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Impurities are known to affect vibrational properties of crystals by modifying the distri­

bution of normal mode frequencies and altering the nature of the atomic displacements in 

the neighborhood of the impurities. We have calculated the effects of isotopic impurities on 

the lattice vibrational optical absorption of both monatomic and diatomic linear chains of 

alternately charged particles. It is found that even with the harmonic approximation and the 

use of the cyclic bounda'ry condition, the presence of impurities leads to a broad absorption 

of the low frequency side of the main maximum. This is in contrast with the delta-function 

type of absorption at the optical frequency predicted by these models in the absence of impu­

rities. For those cases in which discrete frequencies associated with localized vibrational 

modes occur, absorption at these isolated frequencies also occurs. This latter absorption can 

take place at frequencies higher than that of the main maximum. A discussion will be given 

of the relation between the results of our calculations and available experimental data. 

§ 1. Introduction 

Various examples are known of optical absorption lines in solids which are 

due to the effect of impurities on the lattice vibrations. For example silicon con­

taining oxygen impurities exhibits1
l an infrared absorption line which has been 

·qualitatively associated with a Si-0 stretching vibration. Pick2
l has observed an 

infrared absorption line in each of several alkali halide crystals containing hydride 

ions and has attributed these lines to vibrations localized at the hydride ions. 

Recently Braunstein3
l has observed infrared impurity absorption lines in a series 

of germanium-silicon alloys. 

In the present paper a theoretical investigation based on lattice dynamics is 

given of the effect of impurities on the infrared lattice-vibrational optical absorption. 

Qualitatively, introduction of an impurity can lead to a change in mass and a 

change in force constants associated with a given site. In addition, polarizabilities 

and effective charges may be modified. Of these changes only the change in mass 
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1056 R. F. Wallis and A. A. Maradudin 

can be controlled precisely and predictably, so we have restricted our attention to 

effects due to the change in mass of the impurity. 

In a series of papers Montroll, Potts, Maradudin and collaborators4>· 5>· 6>· 7> have 

investigated the effect of impurities on the normal vibrational modes of crystal 

lattices. We summarize some of their qualitative results which have special interest. 

First let us consider a monatomic linear chain 

of atoms with mass M and coupled by nearest w 

neighbor Hooke's law forces.4
> If one of the 

atoms is replaced by an atom of mass M' = M' 

(1-c)M with the force constants unchanged, €= I-'M 

the normal mode frequencies can be described 

schematically as in Fig. 1. For a lighter 

impurity atom, 0 < 8 < 1, a discrete frequency 

associated with a mode localized about the 

impurity separates from the top of the allow­

ed band of frequencies. For a heavier impurity 

atom, 8 < 0, no discrete frequency exists. In 

both cases the distribution function for the 

in-band frequencies is modified. 5> 

Turning now to the diatomic linear chain6
> 

the introduction of an isotopic impurity atom 

may lead to one or two discrete frequencies 

associated with localized modes depending on 

which host atom is replaced and on the rela­

0 

Fig. 1. The variation of the impurity 

frequency associated with a light 

isotope defect in a monatomic linear 

chain is plotted as a function of the 

impurity mass. 

tive change in mass. A diagram of the situation is shown in Fig. 2. Of parti­

cular interest is the case in which one of the heavier host atoms is replaced by 

a lighter atom. One then gets a discrete frequency above the top of the optical 

branch and a second discrete frequency in the forbidden gap between the acoustical 

w" 
M*=(l .. £) M, 

w2 
M'=U-€) Mt 

I I 

.II 
I 

• I 

I I 

I 
I 

f. «{ 
I 

Fig. 2. The dependence on the impurity mass of the 

frequencies of the localized vibration modes in a linear 

diatomic chain when a heavy mass and a light mass 

atom are replaced by an isotopic impurity, respectively. 

and optical branches. As in 

the monatomic case the fr-e­

quency distribution function 

for the in-band modes is 

modified by the presence of 

impurity atoms. 

In this paper we study 

the effects of isotopic impuri­

ties on optical absorption 

associated both with localized 

modes and with the ordinary 

in-band modes. Monatomic 

and diatomic one and three 

dimensional cubic lattices of 
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Impurity Induced Infrared Lattice Vibration Absorption 1057 

the sodium chloride type are considered. 

§ 2. The monatomic lattice, cyclic boundary conditions 

We study the following simple model of a one-dimensional ionic lattice. We 

have a linear chain of N ions of alternating charge each of whose mass is M, 

and each of which interacts only with its nearest neighbors through Hooke's law 

forces with force constant r. The time-independent equation of motion for the 

nth ion is 

Lun=Maiun +r (un+t-2un+ Un-l) =0, 

whose general solution is 

Un=A cosnO+B sinnO, 

provided that 

MaJ2=2r (1-cosO). 

If we impose the cyclic boundary condition on the displacements, 

we find that 

(} 2ns 
=-N ; s=1, 2, 3, ... , N. 

(2·1) 

(2·2) 

(2·3) 

(2·4) 

(2·5) 

When defects are introduced into the lattice, the time-independent equations 

assume in general the form 

(2·6) 

Equation (2 · 6) can be solved formally if we introduce the Green's function g (n) 

which satisfies the equation 

Lg(n)=t3n
0 

and also the cyclic boundary condition 

g(n+N) =g(n). 

With the aid of this function the solution to Eq. (2 · 6) ts 

Un= 2J g(n-m)cmpUp· 
m,p 

(2·7) 

(2·8) 

(2·9) 

If the ion at n=O is replaced by one of the same charge but whose mass 1s 

M'= (1-8) M the coefficients Cnp in Eq. (2 · 6) become 

(2 ·10) 

so that Eq. (2 · 9) becomes 

(2 ·11) 
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JOSS · R. F. Wallis and A. A. Maradudin 

Since Eq. (2 ·11) holds for all n, it must hold for n=O, and we thus obtain the 

eigenvalue equation for the normal mode frequencies of the perturbed lattice: 

1 =cMw2 g (0). (2 ·12) 

An expression for g (n) which satisfies Eqs. (2 · 7) and (2 · 8) IS 

Y(n) =__'!_ £ ~-~ exp (2rr_is1!/!!)_ -----=g(-n). 
N s=l M(,}-2r+2r cos(2rrs/N) 

(2 ·13) 

The sum m Eq. (2 ·13) is evaluated in the Appendix with the result that 

smlnlcp 
g (n) = g (0) cos nm + · · n = 0 1 2 · · · N- 1 

• r 2r sin cp ' ' ' ' ' 

where we have put 

g(O) _ cot(N_c;/2) 

2r smcp 

The eigenvalue equation (2 · 12) becomes 

tan(Ncp/2) =c tan(cp/2). 

(2 ·14) 

(2 ·15) 

(2 ·16) 

(2 ·17) 

From Eqs. (2 ·11) and (2 ·13) we see that the isotope defect affects only the 

symmetric modes, i. e., those for which un=u-m while the antisymmetric modes, 

for which zen= -um are unaffected by the presence of the defect. Thus we can 

classify the solutions to the perturbed equations as follows : 

tan(Ncp/2) =c tan(¢/2) 

antisymmetric: un=B sin(2mzs/N), w=('h sin(so/2) 

2ns 
cp=N. 

(2 ·18a) 

(2 ·18b) 

(2 ·19a) 

(2 ·19b) 

Ln each of these cases we can restrict cp to the interval (0, rr) since we gain no 

new normal modes from the interval (rr, 2n), and this restriction gives the correct 

number of normal mode vibrations. 

We now turn to the calculation of the dipole moment of the lattice associated 

with each normal mode. This is defined by 

N-1 

M(s) = ~ enun(s) (2 ·20) 
n=O 

where un(s) is the displacement of the nth ion in the sth normal mode of vibration 

and en is the charge on the nth ion. In the present case en= e (- 1) n, and we find 

for the antisymmetric modes that 
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Impurity Induced Infrared Lattice Vibration AbsorjYtion 1059 

~;
1 

n • 21fns 
M(s)=eB~ (-1) sm-----=0. (2·21) 

n=O N 

Thus we see that the antisymmetric modes do not contribute to the optical ab­

sorption of the lattice. 

To calculate the contribution of the symmetric modes to the dipole moment 

it is convenient to proceed as follows. From Eqs. (2 · 18a) (2 · 20) and (2 · 13) 

we .find that 

(2 ·22) 

where w8 is the sth root of Eq. (2 ·18b). 

The displacement u 0 is obtained from the normalization condition 

N-1 N-1 

~ Mn Un
2 (s) =M~ Un

2 (s) -8Muo
2 (s) =1. (2· 23) 

n=O n=O 

This equation can be rewritten as 

N-1 

1+8Mu0
2 (s) =82 M 3

w8
4 u0

2 (s) ~ g2 (n) 
n=O 

MN c2 2 ( ) 2 <fs 2 N<ps J1 + 1 · H } =--c u0 s tan---- esc -- 1 . --- cotm SlnJ.vm 
2 2 2 \ N TS TS 

(2 ·24) 

where this result is obtained from Eqs. (2 ·13) and (2 ·15) by a differentiation 

with respect to <p. \/\lith the aid of the eigenvalue equation, Eq. (2 ·17), this 

expression can be simplified to 

MN 2(){1+c2 2</)s 8 (1 r 2<fJs)}-1 -
2
-uo s c tan --

2
- N + tcm -

2 
- . (2 ·25) 

Combining the results expressed by Eqs. (2 · 22) and (2 · 25) we finally obtain for 

the dipole moment associated with the sth normal mode 

_ ~2-8e tan2 (<ps/2) 

M(s)- -~MN vl=-t82t;~ 2 (<p-:-72Y_:(671V)[I+ta~ 2 (<Fs/2)] (2·26a) 

v28e fs
2 

= --;;NJrl v C1-~/s 2 )[1- Ci~-s 2 )Jr=-i7NJ · (2· 26b) 

Ordinarily, the term of 0 (1/ N) in the denominator of Eq. (2 · 26b) is negligible 

compared to the 'rest of the denominator, and we have the approximate result that 

(2·27) 

We have so far not considered explicitly the contribution to the dipole moment 

due to localized impurity modes of vibration. It is known from the work of 

Montroll and Potts4
> that such a mode exists if 0 < 8 < 1 but not if 8 < 0. In the 
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1060 R. F. Wallis and A. A. Maradudin 

former case, which is the more interesting one, there is a solution to Eq. (2 ·17) 

with f> 1. This special case is included in the general treatment just presented, 

and is obtained by replacing cp by 

(2 ·28) 

so that now 

(2·29) 

If Eq. (2 · 28) is substituted into Eq. (2 ·17) the eigenvalue equation for the im­

purity frequency becomes 

c coth (z/2) =tanh (Nz/2)-) 1 as N-) co. 

In the large N limit the solution of Eq. (2 · 30) 1s 

l+c 
z=ln--

1-8 

which together with Eq. (2 · 29) gives the Montroll-Potts result 

(2. 30) 

(2. 31) 

(2 ·32) 

If this result is substituted into Eq. (2 · 26b), or, alternatively, if Eqs. (2 · 28) and 

(2 · 31) are substituted into Eq. (2 · 26a), we obtain for the dipole moment as­

sociated with the impurity mode 

tl2e 1 
Mimp= tiM- tis vl-82 • 

(2·33) 

The absorption coefficient is proportional to M 2 (f)g(f) where g(f) is the 

frequency distribution function for the perturbed lattice. It has the form 

g (f) =go (f)+ ilg (f) 

where g0 (f) is the distribution function for the perfect lattice, 

2 1 
go(f) =- Vl f2' 

1C (I)L -

and 11g (f) is the change in g0 (f) due to an isotope defect5
> : 

_ lei go(f) 

- 2N [1 + (c2-l)f2
] 

0<8<1, 

1 a <f -1), s < o. 
2NwL 

For the more interesting case of 0 <8 < 1 we find that 

(2 ·34) 

(2 ·35) 

(2 ·36a) 

(2. 36b) 
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Impurity Induced Infrared Lattice Vibration Absorption 1061 

X {-2- ~ . 
'/t:(t)L V1-f2 

8 1 1 } 
N'lt:(th vrc-/2[1- (1-82)72]- 2N(I)L {}(f-

1
) 

+ 2e
2 

1 
M 8(1-82) 

~tJL (} (f- Vl~- 82) • (2·37a) 

For the case 8<0, we have 

These results are exact. 

The physically most interesting case is one where the crystal contains a finite 

number n of defects, and not just one. In this case we can expand M 2 (f) g (f) 

m powers of the concentration of impurities, 

in the form 

n 
c=-

N 

M 2(f)g(f) =l(f) =lo(f) +ci1 (f)+···. 

(2·38) 

(2·39) 

In this expansion l 0 (f) is the value of l(f) in the absence of impurities, Ib is 

the change in l(f) due to the addition of a single impurity, and so on7>. In the 

present case I 0 (f) is just a delta-function centered at /=1, and we will neglect 

it here since it contr-ibutes at one frequency only. This means that to terms linear 

in the concentration of impurities we obtain 

2e2 { 2 82f4 

I(f) ~c. MmL ---:;; (1 ]'2)312[1- (1-82)/2] 

+ 8(1~82) a(f-v/ -82)}, 0<8<1, (2·40a) 

~ 2e
2 

2 8
2f 4 

- c · --·-------------- B <0. 
MmL 7r (1-/2)312[1- (1-82)_(2] ' 

(2·40b) 

Thus in this approximation there is no formal difference between the in-band 

absorption in the two cases 0 < B < 1, and 8 < 0. 

In Fig. 3 a plot is given of the integrated absorption coefficient in arbitrary 

units as a function of the fractional change in mass 8 for the localized mode of 

vibration. One sees that the absorption is strong both when 8 is close to zero 
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1062 R. F. Wallis and A. A. Maradudin 

and to unity. In Fig. 4 the absorption 

coefficient in arbitrary units is plotted 

· as a function of frequnency for the 

in-band modes· when E = 1/2. For the 

perfect lattice the absorption is zero 

except at wL. The presence of im­

purities leads to an increase in ab­

sorption at in-band frequencies when 

cyclic boundary conditions are emp­

loyed. 

§ 3. A pair of isotope defects in 

a monatomic chain 

It is of interest to investigate the 

effect of increasing concentration of 

impurities on the optical absorption. 

One would like to carry out a calcu­

lation for a system with n impurities, 

but the computational problems be­

come rather severe. We therefore 

consider the case in which two ions 

of the same kind are replaced by 

heavier or lighter impurities. The 

time independent equations of motion 

become 

Lun=EMw
2

(u_man, -m + Um an,m). 

(3 ·1) 

The solution to this equation IS 

Un=cM(u
2 [g (n+ m) ZL"' 

+g(n-m)umJ· (3·2) 

Setting n equal to - m and m respec-

z 
0 

i= 
0.. 
0::: 
0 
(f) 

Ill 
<( 

1.0 1.5 . 2.0 2.5 3.0 3.5 ~IIlJa. 

o .745 .866 .916 .943 E 
I I I 

Fig. 3. Absorption (in arbitrary units) due to 

the localized vibration mode associated with a 

light isotope impurity in a monatomic linear 

chain plotted as a function of the impurity 

mass. 

0 

Fig. 4. The in-band absorption· (in arbitrary 

units) due to a single light isotope impurity 

in a monatomic linear chain plotted as a func­

tion of the frequency. 

tively, we obtain the following set of equations for the amplitudes and Um,: 

(
EMw2 g (0) -1 

EMw2 g(2m) 

cM(Iig(2m) ) (u-m) =O. 

cMw2 g(O) -1. Um 

(3·3) 

The solubility condition leads to the eigenvalue equations for the normal mode 

frequencies 

(3. 4) 
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Impurity Induced Infrared L~ttice Vibration Absorption 1063 

If we substitute the solution corresponding to the plus sign in Eq. (3 · 4) back into 

Eq. (3 · 3) we find that 

U-m+um=O, (3 ·5) 

1.e. this choice corresponds to antisymmetric modes of vibration. Similarly,. the 

solution of Eq. (3 · 4) with the minus sign leads to the condition 

U-m-Um=O, (3·6) 

and hence to symmetric vibration modes. The displacement components in each 

case are given by 

antisymmetric: un=cMo}[g(n-m) -g(n+m) ]um 

symmetric : Un = cMol[g (n- 111) + g (n + m)] Uw 

(3·7a) 

(3·7b) 

It is straightforward to show that for the antisymmetric modes the dipole moment 

of the lattice vanishes, so that we need to consider only the symmetric modes ~n 

computing the absorption spectrum of the lattice. Furthermore, we shall restrict 

our attention to the localized modes, because the in-band modes lead to extremely 

complicated expressions for the absorption coefficient from which it is difficult to 

extract simple physical results. 

The eigenvalue equation (3 · 4) for symmetric modes has a solution corres­

ponding to a localized vibration mode when 0 <S < 1. Replacing eft by n+iz in 

the usual way, we obtain the equation which determines the frequency of the 

localized mode: 

8 coth--~=1-8 coth~e-· 2 m"'. 
2 . 2 

(3·8) 

This equation can be solved by iteration, using the solution for m-000 as the 

starting. point. The result IS 

(3·9) 

and corresponds to a value of z given by 

z=ln 1+8 +~-~2- ( 1-8 )2m+···. 
1-8 1-8 1+8 

(3·10) 

The displacement amplitudes become 

Un=c coth- ~- (-1)n+mum[e-ln-m!z+e-ln+ml:], (3·11) 

so. that the expression for the dipole moment associated with this mode becomes 

M(z) = ( -1) meum ccoth ;<; __ iJ I e-in-m!z+e-Jn+mlz] =2( -1)m e8um. coth 2 ~. 
2 n=-oo- · . 2 

(3·12) 
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1064 R. F. Wallzs and A. A. Maradudin 

The normalization condition, which determines the amplitude um, is 

M~ Un
2 +2(M'-M)u.!=l. 

n 

(3 ·13) 

If we substitute Eq. (3 ·11) into Eq. (3 ·13), we can rewrite the latter equation as 

(3·14) 

The sums are readily evaluated and we find that 

2M8u.! { [ 8 coth z (1 + e-2mz) + 28me-2mz] coth2 ~ -1} = 1. (3 ·15) 

However, from the eigenvalue equation we see that 

1 + -2mz _ 1 t h Z e --an-
8 2 ' 

(3 ·16) 

so that 

2M8u;. { cot~+ 2m coth ~- 2m8 coth2 ~ -1 ~ = 1. 
tanh(z/2) 2 2 1 

(3 ·17) 

If we substitute for z the expression given in Eq. (3 ·10), and transpose terms we 

obtain 

um- tis [1-~~8-1L(1-8)2m+···J. (3·18) 
vMt/1-82 1-82 1+8 

This result together with Eq. (3 ·12) gives us finally that 

M _ 2e(-1)m [ 1 2m8+1-28
2 

(1
1
+:)

2

m+···J. (3 . 19) 
imp t/Mt/8 vi-=-82 1-82 c 

If we compare the results given by Eqs. (2 · 33) and (3 ·19) and recall that 

the absorption is proportional to M 2
, we see that although only one of the two 

impurity modes in the present case is optically active it contributes twice as much 

to the absorption at the impurity frequency as does the single impurity mode which 

is associated with a single, isolated impurity. This tends to confirm our statement 

in the preceding section that if we have n impurities in our lattice, where n ~ N 

so that they are widely separated, then to the first approximation the absorption 

at the impurity frequency is n times the absorption due to a single, isolated 

impurity. 

§ 4. A single isotope defect in a monatomic lattice with free ends 

In all cases discussed so far the unperturbed lattice has an absorption spectrum 

which consists only of a single J-function peak at lu=ah. This result is a direct 

consequence of the assumption of the cyclic boundary condition on the lattice. It 

is knowD. froq1 the r~s~lts of Rosepstock
8
J tha,t if more .r~alistic boundary conditions 
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Impurity Induced Infrared Lattice Vibration Absorption 1065 

are imposed on the lattice, e. g., if the ends of the lattice are allowed to be free, 

a non-vanishing absorption in the frequency range (0, w1;) results. Since in the 

cyclic boundary case all in-band absorption is due to the impurity, it is of some 

interest to see how the presence of the impurity affects the in-band absorption in 

a lattice where it is non-vanishing to begin with. 

We choose for this purpose a lattice of (an even number) N atoms which 

we number from 1 toN. We place an isotope defect whose mass is M'= (1-c)M 

at p=N/2 in the lattice. The equations of motion for this lattice become 

M(Jiun+r(un+t-un) -r(un-Un-1) =0, n=/:-p 

M' w2 up+r(up+l-up) -r(up-up-1) =0, n=p. 

The boundary conditions are 

(4·1a) 

(4 ·1b) 

(4·2) 

A solution satisfying the boundary condition uN+l-uN=O 

equations of motion for n > p is 

and satisfying the 

Un=A cos (N-n + ~ ) lp, n>-.p, (4·3) 

provided that oi=wi sin2 lfJ/2, where (Jh=~ 4r/M is the largest unperturbed fre­

quency of the lattice. A solution satisfying the boundary condition u1-u0=0 and 

satisfying the equations of motion for n < p is 

Un=B cos (n- ~ ) lp, n<p, (4·4) 

provided again that oi=wi sin2 lfJ/2. The coefficients A and B are determined by 

substituting the solutions ( 4 · 3) and ( 4 · 4) into the equations for the displacement 

components which are linked by the defect, uP and Up-1· This leads to the pair 

of equations 

A {[2(1-8) sin
2
(lfJ/2) -1] cos ( N~ 1 ) so+-~ cos ( N;l) lf} 

(4·5a) 

1 .( N+l) { . ( N-3) 
2

A cos - 2 ~- lfJ+B [2 sm2 (lfJ/2) -1] cos 
2 

lp 

1 (N-5) } +2 cos 2 lp =0. (4·5b) 

The condition that this pair of equations have non-trivial solutions for A and B 

is that the determinant of the coefficients vanishe~. After ~Oqle ~anipulations th.i~ 

condition reduces to 
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1066 R. F. Wallis and A. A. Maradud!n 

1 = c tan (so/ 2) [cot N so+ ~os SO ·] , 
smNso 

and we also find that 

cos (-E~!-) so 
B =A---- -- -----------. 

cos ( N 
2 

1 
) so 

The dipole moment for the sth normal mode is 

' N B 
M ( S) = ~ e (- 1 )" Un ( s) = -~_f!_ __ ~ l-1 + (- 1) p-l COS (p- 1) SO] 

n=I 2 cos(so/2) 

+~eA -~LC -1)P cos(N-p+1)so+ (-1)N] 
2 cos(so/2) 

= 2eil ;n ~-; !10~ X {sin: ~ 10, p even 
cos~- cos--- - m cos -m p odd. 

2 2 
7 4 n 

The constant A is determined by the normalization condition 

N 

~ Mun2+ (M' -M)up2=1. 
n=l 

(4·6) 

(4·7) 

(4·8) 

(4·9) 

(4 ·10) 

The first term on the left-hand side of Eq. ( 4 ·10) is summed as follows : 

~ Mun2=M J ~ B 2 cos2 n-- so+ 2J A 2 cos2 N-n+- so N ' p-1 ( 1 ) N ( 1 ) } 

n=l ln=l 2 n=p 2 

=_l._MB2 [-JJ _1 +- sin(N-2)so J 
2 2 2 sin so 

+-!__MA2[- N + 1 + sin(N+2)so J. 
2 - 2 2 sin so 

(4·11) 

The normalization condition, Eq. ( 4 ·10) becomes 

l=_l:__Mil' ~as_-_ 2_.-... -so_[_N __ l+ sin(N-2)q; ]+ N +l+~_:tl_(~±_2)_£_t l 
2(N+1) ' 

2 cos2 ( N 
2 

): ) SO 2 2 sin so 2 2 sin so J 

-EMA
2 

cos
2 (-~;~-)so 

MNA 2 
-

___ ---[1-1-cosNso cos so] 

4 cos 
2 

( _!Y~2- 1 --) so 
(4·12) 
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Impurity Induced Infrared Lattice Vibration Absorption 1067 

where. we have retained only the terms proportional to N. It can be shown that 

this approximation IS permissible for all cp in (0, rr), i. e. for the in-band modes. 

We finally obtain 

· 2 cos ( N ;
1 

) cp 
1 

A=-----7NM-- vi+~osNcp-coscp. (4·13) 

The dipole moment can be rewritten as 

. cp . N 
Sill~- Sill-- C{J [ 7\.T J dd 

_ 2e 2 2 1 v cp p o 
M(s)-~-=----··- - l±cos~-, 

VNM cp ;--------- --- ----- 2 {p even. 
cos------ v 1-+- cos N cp cos cp 

2 

(4·14) 

It is a rather difficult matter to eliminate cp from Eq. ( 4 ·14) in favor of the 

freq~ency w. We have therefore evaluated M(s) numerically for the particular 

case in which N=20 and c=l/2. One 

finds . that as s increases, M ( s) under­

goes oscillations which become ex­

tremely rapid when N is large. In 

any physically resolvable frequency 

interval, however, these oscillations will 

be averaged out so that the absorption 

is a smoothly varying function of lu. 

We have therefore averaged M(s) over 

small ranges of s to smooth out these 

physic~lly unimportant oscillations. The 

absorption coefficient is plotted as a 

function of frequency in Fig. 5. One 

see~) tlia1? when a lighter impurity atom 

is present, the in-band absorption is 

less than that for the perfect lattice. 

This result is the opposite of that 

obt51ig~d .. with cyclic boundary condi~ 

tior-is. \Ve believe that the free boun­

dary condition gives the more reliable 

result since it seems physically more 

realistic than the cyclic boundary condi­

tion. 

In the case that 0 <c <1, the eigen­

value equation ( 4 · 6) has a solution 

FREE ENOS 

E=t 

10 

(&1/w 
L 

.,, 
t 

I' 
-t 
J 
J: 
!: 
l 
I 
I 
I 
I 
J 
I 
I 
I 
I 
I 
I 
J 
l 

I 
I 
I 
I 
I 
I 
I 

Fig. 5. The absorption in a monatomic linear 

chain with free ends is plotted both for the 

case of no impurity arid for the case of a 

single light mass impurity. 

which corresponds to a mode of vibration which is localized about 

This solution is obtained by replacing cp by rr+iz in Eq. (4·6) : 

the defect. 
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1068 R. F. Wallis and A. A. M aradudin 

1=8 coth -·~·-·· (cothNz- coshz ) . 
2 cosNrr sinhNz 

(4·15) 

In the limit as N~ co this equation reduces to the eigenvalue equation for the 

impurity frequency in a lattice satisfying the cyclic boundary condition, Eq. (2 · 30). 

The expressions for the displacement components un associated with the 

localized mode become 

Un = iA ( -1) n sinh ( n-N- ~ ) z, n > p 

= i B ( -1) n sinh ( n - -+) z, 

provided that 

(li 2 z 
-

2
-=cosh -. 

WL 2 

In the limit as N~c:o we find that 

B=-Ae". 

n<p 

(4·16) 

(4·17) 

(4·18) 

The expression for the dipole moment associated with the localized mode is 

M( ) _ . eA <N+l)z/2 z --t--e . 
28 

(4·19) 

The normalization condition for the localized mode becomes (in the limit of 

large N) 

(4·20) 

so that 

__ 8_8 __ e-<N+l>". 

M(1-82
) 

(4·21) 

Combining Eqs. ( 4 ·19) and ( 4 · 21) we finally obtain for the dipole moment as­

sociated with the localized vibration mode 

M(z) 
v2e 

(4·22) 

This expression is identical with the corresponding result for a lattice obeying the 

cyclic boundary condition, Eq. (2 · 33). 

§ 5. A single defect in a diatomic lattice 

We consider an alternating diatomic linear chain composed of N atoms with 

mass M 1 and N atoms with mass M 2 interacting with nearest neighbor Hooke's 

law fon~e$. Our disc1,1ssion will b~ limited to the c;1~e in which a heavier host 
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Impurity Induced Infrared Lattice Vibratwn Absorption 1069 

atom is replaced by a lighter isotopic impurity atom with mass M'. As stated 

in the introduction this case exhibits the maximum number of localized vibrational 

modes and thus can provide an indication of the principal effects to be expected 

in diatomic lattices. 

The time independent equations of motion can accordingly be written as 

W
2 
M2U2n +r[u2n+t-2U2n +u2n-1J=O 

W
2 
M1U2n+l +r[u2n+2-2U2n+1 +u2n]=iJn,ocM1w

2
ub 

(5·1) 

where M 2 <Mh cM1=M1-M', and 0<8<1. By making the transformations 

V2n = ( M2 w
2

- 2r) 
112 

U2n 
(5·2) 

where positive square roots are to be taken, one can write Eqs. (5 ·1) in the com­

pact form 

(M2{1)2- 2r) 1/2 
(M*w2-2r)vn+r(vn+t+Vn-I) =iJn,lcMtw

2 
· V1 (5·3) 

(Ml (1)2- 2r) 1/2 

where 

(M* (1)2_ 2r) 1/2= (Mltu2- 2r) 1/2 (M2w2- 2r) 1/2 

and the atoms have been relabeled. 

(5·4) 

The Green function solution to Eq. (5 · 3), assuming cyclic boundary con-

ditions, can be written as 

(M2 (1)2- 2r) 1/2 
Vn=g*(n-1)8Mlw2 v 

(MtliJ2_ 2r) 1/2 1, 

where the Green's function g* (n) is given by 

g*(n) =-1- ~ __ e~p(~ni~J!.L2N) --·-. 
2N s=l M*w2 -2r+2r cos(2ns/2N) 

(5·5) 

(5·6) 

The eigenvalue equation, which determines the characteristic values of the fre­

quency tu, is obtained by substituting n=l in Eq. (5·5) yielding 

l=cM w2 (M2w2-2r)lf2 g*(O). 
1 

(M1w
2

- 2r) 112 
(5·7) 

Let us consider first the localized mode with frequency above the top of the 

optical branch. Defining 

(5·8) 

one can evaluate the Green function and obtain 

y*(n) (5·9) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

4
/5

/1
0
5
5
/1

8
4
4
4
8
0
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



1070 R. F. Wallis and A. A. Maradudin 

The characteristic frequency determined by Eqs. (5 · 7), (5 · 8) and (5 · 9) IS speci· 

fied by 

where 

wo
2
=2r/ M2 

wA
2
=2r/M1. 

(5 ·10) 

(5 ·11a) 

(5 ·11b) 

The effective dipole moment M(O) can be evaluated usmg methods similar to 

thqse e~ployed for the monatomic lattice. The result is 

M(O)= 

where 

y f-vr2
-1 , (5 ·12a) 

wL2=2r ( ~1 +-~2-), (5 ·12b) 

and the amplitude u 1 1s determined by the normalizing condition 

M1 :::8 Un
2
+M2 ::;8 Un

2
=1+EM1u1

2
· (5 ·12c) 

n odd n evcll 

The re~J.lt obtained from Eq. (5 ·12c) is 

M u 2 _ (1- y
8

) (ai-w 0 ~) · 

1 1 [ ( w2- (tJo 2) ( 1 + ys) + 2 y4 ( w-2 -'---(u_A_2)-.-] :_c_(_1~y-s_)_(_w_2 ___ (_tJo-2)-
(5 ·13) 

The localized mode with frequency in the "forbidden" gap between acoustical 

and opt,ical branches will be considered next. The Green function for this case 

can be ·written as 

where 

g*(n) 
(i)ln[-1 

2r 

X= (tJ ((o L2 _ ai) 112 _ ((02_ WA2) 112 (w
0
2_ (tJ2) 112. 

The value of the frequency in the ''forbidden" gap is specified by 

2 2 2w} -v (l-c
2

) 
2 

wo
4 + 4c

2 
wA

4 

2(o = Wo + ---- - -----~---- ------------~ · 
(1-c2

) 

The effective dipole moment M(g) may be expressed as 

M(q) =~~-----~---- ec(J!_Zl_~-- - -- {wo2 (w2-w}) 1/2 2.x 
, ( (tJ2 _ w }) 112 ( w / _ w2) 112 ( w

0
2 (tJ A 2 + x2) 

( 2 2) 1/2 ( ,, ') 2) } 
- Wo - (I) Wo- (I) A~ - X , 

(5 ·14) 

(5 ·14a) 

(5·15) 

(5 ·16) 
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lmpurity Indz_u;e_d Infrared I attice Vibration Absorption 107J 

where the amplitude u1 is determined by the normalization condition Eq. (5 ·12c) 

and is given by 

(5 ·17) 

Turning now to the modes with frequencies lying within the acoustical _branch 

we find that the eigenvalue equation (5 · 7) can be written as· 

where 

1=c 
o} ((Vo2_ (V2) 1/2 ,-!, t 7\ T,-f, 

2 2 
l/

2 
CSCy; CO lV!y 

Wo WA (wA- w ) 

£= l'z 
i I I 
I I f 
I I I 

80 

.... 60 
z 
w 
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ii: 
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Fig. 6. Absorption in a diatomic linear chain for the case 

that one of the heavy masses is replaced by a lighter 

isotope impurity. 

(5 ·18) 
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1072 R. F. Wallis and A. A. Maradudin 

In the limit of large N one can evaluate the effective dipole moment ~li.Ja (s) for 

the sth mode in the acoustical branch in terms of the frequency oJ for that mode. 

The result is 

..; 2 ec o} ( W 1- (1)2) 1/2 ( Wo2- oi) 1/2 

Ma ( s) = VNMI ( m _i- w2) 1/2 ( liJ _i- 2oi) 1/i[ 82 oi ( Wo2- w2) + ( w 1-o}) ( w _i- oJ2) Jl2 • 

(5 ·19) 

The treatment for the optical branch follows in very similar fashion. The 

expression for the effective dipole moment Mo(s) for the sth mode in the optical 

branch is given by 

M (s)- ..12 ec ~--~- ---- w2(oi-_(IJ))lf2(oi~wo2)1'2 ------

o V J.VMl (£u_i-w2r/2 (2w2- lui) 1/2 [82 w2 (w2-£1Jo2) + (w2-w.D (w_i-(tJ2) Jl2 • 

In order to indicate the qualitative 

nature of the results for the diatomic case 

treated above we have made calculations 

for the specific case in which M 1 =3M2 

and 8 = 1/2. The absorption coefficient 

in arbitrary units is plotted as a function 

of frequency in Fig. 6. One sees that 

the absorption in the acoustical branch 

and at the discrete frequency in the 

" forbidden " gap is quite small. The 

absorption coefficient increases very rapid­

ly as one approaches the upper bound 

wL of the optical branch. The absorption 

coefficient at the discrete frequency above 

the optical branch is relatively large 

compared to that associated with the 

mode in the gap. 

The dependence on 8 of the integrat­

ed absorption for the localized modes is 

plotted in Fig. 7 for M 1 =3M2 • The 

mode above the optical branch has large 

absorption for 8 near zero and near unity 

with a minimum at intermediate c. The 

mode in the gap has continuously in-

t­
z 
LIJ 

0 
ii: 
LL. 
LIJ 

15.0 

810.0 

~ 
h: 
0::: 

~ 
Ill 
<( 5.0 

0 
LIJ 

~ 
0: 

~ 
J-

~ 0.5 

0.4 

0.3 

0.2 

0.1 

MODE ABOVE 

OPTICAL BRANCH 

I 

(5 ·20) 

Fig. 7. The integrated absorption coefficient 

for the two impurity modes in a diatomic 

linear chain which arise when one of the 

heavy masses is replaced by a light iso· 

tope impurity. 

creasing absorption as E increases but the absorption is always very small. 

§ 6. Impurity frequencies in three-dimensional lattices 

We conclude with a brief discussion of the frequencies associated with localized 
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Impurity Induced Infrared Lattice Vibration Absorption 1073 

vibration modes due to isotopic impurities in three-dimensional monatomic and 

diatomic simple cubic lattices having nearest neighbor Hooke's law interactions, 

both central and non-central. 

For a monatomic lattice the eigenvalue equation IS 

1=8Mo}g(O. 0, 0; w), (6·1) 

where 

j ~ jJ) (f+a)(2]'-~1:¢·=~a:~:-cos¢ 3 -cos¢ 3 }' 
0 

g(O, 0, 0; w) 

(6·2) 

f 2
=lo

2/a>L and a is the ratio r1/r2 of central to non-central force constants. The 

integral in curly brackets has been tabulated for a wide range of the parameters 

a and f. 9
> If we denote it by I(O, 0, 0; a ;f), Eq. (6 · 1) becomes 

1=8(2+a)f2 l(O, 0, 0; a;f). (6·3) 

For given values of a and 8 this equation must be solved numerically. 

Although we know experimentally what o)£ is for the alkali-halides we must 

still determine the value of a in each case. A simple (though not unique) choice 

is provided by a calculation of the strain energy of our crystal due to a homoge­

neous deformation. This leads to the following identifications :10
> 

where ao is the lattice parameter. These expressions lead to the result 

a=r1/r2= (cu/2c44). 

(6·4) 

(6·5) 

For the case of KCl, which IS reasonably well approximated by a monatomic 

crystal, we obtain 

a---
3
·-
9
-
8
--3.18. (6·6) 

2X 0.625 

If we consider a U-center in KCl which is believed to be an H- ion replacing 

a halide ion, M=36, M'=1, so that 8=35/36. If we now solve Eq. (6·3) for 

this choice of parameters with the aid of the results of reference 9) we find 

{=4.26, _wloe =17.9X 1012 sec-1
• 

2n 

The experimental result of Pick2
> in this case gives 

! 01
"e = 19 X 1012 sec-1

• 

2n 
f 4.52, 

(6·7) 

(6·8) 

In view of the crudeness of the model, the agreement between theory and experi-

ment is striking. 
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1074 R. F. Wallis and A. A. MaracJ,udin , 

For a diatomic lattice with masses M 1 and M 2 at alternating lattice points 

where M1 > M 2, the M* transformation leads to the following eigenvalue equation 

(M 2 )1·2 

1=cM 1 w 2 -- 2 ~'!__-=_ 2 r 1 - 4 7~_' g*(O 0 0 · w) (6·9) 
(M 2 2 4 ) 1/2 ' ' ' 1w- r1- r2 

in the case that a mass M1 is replaced by a mass (1-c) M 1• The function 

u* (0, 0, 0 ; (I)) is given by 

g* (0, 0, 0; w) 

= ;, J H (M, ~,'- 27>- 4r,) 'i•(l\1, w'= 2/jl~~~:~~ 2i,-cos ¢1 + 2r, cos¢, +2r, coi, ¢, -. 
0 

We define the frequencies lV
2
1 and lV2

2 by 

2 2r1 +4r2 2 2r1 +4r2 
(1)1 - ' (th = -~~-~~. 

M1 N£2 
(6 ·11) 

In terms of these frequencies y* (0, 0, 0; w) becomes 

g* (0, 0, 0; w) 

"'~, :,' ·111 [ ( m' I~.~') _:_ 1]' ''[(,~'I,-;;;')= :~~,f:~d'!j_:_ "' cosjl, -coS¢, - ~os jl, ' 
0 

(6 ·12) 

and the eigenvalue equation takes the form 

(6 ·13) 

where 

(6 ·14) 

We are interested in those solutions of Eq. (6 ·13) for which o}> wi=w1
2 +w2

2
• 

Inverting Eq. (6 ·14) we obtain 

(6 ·15) 

In the case of a U-center in NaCl, M 1 =36, M2=23, M'=1, so that 8~~5/36 

as before. The value of a is still given by Eq. (6 · 5) and is 

a=- 5 -~'@__ =2.154 (6 ·16) 
2X 1.33 

in the present case. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

4
/5

/1
0
5
5
/1

8
4
4
4
8
0
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



impurity Induced Infrared Lattice Vibration Absorption 1075 

The solution to Eq. (6 ·13) is obtained with the aid of the material of re­

ference 9) and is found to be 

f=3.760 

which should be compared with the experimental value of 

{=3.542 

due to Pick. 

§ 7. Discussion 

The calculations presented in this paper are restricted to the effects of the 

mass difference of an impurity atom on the infrared absorption due to lattice 

vibration~. The most striking result is the appearance of a discrete absorption line 

associated with the localized mode appearing above the maximum frequency of 

the optical branch when a host atom is replaced by a lighter atom. This effect, 

disappears if the impurity atom is heavier than the host atom. Thus, if the 

addition of heavy atom impurities leads to experimentally observed discrete ab­

sorption lines, their explanation must lie in a change of force constants or some 

other mechanism rather than in the mass change. This conclusion applies as well 

to discrete modes which drop down from the optical branches, since the associated 

absorption is weak and is masked by the continuous in-band absorption. 

For not too large concentrations of impurities there are as many discrete im­

purity modes above the optical branch as there are degrees of freedom associated 

with the impurity atoms. Not all of these impurity modes are strongly absorbing, 

however. In the particular cases studied in sections 2 and 3 only the symmetric 

modes were Dptically absorbing. For a general number of impurities the impurity 

modes can no longer be classified as purely symmetric or antisymmetric, but one 

can still use a qualitative characterization of symmetric or antisymmetric. Only 

the discrete modes with a large symmetric character will be expected to lead 

to strong absorption. The width of the optical absorption 1 ine may therefore be 

relativ~ly narrow compared to the width of the impurity band itself. An extreme 

case would be that in which every second host atom in an initially monatomic 

chain is replaced by a lighter impurity atom. The impurity band then becomes 

a signlficant fraction of the optical branch, but only the largest frequency is op­

tically absorbing. Experimentally the discrete lines associated with hydride ions 

in alkali halides are observed by Pick to be very narrow. 

The rather good agreement between the calculated values of the impurity 

frequencies given in section 6 and Pick's experimental results is gratifying but 

may be fortuitous. Our calculations did not take into account the long range 

Coulomb forces between ions and the coupling between the x-, y- and z-displa-' 

cement components. It ~ay be, however, that the relation of the impurity frequency 

to the reststrahl frequency, which is what we actually calculate, is not sensitive to 
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these details, and is given more accurately by our model than either frequency 

separately. 

Appendix 

In this appendix we establish Eqs. (2 ·14) and (2 ·15) of the text. We begin 

by evaluating g (0) which is given by 

1 N 1 
g(O) =-~~ ~- - 0<¢<rr, (A·1) 

2rN s=l cos(2rrs/N)-cos¢ 

=2:N { 2~i lcos(2:z~~r~~idz-Res[z= ~t ]-Res[z=N- ~: ]} 

(A·2) 

where C is the counterclockwise rectangular contour with corners at (1/2, -ia), 

(N+1/2, -ia), (N+1/2, ia), and (1/2, ia) which is shown in Fig. A.l. It 

is easily seen that the contributions to g (0) from BC and DA cancel each other 

and we are left with 

g(O) 

cot[N¢/2] 

2r sin¢ 

in the limit as a~ co. This is Eq. (2 ·15). 

The recurrence relation satisfied by g (n) 

can be written as 

-g(n) cos¢+-~--j-g(n+1) +g(n-1)]= ()no . 
2 - 2r 

(A·5) 

For n=I=O the solution to Eq. (A·5) is given by 

g(n) =A cosn¢+B sin\n\¢. (A·6) 

It is clear however, that A=g(O), while from 

equations (A· 5), and (2 · 13) we find that 

g (1) =g ( -1) =y(O) cos¢+ 
2

1
r -, (A-7) 

so that B=1/2r sin¢. Combining these results 

we obtain finally that 

. sin\n\¢ 
g(n) =g(O) cosn¢+-~-- .---, 

2r sm¢ 
(A -8) 

(A·3) 

(A·4) 

I 

:o c 
I r----~---. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

:~ 
! j' 
I 
I 
I 
I 

~-~------+ -----------~------~-- ---~--
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1':--------' 
lA B 
I. 

! 

Fig. A.l. The contour for the eva­

luation of the integral (A·2). 
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which is Eq. (2 ·14). It is readily established that the solution (A· 8) satisfies 

the symmetry condition 

g(n) =g(N-n) (A·9) 

which is implied by Eq. (2 ·13). 

An approximate method for evaluating g(n) has been suggested by Lax.ll) 
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