is much larger than that shown in
Fig. 5(b).

V. SYNCHRONIZATION OF CHUA’S

OSCILLATORS USING IMPULSIVE CONTROL

In this section, we study the impulsive synchronization of
two Chua’s oscillators. One of the Chua’s oscillators is called
thedriving systemand the other is called thedriven system. In
an impulsive synchronization configuration, the driving system
is given by (14). The driven system is given by

(47)

where , is the state variables of the driven
system.

At discrete instants, , the state variables of
the driving system are transmitted to the driven system and
then the state variables of driven system are subject to jumps
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(a)

(b)

(c)

Fig. 5. Simulation results. (a) Unstable results outside the stable region. (b) Stable results in the stable region. (c) Stable results outside the stable region.
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(a)

(b)

Fig. 6. Simulation results of impulsive synchronization: (a) stable synchronization results inside our predicted stable region and (b) synchronization can
not be achieved when� is too large.

at these instants. In this sense, the driven system is described
by the impulsive differential equation

(48)

where is a 3 3 matrix, and
is thesynchronization error. If we define

(49)

then the error system of the impulsive synchronization is given
by

(50)

We use the following theorem to guarantee that our impul-
sive synchronization is asymptotically stable.

Theorem 4: Let be the largest eigenvalue of
, where is a symmetric matrix. Assume the

spectral radius of satisfies . Let be the
largest eigenvalue of and assume the impulses are
equidistant from each other and separated by an interval. If

(51)

then the impulsive synchronization of two Chua’s oscillators
is asymptotically stable.

Proof: Observe that the error system in (50) is almost
the same as the system in (18) except for . Similarly,
let us construct the Lyapunov function . For

, we have
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(52)

Hence, condition 1 of Theorem 1 is satisfied with
. The rest of this proof is the same as that of

Theorem 3.
For the rest of this section, we present our simulation results.

We choose the matrix as

(53)

The initial conditions are given by [ , , ]
( 2.121 304, 0.066 170, 2.881 090) and [ , , ]

(0, 0, 0). The other parameters are the same as those used
in Section IV. Since the stability boundary estimates are the
same as those in Section IV, we do not repeat them here.
Fig. 6 shows our simulation results. Fig. 6(a) shows the stable
results within our predicted stable region with 1.5 and

0.002. The solid line, the dash–dotted line, and the dotted
line show , , and , respectively. We can see
that impulsive synchronization was achieved rapidly. Fig. 6(b)
shows that if 5 then our impulsive synchronization is
unstable.

VI. A PPLICATION OF IMPULSIVE

SYNCHRONIZATION TO SECURE COMMUNICATION

Since the publication of several chaotic cryptanalysis re-
sults of low-dimensional chaos-basedsecure communication
systems [12], [13], there existed an illusion that such com-
munication schemes were not secure enough. It may be
reasonable to exploit hyperchaos based secure communication
systems, but such systems may introduce more difficulties to
synchronization.

On the other hand, we can enhance the security of low-
dimensional chaos-based secure communication schemes by
combining conventional cryptographic schemes with a chaotic
system [14]. To overcome the low security objections against
low-dimensional continuous chaos-based schemes, we should
overcome the following problems: 1) make the transmitted
signal more complex and 2) reduce the redundancy in the
transmitted signal. To achieve the first goal, it is not necessary
to use hyper-chaos. In [14], we have presented a method
to combine a conventional cryptographic scheme with low-
dimensional chaos to obtain a very complex transmitted signal.
To achieve the second goal, impulsive synchronization offers
a very promising approach.

In this section, we combine the results in [14] and impulsive
synchronization to give a new chaotic secure communication
scheme. The block diagram of this scheme is shown in Fig. 7.

From Fig. 7, we can see that this chaotic secure com-
munication system consists of a transmitter and a receiver.
In both the transmitter and the receiver, there exist two
identical chaotic systems. Also, two identical conventional
cryptographic schemes are embedded in both the transmitter
and the receiver. Let us now consider details of each block

Fig. 7. Block diagram of the impulsive-synchronization based chaotic secure
communication system.

in Fig. 7. The transmitted signal consists of a sequence of
time frames. Every frame has a length of seconds and
consists of two regions. In Fig. 8, we show the concept
of a time frame and its components. The first region of
the time frame is a synchronization region consisting of
synchronization impulses. The synchronization impulses are
used to impulsively synchronize the chaotic systems in both
transmitter and receiver. The second region is the scrambled
signal region where the scrambled signal is contained. To
ensure synchronization, we have . Within every
time frame, the synchronization region has a length ofand
the remaining time interval is the scrambled signal
region.

The composition block in Fig. 7 is used to combine the
synchronization impulses and the scrambled signal into the
time frame structure shown in Fig. 8. The simplest combina-
tion method is to substitute the beginningseconds of every
time frame with synchronization impulses. Sinceis usually
very small compared with , the loss of time for packing
a message signal is negligible. The decomposition block is
used to separate the synchronization region and the scrambled
signal region within each frame at the receiver end. Then
the separated synchronization impulses are used to make the
chaotic system in the receiver to synchronize with that in the
transmitter. The stability of this impulsive synchronization is
guaranteed by our results in Section V.

In the transmitter and the receiver, we use the same cryp-
tographic scheme block for purposes of bidirectional com-
munication. In a bidirectional communication scheme, every
cellular phone should function both as a receiver and a
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Fig. 8. Illustration of the concept of a time-frame and its components.

Fig. 9. Nonlinear function used in the continuous shift cipher.

transmitter. Here, the key signal is generated by the chaotic
system. The cryptographic scheme is as follows [14]:

We use a continuous -shift cipher to encrypt the plain
signal(message signal). The-shift cipher is given by

(54)

where is chosen such that and lie within .
Here, and denote the plain signal and the key signal,
respectively, and denotes the encrypted signal. The key
signal is chosen as a state variable of the chaotic system.
The notation denotes a scalar nonlinear function of
two variables defined as follows:

(55)

This function is shown in Fig. 9.
The corresponding decryption rule is the same as the en-

cryption rule

(56)

To decode the encrypted signal, the same key signal should
be used.

The simulation results are as follows. We use an FM
scheme to modulate the synchronization impulses such that
the synchronization region is located in the initial 1% of every
time frame. We choose the frame length as s. In the
synchronization region of every time frame, we transmit the
impulses of the three state variables of the Chua’s oscillators.
The parameter of the encrypted signal is chosen as0.4. A
continuous 10-shift cipher was used. We chooseand as the
key signals and normalized them to fall within the amplitude
range [ 0.4, 0.4].

Fig. 10 shows the simulation results of the above proposed
secure communication system for transmitting a speech
signal. Fig. 10(a) shows the waveforms of the sampled
speech of four Chinese digits “NING”(zero)—“YI”(one)—
“ER”(two)—“SANG”(three). The sampling rate is 8k.
Fig. 10(b) shows the spectrograms of the original speech
signal in Fig. 10(a), from which we can see the structure
of the speech signal. Fig. 10(c) shows the waveforms of the
received scrambled speech signal and the additive channel
noise with SNR = 16 dB. This additive noise cannot change
the value of the synchronization impulses which are modulated
by FM. Fig. 10(d) shows the spectrograms for the scrambled
speech signal and the additive channel noise. We can see that
the structure of the signal in Fig. 10(b) was totally covered by
an almost uniformly distributed noise-like spectrum. Fig. 10(e)
shows the waveforms of the descrambled speech signal.
Fig. 10(f) shows the spectrograms of the descrambled speech
signal. We can see that some noises were introduced into
the recovered results due to the channel noise, and that the
spectrograms became a little blurry. But the structure of the
speech signal was perfectly recovered.

VII. CONCLUDING REMARKS

In this paper, we have presented a theory of impulsive
control of chaotic dynamical systems. An estimate of the
upper bound of the impulse interval is also presented. Since
all of our results are based on rigorous theoretical analysis
and proofs, the results in this paper provide a framework
and foundation for future works. We then use this theory to
impulsively control and synchronize Chua’s oscillators. An
application of impulsive chaotic synchronization to secure
communication is presented. The chaotic secure communica-
tion scheme presented here is a combination of a conventional
cryptographic method and impulsive synchronization.
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(a)

(b)

(c)

Fig. 10. The simulation results. (a) The time-domain waveform of the speech signal. (b) The spectrogram for the original speech signal. (c) The time-domain
waveform of the scrambled speech signal.
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(d)

(e)

(f)

Fig. 10. (Continued.) The simulation results. (d) The spectrogram of the scrambled speech signal. (e) The time-domain waveform of the descrambled
speech signal. (f) The spectrogram of the descrambled speech signal.
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