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Abstract 

Background: Use of whole-genome sequence data (WGS) is expected to improve identification of quantitative trait 

loci (QTL). However, this requires imputation to WGS, often with a limited number of sequenced animals for the target 

population. The objective of this study was to investigate imputation to WGS in two pig lines using a multi-line refer-

ence population and, subsequently, to investigate the effect of using these imputed WGS (iWGS) for GWAS.

Methods: Phenotypes and genotypes were available on 12,184 Large White pigs (LW-line) and 4943 Dutch Landrace 

pigs (DL-line). Imputed 660 K and 80 K genotypes for the LW-line and DL-line, respectively, were imputed to iWGS 

using Beagle v.4.1. Since only 32 LW-line and 12 DL-line boars were sequenced, 142 animals from eight commercial 

lines were added. GWAS were performed for each line using the 80 K and 660 K SNPs, the genotype scores of iWGS 

SNPs that had an imputation accuracy (Beagle  R2) higher than 0.6, and the dosage scores of all iWGS SNPs.

Results: For the DL-line (LW-line), imputation of 80 K genotypes to iWGS resulted in an average Beagle  R2 of 0.39 

(0.49). After quality control, 2.5 × 106 (3.5 × 106) SNPs had a Beagle  R2 higher than 0.6, resulting in an average Beagle 

 R2 of 0.83 (0.93). Compared to the 80 K and 660 K genotypes, using iWGS led to the identification of 48.9 and 64.4% 

more QTL regions, for the DL-line and LW-line, respectively, and the most significant SNPs in the QTL regions explained 

a higher proportion of phenotypic variance. Using dosage instead of genotype scores improved the identification of 

QTL, because the model accounted for uncertainty of imputation, and all SNPs were used in the analysis.

Conclusions: Imputation to WGS using the multi-line reference population resulted in relatively poor imputation, 

especially when imputing from 80 K (DL-line). In spite of the poor imputation accuracies, using iWGS instead of a 

lower density SNP chip increased the number of detected QTL and the estimated proportion of phenotypic variance 

explained by these QTL, especially when dosage scores were used instead of genotype scores. Thus, iWGS, even with 

poor imputation accuracy, can be used to identify possible interesting regions for fine mapping.
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(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Use of whole-genome sequence (WGS) data is expected 

to improve the detection of quantitative trait loci (QTL) 

because such data are expected to contain most of the 

causal single nucleotide polymorphisms (SNPs), as was 

shown in dairy cattle populations by using WGS data 

of 234 bulls [1]. Improved QTL detection is even more 

important in pig breeding populations, since the QTL 

can be used to improve the accuracy of prediction in 

across- or multi-population scenarios [2], which is espe-

cially relevant for pig breeding programs where cross-

breeding is practised.

To benefit from WGS data, a large population of ani-

mals with such data is needed. In spite of the decreas-

ing costs of WGS [3], it is still relatively expensive to 

sequence a large number of animals. A less expensive 

approach to increasing the number of animals with WGS 
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data is to impute from lower density SNP chips to WGS. 

With imputation, a smaller group of sequenced animals is 

required and the majority of the population can be geno-

typed with a lower density and cheaper SNP panel. �en, 

low-density SNP genotypes are imputed to WGS using 

the sequenced animals as reference population. In dairy 

cattle, several studies have shown that imputation to 

WGS is reliable even with a limited number of sequenced 

animals in the reference population, e.g. [4–7]. For exam-

ple, for imputation from 777 K SNP genotypes to WGS, 

van Binsbergen et al. [4] obtained an imputation accuracy 

evaluated by cross-validation within the reference popu-

lation of 0.83 with 90 sequenced Holstein bulls. Bouw-

man and Veerkamp [6] obtained an imputation accuracy, 

based on the correlation between true and imputed WGS 

(iWGS) of 0.83 for imputation using a multi-breed refer-

ence population consisting of 20 Holstein and 60 animals 

of three different breeds, and demonstrated that other 

breeds can improve imputation accuracy when the num-

ber of sequenced individuals from the target breeds is 

small. For most breeding companies, only a small number 

of animals is sequenced per line because, often, sequenc-

ing expenses must be divided across lines. In those cases, 

it might be beneficial to combine the WGS data across 

lines into one reference population for imputation. In 

addition to the size and composition of the reference 

population, accuracy of imputation depends on the size 

of the genotyping array, the extent of linkage disequilib-

rium (LD) in the reference and target population and the 

minor allele frequency (MAF) of the SNPs on the geno-

typing array [4–9]. As a result, combining populations for 

imputation may not provide sufficient imputation accu-

racy in all populations.

Inaccurate imputation can influence the results of fol-

low-up analyses such as genome-wide association stud-

ies (GWAS), especially when the accuracy of imputation 

is ignored in those analyses. Two approaches to account 

for imputation errors are to filter SNPs based on imputa-

tion accuracy prior to analysis or to use dosage scores in 

the analyses. Using dosage scores means that all imputed 

SNPs are included in the analysis, although the power 

to detect associations with poorly imputed SNPs will be 

low compared to using accurately imputed SNPs. So far, 

there is little information on the accuracy of imputation 

to iWGS using data of a commercial pig breeding popu-

lation and on the effect of using iWGS genotype or dos-

age scores in a GWAS. �erefore, the objectives of this 

study were (1) to investigate the accuracy of imputation 

to WGS in two pig lines using a multi-line reference pop-

ulation and a limited number of sequenced animals avail-

able for the target lines; and (2) to investigate the effect of 

using imputed WGS genotypes versus dosage scores in a 

GWAS on QTL detection.

Methods
Data

�e dataset used in this study was provided by Topigs 

Norsvin. Phenotypes for the number of teats recorded 

after birth on 12,184 Large White (LW-line) and 4943 

Dutch Landrace (DL-line) pigs were available. We inves-

tigated this trait because records were available for both 

sexes and its heritability is relatively high, i.e. 0.4 [10]. �e 

phenotypic records were pre-corrected for fixed effects, 

i.e. herd-year-of-birth, sex, and the random effect of lit-

ter, which were estimated with a pedigree-based linear 

model by Lopes et  al. [11]. After correction the average 

numbers of teats (± SD) were 15.68 (± 0.98) and 15.71 

(± 1.04) for the LW-line and DL-line, respectively.

Genotypes

For both the LW-line and the DL-line, Geneseek-Neogen 

GPPHD 80  K SNP genotypes were available for all ani-

mals with phenotypic records. In addition, genotypes 

from the Affymetrix Axiom porcine 660  K SNP chip 

were available for the 120 sires with the largest number 

of offspring in the set of genotyped animals of the LW-

line. Using the 120 sires as reference population, within-

line imputation from 80 K to 660 K SNP genotypes was 

performed for all phenotyped animals from the LW-

line using FImpute v2.2 software [12] with the pedigree 

option. �is resulted in an average imputation accuracy 

of ~ 0.99. Imputation from 80 K to 660 K SNP genotypes 

was not possible for the DL-line because none of the DL-

line animals were genotyped with the 660 K SNP chip. To 

avoid confounding of results, imputation of the DL-line 

to 660  K using the LW-line 660  K reference population 

was not considered but for the subsequent GWAS, 660 K 

genotypes for the DL-line were generated from the iWGS 

dataset.

Quality control of the within-line genotypes (80 K and 

660 K) consisted of excluding (1) insertions and deletions, 

(2) SNPs with a MAF lower than 0.01, (3) SNPs with a 

frequency lower than 0.1 for either one of the three geno-

types, and (4) SNPs with missing map information (based 

on Sscrofa10.2).

Reference population for whole-genome sequence data

Whole-genome sequence data was available for 168 of 

the most influential boars with many offspring for 10 

commercial Dutch and Norwegian (Topigs Norsvin) 

lines, including 36 individuals originating from the Lan-

drace breed, 39 from the Large White breed, 60 from 

the Duroc breed, 16 from a synthetic breed, 13 from the 

Pietrain breed, one Large White Dutch Landrace cross-

bred animal, and three animals of unknown origin. �e 

reference population included 12 DL-line animals and 

32 LW animals, corresponding to the target populations. 
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One DL-line animal and nine LW-line animals had 

both whole-genome sequence data and high-density 

genotypes.

Variant calling

Raw sequence data were mapped to the pig genome build 

Sscrofa10.2 (Ensembl72) [13] using the Burrows-Wheeler 

Aligner (BWA)-mem algorithm [14]. �e average sequence 

coverage across the complete reference population was 

11.6 fold. SNPs, short insertions and deletions were called 

with the GATK unified genotype-caller [15] for the com-

plete reference population using default settings, but, in 

addition, the standard minimum confidence threshold 

was set to 30.0, the standard emittance confidence thresh-

old was set to 20.0, and the target coverage threshold for 

down-sampling to coverage was set to 200. Subsequently, 

all detected variants were filtered using VCFtools [16], 

retaining variants with read depth values (per individual) 

ranging from 4 to 35 and variants with an overall Phred 

Quality score higher than 20, excluding variants with more 

than 20% missing data, and removing insertions and dele-

tions. In addition, the variants were thinned such that the 

distance between variant sites was not shorter than 3 bp. 

�e final step included phasing the reference population 

and imputing missing genotypes in the sequence data 

using Beagle 4.1 with 10 phasing iterations [17].

Imputation to iWGS

Imputation of the 80 K genotypes of the DL-line and the 

660  K genotypes of the LW-line to the iWGS was per-

formed with Beagle 4.1 [17] using the multi-line reference 

population. �e default parameter settings for Beagle 

were used, except for setting the effective population size 

to 300 instead of the default of 1 million [18] because it 

is much smaller in livestock than in humans [19, 20]. �e 

accuracy of imputation at the SNP level was assessed by 

the Beagle  R2, which is the estimated squared correlation 

of the genotype score with the true genotype [21].

For further analyses, the same quality controls as for 

the 80 K and 660 K genotypes were applied to the iWGS 

data but one additional quality filter was applied to the 

iWGS scores to account for possible imputation errors by 

removing SNPs with a Beagle  R2 ≤ 0.6. �is threshold was 

chosen to maintain a balance between the average impu-

tation accuracy and the number of SNPs removed. �is 

filter was not applied to allele dosage scores, which were 

coded as any real value between 0 and 2, because dosage 

scores account for imputation uncertainty.

Genome-wide association study

A single SNP GWAS was performed with a mixed linear 

model using GCTA version 1.25.2 [22, 23]. �e GWAS 

with iWGS dosage scores was performed with an adapted 

version of GCTA (patches provided and described in 

Additional file 1). �e model was as follows:

where y is a vector of phenotypes, b is the fixed effect of 

the SNP tested for association, x is a vector containing 

the genotype scores or dosage scores, u is a vector of ran-

dom polygenetic effects, and e is a vector of residuals, 

which were assumed followed a normal distribution 

N
(

0, Iσ 2
e

)

 with σe
2 as error variance. �e vector u was 

assumed to follow a normal distribution N
(

0,Gσ
2
g

)

 , 

where G is the genomic relationship matrix and σg
2 is the 

genetic variance. To account for population structure and 

to prevent possible bias from fitting the same SNP twice, 

the genomic relationship matrix was computed based on 

all SNPs except those that were on the same chromosome 

as the tested SNP [24]. �e genomic relationship matri-

ces were computed as follows [23]:

where xij(xik) is the genotype coded 0, 1, or 2 for the ith 

SNP of the j(k)th individual, N is the total number of 

markers, and pi is the MAF of the ith SNP. �e percent-

age of phenotypic variance explained by the ith SNP was 

estimated as 2pi(1−pi)∗b̂
2

var(phenotype)
∗ 100 , where b̂ is the estimated 

allele substitution effect.

Signi�cance testing

To account for population structure, the GWAS p-values 

for each SNP density were adjusted by their correspond-

ing genomic inflation factors [25], which were calculated 

for each SNP density as the median of the observed Chi 

squared test statistics divided by the expected median 

of the corresponding Chi squared distribution assuming 

1 degree of freedom. �e Chi square test statistics were 

calculated from the p-values. Significance thresholds 

were then established by applying a Bonferroni correc-

tion by dividing the expected probability of a type-1 error 

(α = 0.05) by the number of independent tests. Following 

Duggal et al. [26] and Ricard et al. [27], we assumed that 

the number of independent tests was equal to the number 

of independent chromosome segments, which was calcu-

lated using the formula proposed by Goddard et al. [22]. 

For the LW-line, the number of independent chromo-

somal segments was 776.4, 648.1 and 782.3 for the 80 K 

and 660  K SNP panels and the iWGS genotype scores, 

respectively. For the DL-line, the number of independ-

ent chromosomal segments was 249.5, 277.4, and 280.6 

y = 1µ + xb + u + e,

Gik =
1

N

�

i

Gijk =
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for the 80 K and 660 K SNP panels and the iWGS geno-

type scores, respectively. Since, within a line, the num-

bers of independent chromosomal segments were similar 

between SNP densities, the same significance threshold 

was used for all densities within a line. As a result, a SNP 

was considered significant when it was associated with a 

− log10 (p value) higher than 4.2 and 3.7 for the LW-line 

and the DL-line, respectively.

To identify QTL regions, SNPs on each chromosome 

were ranked based on their p values and, starting with the 

SNP with the highest − log10 (p value), all significant SNPs 

within a 0.5-Mb region to the left and right of the SNP 

were assigned to that QTL region. �is procedure was 

repeated until all significant SNPs were assigned to a QTL 

region. We chose this definition for a QTL region and 

assumed that significant SNPs that are more than 0.5 Mb 

apart belong to independent QTL regions because the 

average LD of commercial pig lines decreases to less than 

0.3 when the SNPs are more than 0.5 Mb apart [28–30].

Results
Genotypes

An overview of the number of SNPs available for each 

SNP density and line is in Table  1. In total, 26.1 × 106 

SNPs were available in the sequenced reference animals, 

of which 17.6 × 106 and 21.7 × 106 segregated in the 

iWGS data for the DL-line and the LW-line, respectively. 

After quality control, 5.4 × 106 SNPs with iWGS dosage 

scores and 3.5 × 106 SNPs with genotype scores remained 

for the LW-line, and 5.8 × 106 SNPs with iWGS dosage 

scores and 2.5 × 106 SNPs with genotype scores remained 

for the DL-line. Not all SNPs on the SNP panels were 

present in the WGS data, i.e., for the LW-line, 91.2% of 

the 80 K SNPs and 88.8% of the 660 K SNPs were present 

in the WGS data, and for the DL-line 89.7% of the 80 K 

SNPs were present in the WGS data.

Imputation accuracy

Before filtering, the average Beagle  R2 (measure of impu-

tation accuracy) across the whole genome was relatively 

low. �e LW-line 660 K genotypes were imputed to iWGS 

with an average Beagle  R2 of 0.49; after removing SNPs 

with an Beagle  R2 lower than 0.6, the average  R2 was 

equal to 0.93. �e DL-line 80 K genotypes were imputed 

to iWGS with an average Beagle  R2 of 0.39 and of 0.84 

after removing SNPs with an imputation Beagle  R2 < 0.6. 

Before filtering and quality control, the Beagle  R2 varied 

between (Fig.  1) and within chromosomes (see Addi-

tional file 2: Figures S1 and S2). For the LW-line, the low-

est and highest Beagle  R2 were obtained for chromosome 

13 (0.45) and 10 (0.55), respectively. For the DL-line, the 

lowest and highest  R2 were obtained for chromosome 15 

(0.35) and 12 (0.43), respectively. Beagle  R2 also varied 

along each chromosome for both lines. Some regions had 

a low SNP coverage of SNPs, resulting in lower Beagle 

 R2 in neighbouring regions, as illustrated by the region 

around 105.5 Mb on chromosome 7 for the DL-line (see 

Additional file 2: Figures S1 and S2).

Imputation accuracy, i.e. Beagle  R2, increased with 

increasing MAF based on the iWGS genotype scores for 

each target line (Fig. 2). �e most pronounced increase in 

accuracy of imputation was observed for the 0.00–0.15 

MAF range. When MAF increased above 0.15, Beagle  R2 

reached a plateau at about 0.9 for the LW-line and 0.7 for the 

DL-line. After filtering on imputation accuracy, most SNPs 

with a very low MAF (< 0.01) were removed; the median 

MAF was 0.05 before filtering and 0.17 after filtering.

GWAS

An overview of the GWAS results based on the 80 K and 

660 K SNP genotypes (based on iWGS for the DL-line), 

and based on the iWGS genotype and dosage scores 

Table 1 Number of  SNPs used for  GWAS after  quality 

control for  di�erent SNP densities and  use of  imputed 

whole-genome sequence dosage or genotype scores

DL-line LW-line

80 K SNP genotypes 38,228 34,588

660 K SNP genotypes 311,888 491,169

iWGS_genotype score 2,495,861 3,476,936

iWGS_dosage score 5,841,784 5,453,881

Fig. 1 Accuracy of imputation to whole-genome sequence by 

chromosome for the LW-line (a) and the DL-line (b). Accuracy of 

imputation based on Beagle  R2 before (blue) and after (orange) 

filtering
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is in Figs.  3 and 4 for the DL-line and LW-line, respec-

tively. For both lines, the average number of QTL regions 

increased with increasing SNP density. For the LW-line, 

37 and 104 QTL regions were identified with the 80  K 

SNP genotypes and the iWGS genotype scores, respec-

tively. For the DL-line, the number of QTL regions 

detected increased from 48 with the 80 K SNP genotypes 

to 94 with iWGS genotype scores. Of the QTL detected 

based on iWGS genotype scores, 48.9 and 64.4% were not 

identified with the 80  K SNP genotypes for the DL-line 

and the LW-line, respectively. Even more QTL regions 

were identified when iWGS dosage scores instead of 

genotype scores were used (Table 2); for the LW-line and 

DL-line, the number of QTL regions detected increased 

to 132 and 217, respectively.

�e Manhattan plots for each SNP density and for both 

lines showed a clear peak on chromosome 7 (Figs. 3, 4), 

reaching a -log10(adjusted p-value) of at least 10 for each 

SNP density for both lines. �e peak was located between 

103 and 105 Mb but, within this window, the position of 

the most significant SNP differed between SNP densi-

ties. In addition, for the LW-line, strong significant QTL 

regions were identified on chromosomes 10 and 16 for all 

densities, and on chromosomes 2 and 12 for the higher 

SNP density. For the DL-line, strong significant QTL 

regions were identified on chromosome 12 and 16 for all 

densities, and on chromosomes 2 and 10 for the higher 

SNP density.

Along with the number of significant QTL regions 

increasing with increasing SNP density, the number of 

QTL regions that explained a higher percentage of the 

phenotypic variance increased (Figs.  5, 6). For exam-

ple, for the DL-line, the number of QTL that explained 

more than 1% of the phenotypic variance increased from 

22 to 123 for the iWGS dosage scores versus 80 K geno-

types. However, it should be noted that the percentage of 

variance explained, as computed here, is not cumulative 

because SNPs were tested one at a time and, therefore, 

the estimated effects of neighbouring SNPs were not 

independent due to LD.

Very high genomic inflation factors were observed, 

especially for the LW-line (> 3). For both lines, genomic 

inflation factors slightly increased as SNP density 

increased from 80  K to 660  K and then dropped to the 

same level as for the 80  K chip when iWGS genotype 

scores were used (Table  2). With iWGS dosage scores, 

genomic inflation factors decreased even more, i.e., from 

1.80 for 80  K SNP genotypes to 1.51 for iWGS dosage 

scores for the DL-line, and from 3.50 for 80  K to 3.18 

for iWGS dosage scores for the LW-line. �us, inflation 

of the test statistic was lowest when dosage scores were 

used.

Discussion
�e objective of this study was to investigate the accu-

racy of imputation to WGS in two pig lines when using 

a multi-line reference population and the numbers of 

sequenced animals that belonged to the target lines were 

small, and subsequently, to investigate the effect of using 

the resulting imputed WGS genotype or dosage scores 

in a GWAS. Imputation from 80  K or 660  K to WGS 

using a multi-line reference population resulted in only 

40  to  50% of the SNPs having a Beagle  R2 higher than 

0.60 in the iWGS data. Nonetheless, when accounting 

for imputation inaccuracy by filtering iWGS genotypes 

or by using dosage scores, the number of QTL detected 

and the estimated proportion of phenotypic variance 

explained by these were larger compared to when con-

ducting the GWAS using lower density SNP chip geno-

types, especially when using iWGS dosage scores. In the 

following section, the factors that influenced imputation 

accuracy are discussed, followed by a discussion on the 

effect of using iWGS genotype or dosage scores on the 

results of GWAS.

Factors a�ecting accuracy of imputation

�e average Beagle  R2 found in this study was 0.39 for 

the DL-line and 0.49 for the LW-line, which were rela-

tively low compared to other studies that have used 

Fig. 2 Accuracy of imputation to whole-genome sequence versus 

minor allele frequency. Imputation accuracy based on Beagle  R2 is 

plotted against minor allele frequency of the SNPs on chromosome 7 

for the LW-line (orange dots and solid line) and the DL-line (blue dots 

and dashed line). The SNPs were divided into bins of 500 SNPs and 

each dot represents one bin
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multi-line reference populations but with a larger size 

(more than 242 individuals) [5–7], but similar to the 

accuracy of 0.46 obtained with 90 sequenced Holstein 

bulls by van Binsbergen et  al. [4]. In our study, 168 

individuals were included in the reference population 

and not all haplotypes present in our target popula-

tions were represented in the reference population, 

which increased imputation errors [4, 7]. Van Binsber-

gen et al. [4] investigated imputation accuracy in three 

scenarios that differed in the number of animals in a 

single breed reference population. �ey showed that 

for imputation from 50  K to iWGS, the accuracy was 

0.37 with a reference population of 45 Holstein cows, 

and that it increased to 0.46 when the reference popula-

tion increased to 90 Holstein cows. A similar increase 

of imputation accuracy was observed when imputing 

from 777 K to iWGS. �ese imputation accuracies were 

comparable or even higher than those found in our 

study, although we used a larger reference population. 

However, our reference population consisted of animals 

from 10 lines and the two target populations were only 

represented by 12 DL-line animals and 32 LW-line ani-

mals. �e latter is probably the main reason for the dis-

appointing imputation accuracy obtained in this study.

Our hypothesis was that adding animals from other 

lines and using a multi-line reference population would 

improve imputation accuracy, which was demonstrated 

previously especially for SNPs with a low MAF in the tar-

get population but that are segregating in other breeds 

[4, 6, 31–33]. For example, Bouwman and Veerkamp [6] 

showed that adding 60 individuals from the Jersey, Brown 

Swiss and Nordic Red Dairy cattle breeds to a reference 

population of 20 Holstein individuals increased the impu-

tation accuracy of 777  K genotypes to iWGS for Hol-

steins from 0.71 to 0.83. In our study, the original small 

reference population was augmented by adding animals 

Fig. 3 Manhattan plot for number of teats in the LW-line using different SNP densities. Manhattan plot for number teats in the LW-line population 

using a 80 K chip, b 660 K chip, c iWGS genotype scores and d iWGS with dosage scores
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from other lines but imputation accuracy was still low for 

many chromosome regions. �e genetic distances of the 

target populations with the other lines in the reference 

population were maybe too large because of, for example, 

different breeding goals. Given the small number of ref-

erence animals from the target lines (12 DL-line and 32 

LW-line), accuracy of imputation would probably benefit 

more from additional sequenced DL-line and LW-line 

animals than from additional animals of other lines.

�e imputation accuracy was lower for the DL-line 

than for the LW-line. Apart from the fact that there 

were only 12 DL-line individuals in the reference popu-

lation compared to 32 LW-line individuals, the differ-

ence between starting density (i.e. 80  K genotypes for 

the DL-line and 660 K (imputed) genotypes for the LW-

line) and target density (i.e. WGS) also contributed to the 

lower accuracy for the DL-line versus the LW-line. With 

a lower density SNP panel, the LD between the SNPs 

Fig. 4 Manhattan plot for number of teats in the DL-line using different SNP densities. Manhattan plot for number teats of the DL-line population 

using a 80 K chip, b 660 K chip and c iWGS genotype scores, d iWGS dosage scores

Table 2 Descriptive statistics of  results of  the  GWAS 

for the two lines using di�erent SNP densities and imputed 

whole-genome sequence dosage or genotype scores

Threshold Number 
of QTL 
regions

Genomic 
in�ation 
factors

DL-line

 80 K SNP genotypes 3.7 48 1.80

 660 K SNP genotypes 3.7 48 2.05

 iWGS_genotype scores 3.7 94 1.81

 iWGS_dosage scores 3.7 217 1.51

LW-line

 80 K 4.2 37 3.50

 660 K 4.2 60 3.63

 iWGS_genotype 4.2 104 3.45

 iWGS_dosage 4.2 132 3.18
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on the genotyping panel and WGS is lower and there is 

less information to identify shared haplotypes precisely, 

which increases the uncertainty of imputed genotypes 

[4, 33]. Stepwise imputation from 80 to 660 K to iWGS, 

instead of from 80  K to iWGS directly, as suggested by 

van Binsbergen et al. [4], and as performed for the LW-

line, could improve imputation accuracy for the DL-line. 

However, this was not possible here because the num-

ber of available 660 K genotypes for the DL-line was not 

sufficient.

Other possible reasons for the difference in imputa-

tion accuracies between the two lines are differences in 

population structure or genetic architecture between the 

lines. For example, selection or different effective popula-

tion sizes could have resulted in different LD decays and 

numbers of independent chromosome segments between 

the lines [34]. Populations with a smaller number of inde-

pendent chromosome segments are expected to have a 

higher imputation accuracy because they are expected to 

have less LD decay across the genome and a greater num-

ber of shared haplotypes. In this study, the DL-line had a 

smaller number of independent chromosomal segments 

(280.6) than the LW-line (782.3), which was expected 

to increase imputation accuracy for the DL-Line. How-

ever, due to other factors such as the starting density 

and smaller representation in the reference population, 

we did not observe a higher imputation accuracy for the 

DL-Line.

In addition to the above-mentioned factors, imputation 

accuracy could also be affected by the unequal distribu-

tion of SNPs on the genotyping array along the genome 

and by mapping errors. �e latter complicate imputa-

tion because incorrect positions of SNPs lead to errors in 

haplotypes and LD structure in the region they are incor-

rectly mapped to. �us, an improved reference genome 

should increase imputation accuracy [1, 35].

Fig. 5 Distribution of the percentage of phenotypic variance explained by the QTL regions identified using different SNP densities for the LW-line. 

Distribution of the percentage of phenotypic variance explained by the QTL regions identified for the LW-line using a 80 K, b 660 K and c iWGS 

genotype scores, d iWGS dosage scores. The percentage of phenotypic variance explained was calculated as follows: 2pi(1−pi )∗b̂
2

var(phenotype)
∗ 100 , where the 

phenotypic variance was 1.08

Fig. 6 Distribution of the percentage of phenotypic variance explained by the QTL regions identified using different SNP densities for the DL-line. 

Distribution of the percentage of phenotypic variance explained by the QTL regions identified for the DL-line using a 80 K, b 660 K and c iWGS 

genotype scores, d iWGS dosage scores. The percentage of phenotypic variance explained was calculated as follows: 2pi(1−pi )∗b̂
2

var(phenotype)
∗ 100 , where the 

phenotypic variance was 0.96
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GWAS with iWGS genotype and dosage scores

Iso-Touru et  al. [36] and Daetwyler et  al. [1] identi-

fied new QTL when using iWGS genotype and dos-

age scores compared to SNP panel genotypes. Similarly, 

we also found new QTL regions when iWGS genotype 

scores were used. For the DL-line and the LW-line, 48.9 

and 64.4%, respectively, of the QTL detected with iWGS 

genotype scores were not identified with the 80  K SNP 

genotypes. �e QTL that were identified with all geno-

type densities were also reported in other GWAS stud-

ies that used DL-line or LW-line SNP genotypes [37–41]. 

In all these studies, the most significant QTL region 

was located on chromosome 7 and can be linked to the 

Vert[n]in gene. �is gene is important for vertebral devel-

opment and is positively correlated with number of teats 

in pigs [37, 39, 41]. Several new QTL regions identified 

with iWGS genotype and dosage scores include candi-

date genes for number of teats. For example, at approxi-

mately 125  Mb on chromosome 2, a QTL region was 

identified for the LW-line based on iWGS  that includes 

the casein kinase 1 gamma 3 gene, which plays a regula-

tory role in the Wnt signalling pathway, which is essential 

for early mammary gland formation [42–44]. For the DL-

line, we found a QTL region on chromosome 2 at about 

76.5 Mb that was close to another casein kinase 1 gamma 

gene (casein kinase 1 gamma 2).

Compared to the DL-line, more QTL regions were 

identified for the LW-line when 660 K genotypes and gen-

otype scores were used but fewer QTL regions were iden-

tified when 80  K genotypes or dosage scores were used 

for GWAS. �is was unexpected because the DL-line 

has a smaller population size and more DL-line iWGS 

genotype scores were removed because of low imputa-

tion accuracy. �erefore, the power to detect associations 

was expected to be lower in the DL-line than in the LW-

line [45]. �e larger number of QTL regions identified 

for the DL-line with 80  K genotypes and dosage scores 

might be because it has a smaller number of independent 

chromosomal segments (280.6) compared to the LW-line 

(782.3). A smaller number of independent chromosomal 

segments is expected to increase imputation accuracy 

because of less LD decay across the genome. As a result, 

power to detect associations might have been higher in 

the DL-line when using the 80  K genotypes and dosage 

scores. For 660  K and genotype scores, the power was 

lower in the DL-line compared to the LW-line because 

many SNPs with low imputation accuracy were removed. 

However, another possibility is that the smaller number 

of independent chromosomal segments for the DL-line, 

nay have resulted in the identification of a larger number 

of false positive QTL.

Of the 94 QTL regions found for the DL-line with 

iWGS genotype scores, 24% overlapped with QTL 

regions identified for the LW-line with iWGS genotype 

scores. Although power was limited in each line and 

we did not expect to detect each QTL in each line, dif-

ferences might also be caused by differences in genetic 

architecture between the lines, such as MAF and LD pat-

terns [29]. Comparing the MAF of the most significant 

SNPs that were identified in the DL-line with the same 

SNPs in the LW-line (see Additional file  2: Figure S3), 

clearly showed that the QTL regions had different MAF 

between the two lines. For example, a SNP on chromo-

some 8 located at 104.1  Mb had a MAF of 0.005 and 

0.36 in the DL-line and LW-line, respectively. Assuming 

that the SNP is associated with the phenotype in both 

lines, its low MAF reduces the power to detect it in the 

DL-line.

Although a large number of new QTL were found using 

iWGS genotype, whether they are indeed new associa-

tions or artefacts of the definition of the QTL region can 

be questioned. Here, a QTL region was defined as the 

0.5-Mb region to the left and right of the most significant 

SNP in a region because multiple studies have found that 

the average LD in commercial pig lines decreases below 

0.3 when the SNPs are more than 0.5 Mb apart [28–30]. 

�is definition may increase the number of QTL regions 

for iWGS because iWGS consists of many SNPs that are 

in very high LD. In addition, LD decay can vary across 

and within chromosomes [29] and, therefore, this defini-

tion can be too strict for some QTL regions and neigh-

bouring regions could be merged into one region or the 

other way around. To test this, we increased the size of 

the QTL region to 1 Mb to the right and left of the most 

significant SNP in that region. �is resulted in a reduc-

tion in the number of QTL detected with iWGS genotype 

scores from 104 to 64 for the DL-line and from 94 to 56 

for the LW-line. Although this is a significant reduction, 

it is still larger than the number of QTL regions based on 

the original QTL region definition found with 80 K and 

660 K.

In addition to the definition of the QTL region, the 

newly identified QTL regions could also be an arte-

fact due to the significance threshold that we applied in 

this study. Here, the significance threshold was set by 

applying a Bonferroni correction using the number of 

independent chromosomal segments instead of the com-

monly used total number of SNPs, which does not take 

LD between SNPs into account. �e number of inde-

pendent chromosomal segments has often been used for 

Bonferroni correction for GWAS in human [26, 46, 47], 

plant [48–50], and animal [27, 51] genetics. However, so 

far there has been little consensus about the most appro-

priate approach for testing significance for GWAS. �is 

should be a topic for future research.



Page 10 of 13van den Berg et al. Genet Sel Evol            (2019) 51:2 

Finally, even with low imputation accuracy, GWAS 

using iWGS can be beneficial in several cases. For exam-

ple, the QTL regions identified in this study could help to 

pre-select SNPs to improve the accuracy of genomic pre-

dictions, as shown by [52–54]. In addition, QTL regions 

identified could be used as indicators for fine-mapping 

of possible interesting regions, even if they are based on 

poorly imputed WGS data. For example, SNPs that are in 

the detected QTL regions could be added to high-density 

SNP chips, or animals with extreme phenotypes could be 

sequenced for the detected QTL regions.

Dosage scores

In this study, imputation accuracy by SNP, measured with 

Beagle  R2, was relatively low and, therefore, many SNPs 

were inaccurately imputed. When using iWGS geno-

type scores, quality control measures removed around 

50% of the SNPs from the analysis and we assumed that 

the remaining SNPs were called without imputation 

error. Using iWGS dosage scores in the GWAS model 

is another way of analysing poorly imputed data. Dos-

age scores are a posterior probability of having one of the 

three genotypes and, thus it accounts for the uncertainty 

of imputation to iWGS. In this study, we identified 56.7 

and 26.9% more QTL regions for the DL-line and the 

LW-line, respectively, when dosage instead of genotype 

scores were used. Moreover, the most significant SNPs 

in the QTL regions explained more of the phenotypic 

variance when using dosage scores. Genotype scores 

may not capture as much phenotypic variation because 

some information is lost due to inaccurate imputation. 

For example, for the DL-line, a clear peak was detected 

on chromosome 2 at approximately 56  Mb with dos-

age scores but not with genotype scores (Fig. 7). In this 

region, many SNPs did not pass the quality control for 

the iWGS genotype score scenario, because imputation 

accuracy for this region was low (Fig. 8). In addition, the 

Manhattan plot based on iWGS genotype scores (Fig. 7) 

showed a very odd pattern, with an 8-Mb region from 56 

to 64 Mb including SNPs that had the same significance 

level. �is region displays high LD (i.e., with an average 

(± SD) LD  r2 of 0.46 (± 0.07)), and thus the SNPs in this 

regions had approximately the same imputation accuracy 

and dosage scores, and thus, the same significance level.

Genomic in�ation factor

In this study, the genomic inflation factors were lower 

when using dosage scores compared to using 80  K and 

660  K genotypes and iWGS genotype scores. �e sce-

nario using dosage scores included SNPs with a low 

imputation accuracy, and hence SNPs with a low MAF. In 

the other scenarios, there is ascertainment bias, which is 

caused by the preference of SNPs on a chip that are more 

likely to be common [55]. In addition, SNPs selected for 

iWGS genotype scores have ascertainment bias, because 

accurately imputed SNPs in general have a higher MAF. 

By (indirectly) selecting SNPs with a high MAF, it is eas-

ier to detect effects for these SNPs, and their surround-

ing SNPs, and therefore it is likely that more significant 

SNPs are found than expected based on the theoretical 

distribution of the test statistic distribution under the 

null hypothesis. Linkage disequilibrium between the 

SNPs will also result in more significant SNPs within the 

region that surrounds a causal variant. Both the higher 

frequency of SNPs with high MAF and long-range LD 

increase genomic inflation factors [56–58] and the rate 

of false positives. Use of dosage scores leads to less infla-

tion of the test statistic because the ascertainment bias is 

partly removed, leading to less biased SNP effects com-

pared to the use of lower density SNP chips and iWGS 

genotype scores.

Conclusions
Use of a multi-line reference population resulted in rela-

tively poor imputation accuracy to iWGS, with 52.7% of 

the SNPs on the 660  K array in the LW-line and 39.1% 

of the SNPs on the 80 K array in the DL-line having Bea-

gle  R2 lower than 0.6. Imputation from 660  K to iWGS 

was more accurate than imputation from 80 K to iWGS, 

which suggests that step-wise imputation, i.e. first imput-

ing from 80 to 660 K and then from 660 K to iWGS, could 

increase the accuracy of imputation. Although imputa-

tion accuracy was poor, using iWGS instead of genotypes 

Fig. 7 Manhattan plot for number of teats for the DL-line using 

imputed whole-genome sequence dosage or genotype scores, 

zoomed-in on chromosome 2. Manhattan plot for number teats of 

the DL-line population using a iWGS genotype scores, b iWGS dosage 

scores zoomed-in on chromosome 2
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from a lower density SNP chip increased the number of 

detected QTL regions and the expected proportion of 

phenotypic variance that they explained. When using 

iWGS dosage scores instead of genotype scores, even 

more QTL regions were detected because all SNPs were 

used in the analysis and the uncertainty of imputation 

was taken into account by the model.

Additional �les

Additional �le 1. The adapted subroutines in GCTA. Patches for the pro-

gram GCTA (Version 1.26.0) to be able to run GWAS with dosage scores.

Additional �le 2. Figures S1 and S2 contain the Beagle  R2 of imputation 

on chromosome 7 for the LW-line and DL-line, respectively, and Figure S3 

shows the minor allele frequency of the most significant SNPs identified in 

the DL-line with iWGS genotype scores plotted against their minor allele 

frequency in the LW-line.
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