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Abstract: The authors propose a new ratio imputation method using response probability. Their estimator
can be justified either under the response model or under the imputation model; it is thus doubly protected
against the failure of either of these models. The authors also propose avariance estimator that can be
justified under the two models. Their methodology is applicable whether the response probabilities are
estimated or known. A small simulation study illustrates their technique.

Utilisation de probabilités de réponse à des fins d’imputation
Résuḿe : Les auteurs proposent une nouvelle méthode d’imputation par quotient basée sur les probabilités
de ŕeponse. Leur estimateur peutêtre justifíe au moyen du mod̀ele de ŕeponse et du modèle d’imputation ;
il jouit ainsi d’une double protection en cas d’invalidité de l’un ou l’autre de ces modèles. Les auteurs
proposent aussi un estimateur de variance justifiable sous les deux modèles. Leur ḿethodologie peut̂etre
utilisée tant lorsque les probabilités de ŕeponse sont estiḿees que connues. Une petiteétude de simulation
illustre leur propos.

1. INTRODUCTION

Imputation is a commonly used method of compensating for item nonresponse in sample sur-
veys. Reasons for conducting imputation are to facilitate analyses using complete data analysis
methods, to ensure that the results obtained by different analyses are consistent with one another,
and to reduce nonresponse bias. Kalton (1983) and Groves, Dillman, Eltinge & Little (2002)
provide a comprehensive overview of imputation methods in survey sampling.

Many imputation methods such as ratio imputation or regression imputation use auxiliary
information that is observed throughout the sample. Such imputation methods require assump-
tions about the distribution of the study variable. The imputation model refers to the assumptions
about the variables collected in the survey and the relationship among these variables. Another
model, called the response model, is also commonly adopted in the analysis of missing data. The
response model refers to the assumptions about the probability of obtaining responses from the
sample for the item. One of the commonly used response modelsis the uniform response model,
where the responses are assumed to be independent and identically distributed within the impu-
tation cell. Rao & Shao (1992), Rao & Sitter (1995) and Shao & Steel (1999) discuss inference
using the imputed estimator under the uniform response model. However, for the other nonuni-
form response models such as the logistic response model, imputation methods incorporating
the response model are relatively underdeveloped, although analyses incorporating the response
model are quite popular in the nonimputation context. Examples include Rosenbaum (1987),
Robins, Rotnitzky & Zhao (1994), and Lipsitz, Ibrahim & Zhao(1999).

In this article, we provide an imputation methodology that combines the imputation model
and the response model. The proposed method can be justified under either one of the two
approaches. That is, it is justified if either a response model or an imputation model can be
correctly specified. Thus, the resulting estimator is doubly protected against the failure of the as-
sumed model. (Scharfstein, Rotnitsky & Robins 1999). The basic project is introduced under the
ratio imputation model in Section 2. The proposed method is further discussed in Section 3. In
Section 4, we propose a replication variance estimator thatcan be justified under the two models.
In Section 5, we discuss the proposed imputation method whenthe response probabilities are
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estimated rather than known. A limited simulation study is presented in Section 6. Concluding
remarks are made in Section 7.

2. BASIC SETUP

Let the finite population be of sizeN , indexed from 1 toN . Let the parameter of interest be the
population totalY = y1+· · ·+yN , whereyi is the study variable of uniti. LetF = {y1, . . . , yN}
be the collection of the study variable in the finite population. Let Ŷn be an estimator of the
population totalY based on the sample of sizen and of the formŶn =

∑
i∈A wiyi, wherewi is

the sampling weight of uniti andA is the set of indices in the sample. We assume that

E (Ŷn | F) = Y, (1)

where the expectation is taken with respect to the sampling mechanism. Condition (1), which
can be relaxed later, clearly means thatŶn is the Horvitz–Thompson estimator.

Under nonresponse, we define the response indicator function of yi

Ri =

{
1 if yi responds,

0 if yi does not respond,

and letR =
{
(i, Ri) : i ∈ A

}
be the set of response indicators for all units in the sample.If we

definey∗
i to be the imputed value ofyi, then the estimator ofY based on the imputed values can

be written
ŶI =

∑

i∈A

wi

{
Riyi + (1 − Ri)y

∗
i

}
. (2)

Suppose that we have an auxiliary variablexi for unit i in the sample and that thexi are
completely observed throughout the sample. We assume that

E (yi |A,R,X ) = xiγ, i = 1, . . . , N (3)

whereX =
{
(i, xi) : i ∈ A

}
and the expectation in (3) is with respect to the conditional

distribution ofyi given the realized sample, the realizedx-values, and the realized respondent
status. Under the ratio model in (3), the imputed value ofyi takes the form ofy∗

i = xiγ̂, where
γ̂ is to be determined. Often, for example in Rao (1996) and in Rao & Sitter (1995), the choice
of γ̂ was

γ̂R =

{∑

i∈A

wiRixi

}−1 ∑

i∈A

wiRiyi. (4)

The ratio imputation usingy∗
i = xiγ̂R satisfiesE (ŶI − Ŷn |A,X ,R) = 0 by (3), and so by (1),

E (ŶI − Y ) = 0. The unbiasedness of the imputed estimator in (2) depends onassumption (3).
If assumption (3) fails, then we cannot guarantee the unbiasedness of the imputed estimator.

Let πi = P(Ri = 1 | i ∈ A) be the response probability of sampled uniti. If we know
the response probabilityπi, then we can use the information about response probabilityto relax
assumption (3). The proposed estimator is

ŶId =
∑

i∈A

wiy
∗
i +

∑

i∈A

wiπ
−1
i Ri(yi − y∗

i ). (5)

Note that expression (5) is essentially the two-phase sampling estimator, whereRi corresponds
to the second-phase sampling indicator andy∗

i is the predicted value ofyi using the second-phase
sample observation and the first-phase auxiliary information.

Note that the estimator in (5) can be written as that in (2) if and only if
∑

i∈A

wi(π
−1
i − 1)Ri(yi − y∗

i ) = 0. (6)
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Hence, a choice of̂γ satisfying (6) is

γ̂M2 =

{∑

i∈A

wi(π
−1
i − 1)Rixi

}−1 ∑

i∈A

wi(π
−1
i − 1)Riyi, (7)

which reduces to (4) under the uniform response model, sincetheπi are all equal. The imputed
estimatorŶI usingγ̂M2 in (7) is algebraically equivalent tôYId in (5). We useŶI to denote the
imputed estimator usinĝγR in (4), andŶId to denote the newly proposed estimator usingγ̂M2

in (7).
To discuss the nature of the proposed ratio imputation estimator usingγ̂M2 in (7), we adopt

the extended definition ofRi introduced by Fay (1991). Conceptually, the response indicator
functionRi can be extended to the entire population. That is, letRi take the value one if uniti
responds when sampled, and the value zero otherwise. Define

(XR, YR) =

N∑

i=1

Ri(xi, yi)

to be the population total of the conceptual respondents anddefine

(XM , YM ) =

N∑

i=1

(1 − Ri)(xi, yi)

to be the population total of the conceptual nonrespondents. Conditional onR1, . . . , RN , the
population respondent total(XR, YR) can be unbiasedly estimated by

(X̂R, ŶR) =
∑

i∈A

wiRi(xi, yi),

and the population nonrespondent total(XM , YM ) can be unbiasedly estimated by

(X̂M , ŶM ) =
∑

i∈A

wi(1 − Ri)(xi, yi) or (X̂M2, ŶM2) =
∑

i∈A

wiRi(π
−1
i − 1)(xi, yi).

Using this notation, the two imputed estimators can be written

ŶI = X̂Rγ̂R + X̂M γ̂R

and
ŶId = X̂Rγ̂R + X̂M γ̂M2, (8)

whereγ̂R = X̂−1
R ŶR andγ̂M2 = X̂−1

M2ŶM2. Sinceγ̂R estimates the population characteristic of
the respondents and̂γM2 estimates the population characteristic of the nonrespondents, it makes
more sense to usêγM2 to impute for the nonrespondents.

3. ASYMPTOTIC PROPERTIES

To discuss the asymptotic properties ofŶId, let us assume a sequence of finite populations with
finite fourth moments of(xi, yi) as defined in Isaki & Fuller (1982). Assume the sampling
mechanism satisfies

K1 < max
1≤i≤N

(nwi/N) < K2 (9)

and
K3 < n var(Ŷn | F)/N2 < K4 (10)
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for some nonnegative constantsK1, K2, K3, andK4, uniformly in n. Assume that the response
mechanism satisfies

K5 < πi, (11)

for some nonnegative constantK5, and

P (Ri = 1, Rj = 1) = P (Ri = 1)P (Rj = 1), ∀ i 6= j. (12)

Let

(X∗, Y ∗) =

N∑

i=1

π−1
i Ri(xi, yi),

the probability limit of ∑

i∈A

wiπ
−1
i Ri(xi, yi)

conditional onR1, . . . , RN . Under the response model ofE (π−1
i Ri) = 1, (X∗, Y ∗) is con-

sistent for(X,Y ), the population total of(xi, yi). Here, we do not necessarily assume that the
response model is true. By a Taylor expansion, it is shown in the Appendix that

ŶId − Ŷn =
∑

i∈A

wi

{
δ(π−1

i − 1)Ri − (1 − Ri)
}
(yi − γ∗

Mxi) + op(n
−1/2N), (13)

whereδ = (X∗ − XR)−1XM , γ∗
M = (X∗ − XR)−1(Y ∗ − YR) andZn = op(an) denotes that

a−1
n Zn converges to zero in probability.

Note that ifE (π−1
i Ri) = 1, thenδ

.
= 1 and the right-hand side of (13) is asymptotically

negligible. Thus, the proposed estimatorŶId is approximately unbiased forY under the assumed
response model, regardless of whether the ratio imputationmodel holds or not. On the other
hand, if the response model is not correctly specified, we still have approximate unbiasedness
under the ratio imputation model (3) becauseE (yi−γ∗

Mxi |A,X ,R) = 0. Hence, the estimator
ŶId is doubly protected since that we require that only one of thetwo models, a model for the
value ofy or a model for the response probability, be correctly specified. Lipsitz, Ibrahim &
Zhao (1999) made a similar argument for double protection inthe problem of constructing a
doubly protected estimating equation.

Under the response model, by (1) and by the definition ofπi,

E (ŶId | F) = Y + o(n−1/2N) (14)

and, by (12),

var(ŶId | F) = var(Ŷn | F) + E

{∑

i∈A

w2
i (π−1

i − 1)(yi − xiγM )2 | F
}

+ o(n−1N2), (15)

whereγM = X−1
M YM .

The model expectation of the variance in (15) is minimized whenE (γM |R1, . . . , RN ) = γ,
whereγ is the imputation model parameter defined in (3). Thus, the role of the imputation model
in the response model approach is to reduce the variance. If the imputation model does not
hold, then by (14), the point estimator is still approximately unbiased, but the variance will be
generally large. This is consistent with the general philosophy of model-assisted estimation in
survey sampling: If the model is good, then the point estimator is efficient. Otherwise, the point
estimator is still approximately design unbiased (Särndal, Swensson & Wretman 1992).

Under the ratio imputation model defined by (3) and

cov(yi, yj |A,R,X ) =

{
σ2

i if i = j,

0 if i 6= j,
(16)
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it can be shown thatE (ŶId − Y ) = o(n−1/2N), and underN−1n = o(1),

var(ŶId − Y ) = var

(∑

i∈A

wixiγ | F
)

+ E

(∑

i∈A

w2
i π−2

i q2
i Riσ

2
i | F

)
+ o(n−1N2), (17)

whereqi = δ(1 − πi) + πi.
Insertingπ−1

i − 1 into the estimation of the ratio coefficientγ was first proposed by Brewer
(1979) for the complete sample, where theπi in this case is the inclusion probability of uniti.
Thus, the estimator using (7) is the extension of Brewer’s idea to the imputation problem.

4. VARIANCE ESTIMATION

We now consider the variance estimation of the proposed ratio imputation estimator satisfy-
ing (6). We adopt a replication method such as the jackknife for variance estimation. Replication
variance estimation is popular because it can be easily extended to variance estimation for non-
linear statistics.

Under complete response, let a replication variance estimator be

V̂n =
L∑

k=1

ck(Ŷ (k)
n − Ŷn)2, (18)

whereŶ
(k)
n is thekth estimate ofY based on the observations included in thekth replicate,

L is the number of replicates, andck is a factor associated with replicatek determined by the
replication method. When the original estimatorŶn is a linear estimator, thekth replicate ofŶn

can be written
Ŷ (k)

n =
∑

i∈A

w
(k)
i yi,

wherew
(k)
i denotes the replicate weight for theith unit of thekth replication. We assume that

E
[
{V̂n/ var(Ŷn) − 1}2 | F

]
= o(1) (19)

for anyy with bounded fourth moments.
Under nonresponse, we propose a variance estimator for the imputed estimator of the form

in (5) using the replication method in (18). The proposed replication variance estimator is

V̂d =
L∑

k=1

ck(Ŷ
(k)
Id − ŶId)2,

where
Ŷ

(k)
Id =

∑

i∈A

w
(k)
i y

∗(k)
i +

∑

i∈A

w
(k)
i π−1

i Ri(yi − y
∗(k)
i )

andy
∗(k)
i is thekth replicate ofy∗

i satisfying

∑

i∈A

w
(k)
i (π−1

i − 1)Ri(yi − y
∗(k)
i ) = 0. (20)

Note that condition (20) for the replicates is similar to condition (6) for the original estimator.

For the ratio imputationy∗
i = xiγ̂M2, the replicate isy∗(k)

i = xiγ̂
(k)
M2, where

γ̂
(k)
M2 =

{∑

i∈A

w
(k)
i (π−1

i − 1)Rixi

}−1 ∑

i∈A

w
(k)
i (π−1

i − 1)Riyi.
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Note that (20) implies
Ŷ

(k)
Id =

∑

i∈A

w
(k)
i {Riyi + (1 − Ri)y

∗(k)
i }. (21)

If we have a uniform response mechanism across the whole sample, then the replicates in (21)
reduce to those of the adjusted jackknife method of Rao (1996).

To show the consistency of̂Vd to var(ŶId | F), we assume, in addition to (9)–(12),

E
[
{ck(Ŷ (k)

n − Ŷn)2}2 | F , R1, . . . , RN

]
< CyL−2

{
var(Ŷn | F , R1, . . . , RN )

}2
(22)

for all k and for some constantCy. Then, by a Taylor expansion, it is shown in the Appendix
that

c
1/2
k (Ŷ

(k)
Id − ŶId) = c

1/2
k

∑

i∈A

(w
(k)
i − wi)ζi + op(L

−1/2n−1/2N), (23)

whereζi = xiγ
∗
M + π−1

i Riqi(yi − xiγ
∗
M ) with qi = δ(1 − πi) + πi. Thus, by (19),

L∑

k=1

ck(Ŷ
(k)
Id − ŶId)2 = var

(∑

i∈A

wiζi | F , R1, . . . , RN

)
+ op(n

−1N2) (24)

and note that, by (13),
∑

i∈A wiζi = ŶId + op(n
−1/2N) and the proposed variance estima-

tor is consistent for the conditional variance ofŶId conditional onR1, . . . , RN . To show the
consistency for the unconditional variance, note that

E

(∑

i∈A

wiζi | F , R1, . . . , RN

)
=

N∑

i=1

ζi and var

( N∑

i=1

ζi | F
)

= O(N),

which is of a smaller order than that of the conditional variance when N−1n =
o(1). Finally, it remains to show thatvar

(∑
i∈A wiζi | F , R1, . . . , RN

)
is consistent for

E
{
var

(∑
i∈A wiζi | F , R1, . . . , RN

)
| F

}
. The argument for the consistency of the conditional

variance to its expectation is the same as that of Kim, Navarro & Fuller (2006, Eq. B.11) and is
not discussed here.

Note that (24) is derived conditional onR1, . . . , RN andF , and is thus valid without using
the response model or the imputation model. Under the response model, it can be shown that

(γ∗
M , δ) = (γM , 1) + O(N−1/2).

Thus, we have

E

{
var

(∑

i∈A

wiζi | F , R1, . . . , RN

) ∣∣∣ F
}

(25)

= var(Ŷn | F) + E

{∑

i∈A

w2
i (π−1

i − 1)(yi − xiγM )2 | F
}

+ o(n−1N2),

which is equal to (15), proving the consistency under the response model, where the expectation
in (25) is over the response model. Under the ratio imputation model, assumingmaxi σ2

i = O(1),
it can be shown that

γ∗
M = γ + O(N−1/2)

and so

E

{
var

(∑

i∈A

wiζi | F , R1, . . . , RN

) ∣∣∣ R1, . . . , RN

}

= var

(∑

i∈A

wixiγ | F
)

+ E

{∑

i∈A

w2
i π−2

i q2
i Riσ

2
i | F

}
+ o(n−1N2),
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which is equalto (17), proving the consistency under the ratio imputation model, where the ex-
pectation in (25) is over the ratio imputation model defined in (3) and (16).

Note that the variance estimator discussed above is consistent only when the sampling frac-
tion f = n/N is negligible. If such a condition is not satisfied, then a consistent estima-
tor of var(ζ1 + · · · + ζN | F) should be added to the final variance estimator, as discussedin
Shao & Steel (1999). For the ratio imputation described in Section 3, a consistent estimator of
var(ζ1 + · · · + ζN | F) is

∑

i∈A

wiπ
−1
i (π−1

i − 1)q̂2
i Ri(yi − xiγ̂M2)

2,

whereγ̂M2 is defined following (8) and̂qi = δ̂(1 − πi) + πi with δ̂ defined following (A.11) in
the Appendix.

5. IMPUTATION USING ESTIMATED RESPONSE PROBABILITY

So far, we have assumed that the response probabilities are known. In practice, the response
probabilities are unknown and we have to estimate them. In addition to (11) and (12), assume
that the model for response probability is a parametric model such thatπi ≡ π(xi;α) is a smooth
function ofxi and a finite-dimensional parameterα whose range lies in(0, 1]. Let π̂i = π(xi; α̂)
be the estimated response probability ofπi, whereα̂ satisfies

n1/2(α̂ − α) = n−1/2
∑

i∈A

H(Ri;α) + op(1) (26)

where
E {H(Ri;α)} = 0 and E {H(Ri;α)H(Ri;α)⊤}

is positive definite. For example, the logistic regression model defined by

πi = {1 + exp(−α0 − α1xi)}−1

satisfies
H(Ri;α) = n{I(α0, α1)}−1(Ri − πi)(1, xi)

⊤

and

I(α0, α1) = E

{∑

i∈A

πi(1 − πi)(1, xi)
⊤(1, xi)

}
.

The proposed imputation estimator using the estimated response probability is

ŶIe =
∑

i∈A

wi{Riyi + (1 − Ri)xiγ̂Met}

=
∑

i∈A

wixiγ̂Me +
∑

i∈A

wiπ̂
−1
i Ri(yi − xiγ̂Me),

where

γ̂Me =

{∑

i∈A

wi(π̂
−1
i − 1)Rixi

}−1 ∑

i∈A

wi(π̂
−1
i − 1)Riyi. (27)

As for the asymptotic properties of̂YIe, the Taylor expansion shows that

ŶIe = ŶId + (α̂ − α)⊤∆ + op(n
−1/2N), (28)

where

∆ =

N∑

i=1

πi(∂π−1
i /∂α)(yi − γ∗

Mxi).
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Thus, if ∂π−1
i /∂α is uniformly bounded, the asymptotic unbiasedness ofŶIe follows from

(14) and (26), regardless of whether the ratio imputation model is true or not. When the ratio
imputation model is true, the expectation of∆ term is zero and(α̂ − α)⊤∆ is of a smaller order
than ŶId − Y . Thus,ŶIe is asymptotically equivalent tôYId in this case. If the ratio model is
not true, the term(α̂ − α)⊤∆ is no longer negligible and the asymptotic behavior ofŶIe can be
different from that ofŶId.

For the variance estimation, letα̂(k) be thekth replicate ofα satisfying

L∑

k=1

ck(α̂(k) − α̂)(α̂(k) − α̂)⊤ = cov(α̂ | F) + op(n
−1). (29)

If we define thekth replicate of̂πi to beπ̂
(k)
i = π(xi; α̂(k)), the proposed variance estimator for

ŶIe is

V̂e =

L∑

k=1

ck(Ŷ
(k)
Ie − ŶIe)

2, (30)

where

Ŷ
(k)
Ie =

∑

i∈A

w
(k)
i

{
Riyi + (1 − Ri)xiγ̂

(k)
Me

}

=
∑

i∈A

w
(k)
i xiγ̂

(k)
Me +

∑

i∈A

w
(k)
i (π̂

(k)
i )−1Ri(Yi − xiγ̂

(k)
Me),

and

γ̂
(k)
Me =

[∑

i∈A

w
(k)
i {(π̂(k)

i )−1 − 1}Rixi

]−1 ∑

i∈A

w
(k)
i {(π̂(k)

i )−1 − 1}RiYi.

For the consistency of̂Ve in (30), a Taylor expansion can be used to show that

c
1/2
k (Ŷ

(k)
Ie − ŶIe) = c

1/2
k

∑

i∈A

(w
(k)
i − wi)ζi + c

1/2
k (α̂(k) − α̂)⊤∆ + op(L

−1/2n−1/2N),

whereζi is defined following (23) and∆ is defined following (28). Thus, by (19) and (29),V̂e

is consistent for the conditional variance ofŶIe, conditional onR1, . . . , RN . The consistency
for the unconditional variance also follows using the same argument for the consistency of̂Vd in
Section 4.

6. SIMULATION STUDY

To test our theory, we performed a limited simulation study.The simulation study can be de-
scribed as a2 × 3 factorial design withB = 10,000 replication within each cell. The factors
are two types of sampling distribution and three types of imputed estimator. For the sampling
distribution, one is generated by a ratio model and the otheris generated by a nonratio model. In
the ratio model, we generated

yi = 3.9xi +
√

xi εi,

wherexi ∼ U(0.1, 2.1), εi ∼ N(0, 1), andxi andεi are independent. In the nonratio model, we
used the samexi andεi, but theyi are generated differently:

yi = (1.8xi − 1)2 +
√

xi εi.

Two sets of random sample of sizen = 100 are separately generated from the two infinite
populations. For the response probabilitiesπi, we use the logistic model

πi = exp(−1 + 2.3xi)/{1 + exp(−1 + 2.3xi)}
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and the overall response rates are all 0.76. The regression coefficients of the logistic model
are estimated by the maximum likelihood method and computediteratively using the Newton–
Raphson method.

From each simulated value(xi, πi, Ri, yi), i = 1, . . . , n, we computed three types of imputed
estimator of the population meanθ of y: θ̂I usingy∗

i = xiγ̂R in (4), θ̂Id usingy∗
i = xiγ̂M2 in

(7), andθ̂Ie usingy∗
i = xiγ̂Me in (27). We also computed the complete sample estimatorθ̂n

for comparison. For the variance estimator, we used the standard jackknife method, whereck is
n−1(n − 1) andw

(k)
i is defined asw(k)

i = (n − 1)−1nwi if i 6= k, andw
(k)
i = 0 if i = k.

Table 1 shows the mean, the variance, and the standardized variance, and the standardized
mean squared error (MSE) of the point estimators. The standardized variance and the standard-
ized MSE are the relative variance and the relative MSE compared with those of̂θn, respectively.
Under the ratio model, all the point estimators are unbiasedand the imputed estimator usinĝθI

is slightly more efficient than̂θId or θ̂Ie. In fact, under simple random sampling, the estimatorθ̂I

is the best linear unbiased predictor for the mean ofy under the ratio model. However, under the
nonratio model,̂θI is biased because the ratio imputation model is no longer true. The estimator
θ̂Ie is still unbiased and is slightly more efficient thanθ̂Id becausêθIe uses additional information
that is not captured by the ratio imputation.

TABLE 1: Means, variances, standardized variances, and standardized mean squared errors
of the point estimators, based on 10,000 samples.

Model Method Mean Variance Standardized Standardized
Variance MSE

θ̂n 4.29 0.061 100 100

Ratio Model θ̂I 4.29 0.062 102 102

θ̂Id 4.29 0.063 104 104

θ̂Ie 4.29 0.063 104 104

θ̂n 2.04 0.062 100 100

Nonratio Model θ̂I 2.20 0.067 108 148

θ̂Id 2.04 0.067 107 107

θ̂Ie 2.04 0.066 106 106

Table 2 shows the relative mean andt-statistic for the estimated variances of four point es-
timators. The relative mean of the estimated variance is theMonte Carlo mean of the estimated
variance divided by the Monte Carlo variance of the point estimator. Thet-statistic is the Monte
Carlo estimated bias divided by the Monte Carlo standard error of the estimated bias. The sim-
ulation result shows that all the variance estimators are asymptotically unbiased under the ratio
model. However, under the nonratio model, the estimatorV̂I shows significant biases when the
assumed imputation model does not hold. BothV̂d andV̂e show nonsignificant biases because
they properly take the response model into account.

The above simulation results show that the proposed estimators are unbiased and exhibit
good finite-sample performances when the assumed response model is incorrect. We performed
another simulation study where the assumed response model is false. In that simulation, we set
the true response probability to beπi = 1 − 0.7(xi − 1.1)2 and used the logistic regression
model to estimate the response probability. Thus, the assumed response model is not true in this
simulation. The simulation results, although not reportedhere, show that the estimatorsθ̂Ie and
V̂e are still unbiased under the ratio model, but are biased under the nonratio model. These results
are consistent with the argument of the double protection ofthe proposed estimator: When either
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the response model or the imputation model is true, the proposed estimators are unbiased and
thus doubly protected against the failure of the assumed models.

TABLE 2: Relative means andt-statistics for the variance estimators, based on 10,000 samples.

Model Method Relative Mean t-statistic

bVI 1.02 1.74

Ratio Model bVd 1.02 1.55
bVe 1.02 1.69

bVI 0.73 -19.93

Nonratio Model bVd 1.00 0.25
bVe 1.01 0.38

7. CONCLUDING REMARKS

The concept ofdoubly protected imputationagainst the failure of the assumed models is relatively
a new concept. In some literature, it is called “doubly robust”, as in Scharfstein, Rotnitsky &
Robins (1999) and Van der Laan & Robins (2003). The basic motivation is that since one is never
sure whether either a response model or a imputation model iscorrect, perhaps the best that can
be hoped for is to find an estimator that can be justified under either one of the two models so
that the resulting estimator gives the analyst two chances,instead of only one, to make a valid
inference (Bang & Robins 2005).

Here, we have described the same property as doubly protected because the traditional so-
called “robust estimator” is not too sensitive to departures from model assumptions in the infer-
ential context chosen. One contribution of this study is to extend the doubly protected inference
into the imputation context. However, as noted by an anonymous referee, the proposed impu-
tation method is not doubly protected for domain estimation. Generally speaking, a single set
of imputed data ignoring the domain information leads to biased estimation for the domains.
Recently, Haziza & Rao (2005) have proposed a bias-correction method for domain estimation
after imputation. Domain estimation after imputation, although very important in practice, is
beyond the scope of this paper and is not discussed here. So far, we have only considered the
ratio imputation. Extensions to other imputation methods,such as regression imputation and hot
deck imputation, are not discussed here and will be topics for future research.

APPENDIX

Proof of (13). We first expresŝYId as

ŶId = ŶR + X̂M
Ŷ ∗ − ŶR

X̂∗ − X̂R

, (A.1)

where
(X̂∗, Ŷ ∗) =

∑

i∈A

wiπ
−1
i Ri(xi, yi), (X̂R, ŶR) =

∑

i∈A

wiRi(xi, yi)

and
X̂M =

∑

i∈A

wi(1 − Ri)xi.

By (9) and (10),

E
{
(X̂R − XR)2 | F , R1, . . . , RN

}
= O(n−1N2). (A.2)
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Thus, using Corollary 5.1.1.2 of Fuller (1996), we have

N−1(X̂R − XR) = Op(n
−1/2). (A.3)

Similarly, we have
N−1(ŶR − YR, X̂M − XM ) = Op(n

−1/2) (A.4)

and
N−1(X̂∗ − X∗, Ŷ ∗ − Y ∗) = Op(n

−1/2). (A.5)

Hence, by (A.3), (A.4), and (A.5), we can apply the Taylor expansion on (A.1) to get

ŶId = ŶR + γ∗
M X̂M + δ

{
Ŷ ∗ − ŶR − γ∗

M (X̂∗ − X̂R)
}

+ op(n
−1/2N).

Therefore, sincêYn = ŶR + ŶM , result (13) follows.

Proof of (23). Write

Ŷ
(k)
Id = Ŷ

(k)
R + X̂

(k)
M

Ŷ ∗(k) − Ŷ
(k)
R

X̂∗(k) − X̂
(k)
R

, (A.6)

where

(X̂∗(k), Ŷ ∗(k)) =
∑

i∈A

w
(k)
i π−1

i Ri(xi, yi), (X̂
(k)
R , Ŷ

(k)
R ) =

∑

i∈A

w
(k)
i Ri(xi, yi)

and
X̂

(k)
M =

∑

i∈A

w
(k)
i (1 − Ri)xi.

By (10) and (22),

N−1c
1/2
k (X̂(k)

n − X̂n, Ŷ (k)
n − Ŷn) = Op(n

−1/2L−1/2). (A.7)

Also, by (A.2) and (22), conditional onR1, . . . , RN ,

N−1c
1/2
k

(
X̂

(k)
R − X̂R, Ŷ

(k)
R − ŶR

)
= Op(n

−1/2L−1/2). (A.8)

Similarly, conditional onR1, . . . , RN ,

N−1c
1/2
k

(
X̂∗(k) − X̂∗, Ŷ ∗(k) − Ŷ ∗

)
= Op(n

−1/2L−1/2) (A.9)

and
N−1c

1/2
k (X̂

(k)
M − X̂M ) = Op(n

−1/2L−1/2). (A.10)

By a Taylor expansion on (A.6), using (A.7)–(A.10),

c
1/2
k (Ŷ

(k)
Id − ŶId) = c

1/2
k (Ŷ

(k)
R − Ŷ

(k)
R ) + c

1/2
k γ̂∗

M (X̂
(k)
M − X̂M )

+ c
1/2
k δ̂

[
(Ŷ ∗(k) − Ŷ ∗) − (Ŷ

(k)
R − ŶR)

− γ̂∗
M

{
(X̂∗(k) − X̂∗) − (X̂

(k)
R − X̂R)

}]

+ op(L
−1/2n−1/2N), (A.11)

whereγ̂∗
M = (X̂∗ − X̂R)−1(Ŷ ∗ − ŶR) and δ̂ = (X̂∗ − X̂R)−1X̂M . Using (A.3), (A.4), and

(A.5), a Taylor expansion can be used to show that

γ̂∗
M = γ∗

M + op(n
−1/2) (A.12)

and
δ̂ = δ + op(n

−1/2). (A.13)

Therefore, result (23) follows by inserting (A.12) and (A.13) into (A.11).
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