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We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-
gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the
local moment induced in the vicinity of the impurity are investigated and an expression for the
nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results.
Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the
moments is found when the two impurities are located on different sublattices. The presence of
many impurities leads to a screening of this interaction as is shown by means of a coherent-potential
approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers
is discussed.
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I. INTRODUCTION

Substitution of Cu ions in the conduction planes of
high-Tc cuprates by different nonmagnetic ions presents
an important experimental tool for the study of the
metallic state of these strongly correlated systems. Un-
usual effects have been revealed especially when these
materials were doped with Zn, Al, or Ga. Among
these interesting features is the appearance of a mag-
netic moment derived from the observation of a Curie-
Weiss behavior of the magnetic susceptibility.1 Further
studies have been performed by electron paramagnetic
resonance2 (EPR) and nuclear magnetic resonance3–6

(NMR) experiments. Measurements of the NMR
Knight shift indicate that the impurity-induced local mo-
ments reside predominantly on Cu sites neighboring the
dopant.5,6 It has been argued that the appearance of
these local moments can account for a significant reduc-
tion of Tc.
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On the theoretical side, impurity-induced moments
have been studied for a variety of quantum disor-
dered spin systems, including, for instance, spin lad-
ders and spin-Peierls systems,7,8 as well as underdoped
cuprates.9,10 A common feature of these systems is the
existence of a (pseudo-) gap in the spin-excitation spec-
trum. This spin gap is related to the singlet-pairing cor-
relations in the ground state, which can be described in
terms of resonance valence bonds11 (RVB) or a valence-
bond solid (VBS) state.12 Within this picture the appear-
ance of a Curie-type susceptibility can be understood as
an unpaired spin that is generated by the substitution of

a spin site by a vacancy.
In the present paper we investigate the effect of

nonmagnetic impurities on the local magnetic proper-
ties of weakly doped cuprates. In order to describe
the spin degrees of freedom of these systems we start
with the Heisenberg antiferromagnet on a square lat-
tice, employing a drone-fermion representation of spin-
1/2 operators.13 A mean-field decoupling of the Hamil-
tonian leads to solutions corresponding to a RVB state
in the flux phase14,15 that exhibits a pseudogap in the
spin-excitation spectrum. A single spin vacancy intro-
duced into the spin liquid produces a local moment which
is predominantly located on the sites close to the va-
cancy. We derive an expression for the impurity-induced
NMR Knight shift and fit it to experimental data. In-
troducing a second vacancy into the spin liquid leads to
an antiferromagnetic interaction between the two mo-
ments. In the presence of many impurities this interac-
tion is screened as is shown by using a coherent-potential
approximation (CPA). We further analyze the effect of
nonmagnetic impurities on the relaxation of the nuclear
magnetic moment in terms of local spin fluctuations in-
duced by the vacancies. Finally, we discuss qualitatively
the low-temperature Kondo screening of the impurity-
induced spins by charge carriers.

II. THE MODEL

We start from the Hamiltonian of a two-dimensional
square lattice spin-1/2 Heisenberg antiferromagnet
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H = J
∑

〈ij〉

Si · Sj , (1)

where 〈 〉 indicates summation over pairs of nearest-
neighbor sites. The spin operators in the Hamiltonian
(1) are commonly expressed in terms of pseudo-fermions
which requires us to impose the restriction that each site
is occupied by exactly one pseudoparticle. Since it is
rather difficult to account for these local constraints one
usually treats them only on the average. Here we will fol-
low a different approach16 by employing a drone-fermion
description for spin-1/2 operators given by13

S+
i = f †

i χi, S−
i = χifi, Sz

i = f †
i fi − 1

2 , (2)

where S±
i = (Sx

i ± iSy
i )/

√
2. The operator f †

i creates a
spinless fermion at site i; the presence (absence) of an f-
fermion corresponds to an up (down) spin state. The real

drone-fermion operator χi = χ†
i with commutation rules

[χi, χj]+ = δij is needed to provide the proper commuta-
tion rules for spin operators on different sites. Expressing
the Hamiltonian (1) in terms of the representation (2) one
obtains

H = J
∑

〈ij〉

{(

f †
i χiχjfj +H.c.

)

+
(

f †
i fi − 1

2

)(

f †
j fj − 1

2

)}

. (3)

Mean-field solutions to the Hamiltonian (3) corre-
sponding to the RVB states of conventional fermion
mean-field theory are found by employing a Hartree-Fock
factorization with bond parameters i∆ij = 〈χjχi〉 and

i∆̃ij = 〈f †
j fi〉 defined for nearest-neighbor pairs, yielding

the following mean-field Hamiltonian:16

HMF = J
∑

〈ij〉

{(

− i
(

∆̃ij +∆ij

)

f †
i fj

− i∆̃ijχiχj +H.c.
)

+ 2∆̃ij∆ij + ∆̃2
ij

}

. (4)

For spin rotational symmetry of the ground state ∆̃ij =
∆ij holds. In the following we assume the order param-
eter to depend only on relative site indices: ∆ij = ∆δ

with δ ∈ {x̂,−x̂, ŷ,−ŷ}, where x̂ and ŷ are the lattice
unit vectors.
Dividing the square lattice into two sublattices A and

B, we define i ∈ A and j ∈ B. The mean-field Hamilto-
nian (4) can then be diagonalized by expressing the f and
χ operators in momentum representation and employing
the canonical transformation

fA
k = (ak + bk) /

√
2,

fB
k = (ak − bk) exp(iϕk)/

√
2, (5)

χA
k = (ck + dk) /

√
2,

χB
k = (ck − dk) exp(iϕk)/

√
2, (6)

where exp(iϕk) = ∆∗
k/|∆k| with the definition ∆k =

i
∑

δ ∆δ exp(−ikδ). Thus, the Hamiltonian (4) becomes

HMF =
∑

k∈MBZ

ξk

(

−a†kak + b†kbk

)

+
∑

k∈MBZ/2

ξk

(

−c†kck + d†kdk

)

(7)

with ξk = 2J |∆k|. The k summations extend over the
full and half magnetic Brillouin zone, respectively, and
the constant terms in Eq. (4) have been omitted.
The fermionic spectrum E(k) = ±ξk is determined by

the symmetry exhibited by the bond parameter ∆δ. In
a phase of mixed symmetry defined by

∆ := ∆x̂ = −∆−x̂ = ∆ŷ = ∆−ŷ (8)

one finds

ξk =
D√
2

√

sin2 kx + cos2 ky , (9)

where D = 4
√
2J∆ is the half-width of the band and

the lattice constant has been set equal to unity. At low
energies the density of states is determined by the neigh-
borhood of the two isolated roots of Eq. (9) and exhibits
a V-shaped pseudogap ρ0(ω) = 2|ω|/(πD2) correspond-
ing to the one found in the flux phase of conventional
fermion mean-field theories.14,15

The bandwidth parameter D in Eq. (9) is obtained
from the self-consistency relation

D =
2
√
2J

N

∑

k

ηk tanh

(

Dηk

2
√
2T

)

, (10)

where ηk = (sin2 kx + cos2 ky)
1/2, N is the number of

sites, and kB = 1. In the limit of T → 0 Eq. (10) reduces
to

D0 =
2
√
2J

N

∑

k

ηk, (11)

yielding a numerical value of D0 ≈ 1.355 J . The cor-
rection δD(T ) to D0 for small but finite temperatures is
given by

δD(T ) = −32J

π

(

T

D0

)3

. (12)

In the following we study the effect of a spin va-
cancy located at site 0 (sublattice A) on the local mag-
netic properties of the system described by Hamiltonian
(7). We simulate this spin defect by decoupling site 0
from the rest of the system. This is done in two steps:
First, the drone-fermion bond parameter connecting the
impurity site with its nearest neighbors is set to zero,
i∆0,δ = 〈χδχ0〉 = 0. This decouples the drone fermions
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of site 0 from the rest of the system. Then, a local chem-
ical potential λ0 → ∞ acting on site 0 is added to Hamil-
tonian (7),

Himp = HMF + λ0f
†
0f0. (13)

It induces an empty site at R = 0 with respect to
the spinon f operators and suppresses the low-energy
f -fermion degrees of freedom at this site. We will show
below that the presence of the local potential also leads to
a vanishing spinon bond parameter connecting the impu-

rity site with its nearest neighbors, i∆̃0,δ = 〈f †
δf0〉 = 0,

and therefore completely decouples the impurity. Fur-
ther, one infers ∆̃R,R+δ = ∆R,R+δ for all R ∈ A
which manifests the equivalent treatment of f and drone
fermions as required by spin rotational symmetry.

III. LOCAL MOMENT

In this section we study the uniform properties and
the spatial distribution of a local moment induced by a
spin vacancy. We first calculate the impurity contribu-
tions to the spinon density of states and the uniform spin
susceptibility by means of the uniform Green’s function
G(iωn) = −1/N

∑

r〈Tτfr(τ)f †
r(0)〉ωn

given by

G(iωn) = NG0(iωn) + δG(iωn) (14)

with fermionic frequencies ωn = (2n+1)πT . The Green’s
function in the absence of the impurity G0(iωn) and the
correction δG(iωn) due to the impurity are given by

G0(iωn) =
1

N

∑

k,ν

g0ν(iωn;k),

δG(iωn) =
1

N

∑

k,ν

g0ν(iωn;k)T (iωn)g
0
ν(iωn;k) (15)

with g0ν(iωn;k) = 1/(iωn − (−1)νξk), ν ∈ {1, 2}. The T
matrix in Eq. (15) describes successive scattering at the
vacancy and is obtained from usual scattering theory; in
the limit λ0 → ∞ it is T (iωn) = −1/G0(iωn), yielding

δG(iωn) =
∂

∂iωn
lnG0(iωn). (16)

Evaluating Eq. (16) one obtains

δG(iωn) =
1

iωn

(

1− ln−1 D

|ωn|

)

. (17)

From Eq. (17) we calculate the impurity correction to
the density of states δρ(ω) = −1/π Im δG(ω + i0+):

δρ(ω) = δ(ω)− 1

2|ω|
1

(π/2)
2
+ ln2 (D/|ω|)

. (18)

The first and second terms on the right-hand side of
Eq. (18) describe, respectively, the formation of a spinon

bound state at the Fermi surface and the destruction of
a spinon singlet in the spin background. Integrating Eq.
(18) over all occupied states one finds a reduction in the
number of particles by 1/2. This is in agreement with the
fact that the local chemical potential λ0 induces an empty
site at R = 0 with respect to the f fermions, while in the
absence of λ0 the average f -fermion occupation number
is 1/2.
With the help of Eq. (17) we evaluate the impurity

contribution δχ(T ) to the uniform spin susceptibility by
employing the relation

δχ(T ) = T
∑

iωn

∂

∂iωn
δG(iωn). (19)

For T ≪ J one obtains

δχ(T ) =
1

4T

(

1− ln−1 D

T

)

. (20)

The formation of a spinon bound state is thus found to
lead to a Curie-like spin susceptibility of a free spin 1/2
with logarithmic correction. We note that conventional
fermion mean-field theory10 only reproduces one half of
the above result. This shortcoming has its origin in the
mean-field treatment of the local constraints on the pseu-
doparticle occupation number which is characteristic for
those theories.
We analyze the spatial distribution of the impurity-

induced moment by means of the local Green’s function

G(iωn;R,R) = −〈TτfR(τ)f †
R(0)〉ωn

which is given by

G(iωn;R,R) = G0(iωn) + δG(iωn;R,R). (21)

Depending upon whether R lies on the A or B sublattice
the impurity contribution δG(iωn;R,R) is

δG(iωn,R,R) = |A(iωn;R)|2/G0(iωn), R ∈ A,

δG(iωn,R,R) = −|B(iωn;R)|2/G0(iωn), R ∈ B (22)

with

A(iωn;R ∈ A) =
1

N

∑

k,ν

g0ν(iωn;k) exp(ikR),

B(iωn;R ∈ B) =
1

N

∑

k,ν

g0ν(iωn;k)(−1)ν+1

× exp(−iϕk + ikR). (23)

Evaluating Eqs. (22) one finds

δG(iωn;R,R) =
4ΦA(R)

πD2
K2

0

(√
2R|ωn|
D

)

× iωn ln
−1 D

|ωn|
forR ∈ A,

δG(iωn;R,R) = −4ΦB(R)

πD2
K2

1

(√
2R|ωn|
D

)

× iωn ln
−1 D

|ωn|
forR ∈ B, (24)
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where the Ki are MacDonald’s functions17 and the an-
gular dependence is determined by

ΦA(R ∈ A) = (1 + cosπRx) /2,

ΦB(R ∈ B) =
(

1− (2R2
x/R

2 − 1) cosπRx

)

/2. (25)

From Eqs. (24) we determine the impurity contribution
to the local density of states, δρ(ω;R) = −1/π Im δG(ω+
i0+;R,R). It is found that the local moment resides
predominantly on the B sublattice; for R|ω| ≪ J one
obtains

δρ(ω;R ∈ B) =
2ΦB(R)

πR2

( δ(ω)

ln (D/|ω|) +
1

2|ω|

× 1

(π/2)
2
+ ln2 (D/|ω|)

)

, (26)

while δρ(ω;R ∈ A) is negligible.
Our particular interest is the local spin polarization in

the vicinity of the impurity as this quantity is needed
below to derive an expression for the NMR Knight shift
which we will compare to experimental data. In the pres-
ence of a uniform magnetic field the spin polarization on
site R can be obtained from the local spin susceptibility

δχ(T ;R) = T
∑

iωn

∂

∂iωn
δG(iωn;R,R). (27)

Evaluating Eq. (27) for R|ω| ≪ J with R ∈ B one ob-
tains

δχ(T ;R ∈ B) =
1

2πT

ΦB(R)

R2
f(T,R) ln−1 D

T
(28)

with a correction factor

f(T,R) = (xK1(x))
2
, x =

4
√
2TR

πD
, (29)

which approaches unity for TR ≪ J . Due to the R−2

decay of δχ(T ;R) the spin polarizability is found to be
strongest on the nearest-neighbor sites of the vacancy.
Contributions from sublattice A are again negligible. The
logarithmic correction in Eq. (28) is due to the marginal
character of the bound state: its spectral weight at a
given lattice site vanishes logarithmically as ω → 0. In-
tegrating Eq. (28) over R one again obtains the contri-
bution to the uniform susceptibility δχ(T ) = 1/(4T ) as
required.
We now turn to the spinon bond parameter i∆̃R,R+δ =

〈f †
R+δfR〉 defined for R ∈ A, which we express in

terms of the Green’s function G(iωn;R,R + δ) =

−〈TτfR(τ)f †
R+δ(0)〉ωn

:

∆̃R,R+δ = −iT
∑

iωn

G(iωn;R,R+ δ). (30)

Splitting the Green’s function into an unperturbed and
an impurity-correction term one obtains

∆̃R,R+δ = ∆̃δ + δ∆̃R,R+δ (31)

with

∆̃δ = −iT
∑

iωn

G0(iωn; 0, δ),

δ∆̃R,R+δ = −iT
∑

iωn

δG(iωn;R,R+ δ), (32)

where

G0(iωn; 0, δ) = B(iωn; δ),

δG(iωn;R,R+ δ) = A∗(iωn;R)

×B(iωn;R+ δ)/G0(iωn).

(33)

ForR = 0 one finds G0(iωn; 0, δ) = −δG(iωn; 0, δ) which
reconfirms the vanishing spinon bond parameter con-
necting the impurity site with its nearest neighbors, i.e.,
∆̃0,δ = 0.

IV. KNIGHT SHIFT

Experimentally, the spatial distribution of an impurity
induced moment can be investigated by means of the
NMR Knight shift K(T ) on either the impurity, Cu, or
in the case of YBa2Cu3O7 on the Y nuclei. Further infor-
mation is obtained from the width of the NMR lines and
the relaxation rates of the nuclear magnetic moment.
The Hamiltonian describing a nuclear spin I in an ex-

ternal magnetic field H0 coupled to the surrounding elec-
tron spins Si is

HN = γNH0 · I +Ahf

∑

i

Si · I, (34)

where γN denotes the nuclear gyromagnetic ratio and
Ahf is the coupling constant of the isotropic (supertrans-
ferred) hyperfine interaction. In the presence of a non-
magnetic impurity the local spin susceptibility that de-
termines the on-site spin polarization is altered according
to Eq. (28), yielding for the impurity contribution to the
Knight shift at distance R from the vacancy

δK(T ;R) =
γAhf

γN

∑

i

δχ(T ;R+ ri), (35)

where the sum is over nearest-neighbor lattice sites of the
nucleus being probed and γ = gµB with the g factor of
the Cu2+ spin and the Bohr magneton µB. Taking into
account only coupling to the most dominant moments
that reside on the nearest-neighbor sites surrounding the
vacancy, Eq. (35) becomes

δK(T ) =
γAhf

γN

n

2πT
f(T ) ln−1 D

T
. (36)

The correction factor
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FIG. 1. Temperature-dependence of the inverse of the im-
purity-induced Knight shift 1/δK(T ) on the impurity nucleus.
The solid line is a fit employing Eq. (36) to experimental data
by Ishida et al. for 3% 27Al-doped La1.85Sr0.15CuO4 indicated
by circles.

f(T ) = (yK1(y))
2 , y =

4
√
2T

πD
, (37)

reduces to unity in the limit T ≪ J . The variable n
in Eq. (36) denotes the number of sites that are nearest
neighbors to the vacancy as well as to the nucleus being
probed.
The Knight shift on the impurity nucleus is influenced

predominantly by the local moments residing on the four
nearest-neighbor sites of the impurity as described by Eq.
(36) with n = 4. Figure 1 contains the calculated T de-
pendence of 1/δK(T ). We set J = 1500 K and g = 2; by
varying the supertransferred hyperfine coupling constant
Ahf the curve is fitted to experimental data obtained by
Ishida et al.6 for the Knight shift of 27Al performed on
3% 27Al-doped La1.85Sr0.15CuO4. From the fit we find
for the supertransferred hyperfine coupling constant a
numerical value of 27Ahf/γscriptsize N = 18.2 kGs. This

compares well with 27Ahf/γN = 16 kGs found by Ishida
et al.
Upon doping the system with impurities, the NMR

signal of Cu and Y is observed to split into a main line
accompanied by satellite line(s) as is discussed in the fol-
lowing. Within the approximation employed in Eq. (36)
we assume the impurity-induced moments to reside pre-
dominantly on the nearest-neighbor sites of the vacancy.
Resonance signals originating from nuclei that do not lie
in the vicinity of the impurity are affected only little by
these moments and contribute to the NMR main line.
Resonance signals from Cu nuclei on nearest-neighbor
sites of the impurity are shifted with respect to the main
line as described by Eq. (36) with n = 1 and constitute a
single Cu satellite line. Resonance signals from Y nuclei
located on nearest-neighbor and next-nearest neighbor

sites of the impurity are seen as two satellite lines cor-
responding to n = 2 and n = 1, respectively. These Y
satellite lines have been observed experimentally by Ma-
hajan et al.5 in 1% Zn-doped YBa2Cu3O6.64.
We now discuss briefly the NMR line-broadening which

results from the inhomogeneous distribution of local
Knight shifts in the presence of many vacancies. Accord-
ing to Eq. (28) moments induced by a vacancy located
on the A sublattice are found on all sites of sublattice
B with magnitude ∝ R−2, R being the distance from
the vacancy. As a result the nuclear resonance signals
contributing to the main and satellite lines vary with
distance from the impurities which can be observed as
a broadening of the line. At a finite concentration c of
vacancies the linewidth ∆H can be estimated from Eq.
(35), assuming an average distance between vacancies of

Rav =
√

1/c:

∆H

H0
≈ γAhf

γN

c

2πT
ln−1 D

T
. (38)

V. IMPURITY INTERACTION

In this section we study the interaction between two
vacancies, first by considering two isolated impurities.
The case of a finite concentration of impurities is treated
subsequently.
The spinon Green’s function in the presence of two

impurities located at sites 0 and R is

GR(iωn) = NG0(iωn) + δGR(iωn). (39)

Employing scattering theory the two-impurity correction
δGR(iωn) can be expressed as

δGR(iωn) =

1

N

∑

r

(

G0(iωn; r, 0)
G0(iωn; r,R)

)

TR(iωn)

(

G0(iωn; 0, r)
G0(iωn;R, r)

)

(40)

with the unperturbed Green’s function G0(iωn;R,R
′) =

−〈TτfR(τ)f †
R′(0)〉0ωn

and the scattering matrix

TR(iωn) =

(

T11 T12
T21 T22

)

(41)

with

T11 = T22 = −1/G(iωn,R,R),

T12 = G0(iωn; 0,R)/
[

G(iωn;R,R)G0(iωn)
]

,

T21 = G0(iωn;R, 0)/
[

G(iωn;R,R)G0(iωn)
]

. (42)

The diagonal and off-diagonal elements of TR(iωn) de-
scribe successive scattering by one impurity and by the
two impurities, respectively. From Eqs. (40)-(42) one ob-
tains
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δGR(iωn) =
∂

∂iωn
ln
(

G0(iωn)G(iωn;R,R)
)

, (43)

where G(iωn;R,R) is given by Eq. (21).
By means of Eq. (43) we evaluate the two-impurity

contribution to the density of states δρR(ω) =
−1/π Im δGR(ω + 0+). For R ∈ B one finds a splitting
of the resonance energy level

δρR∈B(ω) = δ (ω − J(R)) + δ (ω + J(R)) , (44)

where the parameter J(R) controlling the level splitting
is given by

J(R) =
D
√

2ΦB(R)

2R
ln−1 πR

√

2ΦB(R)
. (45)

The level splitting results in an attraction between the
two impurities due to the formation of a singlet of the
induced moments. For the shortest distance between va-
cancies, R = 1, Eq. (45) gives J(R) ≈ J as expected:
J is the only energy scale of the model under consider-
ation. In the present mean-field theory no attraction is
found between impurities lying on different sublattices,
i.e., R ∈ A. These findings are also consistent with ex-
act diagonalization data of Bulut et al.18 who found a
binding energy of −0.56 J for nearest-neighbor static va-
cancies on a 4 × 4 lattice, while the interaction between
vacancies separated by R is negligible if Rx + Ry is an
even number. We interprete J(R) given by Eq. (45) as
being the antiferromagnetic exchange coupling of impu-
rity moments. Indeed, the impurity contribution to the
spin susceptibility calculated from Eq. (43) is

δχ(T ≫ J(R)) =
1

2T
,

δχ(T ≪ J(R)) =
2

T
exp

(

−J(R)

T

)

, (46)

which is precisely that of two 1/2 spins coupled by an
interaction Hint = J(R)S1 · S2.
From Eq. (45) the interaction potential between two

moments is found to fall off slowly as R−1 with distance
between the vacancies. In a real system with finite im-
purity concentration c, however, one expects this inter-
action to be screened at large distance by the presence
of other impurities. To account for this effect we intro-
duce a finite self-energy Σ(ω) determined by means of a
coherent-potential approximation (CPA):

Σ(ω)G0(ω − Σ(ω)) + c = 0. (47)

Neglecting the frequency dependence of Σ(ω) we approx-
imate the self-energy by Σ(ω) ≈ Σ(ω → 0) = −i|Σ′′

0 |,
where Σ′′

0 fulfills

− 4

πD2
Σ′′2

0 ln
D

|Σ′′
0 |

+ c = 0. (48)

Reevaluating the exchange coupling parameter J(R)
one finds an exponential cutoff in the two-impurity inter-
action potential

J(R) ∝ exp (−R/Rav) , (49)

where Rav =
√

1/c is the average distance between im-
purities. For small distances R ≪ J one recovers again
Eq. (45). The present CPA treatment gives a qualita-
tive description of the screening of the interaction po-
tential of two distant impurities, but it neglects impor-
tant effects such as the formation of spin singlets among
closely spaced moments; a complete analysis of the many-
impurity problem should take this effect into account.
Having the interaction scale between moments we can

give an estimation of the relaxation rate 1/T1 of nu-
clear magnetization resulting from fluctuations of the
impurity-induced moments in the vicinity of the vacancy.
To be specific let us consider the nuclear-spin relaxation
rate 1/T1 at the impurity site (obtained, for instance,
from the 27Al-NMR signal in an experiment by Ishida et

al.6) With the supertransferred hyperfine interaction of
Eq. (34) the nuclear relaxation rate is

1

T1
≈ 2

3
τA2

hf

∑

δδ′

〈Sδ · Sδ′〉, (50)

where τ is the correlation time of the local moment and
h̄ = 1. The amplitude of spin fluctuations on nearest-
neighbor sites of the impurity is given by the equal-time
spin-correlation function
∑

δδ′

〈Sδ · Sδ′〉

= −3T 2
∑

iωn,iνm

∑

δδ′

δG(iωn + iνm; δ, δ′)δG(iωn; δ
′, δ)

= 3
( z

π

)2

ln−2 D

T
, (51)

where δG(iωn; δ, δ
′) = −B∗(iωn; δ)B(iωn; δ

′)/G0(iωn),
νm = 2mπT are bosonic frequencies, and z = 4 is the
number of nearest neighbors. We assume the correlation
time τ in Eq. (50) to be dominated by the exchange in-
teraction among moments. In principle, τ has a certain
distribution due to the random spreading of impurities.
We do not go into this delicate issue and roughly approx-
imate τ ≈ 1/

[

zJ(
√
2Rav)

]

, where J(
√
2Rav) is given by

Eq. (45) and
√
2Rav =

√

2/c is the average distance be-
tween impurities located on different sublattices. One
then obtains

τ ≈
√
2

zD
√
c
ln

2π2

c
. (52)

Assuming an impurity concentration c = 3%, a temper-
ature T = 100 K, and using the value of the supertrans-
ferred hyperfine coupling constant Ahf found in the pre-
vious section, Eqs. (50)-(52) give 1/T1 ≈ 0.29 m s−1. We
compare this value to 1/T1 = 0.43 m s−1 observed by
Ishida et al.6 for 3% 27Al-doped La1.85Sr0.15CuO4 and
find it to be of the same order of magnitude.
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VI. KONDO SCREENING OF LOCAL MOMENTS

The two-dimensional Heisenberg model has a Néel-
ordered ground state and it was implicitly assumed above
that the spin-gap disordered state is stabilized by mobile
holes. Naturally, the question then arises how a local
moment induced by a static vacancy will be affected by
these charge carriers. Once the metallic state with fi-
nite Fermi surface is formed one usually expects Kondo
screening of the local moment at low temperature. As
an exception, a spinon bound state on a vacancy can
coexist with metallic conductivity if spin-charge separa-
tion occurs with a gap in the spin-excitation spectrum.
Underdoped cuprates, however, seem to have ungapped
pieces of their original (large) Fermi surfaces even in a
“spin-gap” phase19. Therefore the bound spinon on the
vacancy is screened by gapless Fermi-surface excitations,
although the Kondo temperature is expected to be low
due to the reduced density of states. The characteris-
tic Kondo-energy scale can be roughly estimated in the
following way.
We introduce fermionic field operators ψiσ = sσϕ(Ri)

which annihilate a spinon sσ in a bound state with wave
function ϕ(Ri), Ri being the distance from the spinless
vacancy. Due to the hopping term in the t-J model there
is a finite amplitude tϕ(Ri) of mixing of the bound spinon
with extended states:

H = t
∑

i,δ,σ

(

c†i+δ,σh
†
iψi,σ +H.c.

)

. (53)

The bosonic operators h†i and c†i+δ,σ in Eq. (53) create
a “holon” and a conduction electron, respectively. In a
slave-boson formulation, the latter is a product of the
lattice spinon and holon operators.
At finite doping, x = 〈|hi|2〉 6= 0, the Hamiltonian (53)

allows for a localized spinon to escape the impurity which
leads to a broadening of the bound state. The width of
this resonance controls the low-temperature behavior of
the local spin and is given by the sσ fermion self-energy

Σs(ω) = t2T
∑

ν

∑

ij,δδ′

ϕ∗(Ri)ϕ(Rj)G
h
ν (Rij)

×Gc
ω−ν(Ri+δ −Rj+δ′). (54)

At low temperatures the holons are almost condensed,
and the holon Green’s function can be approximated by
Gh

ν ≈ (x/T )δν,0. Furthermore, we keep only the nonoscil-
latory on-site terms that present the leading contribu-
tions to Eq. (54) and employ the normalization condition
∑

i |ϕi|2 = 1. Then the width of the Kondo resonance is

ImΣs(0) ≈ πzxt2N c(0), (55)

where N c(0) = 1/π
∑

k ImGc
k(ω = 0) is the on-site den-

sity of electronic states on the Fermi level.
In the overdoped t-J model with a large gapless Fermi

surface the density of states is controlled by the inverse of

the full bandwidth, N c(0) ≈ 1/(2zt). In the underdoped
pseudogap regime, xt ≪ J , the density of states N c(0)
is strongly reduced which is due to the fact that the un-
gapped areas of the Fermi surface contributing to N c(0)
are only small. We simply assume N c(0) ≈ x/(2zt) and
estimate the Kondo temperature using Eq. (55) as

TK(x) ≈ π

2
x2t. (56)

For a typical value of x ≈ 0.1 and t ≈ 0.4 eV this
gives TK ≈ 70 K. TK(x) quickly increases with x, caus-
ing the vacancy-induced moment to disappear in the opti-
mal and overdoped regime. This magnetic-nonmagnetic
Kondo crossover upon hole doping was recently employed
by Nagaosa and Lee20 to explain the unusual doping de-
pendence of the residual resistivity of cuprate supercon-
ductors.
One may wonder why the exchange parameter J does

not enter in Eq. (56). In fact, the main role of the Heisen-
berg term in this quite unusual Kondo-like behavior of
a spinless vacancy is to produce a spin pseudogap hence
creating a local moment. It is the hopping term that is
then responsible for converting the spinon bound state
into a resonance of finite width.

VII. CONCLUSION

In summary, we have studied the localized magnetic
states induced by static spin vacancies in underdoped
high-Tc cuprates. Starting from the two-dimensional
Heisenberg antiferromagnet we employ a drone-fermion
mean-field theory describing a spin liquid in the spin-
gap phase. The impurity induces a spinon bound state
residing predominantly on the nearest-neighbor sites of
the impurity. We have calculated the impurity-induced
Knight shift and found it in good agreement with ex-
perimental data of Ishida et al.6 for Al-doped cuprates.
The calculations do also account for the appearance of
satellite peaks in NMR measurements on Y observed by
Mahajan et al.5 in Zn-doped cuprates. Two impurities
are found to attract each other due to the formation of a
singlet of the induced moments. In the presence of a fi-
nite concentration of impurities the interaction between
moments is screened at distances larger then the aver-
age separation between impurities. We estimate the con-
tribution of local moments to the NMR relaxation rate
which is found to be in reasonable agreement with exper-
iment. Finally, an estimation of the Kondo temperature
of screening of the vacancy-induced moments by charge
carriers is given, below which a nonmagnetic impurity
behaves as a sharp resonance at the Fermi level.
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