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Abstract

DNA sequence variation within human leukocyte antigen (HLA) genes mediate susceptibility to a wide range of human
diseases. The complex genetic structure of the major histocompatibility complex (MHC) makes it difficult, however, to
collect genotyping data in large cohorts. Long-range linkage disequilibrium between HLA loci and SNP markers across the
major histocompatibility complex (MHC) region offers an alternative approach through imputation to interrogate HLA
variation in existing GWAS data sets. Here we describe a computational strategy, SNP2HLA, to impute classical alleles and
amino acid polymorphisms at class I (HLA-A, -B, -C) and class II (-DPA1, -DPB1, -DQA1, -DQB1, and -DRB1) loci. To characterize
performance of SNP2HLA, we constructed two European ancestry reference panels, one based on data collected in
HapMap-CEPH pedigrees (90 individuals) and another based on data collected by the Type 1 Diabetes Genetics Consortium
(T1DGC, 5,225 individuals). We imputed HLA alleles in an independent data set from the British 1958 Birth Cohort (N= 918)
with gold standard four-digit HLA types and SNPs genotyped using the Affymetrix GeneChip 500 K and Illumina
Immunochip microarrays. We demonstrate that the sample size of the reference panel, rather than SNP density of the
genotyping platform, is critical to achieve high imputation accuracy. Using the larger T1DGC reference panel, the average
accuracy at four-digit resolution is 94.7% using the low-density Affymetrix GeneChip 500 K, and 96.7% using the high-
density Illumina Immunochip. For amino acid polymorphisms within HLA genes, we achieve 98.6% and 99.3% accuracy
using the Affymetrix GeneChip 500 K and Illumina Immunochip, respectively. Finally, we demonstrate how imputation and
association testing at amino acid resolution can facilitate fine-mapping of primary MHC association signals, giving a specific
example from type 1 diabetes.
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Introduction

The major histocompatibility complex (MHC) region on the

short arm of chromosome 6 harbors the human leukocyte antigen

(HLA) genes. The HLA genes encode cell-surface proteins that

present antigen peptides to the host immune system, and are

among the most polymorphic genes in the human genome [1].

These genes have been prominently studied because of their large

effect sizes in autoimmune diseases, infectious diseases, severe drug

reactions, and transplant medicine [2–5]. In many instances, the

observed HLA effects dwarf those of other associated variants

throughout the rest of the genome [6].

The MHC is characterized by a unique evolutionary history.

Its genetic structure is shaped not only by recombination, gene

conversion and demography but also by natural selection [7].

One of the characteristic features of the MHC is the strong

linkage disequilibrium (LD) among variants, often at considerable

distances [8]. As a result, fine-mapping genotype-phenotype

associations within the MHC to causal variants remains

challenging.
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While advances in high-throughput probe-based genotyping

technologies have enabled systematic interrogation of DNA

sequence variation through genome-wide association studies

(GWAS), they have not been effective at querying variation within

HLA genes. Probe-based methods for HLA genotyping have been

limited in resolution due to the highly polymorphic nature of these

genes. Strategies for direct typing of HLA alleles include sequence

specific oligonucleotide (SSO) hybridization, capillary (Sanger)

sequencing, and next-generation sequencing [9]. Unfortunately

these approaches do not easily scale for large cohorts since they are

labor-intensive, time-consuming and expensive.

As a potential way forward, investigators have developed

methods to infer classical HLA alleles indirectly using intragenic

SNP genotypes within the MHC. Initially, our group devised a

simple approach using selected tag SNPs that are in strong LD

with classical HLA alleles [8,10]. Subsequently, more sophisticated

approaches that model LD patterns of surrounding SNPs have

been developed to impute classical HLA alleles [11–14]. Even if

such predictions are not error-free, they are highly suitable for the

re-interpretation of existing GWAS data, because imputation

inaccuracy will generally result only in a power reduction to detect

a statistical association but not in an increased type 1 error rate. In

light of the enormous investment into GWAS in large numbers of

samples, HLA imputation is likely to add significant value to SNP

data that has already been generated [15].

An important limitation of existing HLA imputation methods,

and of many previous studies, is that they are limited to classical

HLA alleles and do not query functional coding variants within the

HLA genes. For certain traits, specific amino acid positions within

HLA molecules may play an important functional role. For

example, the role of amino acid position 57 in HLA-DQb1 for

type 1 diabetes susceptibility has been long established [16]. In

addition, our group recently identified a key role for amino acid

position 97 in HLA-B, which can account for almost all known

classical allele associations with HIV control [17].

To identify potentially causal variation within HLA genes, we

present here a method, SNP2HLA, for imputing classical HLA

alleles as well as amino acid polymorphisms in the HLA proteins

from SNP genotype data with the Beagle software package [18]

(Figure 1). In order to characterize the tradeoffs involved in HLA

imputation, we consider four scenarios covering two reference

panels (with different sample sizes) and two SNP data sets (with

different SNP densities). This study design allows us to evaluate the

impact of sample size of the reference panel and the impact of

SNP genotyping density on the imputation quality. We also assess

the accuracy of imputations at individual amino acid polymor-

phisms. Finally, we demonstrate that we can reproduce known

HLA allelic effects from genotyped SNP data in type 1 diabetes

from the publicly available Wellcome Trust Case Control

Consortium data set [19].

Results

Reference Panels for Imputation
We constructed two reference panels based on genotyping data

collected in individuals of European ancestry (Table 1). The

HapMap-CEPH panel contains 3,924 SNPs (genotyped with

Illumina GoldenGate) and 4-digit classical HLA types for HLA-A, -

B, -C, -DQA1, -DQB1 and -DRB1 for 90 unrelated individuals (180

haplotypes) [8]. The Type 1 Diabetes Genetics Consortium

(T1DGC) panel contains 5,868 SNPs (genotyped with Illumina

Immunochip) and 4-digit classical HLA types for HLA-A, -B, -C, -

DPA1, -DPB1, -DQA1, -DQB1 and -DRB1 for 5,225 unrelated

individuals (10,450 haplotypes). The T1DGC panel contains more

unique HLA alleles and amino acid polymorphisms because of its

significantly larger sample size.

Validation Panel for Benchmarking
To benchmark the HLA imputations by SNP2HLA, we used

918 individuals from the British 1958 Birth Cohort (B58BC) with

gold-standard 4-digit HLA types at HLA-A, -B, -C, -DQB1 and -

DRB1, and SNP genotype data collected on both the Affymetrix

500 K and Illumina Immunochip. The SNP genotyping density

varied widely between the data sets across the MHC region

(Figure S1 in File S1), affecting the effective number of SNPs

that could be used for imputation. For example, there were only

487 SNPs present on the Affymetrix 500 K that overlapped with

the T1DGC reference panel, in contrast with the 4,794 SNPs in

common between the Immunochip data from the B58BC

validation panel and the T1DGC reference panel (Table 2).

HLA Imputation
Using the HapMap-CEPH reference panel, we imputed in each

of the 918 B58BC individuals dosages for 70 classical 2-digit alleles

and 109 classical 4-digit alleles at HLA-A, -B, -C, -DQA1, -DQB1

and -DRB1, and 321 polymorphic amino acid positions, 915

intragenic SNPs and 42 indels (Table 1). Using the T1DGC

reference panel, we imputed 126 classical 2-digit alleles and 298

classical 4-digit alleles at HLA-A, -B, -C, -DPA1, -DPB1, -DQA1,

-DQB1 and -DRB1, and 399 polymorphic amino acid positions,

1,101 intragenic SNPs and 176 indels. (The HapMap-CEPH

panel did not contain HLA types for the HLA-DPA1 and HLA-

DPB1 loci.).

Imputation Accuracy of Classical HLA Alleles
For both reference panels, we observed that there was generally

high correlation between the imputed and typed HLA allele

frequencies (r2freq.0.99 for 2-digit and r2freq.0.96 for 4-digit

alleles, Figure S2 in File S1). Using the larger T1DGC panel,

SNP2HLA achieved high correlation between the imputed and

typed dosages for common HLA alleles (Figure 2). At 4-digit

resolution, we imputed 44 of 46 class I alleles and 24 of 26 class II

alleles with .1% frequency with high accuracy (r2dosage.0.8,

Table S1 in File S1). In terms of genotype concordance,

SNP2HLA achieved 81.3% and 86.5% accuracy for 4-digit HLA

alleles using Affymetrix 500 K and Illumina Immunochip,

respectively, when imputing from the HapMap-CEPH reference

panel (Table 2). This improved significantly for the larger

T1DGC panel, where SNP2HLA obtained an accuracy of 94.7%

and 96.7% using Affymetrix 500 K and Illumina Immunochip,

respectively (Table 2). Overall, these results indicate much better

performance for the T1DGC reference panel compared to the

HapMap-CEPH reference panel.

We compared these results to published benchmarking results

for HLA*IMP, a widely used software tool for imputation of

classical HLA alleles [14]. Although we did not perform a direct

head-to-head comparison with identical training and testing data

sets, both methods appear to deliver comparable imputation

accuracy at 4-digit resolution (Table S2 in File S1).

Imputation Accuracy of Amino Acid Polymorphisms
Next, we assessed the imputation quality of the polymorphic

amino acid positions by comparing imputed dosages for

individual amino acid alleles to the corresponding dosages from

the gold-standard 4-digit HLA types in the same 918 B58BC

individuals. We observed a near-perfect correlation between the

imputed and genotyped amino acid frequencies for both

HLA Imputation
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reference panels (Figure S3 in File S1). In terms of the

correlation between imputed and typed allelic dosages, we

found that 48.0% and 65.7% of amino acid positions achieved

r2dosage.0.8 using Affymetrix 500 K and Illumina Immunochip,

respectively, when imputing from the HapMap-CEPH reference

panel. Performance improved again significantly with the larger

T1DGC reference panel, where 99.2% and 99.3% of polymor-

phic amino acid positions reached r2dosage.0.8 using Affymetrix

500 K and Illumina Immunochip, respectively (Figure 3). In

terms of genotype concordance, SNP2HLA achieved 93.9% and

94.2% accuracy with the HapMap-CEPH reference panel

starting from Affymetrix 500 K and Illumina Immunochip,

respectively (Tables S3 and S4 in File S1). With the larger

T1DGC panel, this improved to 98.6% and 99.3% accuracy for

Affymetrix 500 K and Illumina Immunochip, respectively

(Tables S3 and S4 in File S1). These results demonstrate

again better performance for the larger T1DGC reference

panel, and highlight that the individual amino acid positions

can be imputed with great accuracy.

To evaluate differences in imputation performance between

HLA loci, we calculated the average dosage r2 per polymorphic

position. Starting from Illumina Immunochip data using the

T1DGC reference panel, the imputation performance was

consistently high across the class I and class II loci: HLA-A

(r2= 0.98), HLA-B (r2= 0.97), HLA-C (r2= 0.96), HLA-DQB1

(r2=0.97), and HLA-DRB1 (r2=0.96), even though a limited

number of amino acid positions were more difficult to impute

(Tables S3 and S4 in File S1).

Imputation in Non-European Samples
We next assessed the imputation performance in non-European

populations. To test this, we imputed HLA alleles in three

HapMap panels (CEU/CEPH, YRI, CHB+JPT) using the

T1DGC reference panel. Using the gold-standard HLA type data

in the HapMap samples [8], 4-digit HLA imputation accuracy was

highest (98.3% over all HLA loci) in the CEU/CEPH samples, but

was considerably lower in the YRI panel (72.9%), and in the

CHB+JPT panel (86.4%) (Table 3). Strikingly, imputation

performance was quite variable across HLA loci in non-European

populations. In the CHB+JPT panel, imputation accuracy was

highest at HLA-A (98.1%) and HLA-DQB1 (96.5%), but low in

HLA-B (65.5%) and HLA-C (68.8%). In the YRI panel, imputation

performance was high in HLA-C (98.4%) and HLA-DQB1 (96.1%),

but very low at HLA-DRB1 (20.3%) and HLA-A (69.9%). These

results reinforce the need for large population-specific reference

panels in order to achieve high quality HLA imputations.

Calibration of Posterior Probabilities
Next, we evaluated how well the posterior probabilities for

imputed variants tracked with imputation accuracy. We observed

a high correlation between imputation dosage (probabilistic

representation of the number of predicted alleles) and the true

genotype dosage (0, 1, or 2), especially for imputations with high

confidence (Figure S4 in File S1). Moreover, there are more

highly confident calls (reflected by fewer imputation dosages

between 0 and 1 and between 1 and 2) for imputations derived

from the T1DGC reference panel compared to the HapMap-

Figure 1. Overview of the SNP2HLA imputation procedure. The reference panel (top) contains SNPs in the MHC, classical HLA alleles at the
class I and class II loci, and amino acid sequences corresponding to the 4-digit HLA types at each locus. For a data set with genotyped SNPs across the
MHC (bottom), we use the reference panel to impute classical alleles and their corresponding amino acid polymorphisms.
doi:10.1371/journal.pone.0064683.g001

HLA Imputation
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Table 1. Overview of the HapMap-CEPH and T1DGC reference panels and the B58BC validation panel.

Reference panel Validation panel

Sample set HapMap-CEPH Type 1 Diabetes Genetics
Consortium (T1DGC)

British 1958 Birth Cohort (B58BC)

Sample size 90 5,225 918

Genotyping platform Illumina GoldenGate Illumina Immunochip Affymetrix 500 K Illumina Immunochip

Number of SNPs in MHC 4,791 7,135 916 7,563

Number of SNPs passing QC 3,924 5,868 890 5,893

Number of 4-digit classical HLA alleles

HLA-A 17 50 25

HLA-B 29 97 40

HLA-C 19 33 20

HLA-DPA1 – 7 –

HLA-DPB1 – 34 –

HLA-DQA1 7 8 –

HLA-DQB1 14 18 17

HLA-DRB1 23 51 34

Number of polymorphic positions

Intragenic SNPs 915 1,101 858

Amino acids 321 399 289

Indels 42 176 37

Total number of biallelic markers 5,986 8,961 5,112

The MHC region is defined here as 29–34 Mb on chr6 (hg17). Sample size is based on unrelated (founder) individuals. The number of unique 4-digit classical HLA alleles
at each locus is shown for each data set. Intragenic SNPs, amino acids, and indels represent unique polymorphic positions as defined by the classical HLA types in each
data set.
doi:10.1371/journal.pone.0064683.t001

Table 2. Imputation accuracy measured as the genotype concordance for two- and four-digit classical HLA alleles measured in the
British 1958 Birth Cohort (B58BC, 918 individuals) as a function of reference panel (HapMap or T1DGC) and genotyping platform (in
B58BC).

HapMap reference panel T1DGC reference panel

Genotyping platform Affymetrix 500 K Illumina Immunochip Affymetrix 500 K Illumina Immunochip

Genotyped SNPs 916 7563 916 7563

Overlapping SNPs 332 2466 487 4794

4-digit resolution accuracy

HLA-A 89.9% 95.4% 97.2% 98.1%

HLA-B 83.0% 88.2% 94.7% 96.8%

HLA-C 87.2% 90.7% 96.1% 96.9%

HLA-DQB1 72.3% 71.8% 95.5% 98.3%

HLA-DRB1 72.6% 84.3% 89.3% 93.3%

All loci 81.3% 86.5% 94.7% 96.7%

2-digit resolution accuracy

HLA-A 89.9% 95.1% 98.4% 98.7%

HLA-B 83.0% 90.1% 96.1% 98.2%

HLA-C 87.6% 90.9% 96.8% 97.2%

HLA-DQB1 80.2% 78.0% 97.7% 99.2%

HLA-DRB1 82.4% 91.0% 95.6% 98.5%

All loci 84.6% 89.0% 96.9% 98.4%

Comparisons were made only if both alleles were typed at the same resolution (two- or four-digit). Accuracy was based on the same set of variants, allowing a direct and
fair comparison between reference panels and genotyping platforms.
doi:10.1371/journal.pone.0064683.t002

HLA Imputation
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CEPH panel. These results suggest that probabilistic dosages

correlate better with true genotypes than best-guess genotypes, and

should be taken into account for subsequent statistical analyses and

association testing.

HLA Imputation in WTCCC Type 1 Diabetes
Lastly, we wanted to evaluate the potential for SNP2HLA to

reproduce HLA associations from a GWAS dataset. To this end,

we used the WTCCC type 1 diabetes cases and controls [19]. The

cases consist of 1,963 individuals and the controls consist of 2,939

individuals, all genotyped with the Affymetrix 500 K array. The

controls include the same 918 individuals from the B58BC panel

that were used for the imputation benchmark above. After quality

control, 511 SNPs remained that overlapped with the T1DGC

reference panel.

We applied SNP2HLA to impute all markers, and then tested

them for association. Among all of these markers, the top signal

was HLA-DQb1 amino acid position 57 (P,102280) (Figure 4).

This highly significant amino acid position is historically well

known as a potential causal risk factor for type 1 diabetes [16].

This demonstrates that the value of SNP2HLA to leverage large

GWAS data sets to impute individual amino acids and to pinpoint

the location of potentially causal amino acid sites.

We also performed haplotype analysis in this dataset to test if

the haplotype effect sizes are concordant with the literature. We

specifically calculated the risk estimates for haplotypes of classical

Figure 2. Correlation between imputed and typed dosages (r2dosage) of classical HLA alleles in the B58BC as a function of typed
allele frequency for imputation from the (a) Affymetrix 500 K or (b) Illumina Immunochip platform using the HapMap-CEPH
reference panel, and imputation from the (c) Affymetrix 500 K or (d) Illumina Immunochip platform using the T1DGC reference
panel. Black points indicate 2-digit HLA alleles. Red points indicate 4-digit HLA alleles.
doi:10.1371/journal.pone.0064683.g002

HLA Imputation
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alleles spanning HLA-DRB1, HLA-DQA1 and HLA-DQB1, as these

have been estimated by others [20]. Although the previously

reported effects were odds ratios based on transmission/non-

transmission of alleles (ORT) from familial data, we expect that

the estimated odds ratios in the WTCCC case-control data will be

concordant as long as the imputations and phasing are accurate.

Indeed, our results show that the haplotype effect sizes are highly

concordant within the range of sampling error between two

different datasets (Figure 5 and Table S5 in File S1). The

haplotypes that are known as ‘‘high risk’’ confer high risk in our

analysis, and haplotypes known as ‘‘low risk’’ confer similarly low

risk. These empirical results demonstrate the validity of our

imputations and the inferred HLA haplotypes.

Discussion

We have developed a method, SNP2HLA, to impute HLA

amino acids and classical HLA alleles using SNP genotype data

within the MHC region. With a large reference panel we have

demonstrated that our approach can yield high-quality imputa-

tions of classical HLA alleles and coding variation within the HLA

genes. Even with relatively modest SNP genotyping coverage (for

example, first-generation GWAS arrays), the long-range LD

patterns in the region make it possible to accurately impute

HLA variants.

The imputation quality of SNP2HLA is determined primarily

by the size and quality of the reference panel rather than the SNP

Figure 3. Correlation between imputed and typed dosages (r2dosage) of polymorphic amino acids in the B58BC as a function of
typed allele frequency for imputation from the (a) Affymetrix 500 K or (b) Illumina Immunochip platform using the HapMap-CEPH
reference panel, and imputation from the (c) Affymetrix 500 K or (d) Illumina Immunochip platform using the T1DGC reference
panel. Black points indicate bi-allelic positions. Red points indicate poly-allelic positions.
doi:10.1371/journal.pone.0064683.g003

HLA Imputation
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genotyping density. Accuracy is generally lower for low-frequency

or rare alleles, which is similar to experience with imputation

methods outside of the MHC region [21]. This limitation may be

mitigated by using larger reference panels containing multiple

observations (that is, haplotypes) of low-frequency alleles. As a

result, application of SNP2HLA with a large T1DGC reference

panel with .10,000 haplotypes achieved high imputation

accuracy for both classical HLA alleles and amino acids. We

could not assess performance at HLA-DPA1, HLA-DPB1, and

HLA-DQA1, since these genes were not available to us for

evaluation. Because HLA-B and HLA-DRB1 are the most

polymorphic genes in class I and II (and therefore considered

the most difficult to impute), our results may be slightly

conservative with respect to HLA-DQA1, -DPA1 and -DPB1.

The density of SNPs typed within the MHC has a modest but

measureable effect on HLA imputation quality. The Immunochip,

which has between 2,500 and 5,000 overlapping SNPs with both

HapMap and T1DGC reference panels, consistently showed

higher imputation accuracy compared to the Affymetrix 500 K

array, which only shares 300–400 SNPs with these reference

panels. This effect is most prominent at the class II locus HLA-

DRB1, where Immunochip showed an average improvement of

6% in four-digit HLA accuracy over the 500 K array, compared to

Table 3. Imputation accuracy of classical alleles at 4-digit
resolution across worldwide populations.

CEU/CEPH YRI CHB+JPT

HLA-A 99.1% 69.9% 98.1%

HLA-B 96.8% 90.5% 65.6%

HLA-C 99.1% 98.4% 68.8%

HLA-DQA1 98.5% 64.9% 96.3%

HLA-DQB1 99.1% 96.1% 96.5%

HLA-DRB1 96.9% 20.3% 92.3%

All loci 98.3% 72.9% 86.4%

Imputations were performed using the T1DGC reference panel, and accuracy
(as measured by genotype concordance) in the three HapMap panels (CEU/
CEPH, YRI and CHB+JPT) with the publicly available gold-standard HLA
genotype data [8]. Accuracy is consistently high across all loci in Europeans
(CEU/CEPH), but much worse in the African (YRI) and East-Asian (CHB+JPT)
populations.
doi:10.1371/journal.pone.0064683.t003

Figure 4. Association analysis of WTCCC type 1 diabetes data. We imputed classical HLA alleles and polymorphic amino acids in 1,963 cases
and 2,939 controls using the T1DGC reference panel, and tested all variants for association with logistic regression. Of all variants tested, the top hit
maps to amino acid position 57 in HLA-DQb1, consistent with a previous study [16].
doi:10.1371/journal.pone.0064683.g004

Figure 5. Haplotype risk analysis of WTCCC type 1 diabetes
data. We assessed the risk of haplotypes spanning HLA-DRB1, HLA-
DQA1 and HLA-DQB1, and compared these to the published risk
estimates from an independent study [20]. The published odds ratios
were based on transmission/non-transmission of alleles from familial
data, while our odds ratios were estimated from case/control data. We
used the same classification scheme by dividing haplotypes into three
risk groups. The odds ratios are computed with respect to the DRB1*01-
DQA1*0101-DQB1*0501 haplotype.
doi:10.1371/journal.pone.0064683.g005

HLA Imputation
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an average improvement of 0.9% at class I loci. This may be due

to the relatively shorter spans of linkage disequilibrium within the

class II region compared to class I, rendering individual distal

SNPs within the class II region somewhat less informative about

the haplotypes.

The power of our approach is not only in highly accurate

imputation of HLA classical alleles, but also in allowing individual

amino acid polymorphisms to be tested. This gives users the ability

to query variation within HLA genes for association in an entirely

different way than previously applied. We demonstrated the

potency of this approach using the WTCCC type 1 diabetes data

[19]. By simultaneously testing HLA alleles, amino acids, and

SNPs, we were able to pinpoint the HLA-DQb1 position 57 as the

top signal, which is recognized as the major risk factor for type 1

diabetes [16]. Another strength of SNP2HLA is that phased

haplotypes are obtained. Using the WTCCC type 1 diabetes data,

we were able to accurately assess the risk of haplotypes spanning

HLA-DRB1, HLA-DQA1 and HLA-DQB1. Our estimates of effect

sizes were consistent with published effect sizes.

One limitation of our imputation method (and of all other

imputation methods) is that the reference panel should properly

represent the target population. We observed that imputation

quality is inconsistent when imputing HLA variants in a non-

European population using a predominantly European reference

panel. Currently, we are not aware of a large data set with SNP

and high-resolution HLA types in non-European populations, and

argue that resources should be made available to generate

multiethnic panels to enable HLA imputation in worldwide

populations, including admixed populations. In constructing

additional reference panels, each investigator will have to weigh

the benefits of imputing rare alleles with greater accuracy against

the additional resources required to expand the sample size of the

reference panel.

There are other limitations of our method. First, there are

known limitations to established methods for HLA typing [22]. As

a result, there may be errors in the reference panel that may limit

imputation accuracy, and errors in the gold standard that limit the

evaluation of accuracy. Without commenting on the intrinsic error

rate of classical HLA typing itself, our results show that LD-based

imputation can achieve high quality using a large reference panel.

Second, while this method enables interrogation of polymorphisms

at the widely studied HLA loci, it does not capture variation at

hundreds of other genes present in the MHC [23–25]. In many

instances, variation at these genes is captured by SNPs throughout

the MHC, but comprehensive interrogation of the entire region

will ultimately require high-throughput sequencing, making

imputation redundant.

The immense volume of data generated from recent GWAS

provides an excellent opportunity to apply imputation techniques

to fine-map MHC associations to classical alleles and amino acids

of the HLA loci. We and others have previously demonstrated the

potential of HLA imputation for a wide range of phenotypes

including host control of HIV-1 replication [17,26], rheumatoid

arthritis [27], ulcerative colitis [28], primary biliary cirrhosis [29],

psoriasis [30], ankylosing spondylitis [31], multiple sclerosis [32],

liver carcinoma [33], Hodgkin lymphoma [34], carbamazepine-

induced hypersensitivity [35], and myasthenia gravis [36]. For

autoimmune or inflammatory diseases, the identification of

classical allele associations or the fine-mapping of specific amino

acid positions may facilitate the evaluation of specific peptides as

antigens through binding assays and molecular modeling. For

drug-induced hypersensitivity, a molecular model has recently

been proposed that might explain how specific drug binding to the

HLA pocket can perturb the T cell repertoire in an individual and

cause T-cell mediated hypersensitivity [5]. Regardless of the

underlying biology, we believe that imputation approaches for the

MHC can add significant value to already existing data sets.

Materials and Methods

Reference Data
We constructed the HapMap-CEPH reference panel with

MHC genotype data as described previously consisting of 182

individuals (29 extended families containing 45 unrelated parent-

offspring trios) of European ancestry from the Centre d’Etude du

Polymorphisme Humain (CEPH) collection [8]. Genotype data

included 4,791 SNPs within the MHC region (chr6: 29–34 Mb)

assayed using the Illumina GoldenGate platform and classical

types for HLA-A, -B, -C, -DQA1, -DQB1, and -DRB1 at four-digit

resolution. We corrected a small number of HLA typing errors in

these samples using next-generation 454 sequencing at the class I

loci [22]. Of the CEPH individuals, we kept only founder

individuals on the basis of the known familial relationships.

We constructed the T1DGC reference panel based on data

collected in 5,225 unrelated individuals by the Type 1 Diabetes

Genetics Consortium (T1DGC). Genotype data included 7,135

SNPs within the MHC region assayed with the Illumina

Immunochip platform, and classical types for HLA-A, -B, -C, -

DQA1, -DQB1, -DPA1, -DPB1 and -DRB1 at four-digit resolution.

For both reference panels, we used the software package PLINK

[37] to remove SNPs with low minor allele frequency (,1%), high

proportion of missing genotypes (.5% across individuals), and out

of Hardy-Weinberg equilibrium (P,1026). We used the KING

software to test for relatedness between all individuals using the

genome-wide Immunochip data, and kept only unrelated individ-

uals [38]. We also performed principal components analysis on the

same data, and confirmed that the overwhelming majority of the

T1DGC individuals are of European ancestry (as judged by

overlap with European ancestry reference populations from

HapMap). The T1DGC reference panel can be obtained from

the NIDDK repository at https://www.niddkrepository.org/

niddk/home.do.

A key step in our approach is to impute not only classical HLA

alleles but also amino acid polymorphisms and SNPs. First, we

defined binary markers that correspond to the presence and

absence of each unique 2- and 4-digit HLA allele. Second, we

extracted the unique DNA and amino acid sequences for all

observed HLA alleles from the EMBL-EBI Immunogenetics HLA

Database [39] (http://www.ebi.ac.uk/imgt/hla/), and encoded

polymorphic nucleotide and amino acid positions as binary

markers in the reference panel. For a multi-allelic position, we

added a binary marker for each allele. For example, if one amino

acid position has three different alleles, we encoded the position

using three binary markers each corresponding to the presence

and absence of each allele. We also encoded separately insertions,

deletions or truncations using binary markers. The purpose of

converting all genetic variations into binary markers is to provide a

basic unit that can be flexibly tested in the downstream association

analysis. We removed markers (HLA alleles, amino acid positions,

etc.) with very low allele frequency (,0.01%). We used Beagle [18]

to phase genotype data into individual haplotypes, taking into

account familial relationships wherever available. The procedure

for generating a phased reference panel is fully implemented in our

software and made available. Overall, the HapMap-CEPH panel

comprises 180 haplotypes and the T1DGC panel 10,450

haplotypes.
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Imputation of Classical HLA Alleles and Amino Acids
Given SNP data of sample individuals, we imputed HLA

types using the HapMap or T1DGC extended reference panel.

First, we extracted SNPs located within the MHC region (chr6:

29–34 Mb on build 36/hg18), removed SNPs with minor allele

frequency ,2.5%, and checked the data to ensure that each

SNP is oriented on the same strand as the reference panel. We

used Beagle to impute all missing SNPs, classical HLA alleles,

and amino acid polymorphisms using default parameters (10

iterations of phasing/imputation, testing 4 pairs of haplotype

pairs for each individual at each iteration), but allowing a larger

window size (maxwindow=2000) for the Illumina Immunochip

than for the Affymetrix 500 K chip (maxwindow=1000). The

output includes posterior probabilities and allelic dosages for

each imputed variant, best-guess genotypes and phased haplo-

types for each individual.

Evaluation of Imputation Performance
To validate our imputation method, we utilized genotype data

in 918 individuals from the British 1958 Birth Cohort [40]. These

individuals have primarily Northern and Western European

ancestry, as confirmed by principal components analysis in the

WTCCC data [19]. Data for the British 1958 Birth Cohort were

obtained from the European Genome-phenome Archive (EGA) at

https://www.ebi.ac.uk/ega/. These individuals were genotyped

using the Affymetrix GeneChip 500 K platform (with 916 SNPs in

the MHC) and the Illumina Immunochip platform (with 7,563

SNPs in the MHC). In addition, these same subjects have gold-

standard 4-digit HLA genotypes (at HLA-A, HLA-B, HLA-C, HLA-

DRB1 and HLA-DQB1) generated by the Juvenile Diabetes

Research Foundation/Wellcome Trust Diabetes and Inflamma-

tion Laboratory.

For each imputation scenario, we calculated the imputation

accuracy at each HLA locus by summing across all individuals the

dosage of each true HLA allele in the individual, and divided by

the total number of observation (i.e. number of chromosomes).

Acc(L)~

P

n

i~1

Di(A1i,L)zDi(A2i,L)

2n

where Acc(L) represents the imputation accuracy at HLA locus L,

where L might be a classical HLA locus (e.g. DRB1) or an

individual polymorphic nucleotide or amino acid site. The

parameter n denotes the number of individuals, Di represents the

imputed dosage of an allele in individual i, and alleles A1i,L and

A2i,L represent the true (gold standard) HLA types for individual i

at locus L. If the individual was homozygous for a single allele

(defined by A1), we only included the A1 term in the calculation.

This scheme allows uncertain but partially correct imputations to

contribute to the overall accuracy.

To evaluate imputation performance in individual HLA alleles

and amino acids, we calculated the r2 correlation between imputed

and typed dosages for all HLA variants (encoded as bi-allelic

markers). For amino acid positions with two alleles, we used the

Pearson product moment correlation coefficient for two variables x

and y, which denote the imputed and typed dosages respectively in

n individuals.
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For amino acid positions with more than two alleles, we used a

variation of the Pearson r2 formula to determine the R2 correlation

between vectors of imputed and typed dosages, where each vector

contains the dosages for different amino acid alleles at a specific

position.
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where Xi represents the vector of imputed dosages for amino acids

at a single position for individual i, and Yi represents the vector of

typed dosages for amino acids at a single position for individual i

across n individuals in the independent data set.

Association Testing
We obtained the WTCCC genotype-phenotype data from the

European Genotype Archive (http://www.ebi.ac.uk/ega), and

imputed classical alleles and amino acids using the T1DGC

reference panel. After imputation, we checked that the

cumulative dosage of classical alleles of a given HLA locus

summed to ,2 for each individual. We used logistic regression

modeling to test the allelic dosages of all imputed variants

encoded by the T1DGC reference panel for association to

disease status. By simultaneously testing all markers including

HLA alleles, amino acids, and SNPs, we aim to avoid possible

bias in the interpretation that can happen if we only examine

one type of marker such as HLA alleles, since it is generally

unknown a priori which variations are driving the association. To

test individual amino acid positions, we test a model with all

amino acid alleles of a given position, fitting individual effects

for each of the alleles. The statistical significance is evaluated by

calculating the deviance (22 6 log likelihood) of the alternative

model compared to the null model.

Obtaining SNP2HLA
Instructions for obtaining SNP2HLA and the HapMap and

T1DGC reference panels can be found at http://www.

broadinstitute.org/mpg/snp2hla/. Beagle should be obtained

separately from the web site http://faculty.washington.edu/

browning/beagle/beagle.html.
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