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Here we describe three different methods for imputation. The first is
based on a reduced rank SVD of the expression matrix, the second is based on
K-nearest neighbor averaging, and the third is based on repeated regressions.
We demonstrate the techniques on the human tumor data and a subset of
the yeast data.

1 Imputation using the SVD

The singular value decomposition offers an interesting and stable method for
imputation of missing values in gene expression arrays. The basic paradigm
is

• Learn a set of basis functions or eigen-genes from the complete data.

• Impute the missing cells for a gene by regressing its non-missing en-
tries on the eigen-genes, and use the regression function to predict the
expression values at the missing locations.
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The regression paradigm also makes clear that to achieve good predictions,
the number of eigen-genes (predictors) should be quite a bit smaller than the
number of non-missing observations.

1.1 SVD imputation using a clean training set

Let X be the N × p expression matrix. For the human tumor cancer data
these numbers are 6830× 64. Let Xc be the subset of complete genes (2069)
and Xm the remainder with at least one missing value per row. Consider the
truncated SVD of Xc:

X̂c
J = UJDJV T

J (1)

where DJ is a diagonal matrix containing the leading J ≤ p singular values
of Xc, VJ and UJ the corresponding orthogonal matrices of J right and left
singular vectors. This rank-J SVD can be characterized in several ways. One
that suits our purpose is that it provides the best rank-J matrix approxima-
tion to Xc; i.e. it solves the problem

min
M rank J

||Xc −M ||2 (2)

where || · || denotes the Frobenius (sum-of-squares) norm.
We now interpret the solution from a regression point of view. Let x be

any row of Xc, and consider the least squares regression of the p values in x
on the eigen-genes v1, v2, · · · , vJ , each p vectors. This regression solves the
least squares approximation problem

min
β
||x− VJβ||2 = min

β

p∑

�=1

(x� −
J∑

j=1

v�jβj)
2 (3)

with solution β̂ = (V T
J VJ)−1V T

J x = V T
J x (since VJ is orthogonal) and fitted

values x̂ = Vjβ̂. Thus XcVJ = UJDJ gives all the regression coefficients for

all the rows, and X̂c = UjDJV T
J all the fitted values. So once the VJ are

found, the SVD approximates each row of Xc by its fitted vector obtained
by regression on VJ .

This also suggests that for a row x from Xm with some missing compo-
nents, we can impute the missing values by a similar regression:

min
β

∑

� non-missing

(x� −
J∑

j=1

v�jβj)
2 (4)
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Let V ∗
J be the shortened version of VJ , with the appropriate rows removed

(corresponding to the missing elements of x). The solution to (4) is β̂ =

(V ∗
J

T V ∗
J )−1V ∗

J
T x∗, and the predictions for the missing elements are V

(∗)
J β̂,

where V
(∗)
J represents the complement in VJ to V ∗

J . Note that the columns
of V ∗

j are no longer orthogonal.
There are no intercepts in the regressions (3) and (4). It is customary

to center the data before computing the SVD. This amounts to subtracting
the ith row-mean mc

i = 1/p
∑p

�=1 Xc
i� from each element in row i. Since the

eigen-genes will each have mean zero, including an intercept in the regression
in (3) is trivial: it is the mean of x. Since the columns of V ∗

J no longer have
mean zero, we have to explicitly include an intercept in the regressions in
(4).

One needs to select an appropriate order J . We suggest a method based
on simulation later in this report.

1.2 SVD imputation using all the data.

The approach described so far implies the availability of a reasonable set of
complete genes, and the incomplete ones do not contribute to the SVD basis.
This can be wasteful if many genes have missing entries, and not possible
if every gene has missing entries. For the tumor data, about two thirds of
the genes have missing entries, so this approach is feasible. We now describe
another approach, using all the data (and explicitly including the intercepts).

Solve the following problem:

min
UJ ,VJ ,DJ

||X −m1T − UJDJV T
J ||∗ (5)

Here || · ||∗ is a squared matrix norm, but a special one. It sums the squares
of all the elements, except ignores those entries where X has missing data.
m is a vector of means, one element per row of X. If there were no missing
entries, the solution is standard: m is the vector of row means of X, and UJ ,
VJ , and DJ are obtained from the rank-J SVD of the centered X. Once the
rank-J solution is “found” to this problem, use it to fill in the missing values
for X.

It is natural to use iterative methods to solve this problem.

1. Initially set the missing entries to the mean of the non-missing entries
for each row, producing a complete matrix X0. Set i = 0.
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2. Compute the SVD solution to (5) for the complete matrix X i, and
produce X i+1 by replacing the missing values in X by the fitted values
from this solution.

3. Set i← i+1 and repeat step 2 until ||M i−M i+1||/||M i|| is below some
threshold ε (10−6), where M i is the entire fitted matrix (plus intercept)
at the ith stage.

In practice this algorithm converges quite rapidly, typically 5 or 6 iterations.
Now here are two interesting facts:

1. The solution to this (5) is a fixed point of the iterative algorithm out-
lined above. In other words, if we solve (5), fill in the missing values,
and then compute the usual SVD of this ”complete” matrix, we get
back the solution to (5). This suggests that the iterative algorithm
might converge to the solution to (5).

2. Suppose we take the eigen-genes obtained from the solution to (5), and
impute the missing values using the regression approach in (4). The
imputations are the same as those obtained from (5).

The proofs are easy. For claim 1, the postulated solution makes zero error
at the imputed values, and is best (in a sum-of-squares sense) at every other
value. Hence any other solution would increase the sum-of-squared errors.

For claim 2, consider (5) and fix VJ at the solution values. The squared
matrix norm || · ||∗ is a sum of squared vector norms, one for each gene. Each
one is a least squares regression problem, summing over the non-missing
entries, as in (4). Hence (5) also solves each of these problems, and in fact
the entries of M∞ (the converged solution)

2 Nearest-neighbor imputation

One concern with the SVD method is that it does a lot of borrowing strength
from the bulk of the data, and may not do well for unusual genes not well
represented by the leading eigen-genes. At the other end of the global-local
spectrum we find nearest-neighbor methods.

Here is a simple K nearest neighbor algorithm for imputing the missing
values in x∗:

4



0
2

4
6

8

0 1 5 10 15 20 max

Rank

A
bs

ol
ut

e 
E

rr
or

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 4 4
4 4

5
5

5 5
5

5
5

6

6
6

6

6 6

6

0
2

4
6

8

1 3 5 7 9

K - # Nearest Neighbors

A
bs

ol
ut

e 
E

rr
or

1 1 1 1 1

2 2 2 2 2

3
3 3 3 3

4
4 4 4 4

5
5 5 5 5

6
6 6 6 6

1 50%
2 75%
3 90%
4 95%
5 99%
6 99.9%

Human Tumor Data

Figure 1: Absolute errors of the SVD (left) and Knn imputations using the human
tumor data. Missing data were imposed at random on the clean set Xc. In the left
plot the missing entries were imputed using the SVD algorithm (5) for different
ranks. Rank 0 corresponds to imputations using the mean, and max uses as many
eigen-genes as possible. Shown are boxplots of the absolute errors, as well as
selected quantiles. In the right plot, we see the corresponding picture for different
size Knn imputations.
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Figure 2: Absolute errors of the SVD (left) and Knn imputations using a subset
of the yeast data. The notation is as in figure 1.
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1. Compute the Euclidean distance between x∗ and all the genes in Xc,
using only those co-ordinates not missing in x∗. Identify the K closest.

2. Impute the missing coordinates of x∗ by averaging the corresponding
coordinates of the K closest.

Figure 5 shows that K = 5− 10 is a good choice for the tumor data.

3 Imputation using regression

This technique is really intended for the case when the columns are variables,
and the rows realizations of the variables. It is a standard EM approach for
fitting multivariate gaussian means and covariances in the presence of miss-
ing data, and the imputed values come as a by-product.(Jerome Friedman,
personal communication.) The idea is, for each j, to use regression of column
j on every other column but j to impute the missing values in column j. In
detail, for each column j in turn

1. Remove the rows of X which have missing values in column j.

2. Fit the regression of the clean column j on all the other columns (of
this reduced X).

3. Use the coefficients from the regression to make predictions at the miss-
ing locations in column j.

Since their are missing observations in the other columns as well, this will not
work as stated. Instead we use an iterative version (EM), where we always
have imputed guesses (starting with the row averages) in each of the missing
locations, and the imputations are updated as we proceed. The imputed
values are used for the predictors in each regression, but not in the column
designated as response.

This method seems to work very well, having a slight edge on both the
Knn and SVD methods on the two arrays considered here. The iterations
are rather slow to converge (as is typical of the EM).

The method could be generalized by using regression methods other than
linear regression, such as regression trees, to perform the imputation for each
column. In fact when CART is used, one can avoid iteration, because it can
handle missing data in the predictors.
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Figure 3: Absolute errors of the best SVD and Knn compared with the regression
method, for both data sets.
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4 Simulation to find J or K

For the tumor data, the expression values are not missing at random. More
than 200 genes are missing in 10 or more positions, which is almost a zero
probability event under the MAR assumption. In order to create realistic
missing patterns, we randomly assign missing values to the elements in the
2069 rows of Xc by sampling 2069 rows from the 6830 rows of X, and use
their missing locations. This lead to similar missing structure for the clean
data set (70% missing rows, 3.3% missing values overall.)

For this contaminated version of Xc we impute the missing values for a
range of values of J for the SVD, and a range of values of K for the Knn
method. The boxplots in figure 5 are the absolute errors incurred, pooling 5
such random realizations.

The same strategy was used for the yeast data, which had 1.5% missing
data, and 8% missing rows.

Figure 3 compares for both arrays, the best of the SVD and Knn with
the regression technique. Although there is not much in the comparisons, it
looks like the regression method has a slight edge.

5 Discussion

This is a working paper, and may change in the future. For a detailed
comparison of these techniques, see Troyanskaya, Cantor, Sherlock, Brown,
Hastie, Tibshirani, Botstein & Altman (2001).

References

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani,
R., Botstein, D. & Altman, R. B. (2001), ‘Missing value estimation
methods for dna microarrays’, Bioinformatics 17(6), 520–525.

9


