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The electronic MEdical Records and GEnomics (eMERGE) network brings together

DNA biobanks linked to electronic health records (EHRs) from multiple institutions.

Approximately 51,000 DNA samples from distinct individuals have been genotyped

using genome-wide SNP arrays across the nine sites of the network. The eMERGE

Coordinating Center and the Genomics Workgroup developed a pipeline to impute and

merge genomic data across the different SNP arrays to maximize sample size and power to

detect associations with a variety of clinical endpoints. The 1000 Genomes cosmopolitan

reference panel was used for imputation. Imputation results were evaluated using the

following metrics: accuracy of imputation, allelic R2 (estimated correlation between the

imputed and true genotypes), and the relationship between allelic R2 and minor allele

frequency. Computation time and memory resources required by two different software

packages (BEAGLE and IMPUTE2) were also evaluated. A number of challenges were

encountered due to the complexity of using two different imputation software packages,

multiple ancestral populations, and many different genotyping platforms. We present

lessons learned and describe the pipeline implemented here to impute and merge

genomic data sets. The eMERGE imputed dataset will serve as a valuable resource for

discovery, leveraging the clinical data that can be mined from the EHR.
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Abbreviations: AA, African American descent; ACT, Group Health Illumina
Human Omni Express genotyped subject dataset; AffyA6, Affymetrix Genome-
Wide Human SNP Array 6.0; BCH, Boston Children’s Hospital, eMERGE network
site; BEAGLE, BEAGLE Genetic Analysis Software Package; CCHMC, Cincinnati
Children’s Hospital Medical Center, eMERGE network site; CHOP, The Children’s
Hospital of Philadelphia, eMERGE network site; DDR3, an abbreviation for double
data rate type three synchronous dynamic random access memory in comput-
ing systems; EA, European American descent; EHRs, Electronic Health Records;
eMERGE, The Electronic Medical Records and Genomics (eMERGE) Network is
a national consortium organized by NHGRI; GB, A unit of computer memory or
data storage capacity equal to 1024 megabytes; GHz, When measuring the speed
of microprocessors, a GHz represents 1 billion cycles per second; HA, Hispanic
American descent; HapMap, The HapMap is a catalog of common genetic variants
that occur in human beings; IBD, identical by descent (IBD); IMPUTE2, IMPUTE
version 2 (also known as IMPUTE2) is a genotype imputation and haplotype phas-
ing program; kB, kilobyte is a multiple of the unit byte for digital information, 1024
bytes; kbp, kbp stands for kilobase pairs, a unit of length equal to 1000 base pairs in
deoxyribonucleic acid or 1000 nitrogenous bases in ribonucleic acid; KING, soft-
ware making use of high-throughput SNP data for determining family relationship
inference and pedigree error checking and other uses; LD, linkage disequilibrium
(LD) SNPs in the genome that can represent broader genomic regions; LIFTOVER,

INTRODUCTION

Imputation methods are widely used for inferring unobserved
genotypes in a genotypic dataset using haplotypes from a more
densely genotyped reference dataset (Browning, 2008; Howie
et al., 2009, 2011, 2012; Li et al., 2009). This process is partic-
ularly important when combining or performing meta-analysis
on data generated using multiple different genotyping platforms.
Imputation allows for the utilization of a reference dataset and
a genotyping backbone, identifying what the unobserved likely

software tool that converts genome coordinates and genome annotation files
between assemblies; MAF, minor allele frequency (MAF) refers to the frequency at
which the least common allele occurs in a given population; MB, unit of computer
memory or data storage capacity equal to 1,048,576 bytes (1024 kilobytes or 220)
bytes; NHGRI, National Human Genome Research Institute; NWIGM, Northwest
Institute of Genetic Medicine (NWIGM): Group Health Illumina 660W-Quad
BeadChip genotyped subject dataset; PCA, Principal Component Analysis; Pos,
chromosome position of a SNP; SHAPEIT2, version 2 of the haplotype inference
software; UCSC, The University of California, Santa Cruz (UCSC).
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SNPs are using patterns of linkage disequilibrium (LD) amongst
surrounding markers. Multiple imputation software packages and
algorithms have been developed for imputing SNPs (Browning,
2008; Browning and Browning, 2009; Li et al., 2010; Delaneau
et al., 2013) (Howie et al., 2012, 2009). Although each method
has clear strengths and limitations, a single “best-practice” impu-
tation software package has not yet emerged as each tool will have
different assumptions, benefits and weaknesses.

In the electronic MEdical Records and GEnomics (eMERGE)
network (Gottesman et al., 2013) funded by the National Human
Genome Research Institute (NHGRI), multiple genotyping plat-
forms were have been used to generate genome-wide genotype
data for thousands of patient samples and a variety of pheno-
types extracted from electronic health records (EHR). To allow
for either meta-analysis across the eMERGE sites or a com-
bined mega-analysis whereby all of the eMERGE datasets are
combined in a single analysis, imputation is essential to fill
in the missing genotypes caused by using disparate genotyp-
ing platforms. The eMERGE Coordinating Center (CC) at the
Pennsylvania State University performed genotype imputations
for the eMERGE Phase-II project data [which includes all sam-
ples from eMERGE-I (McCarty et al., 2011; Zuvich et al., 2011),
and eMERGE-II (Gottesman et al., 2013; Overby et al., 2013)
using two different imputation pipelines: (1) BEAGLE (Browning
and Browning, 2009) version 3.3.1 for phasing and imputation,
and (2) SHAPEIT2 (version r2.644) (Delaneau et al., 2013) for
phasing in combination with IMPUTE2 (version 2.3.0) soft-
ware (Howie et al., 2012) for imputation. Imputation was per-
formed for all autosomes, with a cosmopolitan reference panel
selected from the 1000 Genomes Project (1000 Genomes Project
Consortium et al., 2012). BEAGLE used the October 2011 release
and IMPUTE2 used the March 2012 release based on the tim-
ing of when imputations were performed. We did not perform
X-chromosome imputations as part of this paper but the impu-
tation of the X chromosome for these datasets is currently in
progress. In these imputations, 1000 Genomes cosmopolitan
reference panel was selected whereby 1092 samples from mul-
tiple race, ethnicity and ancestry groups were included in the
reference panel. Using a cosmopolitan reference panel is advanta-
geous when imputing data based on multiple ancestry or mixed-
ancestry groups (Howie et al., 2011), as is the case in eMERGE
datasets. To maximize our use of computational resources and
allow for high quality imputations, the CC imputed the data as
they were submitted to the CC, in datasets by site and geno-
typing platform, using the cosmopolitan panel from the 1000
Genomes.

Imputed data from all eMERGE sites were merged based
on the set of intersecting SNPs present in all datasets. For the
merging process, datasets that were not genotyped on dense,
genome wide platform, and the datasets with fewer than 100
samples were not included as these sets routinely showed much
lower quality imputation results (See Materials and Methods;
additional data not shown). For example, genotyping panels con-
taining markers in only some regions of the genome [such as
the Illumina MetaboChip (Voight et al., 2012)] do not pro-
vide a suitable backbone for high quality genome-wide impu-
tation. We looked at the quality of imputation in each of these

datasets by the estimated imputation “info” score (See Results).
Additionally, for datasets with very small sample size and/or
not genotyped densely, median info score was close to 0 (For
e.g., CHOP Illumina OmniExpress dataset with only 32 samples
had median info score of 0.007), so we excluded these datasets
from the merged data. After imputation and merging of the
datasets, quality control procedures were implemented to create
high quality, analysis-ready data set for genome-wide association
studies.

Here we describe the imputation pipelines implemented using
BEAGLE and SHAPEIT2/IMPUTE2; provide results of the two
imputation pipelines; and describe the quality control procedures
after merging multiple imputed datasets. Numerous lessons were
learned along the way for each of these imputation pipelines and
we share all of the challenges encountered in the project. The
imputation and quality control procedures resulted in unique and
comprehensive a dataset of over 50,000 samples with genotypes
imputed to the 1000 Genomes reference panel, all linked to de-
identified EHR to allow for a vast array of genotype-phenotype
association studies.

MATERIALS AND METHODS

STUDY DATA

The eMERGE network consists of seven adult sites and two
pediatric sites, each with DNA databanks linked to EHR. Each
site in the network has a set of at least 3000 samples that
have been genotyped on one or more genotyping platforms
(Gottesman et al., 2013). Table 1 provides a summary of the
number of samples from each site and the genotyping plat-
forms used. Previous studies have shown that the quality of
input genotype data does not affect imputation quality in a
significant manner (Southam et al., 2011), but nevertheless we
selected the genomic data sets for the current imputation study
that had all undergone the pre-processing recommended by the
eMERGE CC to eliminate samples and SNPs with call rates less
than 99–95% depending on the coverage of genotyping for each
platform (Zuvich et al., 2011). Minor allele frequency (MAF)
threshold of 5% was also applied. This ensures that only high
quality data were considered for imputation and downstream
analyses.

Several eMERGE sites genotyped duplicate samples on multi-
ple different genotyping platforms, for quality control purposes.
A total of 56,890 samples were submitted to the eMERGE CC
for imputation, out of which 53,200 samples were unique. All of
these samples were genotyped and deposited to CC at different
times, so imputation was performed as the datasets arrived. This
resulted in imputing some datasets with fewer than 100 samples.
When the dataset was less than 100 samples, we included the 1000
Genomes dataset with the study data during phasing. We imputed
all samples; however, for the purpose of merging the data, we only
merged high quality datasets (defined by having masked analy-
sis concordance rate greater than 80%; described in more detail
below). We included only one sample from pairs of duplicates;
specifically the sample genotyped on the higher density genotyp-
ing platform. Our final merged dataset contains 51,035 samples.
Samples that had low quality due to either of the following two
reasons were not included:
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Table 1 | Sample summary across all eMERGE datasets.

Sample set Genotyping platform Samples for imputations Samples in merged data set

ADULT DNA SAMPLES

eMERGE-I 1M Illumina 1M 2634 2634

eMERGE-I 660 Illumina 660 18663 16029

Geisinger OMNI Illumina HumanOmni Express 3111 3111

Geisinger Metabochip Metabochip 918 0

Mayo Clinic Illumina Human 610, 550, and 660W Quad-v1 3149 3118

Mt. Sinai AA Affymetrix 6.0 863 863

Mt. Sinai EA Affymetrix 6.0 700 700

Mt. Sinai HA Affymetrix 6.0 1212 1212

Mt. Sinai OMNI_AA Illumina HumanOmni Express 3515 3515

Northwestern University Illumina HumanOmni Express 12v1_C 3030 2951

Vanderbilt University Illumina HumanOmni Express 12v1_C 3565 3461

Group Health/ACT Illumina HumanOmni Express 398 398

Group Health/NWIGM Illumina 660W-Quad Beadchip 341 333

Marshfield Clinic Affymetrix/Illumina 660 500 500

Total for adult DNA samples 42,599 38,824

PEDIATRIC DNA SAMPLES

CCHMC 610/660W/AffyA6/OMNI1/OMNI5 5558 4322

BCH Affymetrix Axiom 1038 1038

CHOP 550/610/Beadchip/AffyA6/AffyAxiom/OmniExpress 7695 6850

Total for pediatric DNA samples 14,291 12,210

Total 56,890 51,035

“Samples for imputations” column contain number of samples that were obtained by coordinating center at different time points. “Samples in merged dataset”

contain number of unique samples that were used in merged dataset. For the samples that were genotyped on multiple platforms, sample on platform with high

genotype efficiency was used in merged dataset.

1. Samples not genotyped on dense, genome-wide genotyping
platform (e.g., the MetaboChip).

2. Sample size of the dataset on the specific platform for phas-
ing was fewer than 100 (as recommended in SHAPEIT2
guidelines).

A small number of samples were also genotyped for two
SNPs (rs1799945 and rs1800562) using commercially avail-
able 5′-nuclease assays (TaqMan® Assay; Life Technologies).
Genotyping reactions were carried out in 10 µl volumes in an
ABI 7500 Fast Real-Time PCR System (Life Technologies). The
genotypes were called using ABI 7500 software version 2.0.4 (Life
Technologies). These data were used to evaluate the concordance
of imputed genotypes with TaqMan generated genotypes.

PRE-IMPUTATION DATA PROCESSING

The quality of imputation relies on the quality of the refer-
ence panel as well as the quality of the study data. To ensure
high data quality, there are a number of steps that were taken
before imputation begins. At the start of the BEAGLE imputa-
tion, the GENEVA HAPO European Ancestry Project Imputation
Report (Geneva_Guidelines1) by Sarah Nelson through GENEVA

1Available at: https://www.genevastudy.org/sites/www/content/files/data
cleaning/imputation/Lowe_Eur_1000G_imputation_final.pdf

(Gene-Environment Association Studies) was used as a guide
and a starting point for implementation of the eMERGE
imputation pipeline. GENEVA is an NIH-funded consortium of
sixteen genome-wide association studies (GWAS) and this guide
served as the basis to begin the eMERGE Phase-II imputation
process.

CONVERTING REFERENCE PANEL AND STUDY DATA TO THE SAME

GENOME BUILD

The genotype data were initially accessed from binary PLINK
files (Purcell et al., 2007). All SNP names and locations for
the genotypic data being imputed had to be specified based
on the same genome build, as well as the same genome build
of the reference genome. The Genome Reference Consortium
Human build 37 (GRCh37 or build 37) is the reference genome
used in our study (2010). Some eMERGE sites had their
data in build 37, while others were still in build 36. Any
datasets that were not in build 37 were first converted from
build 36 to build 37 using the Batch Coordinate Conversion
program liftOver (Karolchik et al., 2011) via the following
steps:

1. SNPs with indeterminate mappings were removed (either
unknown chromosome and/or unknown position) in build 37.

2. SNP names were updated.
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3. The chromosome positions were updated.
4. The base pair positions were updated.

The program liftOver is a tool developed by the Genome
Bioinformatics team at the University of California, Santa Cruz
(UCSC) to convert genome coordinates and genome annotation
files between assemblies. This process ensures that all study data
from eMERGE sites and the 1000 Genomes reference data are
referring to SNPs by the same alleles and genome location.

CHECKING STRAND

Study and reference data allele calls must be on the same strand
for proper imputation, however the strand could vary from study
site to study site due to genotyping platform and calling algo-
rithm. High quality imputation is exceptionally reliant upon the
study and reference data allele calls to be on the same physi-
cal strand of DNA in respect to the human genome reference
sequences (“reference”). Datasets could have different notations
depending on the genotyping platform and the calling algo-
rithm. For example, Genome Studio will allow the user to create
genotype files using different orientations. In addition, some
users may use custom genotype callers—not provided by the
genotyping chip manufacturer. For example, some platforms use
the forward strand of the human genome assembly and some
use Illumina’s TOP alleles, and some use Illumina’s AB alleles
(Illumina TechNote2). To identify the SNPs requiring a strand
flip to convert the forward allele to the “+” strand of the human
genome reference assembly so that all sites were consistent in
terms of the same strand, we used the BEAGLE strand check util-
ity for BEAGLE imputations and the SHAPEIT2 strand check
for IMPUTE2 imputations even though IMPUTE2 automati-
cally addresses ambiguous strand alignments by comparing allele
labels. During strand check, alleles are changed to their com-
plementary alleles (C-G and A-T) based on three criteria: (a)
the observed alleles, (b) minor allele frequencies (MAF), and (c)
linkage-disequilibrium (LD) pattern within 100-SNP windows.
SNPs where MAF and LD patterns are inconsistent and also can-
not be resolved by flipping, those SNPs are discarded from the
dataset. Before phasing, we subset the data by chromosomes and
also flipped strand for the SNPs to align the dataset with “+”
strand so that it corresponds to reference panel strand correctly.

PHASING

Haplotype phasing is the next step after ensuring that all data
was using the same strand, identifying alleles co-localized on
the same chromosome. BEAGLE performs phasing jointly with
imputations. “Pre-phasing” indicates that a computational step is
implemented prior to imputation where haplotype phase is esti-
mated for all of the alleles. We utilized a pre-phasing approach
because it helps to make the process of imputation faster, and the
phased data can be used for any future imputation of the data.
Improved reference panels will be introduced over time, and thus
having the data saved pre-phased for imputation can speed up
later imputation of the data. Phasing the data can introduce some

2Available at: http://res.illumina.com/documents/products/technotes/tech
note_topbot.pdf

error to the imputations, because of any haplotype uncertainty
(Howie et al., 2012).

For IMPUTE2 imputations, following “best practices” guide-
lines in the IMPUTE2 documentation (Howie et al., 2009)
(Impute2, 2.3.0) we first phased the study data with the
SHAPEIT2 haplotype estimation tool (Howie et al., 2012). We
were able to reduce general runtime through using multiple
computational processing cores via the “—thread” argument. A
general example of the command line syntax used to run the
SHAPEIT2 program on chromosome 22 using the “—thread”
argument is shown below:

shapeit2 --input-ped StudyData_chr22.ped

StudyData_chr22.map \

--input-map genetic_map_chr22_combined_

b37.txt \

--output-max StudyData_chr22.haps

StudyData_chr22.sample \

--thread 2 --output-log shapeit_chr22.log

IMPUTATION USING BEAGLE

To expedite the imputation using BEAGLE, we divided each chro-
mosome into segments including 30,000 SNPs each (referred to
as SNPlets), following one of several recommendations in the
BEAGLE documentation (Browning and Browning, 2009) for
imputing large data sets. A buffer region of 700 SNPs was added
to each end of every SNPlet to account for the degradation in
imputation quality that may occur at the ends of imputed seg-
ments. An illustration of this segmentation is shown in Figure 1.
Partitioning was implemented by dividing the “.markers” files
created at the end of the strand check into 1 “.markers” file for
each SNPlet of 30,000 SNPs and a 700 SNP buffer region on
either end. In each results file, the data for all SNPs in the buffer
regions were removed such that each imputed SNP had results
from only one segment. The SNP annotation and quality metrics
file accompanying these data indicate to which segment each SNP
was assigned.

Below is an example of the command line syntax used to run
BEAGLE on the first segment of chromosome 22. The “phased=”
argument corresponds to the 1000 Genome Project reference
panel input file; the “excludemarkers=” argument points to a
combined list of SNPs that are either (1) triallelic SNPs or (2) have
reference MAF < 0.005. The “unphased=” argument points to a
BEAGLE-formatted input file:

java -Djava.io.tmpdir=/scratch/tmp

-Xmx4700m -jar BEAGLE.jar \

unphased= chr22_mod.bgl \

phased= chr22.filt_mod.bgl \

markers= chr22_*.markers \

excludemarkers= allchr22_snpsexclude.txt \

lowmem=true verbose=true missing=0

out=out_chr22set1

IMPUTATION USING IMPUTE2

To perform imputation with IMPUTE2 on our phased data, we
divided each chromosome into base pair regions of approximately
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FIGURE 1 | Chromosome segmentation strategy for genome-wide

imputation with BEAGLE. Each chromosome was divided into SNPlets

which included 30,000 SNPs with a buffer of 700 SNPs at each end.

FIGURE 2 | Chromosome segmentation strategy for imputation with

IMPUTE2. Each chromosome was divided into 6 MB segments with

250 kbp overlap between them.

6 Mb in size, beginning at the first imputation target, as displayed
in Figure 2. As a result, we partitioned 22 autosomes into 441
segments, ranging from only 7 segments on chromosome 21, to
the largest number of segments (39) on chromosome 2. It is of
interest to note that there were 36 segments on chromosome 1. It
was beneficial to use this process of breaking the genotypic data
into smaller regions because IMPUTE2 has been reported to have
improved accuracy over smaller genomic regions and also sepa-
rating data into segments helps allows for the parallelization of
jobs over a multi-core compute cluster. Segments either overlap-
ping the centromere or at the terminal ends of chromosomes were
merged into the segment immediately upstream.

IMPUTE2 labels SNPs by the panels in which they have been
genotyped. Each label denotes a specific functional role. SNPs that
have genotype data only in the reference panel are labeled Type

0 or Type 1 (for phased and unphased reference panels, respec-
tively), whereas SNPs that have genotypes in the study dataset
are labeled Type 2. These are considered SNPs for the imputa-
tion basis. Type 2 SNPs dictate which reference panel haplotypes
should be “copied” for each individual; then, the reference panel
alleles at Type 0/1 SNPs are used to fill in the missing genotypes of
the individual.

As recommended by the IMPUTE2 guidelines, we ensured
that each base pair region that was imputed contained at least
some observed (type-2) SNPs. To utilize type-2 SNPs for esti-
mating haplotype structure, a buffer region on both sides of
segments is required. 250 kb buffer region is default for IMPUTE2
so we used the default buffer size of 250 kb for eMERGE
imputations. By default, IMPUTE2 flanks imputation segments
with a 250 kb buffer, where type-2 SNPs are used to estimate
haplotype structure. We used the default buffer size of 250 kb for
imputations.

An example of the command line syntax we used to run first
6 MB segment (pre-phased) for chromosome 22 by IMPUTE2
(version 2) is shown below:

impute2 -use_prephased_g -m genetic_map_

chr22_combined_b37.txt \

-h ALL_1000G_phase1interim_jun2011_chr22_

impute.hap.gz \

-l ALL_1000G_phase1interim_jun2011_chr22_

impute.legend.gz \

-int 16000001 2.1e+07 -buffer 500 -allow_

large_regions \

-known_haps_g StudyData_chr22.haps \

-filt_rules_l Study_data.maf<0.001

-align_by_maf_g \

-o StudyData_chr22.set1.gprobs \

-i StudyData_chr22.set1.metrics -verbose

RESULTS

COMPUTATION TIME AND MEMORY USAGE

Imputation jobs were run in parallel across several high-
performance computing clusters; specialized systems were chosen
depending on the memory and processor requirements of the
software and the size of the datasets. Figure 3 shows the work-
flow of both imputation methods using the different software and
how the performance results and computational requirements
differed for each. Each job required between 4 and 24 GB RAM
and from 4 to 80 CPUs (cores). The number of jobs submitted
to be run in parallel also ranged from a few 100 to several 1000
at a time according to the sample size of each data set. Table 2A

provides information on one of the computing clusters that were
used to perform these extensive imputations by the eMERGE
CC. Table 2B lists maximum time and memory from each of the
datasets that was required to run both imputation and phasing.
One thing to note here is that according to available sources at the
time of running specific job, different CPU cores were utilized.

The largest variance for computing resource requirements was
in the computational time required on the same cluster comput-
ing systems for the two different pipelines. Previous studies have
compared both BEAGLE and IMPUTE2 programs based on the
quality and imputation times (Pei et al., 2008; Howie et al., 2009,
2011; Nothnagel et al., 2009). Our work similarly showed that
IMPUTE2 ran much faster than BEAGLE. For BEAGLE imputa-
tions, SNPlet runtimes varied between 40 and 200 h, on average
using 6 GB of memory for each job for a total of 1.64 × 106 CPU
hours.

In summary SHAPEIT2 and IMPUTE2 processing, took only
13 h on an average for phasing using 10 GB memory with a max-
imum of 16 CPUs (4 cluster computing nodes where each node
had 4 CPUs). Similarly imputations on average could be com-
pleted in 4.5 h of time using 24 CPUs (across multiple cluster
nodes). For processing the final merged set, approximately 80
CPUs were required. The total computational time required for
the SHAPEIT2 and IMPUTE2 processing was less than 600 CPU
hours. Using the pre-phasing approach, imputation time was
decreased by more than 10–fold with the unfortunate side-effect
of utilizing intensive memory.
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FIGURE 3 | Workflow and performance metrics for imputation with BEAGLE and IMPUTE2.

COMPARISION OF BEAGLE AND IMPUTE2

BEAGLE and IMPUTE2 methods have been compared exten-
sively by previous studies of a single ancestry (i.e., European or
African) and using a cosmopolitan reference panel (Browning
and Browning, 2009; Howie et al., 2009; Nothnagel et al.,
2009; Jostins et al., 2011; 1000 Genomes Project Consortium
et al., 2012). Initially, we planned to perform a direct com-
parison of the two imputation programs. We found that the
resource requirements to do that were prohibitive, since the

1000 Genomes reference was updated in between our BEAGLE
runs and our IMPUTE2 runs. This update presented a conun-
drum since the update includes a large number of InDels and
our proposed downstream analyses would be improved by using
the updated reference set. Due to BEAGLE’s compute intensive
implementation we did not have the compute resources or the
time to repeat the imputation with the new reference dataset.
Similarly repeating the IMPUTE2 runs using the old reference,
even though it was much faster than BEAGLE was prohibitive
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Table 2 | Computational resources used for conducting the imputations.

(A) Penn State Lion XG: systems specifications

Component Server Quantity Processor Number of processor cores Memory (GB)

Login Node Dell PowerEdge R620 1 Intel Xeon E5-2670 2.6 GHz 16 64

Compute Node Dell M620 48 Intel Xeon E5-2665 2.4 GHz 16 128

Compute Node Dell M620 48 Intel Xeon E5-2665 2.4 GHz 16 64

Compute Node HP BL460c Gen8 96 Intel Xeon E5-2665 2.4 GHz 16 64

(B) Phasing and imputation time and RAM required for each dataset

Site_name #Samples Phasing time Phasing RAM Imputation_time Imputation

(maximum seconds) (maximum seconds) RAM

eMerge-I-1M 2634 199984 4 7728 20

eMerge-I-660 18663 17263 4 35517 75

BCH 1038 22963 4 2380 12

Geisinger_Metabochip 918 55002 8 6011 24

Geisinger_OMNI 3111 2010 8 7397 20

Grouphealth_ACT 398 62141 8 1330 16

Grouphealth_NWIGM 341 8063 6 730 20

Mayo 6307 5627 6 21172 16

MtSinai_EA 700 130737 16 3617 30

MtSinai_AA 863 33832 10 2308 12

MtSinai_HA 1212 50884 10 3120 12

MtSinai_OMNI 3515 52000 16 13276 12

NU 3030 311211 32 6089 24

Vanderbilt 3565 19392 12 10583 20

Total CCHMC 4322 82450 12 4310 28

Total CHOP 6850 74501 12 7768 30

in terms of compute time and storage space with a dataset
of 55,000 samples. Therefore, we will provide only anecdotal
differences that we observed between IMPUTE2 and BEAGLE.
For more complete, direct comparisons of the two approaches,
we direct the reader to some of the earlier studies mentioned
above.

In our study dataset, we observed that IMPUTE2 is sub-
stantially faster than BEAGLE but they both achieved com-
paratively equal accuracy with a large reference panel, such as
the 1000 Genomes. Our BEAGLE imputations were only per-
formed for adult data, so to look at the frequency of high
quality markers, we compare the counts to adult only data
in IMPUTE2. We observed that 8,899,961 SNPs passed allelic
R2 filter of 0.7 in BEAGLE imputations whereas for same
data using IMPUTE2 imputations, 12,504,941 SNPs passed info
score filter of 0.7. Lastly, we also observed that in BEAGLE
imputed data at MAF = 0.05, there were SNPs with Allelic R2

value less than 0.6 whereas with IMPUTE2 imputed data all
SNPs with MAF = 0.05, were above info score value greater
than 0.6.

Keeping the huge computational advantage of IMPUTE2 as
well as quality of imputation in mind, especially when deal-
ing with the imputation of over 50,000 samples, we used
IMPUTE2 for further imputations and analyses. Thus, in the
remainder of the paper, we will describe the output and

quality metrics that we observed for IMPUTE2 in the eMERGE
dataset.

MASKED ANALYSIS

One of the greatest challenges with imputation is knowing how
well it is working. A common strategy used to evaluate this is
called “masked analysis.” In a masked analysis, a subset of SNPs
that were actually genotyped in the study sample are removed,
those SNPs are then imputed as though they were not geno-
typed, and then the imputed SNPs are compared to their original
genotypes. The results of the imputation are contrasted with
the original genotypic data, showing the degree of concordance
between the original genotypic data and the imputed data after
masking. This gives a good sense of how accurate the imputa-
tions are with respect to that set of SNPs. An additional way the
results of masking and imputation are evaluated is to compare
the allelic dosage of the original genotypic data with that of the
allelic dosage in the imputed data. If there are three genotypes
AA, AB, and BB, the allelic dosage for each individual can be
represented as probabilities (P) of each of three genotypes via
2∗P(AA) + 1∗P(AB) + 0∗P(BB) to obtain the expected allelic
dosage from the original genotypic data and the observed allelic
dosage for the masked and imputed genotype for each SNP. The
correlation between the expected allelic dosages and the observed
allelic dosages over all individuals can then be calculated at each
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masked SNP. This correlation metric is an exact variant of the
imputation R2 metrics of MACH (Li et al., 2010) and BEAGLE,
which corresponded with the IMPUTE “info” score which is cal-
culated automatically as part of IMPUTE2. Here Type 2 SNPs
are removed from imputation, and then imputed, and contrasted
with imputation input. Thus, metric files from IMPUTE2 provide
information from these masked SNP tests, including concordance
and correlation metrics, and an “info” metric for having treated a
Type2 the SNP as Type 0.

Overall concordance is vigorously impacted by the MAF and
we say so on the grounds that for SNPs with MAF < 5% by sim-
ply allocating imputed genotypes to the major homozygous state
would result in >90% concordance. Thus, there is an inclina-
tion of high concordance values at low MAF SNPs, where major
homozygotes are prone to be imputed “correctly” just by chance.
We observed approximately 99% average concordance in masked
SNPs grouped by MAF.

ORTHOGONAL GENOTYPING ANALYSIS

As another imputation quality check, we compared the genotypes
generated in the imputation with those genotyped on orthogonal
genotyping platforms. Two SNPs, rs1800562 and rs1799945 were
genotyped using TaqMan by the genotyping facility at Geisinger
Health System. The concordance between the TaqMan genotype
and the imputed data was 98.9 and 98.3% for rs1800562 and
rs1799945, respectively. These are very similar to results observed
in the Marshfield Clinic PMRP where an orthogonal platform was
used (Verma et al., 2014).

MERGING OF IMPUTED DATASETS

Prior to imputation, we explored the option of combining the
raw genotype data based on overlapping SNPs from the multi-
ple GWAS platforms. Unfortunately the number of overlapping
SNPs was minimal (only 37,978 SNPs). This was not sufficient
for imputation. Thus, we imputed each dataset based on site

FIGURE 4 | Frequency distribution of “info” quality metric (A,B) and relationship between the “info” score and MAF are shown (C,D). The secondary

axis indicates the count of SNPs in each MAF bin (0.01 intervals).
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Table 3 | Number and proportion of SNPs dropped and remaining at

different genotyping call rate threshold after merged data is filtered

at info score >0.7.

Threshold SNPs Proportion of SNPs Proportion of

dropped SNPs dropped remaining SNPs remaining

at threshold at threshold at threshold at threshold

ADULT DNA SAMPLES

0.95 1650764 0.1494 9400761 0.8506

0.98 3609986 0.3267 7441539 0.6733

0.99 5619475 0.5085 5432050 0.4915

PEDIATRIC DNA SAMPLES

0.95 2165777 0.1275 14810393 0.8724

0.98 4983111 0.2935 11993059 0.7065

0.99 7692022 0.4531 9284148 0.5469

and platform individually. After imputing each study dataset,
we attempted to merge all of the imputed datasets together to
generate a mega-analysis ready dataset (combining all eMERGE
sites together). The imputed data from all eMERGE sites study-
ing adult-onset diseases were merged into one dataset and all
pediatric data were merged into a second set. Future directions
include combining adult and pediatric data. Imputed datasets
were merged based on the set of intersecting markers [only
markers that were of high quality in all of the imputed data
were combined (i.e., info score >0.7)]. Duplicate samples were
removed, whereby the highest quality version of the sample was
maintained. For example, if a sample was genotyped on two
platforms with different call rates, we kept the result from the
platform with the higher call rate. Additionally, the low qual-
ity data were omitted from the final version of the merged
data. Low quality of imputation was determined by assessing the
masked concordance rates calculated from IMPUTE2. Notably,
most data that were not genotyped on a dense, genome-wide
platform (such as MetaboChip or Illumina HumanHap 550
Duo BeadChip) had masked concordance rates <80% (Nelson
et al., 2013). The lower concordance was probably due to a
lack of a uniform backbone or imputation basis to use for con-
struction of the LD patterns for imputation. As such, those
datasets were not included in merged dataset. Finally, as rec-
ommended in both the SHAPEIT2 and IMPUTE2 guidelines
(Impute23), small sample size datasets (<100 samples) did not
achieve high quality imputations; thus, we excluded them from
the merged data.

To merge all of the datasets together, we implemented a script
that takes IMPUTE2-formatted input files and cross-matches
them based on SNP position and alleles, rather than the marker
label (as sometimes marker labels are not shared). For each
matching position, allele1, and allele2, which are found in all
inputs, the output is given the most common label from among
the inputs. The script detects cases where there are different SNP
labels for the same Chr:Pos and alleles and resolves it by treating

3Available at: https://mathgen.stats.ox.ac.uk/impute/impute_v2.html

Table 4 | Number and proportion of samples dropped and remaining

at different sample call rate threshold after merged data is filtered at

info score >0.7 and marker call rate 99%.

Threshold SNPs Proportion of SNPs Proportion of

dropped dropped remaining SNPs remaining

at threshold at threshold at threshold at threshold

ADULT DNA SAMPLES

0.95 5 0.0001 38823 0.9999

0.98 57 0.0015 38771 0.9985

0.99 4632 0.1193 34196 0.8807

PEDIATRIC DNA SAMPLES

0.95 10 0.0008 12200 0.9991

0.98 79 0.0647 12131 0.9935

0.99 497 0.0407 11713 0.9592

Table 5 | MAF distribution for all SNPs after applying info score (0.7)

and marker call rate filter (99%).

Threshold SNPs Proportion of SNPs Proportion of

dropped SNPs dropped remaining SNPs remaining

at threshold at threshold at threshold at threshold

ADULT DNA SAMPLES

0.05 2803753 5.1615e-01 2628296 0.4838

0.01 995223 1.8321e-01 4436826 0.8168

0.005 466779 8.5930e-02 4965270 0.9141

0.001 13979 2.5734e-03 5418070 0.997

0.0005 624 1.1487e-04 5431425 0.9998

0.0001 1 1.8409e-07 5432048 0.9999

PEDIATRIC DNA SAMPLES

Threshold #SNPs Proportion of #SNPs Proportion of

dropped SNPs dropped remaining SNPs remaining

at threshold at threshold at threshold at threshold

0.05 6523370 7.3938e-01 2299322 0.2606

0.01 4631783 5.2498e-01 4190909 0.4750

0.005 3141053 3.5601e-01 5681639 0.6440

0.001 240254 2.7231e-02 8582438 0.9728

0.0005 30674 3.4767e-03 8792018 0.9965

0.0001 19 2.1535e-06 8822673 0.9999

these as equivalent markers which will be joined into one output
line, using the marker label which has larger rs#. For cases where
there are more than one position for the same SNP label, the script
will then drop both of them.

Imputation results have multiple columns of information. The
first five columns relate to Chromosome, SNP ID, base pair loca-
tion, and the two SNP alleles, where the first allele indicated is
assigned “allele A,” and the second is assigned “allele B.” The
following three columns represent the genotype probabilities of
the three-genotype classes (AA, AB, and BB) for each individual
sample; a simulated example shown here:
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CHR SNP_ID POSITION allele A allele B Sample1_AA Sample1_AB Sample1_BB

22 rs149201999 16050408 T C 0.251 0.501 0.248

22 rs146752890 16050612 C G 0.302 0.495 0.203

22 rs139377059 16050678 C T 0.252 0.501 0.247

22 rs188945759 16050984 C G 1 0 0

Imputed genotype files contain three types of IMPUTE2 SNPs:
Type 0 (imputation target); Type 2 (imputation basis); and Type
3 (study only). Accompanying information metrics files provide
information on what type of SNP each SNP within the dataset
was. Note there are no sample identifiers in the probabilities
files, consequently it is important to utilize sample information
documents provided to adjust imputed probabilities to sample
data. Merged “info” or quality metrics file contains following
information:

1. “snp_id” is always “---”which is how it often appears in the
input files, and “rs_id” and “position” match the genotype
output file.

2. “type” is the numeric minimum of the observed input values.
3. The other columns are all simple (equally weighted) averages

of the input values, except that any −1 inputs are ignored
(for example. the average of 0.5, −1, 0.3 is 0.4, ignoring
the −1).

4. There is also a special case for the “exp_freq_a1” column for
inputs which have alleles reversed compared to the first input

(allele1 is not always major or minor allele); in that case the
value is subtracted from 1.0 before going into the average so
that we always report frequencies for minor allele in merged
dataset.

IMPUTED DATA STATISTICS FOR IMPUTE2

There are multiple results from imputation that should be eval-
uated before proceeding with association analyses for imputed
SNPs. For instance, it is critical to consider the uncertainty of
the imputed genotypes Figure 4A shows the distributions of the
information (reported as “info score”) metrics for all variants
in the adult imputed datasets and Figure 4B demonstrates the
relationship between MAF and imputation quality for all vari-
ants in the pediatric imputed datasets by showing average “info”
scores plotted in all variants grouped by MAF (bin sizes of 0.1).
Although the total number of imputed variants for the adult and
pediatric datasets is very similar, it was notable that there were
comparatively more markers with low info score in the pediatric
dataset. One potential reason for this discrepancy could be due to
a much large number of genotyping platforms in the imputations

FIGURE 5 | Best practices for analyzing imputed data.
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of the pediatric datasets. While the average “info” scores with
MAF < 0.05 fall lower than an info score of 0.8 as demonstrated
in Figures 4C,D for adults and pediatric data respectively, within
higher MAF bins, the average “info” scores increase to approx-
imately 0.9. This metric demonstrates that variants imputed to
have low MAF in the study samples are likely to have low MAF in
the reference panel. We attempted to not include any monomor-
phic SNPs in the imputed dataset, our inclusion criteria was to
include any imputed SNP that had at least one copy of minor
allele. So the reason that we see a lot of SNPs with low “info”
score is mostly due to the chosen imputation target and not any
procedural error. Although there is no consensus in filtering the
imputed datasets based on uncertainty of imputation, we used a
variant level filter (info score >0.7) (Lin et al., 2010; Southam
et al., 2011) for the downstream analyses. This is a conservative
threshold, whereby we are balancing the quantity of lost data with
data quality. Other studies may choose to be more liberal (info
score >0.3) or even more conservative (info score >0.9).

QUALITY CONTROL PROCEDURE

We performed downstream analysis of the complete, imputed
merged dataset to take into account the uncertainty of the
imputed genotypes. We filtered data based on info score of 0.7
after looking at the distribution of markers at all possible info

Table 6 | SNP summary for samples from adults participants of the

eMERGE network.

Chromosome Imputation output Filter at info score 0.7

1 2992265 857604

2 3292685 934303

3 2751021 807422

4 2725555 804138

5 2519463 725837

6 2414293 760529

7 2205621 633948

8 2174126 625724

9 1645320 479658

10 1874401 572475

11 1885432 553047

12 1818431 531244

13 1367340 414471

14 1251729 365975

15 1125278 312685

16 1204600 325272

17 1039660 276340

18 1083944 312821

19 810927 224571

20 851007 242258

21 515507 149262

22 491574 141941

Totals 38040179 11051525

“Imputation output” lists number of SNPs as result of imputation and “Filter at

info score 0.7” lists number of SNPs passing info score threshold.

scores. Because of the potential for genotyping errors in SNPs and
samples with low call rates, it is essential to investigate the distri-
bution of call rates by marker and by sample and the overlap of
the two. Table 3 shows, for each marker call rate threshold, the
number of SNPs dropped and the proportion of the total SNP
count. Table 4 shows the sample call rate after filtering the mark-
ers with <99% call rate. At this point, we have not excluded any
samples from the merged data based on sample call rates but it is
very important to keep that in mind for any further analyses with
these data.

We have also investigated the distribution of SNPs at differ-
ent MAF thresholds. We expected that imputing using the 1000
Genomes reference panel will result in a high proportion of low
frequency variants. Table 5 shows the number of SNPs below and
above each threshold. This summary table can be used for decid-
ing what MAF threshold to use for association analyses. Based on
power calculations, one can determine at what MAF the dataset
is sufficiently powered. Subsequently, the MAF threshold can be
used as a filter for analysis. We have also illustrated MAF as a filter
after using a SNP call rate filter of 99%. As expected, the greater
majority of the dataset consists of variants with MAF < 5%.

In Figure 5 we summarize all of the “Best Practices” steps and
measures for imputed data prior to using the data in any further
analyses. We provided a final quality control (QC) dataset filtered

Table 7 | SNP summary for samples from pediatric participants of the

eMERGE network.

Chromosome Imputation output Filter at info score 0.7

1 2992265 1323149

2 3292686 1363591

3 2751022 1234814

4 2725555 1264290

5 2519464 1158692

6 2414294 1157434

7 2205622 990787

8 2174126 994888

9 1645320 740663

10 1874401 869202

11 1885432 851466

12 1818431 826132

13 1367340 640670

14 1251729 562490

15 1125278 491576

16 1204601 496824

17 1039661 411860

18 1083944 490988

19 810927 311239

20 851007 369387

21 515507 225258

22 491574 200770

Totals 38040186 16976170

“Imputation output” lists number of SNPs as result of imputation and “Filter at

info score 0.7” lists number of SNPs passing info score threshold.
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FIGURE 6 | Summary on principal component (PC) analysis for adult DNA samples. (A) PC1 and PC2 colored by self-reported race (AA, African American;

EA, European American; HA, Hispanic, Others and -9, missing), (B) PC1 and PC2 colored by site, (C) Variance explained by first 10 PCs.

at info score = 0.7 and marker call rate = 99%. We did not apply
any sample call rate, and MAF filter as that depends on the type of
analysis being performed. Tables 6, 7 show total counts of SNPs at
each threshold we used during quality control for both the adults
and pediatric datasets.

POPULATION STRUCTURE

For accurate imputations, it is important that the samples from
imputed data cluster closely to the reference panel. We performed
Principal Component Analysis (PCA) as it has been shown to
reliably detect differences between populations (Novembre and
Stephens, 2008). Population stratification can inflate identity-by-
descent (IBD) estimates; thus, we used the KING program which
is designed to circumvent the inflation of IBD estimates due to
stratification (Manichaikul et al., 2010).We used a kinship coef-
ficient threshold of 0.125 (second degree relatives) to identify
clusters of close relatives, and we retained only one subject from
each relative cluster. We used R package SNPRelate (Zheng et al.,
2012) to carry out principal components analysis (PCA), which is
a form of projection pursuit capture, because it is computation-
ally efficient, and can be parallelized easily. Principal components
(PCs) were constructed to represent axes of genetic variation
across all samples in unrelated adult and pediatric datasets that
were pruned using the “indep-pairwise” option in PLINK (Purcell
et al., 2007) such that all SNPs within a given window size of 100
had pairwise r2

< 0.1 (for adults) and 0.4 (for pediatric) and also

only included very common autosomal SNPs (MAF > 10%). We
pruned data to reduce the number of markers to approximately
100,000 as previous studies have shown that 100,000 markers
not in LD can detect ancestral information correctly (Price et al.,
2006). These 100,000 markers included both imputed and geno-
typed SNPs, as the number of SNPs of overlap across the different
genotyping platforms was too small to use only genotyped vari-
ants. It has been shown that PCA is most effective when the
dataset includes unrelated individuals, low LD, and common vari-
ants (Zou et al., 2010; Zhang et al., 2013). We calculated up to 32
PCs, but show only the results for up to the first 10 PCs in scree
plots represented in Figures 6C, 7C. It can be noted from these
figures that only the first two PCs explain all of the appreciable
variance and the other PCs explain very little of the variance.

For the merged imputed adult data, we removed all related
individuals (IBD estimation done using KING (Manichaikul
et al., 2010) kinship >0.125), performed QC, LD pruned with
r2

< 0.1 and MAF > 10% to include only common variants.
Thus, PCA included 37,972 samples and 1,948,089 markers.
Figure 6 presents plots for PCs 1 and 2 colored by race and
eMERGE site. Population structure is very well evident from these
PC plots and it shows the ancestral distributions of the data from
all of the eMERGE sites.

For the pediatric data, we removed all related individuals
(IBD estimation done using KING18 kinship >0.125), performed
QC, LD pruned with r2

< 0.4 and MAF > 10% to include
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FIGURE 7 | Summary on principal component (PC) analysis for pediatric DNA samples. (A) PC1 and PC2 colored by self-reported race (AA, African

American; EA, European American; HA, Hispanic and Others), (B) PC1 and PC2 colored by site, (C) Variance explained by first 10 PCs.

only common variants. Thus, PCA included 11,798 samples and
162,576 markers.

Figures 6, 7 represent plots for the first two PCs colored
by self-reported race or ethnicity and also represent variance
explained by the first 10 PCs for both adult and pediatric
datasets. Detailed PCA results on the merged eMERGE dataset
are described in another publication by the eMERGE Network
investigators (Crosslin et al., 2014).

DISCUSSION

We have performed genotype imputation to facilitate the merging
of data from all eMERGE datasets. We imputed using the cos-
mopolitan 1000 Genomes Project reference panel and IMPUTE2
software (after a comparison with BEAGLE software). We also
performed initial QC steps after merging the datasets to assess
the quality and accuracy of the imputed data. Imputation results
appear to be very accurate, based on the high concordance rates
in the masked analysis. In addition, there was a clear distinction
between the different ancestral groups, as expected, based on the
PC analysis. It is very difficult to merge all of the genotype data
from different platforms together prior to imputation, as a strat-
egy to perform imputation, due to lack of sufficient overlapping
markers between different genotyping platforms. Therefore, our

pipeline performs imputations separately on each platform and
origin of the genotype data, and then we merged the data together.
We obtained very good results using this strategy and there-
fore consider it is an appropriate approach. It allows for the
maximization of the number of genotyped markers available as
study SNPs to use as the backbone to initiate imputation. It
is suggested to remove all palindromic SNPs from the dataset
before running any imputations to future pipelines. We per-
formed a test on two of our datasets, running the imputation both
before and after removing palindromic SNPs. Concordance check
between the two runs of imputations revealed that the results were
99.8% concordant. More exploration of this issue is important for
future work.

This manuscript is meant to serve as an applied, educa-
tional resource and to provide guidance for imputation. There
are a number of other reviews and comparisons of different
imputation packages available (Pei et al., 2008; Ellinghaus et al.,
2009; Nothnagel et al., 2009; Hancock et al., 2012; Comparing
BEAGLE, IMPUTE2, and Minimac Imputation Methods for
Accuracy, Computation Time, and Memory Usage | Our 2
SNPs. . . ®). The imputed genotypes, phenotype information,
accompanying marker annotation and quality metrics files for
these eMERGE data will be available through the authorized
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access portion of the dbGaP (http://www.ncbi.nlm.nih.gov/
gap). Numerous references are accessible for users wanting
additional information on imputation methods, as well as
recommendations for downstream analyses (Marchini et al.,
2007; Servin and Stephens, 2007; Browning, 2008; Guan
and Stephens, 2008; Li et al., 2009; Aulchenko et al., 2010;
International HapMap 3 Consortium et al., 2010; Hancock et al.,
2012; Nelson et al., 2012).

ACKNOWLEDGMENTS

The eMERGE Network is funded by NHGRI, with addi-
tional funding from NIGMS through the following grants:
U01HG004438 to Johns Hopkins University; U01HG004424 to
The Broad Institute; U01HG004438 to CIDR; U01HG004610
and U01HG006375 to Group Health Cooperative; U01HG004608
to Marshfield Clinic; U01HG006389 to Essentia Institute of
Rural Health; U01HG04599 and U01HG006379 to Mayo Clinic;
U01HG004609 and U01HG006388 to Northwestern University;
U01HG04603 and U01HG006378 to Vanderbilt University;
U01HG006385 to the Coordinating Center; U01HG006382
to Geisinger Clinic; U01HG006380 to Mount Sinai School
of Medicine; U01HG006830 to The Children’s Hospital of
Philadelphia; and U01HG006828 to Cincinnati Children’s
Hospital and Boston Children’s Hospital. We would like to
give special thanks to Sarah Nelson and her colleagues at the
University of Washington and the GENEVA consortium for guid-
ance and input as we started our imputation process. We would
like to thank the members of the eMERGE Genomics Workgroup
who participated in weekly phone calls discussing this project and
results. We would also like to thank the staffs of the Research
Computing Center at the Pennsylvania State University, who were
extremely helpful troubleshooting and enabling massive compute
cluster usage to complete these imputations.

REFERENCES
(2010). E pluribus unum. Nat. Methods 7, 331–331. doi: 10.1038/nmth0510-331

Aulchenko, Y. S., Struchalin, M. V., and van Duijn, C. M. (2010). ProbABEL pack-

age for genome-wide association analysis of imputed data. BMC Bioinformatics

11:134. doi: 10.1186/1471-2105-11-134

Browning, B. L., and Browning, S. R. (2009). A unified approach to genotype impu-

tation and haplotype-phase inference for large data sets of trios and unrelated

individuals. Am. J. Hum. Genet. 84, 210–223. doi: 10.1016/j.ajhg.2009.01.005

Browning, S. R. (2008). Missing data imputation and haplotype phase infer-

ence for genome-wide association studies. Hum. Genet. 124, 439–450. doi:

10.1007/s00439-008-0568-7

Crosslin, D. R., Tromp, G., Burt, A., Kim, D. S., Verma, S. S., Lucas, A. M., et al.

(2014). Controlling for population structure and genotyping platform bias in

the eMERGE multi-institutional biobank linked to Electronic Health Records.

Front. Genet. 5:352. doi: 10.3389/fgene.2014.00352

Delaneau, O., Zagury, J.-F., and Marchini, J. (2013). Improved whole-chromosome

phasing for disease and population genetic studies. Nat. Methods 10, 5–6. doi:

10.1038/nmeth.2307

Ellinghaus, D., Schreiber, S., Franke, A., and Nothnagel, M. (2009). Current

software for genotype imputation. Hum. Genomics 3, 371–380.

1000 Genomes Project Consortium, Abecasis, G. R., Auton, A., Brooks, L. D.,

DePristo, M. A., Durbin, R. M., et al. (2012). An integrated map of genetic varia-

tion from 1,092 human genomes. Nature 491, 56–65. doi: 10.1038/nature11632

Gottesman, O., Kuivaniemi, H., Tromp, G., Faucett, W. A., Li, R., Manolio, T. A.,

et al. (2013). The electronic medical records and genomics (eMERGE) net-

work: past, present, and future. Genet. Med. 15, 761–771. doi: 10.1038/gim.

2013.72

Guan, Y., and Stephens, M. (2008). Practical issues in imputation-based association

mapping. PLoS Genet. 4:e1000279. doi: 10.1371/journal.pgen.1000279

Hancock, D. B., Levy, J. L., Gaddis, N. C., Bierut, L. J., Saccone, N. L., Page, G.

P., et al. (2012). Assessment of genotype imputation performance using 1000

Genomes in African American studies. PLoS ONE 7:e50610. doi: 10.1371/jour-

nal.pone.0050610

Howie, B., Fuchsberger, C., Stephens, M., Marchini, J., and Abecasis, G. R. (2012).

Fast and accurate genotype imputation in genome-wide association studies

through pre-phasing. Nat. Genet. 44, 955–959. doi: 10.1038/ng.2354

Howie, B., Marchini, J., and Stephens, M. (2011). Genotype imputation with

thousands of genomes. G3 (Bethesda) 1, 457–470. doi: 10.1534/g3.111.

001198

Howie, B. N., Donnelly, P., and Marchini, J. (2009). A flexible and accurate geno-

type imputation method for the next generation of genome-wide association

studies. PLoS Genet. 5:e1000529. doi: 10.1371/journal.pgen.1000529

International HapMap 3 Consortium, Altshuler, D. M., Gibbs, R. A., Peltonen,

L., Altshuler, D. M., Gibbs, R. A., et al. (2010). Integrating common and

rare genetic variation in diverse human populations. Nature 467, 52–58. doi:

10.1038/nature09298

Jostins, L., Morley, K. I., and Barrett, J. C. (2011). Imputation of low-frequency

variants using the HapMap3 benefits from large, diverse reference sets. Eur. J.

Hum. Genet. 19, 662–666. doi: 10.1038/ejhg.2011.10

Karolchik, D., Hinrichs, A. S., and Kent, W. J. (2011). The UCSC genome browser.

Curr. Protoc. Hum. Genet. Chapter, Unit18.6. doi: 10.1002/0471142905.hg18

06s71

Li, Y., Willer, C. J., Ding, J., Scheet, P., and Abecasis, G. R. (2010). MaCH: using

sequence and genotype data to estimate haplotypes and unobserved genotypes.

Genet. Epidemiol. 34, 816–834. doi: 10.1002/gepi.20533

Li, Y., Willer, C., Sanna, S., and Abecasis, G. (2009). Genotype imputation. Annu.

Rev. Genomics Hum. Genet. 10, 387–406. doi: 10.1146/annurev.genom.9.081307.

164242

Lin, P., Hartz, S. M., Zhang, Z., Saccone, S. F., Wang, J., Tischfield, J. A., et al.

(2010). A new statistic to evaluate imputation reliability. PLoS ONE 5:e9697.

doi: 10.1371/journal.pone.0009697

Manichaikul, A., Mychaleckyj, J. C., Rich, S. S., Daly, K., Sale, M., and Chen, W.-M.

(2010). Robust relationship inference in genome-wide association studies.

Bioinformatics 26, 2867–2873. doi: 10.1093/bioinformatics/btq559

Marchini, J., Howie, B., Myers, S., McVean, G., and Donnelly, P. (2007). A new

multipoint method for genome-wide association studies by imputation of

genotypes. Nat. Genet. 39, 906–913. doi: 10.1038/ng2088

McCarty, C. A., Chisholm, R. L., Chute, C. G., Kullo, I. J., Jarvik, G. P., Larson, E.

B., et al. (2011). The eMERGE network: a consortium of biorepositories linked

to electronic medical records data for conducting genomic studies. BMC Med.

Genomics 4:13. doi: 10.1186/1755-8794-4-13

Nelson, S. C., Doheny, K. F., Laurie, C. C., and Mirel, D. B. (2012). Is “forward” the

same as “plus”? and other adventures in SNP allele nomenclature. Trends Genet.

28, 361–363. doi: 10.1016/j.tig.2012.05.002

Nelson, S. C., Doheny, K. F., Pugh, E. W., Romm, J. M., Ling, H., Laurie, C.

A., et al. (2013). Imputation-based genomic coverage assessments of current

human genotyping arrays. G3 (Bethesda) 3, 1795–1807. doi: 10.1534/g3.113.

007161

Nothnagel, M., Ellinghaus, D., Schreiber, S., Krawczak, M., and Franke, A. (2009).

A comprehensive evaluation of SNP genotype imputation. Hum. Genet. 125,

163–171. doi: 10.1007/s00439-008-0606-5

Novembre, J., and Stephens, M. (2008). Interpreting principal component anal-

yses of spatial population genetic variation. Nat. Genet. 40, 646–649. doi:

10.1038/ng.139

Overby, C. L., Kohane, I., Kannry, J. L., Williams, M. S., Starren, J., Bottinger, E.,

et al. (2013). Opportunities for genomic clinical decision support interventions.

Genet. Med. 15, 817–823. doi: 10.1038/gim.2013.128

Pei, Y.-F., Li, J., Zhang, L., Papasian, C. J., and Deng, H.-W. (2008). Analyses and

comparison of accuracy of different genotype imputation methods. PLoS ONE

3:e3551. doi: 10.1371/journal.pone.0003551

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A.,

and Reich, D. (2006). Principal components analysis corrects for stratification

in genome-wide association studies. Nat. Genet. 38, 904–909. doi: 10.1038/

ng1847

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender,

D., et al. (2007). PLINK: a tool set for whole-genome association and

Frontiers in Genetics | Applied Genetic Epidemiology December 2014 | Volume 5 | Article 370 | 14

http://www.ncbi.nlm.nih.gov/gap
http://www.ncbi.nlm.nih.gov/gap
http://www.frontiersin.org/Applied_Genetic_Epidemiology
http://www.frontiersin.org/Applied_Genetic_Epidemiology
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Verma et al. Imputation pipeline for eMERGE network

population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575. doi:

10.1086/519795

Servin, B., and Stephens, M. (2007). Imputation-based analysis of association

studies: candidate regions and quantitative traits. PLoS Genet. 3:e114. doi:

10.1371/journal.pgen.0030114

Southam, L., Panoutsopoulou, K., Rayner, N. W., Chapman, K., Durrant, C.,

Ferreira, T., et al. (2011). The effect of genome-wide association scan quality

control on imputation outcome for common variants. Eur. J. Hum. Genet. 19,

610–614. doi: 10.1038/ejhg.2010.242

Verma, S., Peissig, P., Cross, D., Waudby, C., Brilliant, M. H., McCarty, C. A.,

et al. (2014). Benefits of Accurate Imputations in GWAS. LNCS 8602. Granada,

877–889.

Voight, B. F., Kang, H. M., Ding, J., Palmer, C. D., Sidore, C., Chines, P. S., et al.

(2012). The metabochip, a custom genotyping array for genetic studies of

metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 8:e1002793.

doi: 10.1371/journal.pgen.1002793

Zhang, Y., Guan, W., and Pan, W. (2013). Adjustment for population stratifica-

tion via principal components in association analysis of rare variants. Genet.

Epidemiol. 37, 99–109. doi: 10.1002/gepi.21691

Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., and Weir, B. S. (2012). A

high-performance computing toolset for relatedness and principal component

analysis of SNP data. Bioinformatics 28, 3326–3328. doi: 10.1093/bioinformat-

ics/bts606

Zou, F., Lee, S., Knowles, M. R., and Wright, F. A. (2010). Quantification of popula-

tion structure using correlated SNPs by shrinkage principal components. Hum.

Hered. 70, 9–22. doi: 10.1159/000288706

Zuvich, R. L., Armstrong, L. L., Bielinski, S. J., Bradford, Y., Carlson, C. S.,

Crawford, D. C., et al. (2011). Pitfalls of merging GWAS data: lessons learned

in the eMERGE network and quality control procedures to maintain high data

quality. Genet. Epidemiol. 35, 887–898. doi: 10.1002/gepi.20639

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Received: 02 April 2014; accepted: 03 October 2014; published online: 11 December

2014.

Citation: Verma SS, de Andrade M, Tromp G, Kuivaniemi H, Pugh E, Namjou-Khales

B, Mukherjee S, Jarvik GP, Kottyan LC, Burt A, Bradford Y, Armstrong GD, Derr

K, Crawford DC, Haines JL, Li R, Crosslin D and Ritchie MD (2014) Imputation

and quality control steps for combining multiple genome-wide datasets. Front. Genet.

5:370. doi: 10.3389/fgene.2014.00370

This article was submitted to Applied Genetic Epidemiology, a section of the journal

Frontiers in Genetics.

Copyright © 2014 Verma, de Andrade, Tromp, Kuivaniemi, Pugh, Namjou-Khales,

Mukherjee, Jarvik, Kottyan, Burt, Bradford, Armstrong, Derr, Crawford, Haines, Li,

Crosslin and Ritchie. This is an open-access article distributed under the terms of the

Creative Commons Attribution License (CC BY). The use, distribution or reproduction

in other forums is permitted, provided the original author(s) or licensor are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

www.frontiersin.org December 2014 | Volume 5 | Article 370 | 15

http://dx.doi.org/10.3389/fgene.2014.00370
http://dx.doi.org/10.3389/fgene.2014.00370
http://dx.doi.org/10.3389/fgene.2014.00370
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive

	Imputation and quality control steps for combining multiple genome-wide datasets
	Introduction
	Materials and Methods
	Study Data
	Pre-Imputation Data Processing
	Converting Reference Panel and Study Data to the same Genome Build
	Checking Strand
	Phasing
	Imputation Using Beagle
	Imputation Using Impute2

	Results
	Computation Time and Memory Usage
	Comparision of Beagle and Impute2
	Masked Analysis
	Orthogonal Genotyping Analysis
	Merging of Imputed Datasets
	Imputed Data Statistics for Impute2
	Quality Control Procedure
	Population Structure

	Discussion
	Acknowledgments
	References


