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Abstract

Measuring complete gene expression profiles for a large number of experiments is costly. We
propose an approach in which a small subset of probes is selected based on a preliminary set of
full expression profiles. In subsequent experiments, only the subset is measured, and the missing
values are imputed. We develop several algorithms to simultaneously select probes and impute
missing values, and demonstrate that these probe selection for imputation (PSI) algorithms can
successfully reconstruct missing gene expression values in a wide variety of applications, as
evaluated using multiple metrics of biological importance. We analyze the performance of PSI
methods under varying conditions, provide guidelines for choosing the optimal method based on
the experimental setting, and indicate how to estimate imputation accuracy. Finally, we apply our
approach to a large-scale study of immune system variation.

Introduction

Gene expression profiling is commonly used to study regulatory mechanisms1 and to obtain
a comprehensive view of cellular state2. Both microarrays3 and RNA sequencing offer
powerful approaches to profile the transcriptome. However, they become problematic when
experimental variables vary along multiple dimensions, such as strains or individuals
assayed4–6, cell types7–10, heterogeneous tumor samples11, environmental conditions12,
chemical perturbations (e.g. drugs8) at different doses, genetic perturbations13,14, or
different time points15–19, since the number of measurements grows combinatorially. The
cost of genome-wide assays in experiments varying in even two dimensions is typically
prohibitive.

An alternative approach1,8,20,21 exploits redundancy to reduce costs by measuring a small
subset of “signature probes” cheaply using technologies such as bead assays22, RT-
PCR23,24, direct multiplexed measurement25, microfluidic dynamic arrays26 or hybrid
selection27. The information loss is balanced by the ability to perform more experiments.
Such signatures can be used to estimate similarity between samples14 or to infer a notion of
cellular state1.

Our probe selection for imputation (PSI) approach uses measurements of selected probes to
impute a target expression profile (Fig. 1). Broad imputation from a set of single nucleotide
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polymorphisms is used ubiquitously in genome-wide association studies, but to our
knowledge this idea has not been previously used with gene expression data. Limited
imputation has been performed previously without probe selection to fill in a few missing
measurements (usually up to 20%) interspersed in the gene expression matrix28–30,37.
Selection of small probe subsets was also proposed for classifying future samples31 (e.g., as
different disease states or outcomes21,32). Our approach couples probe selection and
imputation, simultaneously selecting a probe subset, and learning a predictive model of
genome-wide expression from measurements of the selected probes. Probes are selected to
maximize imputation accuracy using a training set of genome-wide profiles. Like standard
genome-wide expression measurements, imputed profiles can be used to infer cellular state,
identify differentially expressed genes, compare samples, or identify genes with similar
expression profiles.

Our tests demonstrate that PSI is effective and accurate in a wide variety of settings, using
multiple performance metrics of biological importance on relative and absolute scales.
Furthermore, we provide guidelines for applying PSI in new experiments, and an analysis of
its tradeoffs. The PSI software is freely available at http://ai.stanford.edu/~yonid/psi-1.0.zip.

Results

Methods overview

We designed and implemented 15 PSI methods based on established statistical theory
(Supplementary Note). In initial comparisons using five datasets, we identified three
methods that dominated performance on all datasets (Supplementary Fig. 1, Supplementary
Results). Our in-depth analysis below includes these three leading methods (referred to as
“PSI methods”) and two simple methods as baselines for comparison (Table 1a, Online
Methods).

Locally weighted averaging (LWA) uses sample similarity to impute probe measurements
within new samples as weighted averages of the entire training set. Weights are based on
similarities computed using the selected probes, and probes are chosen incrementally to
minimize the imputation error using leave-one-out cross validation. The regularized
Gaussian estimation (RGE) family of methods models the joint expression of all probes as a
multivariate Gaussian, which is then used to impute target probes. Selection is based on
minimizing conditional variance, which is equivalent to minimizing imputation error in this
model. The chosen RGE variant uses L2-regularization to estimate the inverse covariance
matrix. In structured regression (SR), selection and imputation are solved simultaneously
using sparse regression models. The chosen variant uses L1,∞ regularization.

We compared these methods to two baselines. Cluster representatives (CR) uses probe
similarity. It partitions the training data into clusters of probes with similar expression
profiles, and selects one representative probe for each cluster. The expression level of the
representative probe in new samples is assigned to all probes in the cluster. Nearest neighbor
(NN) is based on sample similarity. It identifies the training set sample most similar to the
new sample, and assigns expression values from the training set sample to the new sample.

We evaluated these methods on 12 datasets that vary in many dimensions, including the
organism, the number of samples, the number of probes, and the degree of sample
heterogeneity (Table 1b, Online Methods). Our experiments and analysis focused on probes
showing meaningful variation (referred to as “target probes”), since imputation is trivial for
probes whose training set expression level is nearly constant. We evaluated performance
using cross-validation, assessing imputation quality for samples not seen in the training set
relative to the measured “ground truth” complete expression profiles. The primary

Donner et al. Page 2

Nat Methods. Author manuscript; available in PMC 2013 May 01.

$
w

aterm
ark

-tex
t

$
w

aterm
ark

-tex
t

$
w

aterm
ark

-tex
t

http://ai.stanford.edu/~yonid/psi-1.0.zip


evaluation metric consisted of Pearson correlation coefficients (PCC) between imputed and
measured levels for each probe over the test set (ground truth PCC, gtPCC). Additional
metrics were used to evaluate the identification of differentially-expressed probes for
selection, and the clustering of probes and samples.

PSI is effective and accurate

gtPCC values for PSI methods significantly exceeded those for baselines on all datasets, for
any number of selected probes between 5 and 300 (Fig. 2a and Supplementary Fig. 2; P <
10−100, t-test). The imputations were accurate throughout the range of values seen in the data
(Fig. 2b) and the improvements over baselines were uniform across all PCC values
(Supplementary Fig. 3). To evaluate accuracy, we compared imputation error (E) to the
underlying noise in the data, estimated by the variance between biological replicates (V)
available for three datasets. Imputation errors were computed after averaging K replicates,
which reduced their variance by K, allowing separate estimation of the total imputation error
(E + V / K) and V. E + V / K was comparable to V on CMap (K = 2, Cohen’s d = 0.7585)
and imm (K = 3, Cohen’s d = −0.4974) and notably smaller than V on age (K = 5, Cohen’s d
= 1.8926), implying high accuracy relative to the dataset-specific noise (Fig. 2c).

We next analyzed performance using additional metrics of biological importance, starting
with identification of differential expression (Online Methods), evaluated on four datasets
using 5 to 300 selected probes (Fig. 3a). PSI methods outperformed baselines with overall
high accuracy (P < 10−6 for all comparisons except LWA vs NN on CMap, paired t-tests),
but between-dataset variability was considerable: on CMap, imm and TCGAg, PSI methods
(RGE in particular) achieved good results on absolute scales, with medians above 0.9 and
over 80% of sample area-under-curve values above 0.8 (Fig. 3b), while on pom the median
was 0.68. This variability emphasizes that imputations are predictions with confidence levels
that depend on signal/noise ratios of the training set data.

Clustering of gene expression is commonly used to analyze probe correlation structure. We
directly evaluated probe-probe correlations (PPC) between the measured and imputed
correlation matrices (Online Methods). As a baseline, we computed PCC between training
and test set empirical correlation matrices (trPPC), representing dataset-specific variability
in correlation structures. The PSI methods RGE and SR were far superior to baselines (Fig.
3c), and also exceeded trPPC with 50 or more selected probes, while CR was significantly
below trPPC and NN was inconsistent, suggesting that the imputations accurately preserved
similarity structures between probes (P < 10−6 for all comparisons, paired t-tests). The
correlations were preserved across all PCC values (Supplementary Fig. 4). Sample-sample
correlations (SSC), defined analogously to PPC, were also evaluated. CR performed better
and LWA worse relative to other metrics; RGE and SR led on high-performance datasets,
with performance above the tagSSC baseline, while on low-performance datasets, CR and
tagSSC were better (Supplementary Fig. 5 and Supplementary Results).

Guidelines for applying PSI

We next established “best use” guidelines for novel applications. The number of selected
probes represents a tradeoff between more complex and accurate imputation models and
higher costs. A cost-benefit analysis can determine the optimal number. We computed the
benefit as mean improvement in overall performance (gtPCC) per additional probe (Fig. 4a,
Online Methods), separating baseline performance from the accuracy gains of adding
selected probes. SR and RGE showed greater average gains than LWA, and CR showed the
largest gain, but due to low baseline performance it was outperformed by the leading
methods even at 300 probes. We also examined individual-probe PCC increases from
doubling the number of selected probes, across all datasets (Fig. 4b). The gains were
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uniform across the PCC range, demonstrating the tradeoff between marginal benefits and
costs.

Another tradeoff exists for RGE methods, where estimating covariance matrices for full
expression profiles requires considerable computational resources. We developed a lower-
complexity approximation (modular decomposition, MD) by estimating covariance matrices
over disjoint subsets (modules) of correlated genes (Supplementary Note). The number of
modules trades off accuracy and computational resources, since more modules imply
stronger assumptions on the probe covariance structure. Accuracy decreased with increasing
modularity on datasets with high overall performance (Fig. 4c) due to information loss
across module boundaries, but can improve if overall performance is low by focusing on
highly-predictive intra-modular interactions (r = −0.737 between gtPCC changes with
increasing modularity and predicted performance; Online Methods). Computational
demands typically increase and overall accuracy decreases with increasing numbers of target
probes, making MD useful in high-dimensional imputation tasks.

Next, we addressed the choice of PSI method. Among LWA, RGE and SR, the best-
performing method depended on the number of selected probes, target probes and training
set samples, and data set “linearity”, measured as the fraction of the variance explained by
the principal eigenvector of the matrix of inter-probe correlations (Online Methods). To
predict PSI performance according to the dataset and number of selected probes, we used the
logarithm of the product of the ratio of selected to target probes, the number of training
samples, and linearity (samples, probe-ratio, linearity; SPRL). More complex predictors
could assign weights to these components, but SPRL is simple, intuitive and requires no
parameter fitting.

We evaluated SPRL using a relative performance metric which assigns scores between 0-1
per probe (Online Methods). SPRL predicted the best-performing methods well (Fig. 5a),
with LWA leading for SPRL below −1, RGE/SR leading for SPRL above 1, and a transition
from LWA to the linear methods between −1 and 1 (Spearman’s rho between SPRL and
relative performance, LWA: −0.740, RGE: 0.717, SR: 0.567). Since LWA is nonlinear and
nonparametric, it can generate better predictions than parametric methods when very little
information is available to estimate parameters (few samples or low probe ratio).

SPRL also predicted overall imputation accuracy (Fig. 5b) without the need to run
computationally intensive cross-validation experiments (Spearman’s rho between SPRL and
gtPCC, LWA: 0.485, RGE: 0.735, SR: 0.743). The individual components of SPRL were
less accurate predictors (Supplementary Table 1).

PSI applied to ImmVar data

We applied PSI to select probes in the ImmVar Project (http://www.immvar.org/), a
collaborative study of the impact of human genetic variation on the expression of immune
genes in individuals with no known immunologic, inflammatory or infectious disease. Due
to the large number of samples (Online Methods), our goal was to define a reduced probe set
for signature genes that could be assayed using Nanostring25 and used to give global
expression profiles by imputation. We assembled a 58-sample training set from two
independent microarray datasets and used the filtering process in PSI to reduce the number
of probes to 2,175. Of these, 63 probes of interest were chosen in advance, and PSI was used
to select an additional 187 for a total of 250 signature probes (Online Methods).

The high linearity of this dataset (0.35) suggested that linear methods would perform well
despite the large number of target probes relative to the number of samples. We selected
probes and trained models for LWA, RGE and SR. A test set of 45 new microarray samples
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that encompassed genetic variation and T-cell activation was then generated (Online
Methods).

We compared the imputed expression values to those measured in the test set, across the
2,175 target probes. The linear method accuracies were very high, with PCC modes above
0.95 (Fig. 5c-d), demonstrating that probe selection successfully identified the probes whose
expression levels are most informative about the target probes, and imputation reconstructed
the target expression profiles with high precision using only those selected probes.
Importantly, probes selected in one dataset were used to generate high-accuracy imputations
on a different (but related) dataset. The probes selected by RGE are now being used by the
ImmVar Project for activated T-cell experiments.

Discussion

PSI can be applied when a training set can be assembled under conditions that are similar for
subsequent experiments. The ImmVar results demonstrate that moderate similarity between
the training set and subsequent experiments is sufficient to produce highly accurate
imputations. Furthermore, imputation from the selected probes predicted the mean of
biological replicates with greater accuracy than individual fully measured replicate profiles,
implying that information aggregation from multiple probes makes PSI methods robust to
noise.

Imputation error is low on average, but researchers may consider certain target probes
especially important. Individual probe imputation errors can be weighed accordingly by a
straightforward modification to the PSI objective function. Additionally, we analyzed probe
characteristics based on imputation error, demonstrating that high imputation errors are
strongly associated with measurement errors but not with gene functional classification
(Supplementary Fig. 6 and Supplementary Results), supporting the robustness of PSI.

Applying PSI to a new application requires choosing a method and the number of probes to
select. SPRL accurately positions applications on an axis that intuitively corresponds to
prediction difficulty, making it a valid tool for choosing a PSI method. Computational
demands also influence method choice. PSI methods scale well, except RGE, for which we
propose using modular decomposition as an approximation. Full time and space complexity
analyses are given in the Supplementary Note. Since the number of selected probes trades
off cost and accuracy, data alone cannot define an optimal number. SPRL can help estimate
overall imputation accuracy and choose a method given the number of selected probes.

Dataset characteristics strongly separate LWA from RGE and SR. LWA can model
nonlinear relationships, making it more suitable for low linearity datasets. RGE and SR are
parametric, and their accuracy depends on the number of parameters to be estimated (which
increases with more target probes) and the amount of training data (which increases with
more samples). LWA exploits global similarities in expression patterns, while RGE and SR
exploit local relationships between probes. Inferring the global state requires fewer probe
measurements than estimating many individual local relationships, explaining why LWA
produces better imputations using very few probes, but as additional probes are measured,
RGE and SR improve more rapidly using information on finer scales. This also explains
why using MD to reduce the number of parameters that need to be estimated is most useful
when the learning problem is difficult, as effectively captured by SPRL. Conversely, with
sufficient information to estimate a higher-complexity model, reducing the number of
parameters decreases performance.

To examine whether SR and RGE are limited by their linear nature, we developed a
nonlinear parametric method (RGME) based on estimating a mixture model (Supplementary
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Results). This method was inferior to the linear methods (Supplementary Fig. 7), suggesting
that the disadvantage of the linear methods in the low-performance settings is likely due to
the difficulty of estimating a large number of parameters from noisy data with few
observations, rather than nonlinear relationships between probes.

Although some of our imputation methods are based on similar statistical foundations to
previous work (PCA29,30 and linear regression28,37), the three leading methods were
developed here. The PSI paradigm is the first to propose a tight integration between
selection and imputation, based on a unified objective. Our proposed solution consists of
multiple methods, suitable for a wide range of applications, along with criteria for choosing
between them. Imputation uses information from the selected probes to predict target probe
expression with accuracy comparable to the similarity between biological replicates. These
characteristics make PSI a valuable new tool for understanding cellular networks and their
variations.

Online Methods

Software and data

A command-line tool implementing the three leading methods described in our paper (LWA,
RGE and SR), with full documentation, is available from the Nature Methods website and at
http://ai.stanford.edu/~yonid/psi-1.0.zip. The data sets used in this paper, in the format used
by this tool, are included in Supplementary Data.

Datasets and processing

We used the following data sets for evaluation of the methods:

• NCI6033, data retrieved from: http://discover.nci.nih.gov/nature2000/data/
selected_data/t_matrix1375.txt. 1,375 genes, 60 cell lines.

• Yeast stress dataset12. Data retrieved from: http://genome-www.stanford.edu/
yeast_stress/data/rawdata/complete_dataset.txt. The full data set contains 6,152
genes and 173 conditions. We also used a “filtered Gasch” data set with only the
788 probes with the highest variance. We refer to the full data set as “fg” and to the
filtered one as “gasch”.

• WormDB34, data retrieved from: http://www.computationalbio.com/Stanford/
KimLab/wormDB/index.php. 93 genes, 363 tissues. We use Supplementary Table 4
(http://download.cell.com/mmcs/journals/0092-8674/
PIIS0092867409011180.mmc6.zip) from Liu et al. (PMID 19879847). We refer to
this dataset as “worm”.

• AGEMAP35, a data set of gene expression in aging mice. AGEMAP covers 8,932
genes in 16 tissues. The data was retrieved from http://cmgm.stanford.edu/~kimlab/
aging_mouse/mouse_downloads.htm. We used all 16 tissues, and included only the
probes reported by the authors as significantly age-related from Table S5 (http://
www.plosgenetics.org/article/fetchSingleRepresentation.action?uri=info:doi/10.13
71/journal.pgen.0030201.st005). There are overall 128 samples (8 mice, 16 tissues)
with several biological replicates for each (usually 5). We averaged all the
replicates to get the final data set of 314 probes and 128 samples. We refer to this
data set as “age”.

• Breast cancer data from 78 patients21. The data was retrieved from: http://
www.rii.com/publications/2002/vantveer.html. The initial step of processing used
originally is the selection of about 5,000 genes that were significantly regulated
across the group of samples, defined as: “more than two-fold regulation and
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significance of regulation p < 0.01 in more than 5 experiments”. We applied these
criteria and used the resulting data set, which has 4,918 probes and 78 samples. We
refer to this data set as “vv”. The paper also identifies a breast cancer signature
using 231 probes. The list of probes is provided in the Supplementary Information
(table S2, http://www.nature.com/nature/journal/v415/n6871/extref/415530a-
s9.xls). We also included the signature-only data set of 231 probes and 78 samples
and refer to it as “vvsig”.

• Central Nervous System Embryonal Tumors20. The paper includes several data
sets, available from http://www.broadinstitute.org/mpr/CNS/. We used “Data Set
A”, which includes 42 samples, and is available from http://
www.broadinstitute.org/mpr/publications/projects/CNS/
Pomeroy_et_al_0G04850_1 1142001_datasets.zip. We applied the preprocessing
steps described there: re-scaling to account for different chip intensities,
thresholding, and the variation filters, as described in http://
www.broadinstitute.org/mpr/publications/projects/CNS/
Pomeroy_et_al_0G04850_1 1142001_suppl_info.doc. This resulted in 4,267
probes and 42 samples. We refer to this dataset as “pom”.

• The Immunological Genome36, with gene expression profiles of cells in the
immune system of mice. The raw CEL files were downloaded from Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), accession number
GSE15907, and normalized. The full data has 35,512 probes and 349 samples. A
variance filter was applied to select the 1,771 probes with the highest variance.
After averaging biological replicates, the data set has 1,771 probes and 126
samples. We refer to this data set as “imm”.

• Connectivity Map8, a data set generated at The Broad Institute. We used version 2,
which contains 6100 instances overall. We processed the data as follows: we
downloaded the raw CEL files from http://www.broadinstitute.org/cmap/ and
normalized them. From each drug perturbation sample we subtracted the mean of
the control experiments corresponding to that sample (in log2 space). We only used
instances for the MCF7 cell type (for which there is the largest number of
instances), and the highest concentration available for each drug. We averaged the
expression over biological replicates where available. These steps left us with 1,211
samples, each one corresponding to the averaged differential expression of the
highest concentration of a single drug relative to its control experiments. Next, we
filtered the probes to include only probes whose expression changed at least
threefold under at least five drugs. The resulting data set, to which we refer as
“CMap”, has 1,052 probes and 1,211 samples.

• The Cancer Genome Atlas. We generated two data sets using TCGA data: the first
uses microRNA expression from the experiment titled “MicroRNA Analysis of
TCGA GBM samples using Agilent MicroRNA array”. Data was retrieved using
the TCGA Data Portal at http://tcga.cancer.gov/dataportal/index.asp. This data set,
to which we refer as “TCGAm”, includes 534 probes and 379 samples. The second
dataset based on TCGA includes all gene expression samples for GBM generated
using the HT_HG-U133A chip. The experiment title is “TCGA Analysis of RNA
Expression for Glioblastoma Multiforme Using Affymetrix HT_HG-U133A”. The
data was also retrieved using the TCGA Data Portal. We used only the 601 genes
that were selected for the first round of glioblastoma multiforme (GBM) tumor
sequencing. This list is available from http://tcga.cancer.gov/dataportal/data/about/
types/sequencing/GBM_PhaseI.xls. Genes were matched to probes by name: exact
matches were found for 546 genes, and only those were included. This data set, to
which we refer as “TCGAg”, includes 546 probes and 386 samples.
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These data sets vary in their sample variance, measurement methods, and numbers of genes
and samples, allowing the comparison of the methods under different settings.

PSI methods

Following is a brief description of the selection and imputation processes of the leading and
baseline PSI methods. “Greedy selection” means that probes are selected incrementally, with
each subsequent probe selected to minimize the imputation error when using cross-
validation on the training set with the previously chosen probes together with the newly-
added one. Full mathematical and implementation details for all 15 methods are available in
the Supplementary Note.

In cluster representatives (CR), the data is clustered using the k-Means algorithm with
multiple random restarts to l clusters, and from each cluster, a representative probe is
chosen, such that the average distance to all probes in the cluster is minimized. Imputation is
done simply by using the value of the representative for the entire cluster.

In k-nearest neighbors (kNN and NN), probes are greedily selected. Imputation is done by
finding the k nearest neighbors in the training set (measured by Euclidean distance using
only the selected probes), and averaging them. With k = 1, this method is the baseline
“Nearest Neighbor” (NN).

In locally weighted averaging (LWA), imputations are weighted averages ∑wiXi of the
entire training set, with weights based on the Euclidean distance, measured on the observed
probes, between the training sample and the new sample: wi ∞ exp(γ∥Xi-Xnew∥2) with ∑wi
= 1. Probes are selected greedily together with the parameter gamma. We also used a variant
(Supplementary Note) where each probe has its own kernel width.

Regularized Gaussian estimation (RGE) is a family of methods which consist of learning a
generative Gaussian model of the training data using one of several estimation methods
described below. Probes are greedily selected to minimize the remaining variance of the
target probes (which is equivalent to the expected imputation error), conditioned on the
probes already selected: Tr(∑tt-∑ts(∑ss)

−1∑st) where ∑tt is the estimated covariance between
the target probes, ∑ss is the estimated covariance between the selected probes, and ∑st is the
estimated covariance between the selected and the target probes. Imputation is done by
computing the expected value of the unobserved probes given the observed ones in the
Gaussian model. We used the “L2Cov” variant.

In structured regression (SR), imputations are linear combinations of the selected probes.
The regression weights are learned simultaneously with the selection of probes by using a
structured prior based on the L1,∞ norm that yields solutions with many zero weights,
corresponding to unselected probes.

RGE covariance estimation variants

RGE methods estimate a Gaussian distribution over full expression profiles using the
training data. Probe are selected to minimize the prediction error in the model. Imputation is
done by computing the conditional expected value of the unobserved probes given the
observed ones in the Gaussian model. We developed several variants to estimate the
covariance matrix:

PCAC is a probabilistic PCA model estimated on the training data. The number of principal
components is chosen by cross-validation. An alternative method based on PCA was also
developed, which does not belong in the RGE family. This method, PCAR, uses PCA
regression. (Supplementary Note)
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In SCESS, the unbiased maximum-likelihood estimate of the covariance matrix is shrunk
towards a diagonal covariance matrix, with the shrinkage coefficient determined
analytically. In another variant, SCECV, the shrinkage coefficient is chosen using cross-
validation (Supplementary Note).

In L1Cov, a sparse precision matrix (the inverse of the covariance matrix) is estimated using
L1 regularization. L2Cov is similar, but uses L2 regularization on the precision matrix.
L2Cov is the variant that was chosen to represent the entire RGE family (Supplementary
Note)

In Soft Modular Gaussian (SMG), the precision matrix is estimated using L2 regularization,
where the variance of the Guassian prior for each entry in the precision matrix depends on
the Pearson correlation between the corresponding probe pair (Supplementary Note).

Regression variants

RGE methods use Gaussian generative models for the gene expression data and then select
probes and impute using the learned models. Regression methods are discriminative and do
not model the distribution over the selected probes. They predict the expression of the
unobserved probes as linear combinations of the observed ones. Greedy regression (GR)
methods use a stepwise procedure to select probes to minimize the imputation error.
Structured regression (SR) methods use sparse priors on the regression weights such that
only few probes have nonzero weights in the model, corresponding to selected probes. We
evaluated several variants, differing mostly in regularization:

L2Reg is the only GR variant, and uses L2 regularization for learning the weights. Selection
is done with a greedy algorithm since L2 regularization does not result in sparse weights.

GLL2 and L1Inf are SR variants and yield regression models that are sparse in the number
of probes which have nonzero weights. GLL2 uses a block-L1 norm, while L1Inf uses the
L1,∞ norm over the regression weights during the selection phase. The L1Inf variant
represents the regression family.

ImmVar data

The ImmVar study involves a cohort of 600 blood donors of African American, Asian and
Caucasian ancestry. In the expression component of the project, genome-wide expression
profiling is being performed on highly purified naïve CD4+ T lymphocytes and
CD14+CD16-. In the activation component, CD4+ T cells and monocyte-derived dendritic
cells from different individuals are activated in vitro to measure the activation response of
these two cell types. The activation component involves a large number of samples, which
vary across individual, ligand, cell type, and time point. Since genome-wide expression
profiling this many samples would be economically impossible, we elected to use PSI to
define a set of 250 signature genes from a limited number of microarrays.

We first assembled a training set from two independent datasets (see below). The first,
which provided a component of genetic variability, was generated from resting CD4+ T
lymphocytes from peripheral blood of 31 individuals, encompassing both genders and the
three ancestries. The second dataset corresponded to transcriptional changes elicited during
a time-course analysis of T cell activation. It was generated by activating blood CD4+ T
cells (pooled from 4 donors of mixed gender and ethnicity) with anti-CD3/anti-CD28 beads
in culture, for different periods of time (0, 45 minutes, 2, 4, 10, 24, 48 and 72 hrs). There
were 58 samples in the training set.
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The test set was generated by profiling purified CD4+ T cells from 15 different individuals
(covering all ethnic and gender groups), activated for 4 and 48 hrs with bead-bound anti-
CD3 and anti-CD28, thus encompassing both early and late phases of the T cell response.
This test set encompasses simultaneously genetic variation and cell activation.

ImmVar processing

For profiling of purified CD4+ T cells, blood PBMCs were isolated by Ficoll density
gradient centrifugation, stained with monoclonal antibodies reactive to
CD3/4/8/14/16/19/25/62L, and CD3+CD4+CD62Lhi cells were purified to >99% purity by
2 rounds of flow cytometric sorting on a FACS Aria. 50,000 cells were sorted directly into
Trizol for RNA preparation. Isolated RNA was amplified and prepared for hybridization to
the Affymetrix HuGene ST1.0 Array using the GeneChip Whole Transcript (WT) Sense
Target Labeling Assay. Raw data was normalized using the Robust Multichip Average
algorithm in the “Expression File Creator” module in GenePattern.

For profiling of activated cells, CD4+ T cells were isolated from whole blood by negative
selection using RosetteSep human CD4+ T cell enrichment cocktail and RosetteSep density
medium gradient centrifugation, then stored frozen. On the day of activation, CD4+ T cells
from 15 individuals were thawed, resuspended in RPMI supplemented with 10% FCS, and
plated at 50,000 cells per well in a 96-well plate. Cells were either left untreated as a
baseline control or stimulated with bead-bound anti-CD3 and anti-CD28 at a bead-to-cell
ratio of 1:1 for 4 hrs or 48 hrs. At each time point, a second step of purification of CD4+ T
cells was performed, with magnetic positive selection using the Invitrogen Dynal CD4
positive isolation kit (96-well format) prior to Trizol extraction of RNA, and microarray
profiling as above.

Prior to selection, we filtered the probes using two filters: first, probes must have an
expression level above 80 in at least 20% of the samples; second, probes must be
differentially expressed (defined as twofold change from the geometric mean) in at least 3
out of the 58 samples.

Identifying differential expression

We ranked the imputed expression profiles, generated receiver operating characteristic
(ROC) curves for varying thresholds of classifying a probe as differentially expressed, and
summarized the curves using the area under curve (AUC) metric. We evaluated different
variants of this metric and demonstrated them to be nearly equivalent in terms of ranking
(Supplementary Fig. 8 and Supplementary Results). In our main analysis we focused on the
most common case of identifying which probes in a new sample are likely to be
differentially expressed, using the common criterion of a twofold change from the mean. By
filtering out probes with very low variation, all remaining probes show a minimal degree of
differential expression, but not in every sample. This metric evaluates the ability of a
method to predict which probes will be differentially expressed in a new sample.

Statistical analysis

All experiments on the 12 main datasets were performed with 5-fold cross validation, using
for the analysis only the values of target probes imputed on the 1/5 of the data used as test
set within each split. Results were aggregated over splits by averaging or taking the median
(for gtPCC). Method-specific parameters were chosen using cross-validation within the
training set (4/5 of the data). Expression values were centered by subtracting the training set
mean within each training-test split. Metrics used: gtPCC, the median PCC over all target
probes; [GS/SS]DE[25]AUC, the area under curve of the ROC curve for identifying
differentially expressed probes in a new sample or samples in which a given probe is
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differentially expressed, 25 indicates the top 25% were used as differentially expressed
rather than twofold change from the mean; PPC/SSC, the PCC between the probe-probe/
sample-sample correlation matrix computed on the measured expression and the one
computed on the imputations, averaged over cross-validation splits; trPPC, the PPC using
the training set instead of the imputations; tagSSC, the SSC using selected probes instead of
using the imputations.

To compute the average improvement per additional probe we computed the slope of a
linear regression line fit to the gtPCC as a function of the number of selected probes, from
50 to 300.

To evaluate the change in imputation accuracy with an increasing number of modules, we
first computed Spearman rank-order correlation coefficients between the number of modules
used and gtPCC for multiple datasets and numbers of selected probes. The PCC of this
measure and a predictor of overall performance (SPRL) was used to assess the relationship
between overall accuracy and the accuracy change with increased modularity.

Linearity is computed as the fraction of the variance explained by the first (largest
eigenvalue) principal component of the probe-probe covariance matrix. 100 bootstrap
iterations were used to compute the mean and variance of the linearity estimator.

Relative performance is based on PCC for each probe, comparing the Fisher transformations
of the PCC of each method to the highest-correlated method for that probe by a z-score: let
rbest be the PCC of the best method on a specific probe, and r be the PCC of any method,
then the relative performance for that method is 2φ((n–3)½(arctanh(r)–arctanh(rbest))), where
φ is the CDF of the normal distribution. This relative metric gives a value of 1 to the best-
performing method, which continuously decreases to a minimum of 0, as the performance
drops farther from that of the best-performing method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
An integrated approach to probe selection and imputation. (a) A training set of full

expression profiles showing 50 selected probes (highlighted) out of 100. (b) The selected

probes are measured in new experiments. (c) Expression profiles of the missing probes are

imputed based on the 50 selected probes. (d) The true (measured) full expression profile of

the additional experiments. The selected probes (highlighted) are identical to (c), while the
imputed probes are similar, with small differences due to imputation errors.
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Figure 2.
Relative and absolute imputation accuracy. (a) Median Pearson correlation coefficients
between imputed and measured expression levels, using 5 to 300 selected probes, for eight

datasets. Error bars, s.e.m; n = number of target probes – number of selected probes. (b)
Density heatmaps comparing imputed and measured expression for representative datasets
and numbers of selected probes. Colors represent local probe density. Blue contour lines

represent regions of equal density. (c) Comparison of imputation error with variance in
biological replicates. Top: density heatmaps of probe-specific intra-replicate variance (x
axis) vs imputation error (y axis). Bottom: the distribution of intra-replicate variance (green
curve) and imputation errors (red curves) for varying numbers of selected probes.
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Figure 3.
Additional evaluation metrics of biological relevance. (a) Area under receiver operating
characteristic curve (AUC) values for identifying differentially-expressed probes in a new
sample as a function of the number of selected probes. Error bars, s.e.m; n = 1,211 (CMap),

349 (imm), 386 (TCGAg), 42 (pom). (b) CDF plots where for each AUC value (x axis), the
corresponding y axis value is the fraction of samples (y axis) with an AUC above that value.

(c) Preservation of probe correlation structure is indicated by PPC as a function of the
number of selected probes. The black curve corresponds to trPPC, the PPC value with
correlations estimated using the training set.
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Figure 4.
Cost-benefit analysis to determine the optimal number of selected probes and MD modules.

(a) Mean improvement in overall performance (gtPCC)with an additional selected probe,
measured as the slope of the regression line for gtPCC by number of selected probes. Error

bars, standard error of the slope. (b) Density heatmaps of PCC values using 2k vs k selected
probes (k = 50, 100, 150) for three PSI methods (n > 60,000 comparisons for each panel).

(c) gtPCC vs number of selected probes for various numbers of modules. Lighter greens,
more modules. Error bars, s.e.m; n = number of target probes minus number of selected
probes.
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Figure 5.
The samples, probe-ratio, linearity (SPRL) predictor and ImmVar results. (a) Relative
performance of methods as a function of SPRL. Data points were computed for each
combination of dataset and number of selected probes and interpolated to a smooth curve

using a Gaussian kernel (error bars, interpolation s.d.). (b) gtPCC values (y axis) as a
function of SPRL (x axis). Each point corresponds to one dataset, a specific number of
selected probes and the corresponding gtPCC value. Dashed lines, linear regression fits.

Bottom: ImmVar results. (c) Density heatmap comparing measured (x axis) with imputed (y

axis) expression levels. (d) Density histogram of Pearson correlation coefficients between
measured and imputed expression values for each probe, for 5 methods using 200 selected
probes each.
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Table 1

Methods and datasets.

(a) Methods used for comparison

Method Brief description

Locally weighted averaging
(LWA)

Weighted average of entire training set

Regularized Gaussian estimation
(RGE)

Model expression of complete probe set as
multidimensional Gaussian

Structured regression (SR) Linear regression of target probes using sparse priors

Nearest neighbor (NN) Sample-similarity baseline: use most similar training-set
sample

Cluster representatives (CR) Probe-similarity baseline: choose one representative probe
from each cluster

(b) Datasets used for comparison

Dataset Probes Samples Linearity* SPRL-1*

NCI6033 1,375 60 0.0423 0.0018

Gasch12 788 173 0.3596 0.0789

Full Gasch (fg)12 6,152 173 0.1725 0.0049

WormDB (worm)34 93 363 0.0629 0.2456

AGEMAP (age)35 314 40 0.5734 0.0745

van’t Veer (vv)21 4,918 78 0.0364 0.0006

van’t Veer signature (vvsig)21 231 78 0.1460 0.0493

Pomeroy (pom)20 4,267 42 0.0634 0.0006

ImmGen (imm)36 1,771 349 0.0741 0.0146

CMap8 1,052 1,211 0.0673 0.0775

TCGAg (http://cancergenome.nih.gov/) 546 386 0.0480 0.0340

TCGAm (http://cancergenome.nih.gov/) 534 379 0.5636 0.4

*
Linearity and SPRL are described in the text. SPRL-1 is computed for one selected probe.
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