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Abstract: This contribution is concerned with joint angle calculation based on inertial

measurement data in the context of human motion analysis. Unlike most robotic devices,

the human body lacks even surfaces and right angles. Therefore, we focus on methods

that avoid assuming certain orientations in which the sensors are mounted with respect

to the body segments. After a review of available methods that may cope with this

challenge, we present a set of new methods for: (1) joint axis and position identification; and

(2) flexion/extension joint angle measurement. In particular, we propose methods that use

only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic

field. We provide results from gait trials of a transfemoral amputee in which we compare the

inertial measurement unit (IMU)-based methods to an optical 3D motion capture system.

Unlike most authors, we place the optical markers on anatomical landmarks instead of

attaching them to the IMUs. Root mean square errors of the knee flexion/extension angles

are found to be less than 1◦ on the prosthesis and about 3◦ on the human leg. For the

plantar/dorsiflexion of the ankle, both deviations are about 1◦.

Keywords: inertial measurement units; gait analysis; gyroscopes and accelerometers; avoid

magnetometers; exploit kinematic constraints; sensor-to-segment mounting; joint axis and

position identification; joint angle measurement; validation against optical gait analysis;

validation on prosthetic and human leg
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1. Introduction

1.1. Inertial Measurement Units

Inertial sensors, also known as inertial measurement units (IMUs), measure acceleration, angular

rate and the magnetic field vector in their own three-dimensional local coordinate system. With proper

calibration, the axes of this local coordinate system represent an orthonormal base that is typically

well aligned with the outer casing of the sensor. In addition to the mentioned inertial measurement

signals, some commercially available devices incorporate algorithms that provide estimates of the

sensor’s orientation with respect to a global fixed coordinate system (see, e.g., [1]). This orientation

can be represented by a quaternion, a rotation matrix or Euler angles. A number of algorithms

have been proposed for sensor orientation estimation [2]. Typically, these algorithms employ

strap-down-integration [3] of the angular rates to obtain a first estimate of the orientation. The drift

in the inclination part of the IMU’s orientation is eliminated using the assumption that the measured

acceleration is dominated by gravitational acceleration [4]. Similarly, the estimation of the IMU’s

azimuth (or heading) requires the use of magnetometer measurements. Therefore, the presence of

magnetic disturbances (as induced, e.g., by ferromagnetic material) may limit the accuracy of the

orientation estimates, as demonstrated in [5,6]. We shall keep these limitations in mind, while we discuss

methods for IMU-based joint angle estimation in the remainder of this article.

1.2. Robotic Hinge Joint vs. Human Knee

Since this contribution is concerned with IMU-based human gait analysis, we briefly highlight one of

the major challenges of this task. Although many of the following statements are true in more general

cases, we will focus our arguments on hinge joints (or pin joints, or knuckle joints), i.e., joints with one

rotational degree of freedom, as depicted in Figure 1. It has been demonstrated in many publications,

e.g., [7] and the references therein, that inertial measurement data can be used to calculate hinge joint

angles when at least one IMU is attached to each side of the joint. In most robotic and mechanical

applications, the sensors can be mounted in such a way that one of the local coordinate axes coincides

with the hinge joint axis; see, e.g., [7,8]. In that case, the hinge joint angle can be calculated by

integrating the difference of both angular rates around the corresponding coordinate axis. Since even

the most precise calibration will yield a non-zero bias, this calculated angle will be subject to drift.

However, multiple techniques have been suggested to eliminate this effect using additional information

from the accelerometers and/or the magnetometers, e.g., [7].

Similarly, inertial measurement units can be used to calculate hinge joint angles on the human body,

for example on the knee joint (we will discuss the fact that the human knee is not a perfect hinge joint

in Sections 2 and 3.3). However, there is a very important difference between the human leg and most

robotic setups: It is very difficult to attach IMUs to the leg in such a way that one of the local coordinate

axes coincides exactly with the knee joint axis. There have been some attempts (see, e.g., [9,10]), but

since the human body lacks even surfaces and right angles, the accuracy of such approaches is limited.

In contrast, the body straps that are commonly used to attach IMUs to the leg yield an almost arbitrary

orientation of the IMU towards its segment, as illustrated in Figure 1. Nevertheless, the hinge joint angle
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can be calculated from the inertial measurement data. However, the data from both sensor units must

be transformed into joint-related coordinate systems [11], i.e., coordinate systems in which one or two

axes coincide with the joint axis and/or the longitudinal axis of the segment. This is a major challenge in

IMU-based joint angle measurement, not only on hinge-type joints. How it might be faced is discussed

in Section 1.3 by reviewing common methods from the literature and in Section 3.1 by introducing new

approaches that exploit the kinematic constraints of the joint. Furthermore, we will analyze in Section 2

how these techniques have been used by different authors to calculate knee joint angles. Finally, we

will introduce a novel method for the measurement of flexion/extension angles on the knee and ankle in

Section 3.2 and compare it to an established method in Section 4.

Figure 1. The placement of inertial sensors on the human body, the definition of joint angle

and a model of a hinge joint. (a) The local sensor coordinate axes are not aligned with the

physiological axes and planes by which the joint angle, α, is defined; (b) the coordinates

of the joint axis direction (green arrows) and the joint position (blue arrows) in the local

coordinate systems of the sensors characterize the sensor-to-segment mounting.
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1.3. Arbitrary Mounting Orientation and Position

A fundamental problem in IMU-based human motion analysis is that the IMUs’ local coordinate axes

are not aligned with any physiologically meaningful axis; see Figure 1 for an illustration. First, we shall

note that in some publications, this problem is ignored completely by assuming that the IMUs can be

mounted precisely in a predefined orientation towards the joint; see, e.g., [9,10]. As can also be seen in

the figures therein, this is a rather rough approximation. In the more realistic and, from a user’s point

of view, more convenient case of arbitrary mounting orientation, it is required to identify the joint axis

coordinates in the local coordinate systems of the sensors attached to both ends of the joint.

As illustrated in Figure 1, the sensor-to-segment mounting orientation and position are characterized

by the local coordinates of the joint axis and the joint position, respectively. Both quantities might be

measured manually, but in three-dimensional space, this is a cumbersome task that yields low accuracy

results, as demonstrated, e.g., in [9,12]. Fortunately, at least for axis direction, alternatives exist. A

common approach is to do this via calibration postures and/or calibration movements. Some authors,

e.g., [13,14], make the subject stand with vertical, straight legs for a few seconds and use the acceleration
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measured during that time interval to determine the local coordinates of the segment’s longitudinal

axis. Additional sitting calibration postures are used in [13]. Besides static postures, predefined

calibration motions can be used to identify the coordinates of physically meaningful axes in the upper

and lower sensor coordinate system. Examples can be found in Figure 2 and in [14–16]. Moreover,

a combination of postures and motions might be used to identify the sensor-to-segment orientations,

as e.g., in the Outwalk protocol [17,18]. It employs pure flexion/extension motions and static poses

to find the local coordinates of joint-related axes. Finally, the protocol used in [19] solves a closed

kinematic chain to refine joint axis and position coordinates that have been obtained from a combination

of calibration postures, predefined motion and manual measurements of body dimensions. However, it

is important to note that, both in calibration postures and calibration motions, the accuracy is limited by

the precision with which the subject can perform the postures or motions. Nevertheless, the mentioned

methods for joint axis identification make a major contribution to the quality of IMU-based joint angle

measurements. Therefore, most of the methods that are reviewed in Section 2 employ such techniques.

In Section 3.1.1, we will introduce a new method that, unlike previous approaches, identifies the local

joint axis coordinates from arbitrary motion data by exploiting kinematic constraints.

Figure 2. Examples for calibration motions that are used in the literature [14,15,17–19] to

determine the coordinates of physiologically meaningful axes, e.g., the knee joint axis, in

the local coordinate systems of the sensors. In such methods, the precision depends on how

accurately the subject performs the motion. In contrast, the present approach uses arbitrary

motions and identifies the sensor-to-segment mounting by exploiting kinematic constraints.

Sensor-to-segment calibration using: arbitrary motions →
. (see [20] for animations)
. precisely defined motions
. ւ ↓ ց

Besides the need of knowing the joint axis, some joint angle algorithms require additional knowledge

of the joint position in local sensor coordinates; see, e.g., [9,21,22]. Furthermore, it has been

demonstrated by Young [23] that joint position vectors can be used to improve the accuracy of body

segment orientation estimates if the kinematic constraints of the joints are exploited. Vice versa,

kinematic constraints have been used by Roetenberg et al. to estimate the joint positions based on

accelerations and angular rates measured during motion, as briefly described in [21]. The method is

also mentioned as an optional part of the body segment orientation Kalman filter described in [22]. In

Section 3.1.3, we will propose a new method that exploits the same constraints, but uses a nonlinear least

squares technique.
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2. Brief Review of IMU-Based Knee Angle Estimation

Many algorithms and techniques have been suggested for IMU-based knee angle estimation. Despite

the variety of approaches, the vast majority of authors defines the flexion/extension angle of the knee

joint as the angle between the upper and lower leg along the main axis of relative motion, i.e., the

knee joint axis [9,13,14,24]. In other words, the projections of the upper and lower leg into the joint

plane, to which the joint axis is normal, confine this angle; see Figure 1. However, we shall note that

considering the knee as a hinge joint is an approximation. Although flexion/extension is the major degree

of freedom, a biological joint, such as the knee, is not perfectly constrained to rotation around one axis.

This is often addressed by additionally considering abduction/adduction and internal/external rotation,

which leads to a three-dimensional knee joint angle, as in [10,14,25]. However, abduction/adduction and

internal/external rotation angles hardly ever exceed a range of ±10◦ [14,26] and are strongly affected by

soft-tissue artifacts [27,28]. Therefore, these additional degrees of freedom are not considered in many

publications, e.g., [9,13,17,18,24].

As mentioned before, the simplest approaches in the literature assume that the IMUs are attached

such that one of the local coordinate axes is aligned with the joint axis. Integrating the difference

of the upper and lower sensor’s angular rates around that axis will yield a drifting flexion/extension

angle. In [10], this drift was removed using a high-pass filter. In another publication with the same

mounting assumption, it was demonstrated that the joint angle can also be estimated from the measured

accelerations if the position of the joint in both local coordinate systems is known [9]. Thereby, a root

mean square error (RMSE) of less than 4◦ with respect to an optical reference system was achieved.

Although both techniques may seem restricted to a special sensor mounting, they are just as helpful in

the case of arbitrary mounting orientation, as long as the local joint axis coordinates are known.

A fundamentally different approach is found in [13]. After identifying the segment’s longitudinal

axis coordinates, the authors calculate the thigh’s and shank’s inclination and approximate the

flexion/extension angle by the difference of these inclinations. Thereby, they achieve an RMSE of

approximately 7◦ with respect to an optical reference system. However, their method is bound to

the assumption that the knee axis remains horizontal during the entire motion. While that might be

an acceptable approximation for most walking and running situations, this assumption does not hold

during quick direction changes and for a number of other motions, like skating, hurdles or martial arts.

In [24], the aforementioned method has been advanced. Instead of assuming a horizontal knee axis,

the authors model the knee as a pure hinge joint and exploit its kinematic constraints using an extended

Kalman filter. Thereby, they are able to calculate flexion/extension angles in good accordance with an

optical reference system, both at the speed of running (8 km/h, RMSE < 4◦) and walking (3 km/h,

RMSE < 1◦). Approximately the same precision for walking is achieved in [14]. Here, however, the

complete orientation of each IMU with respect to a global reference coordinate system is calculated

using a fusion algorithm that combines gyroscope and accelerometer measurements. Similarly, the

algorithm used in [21,22] estimates sensor orientations from accelerations and angular rates. In [29],

an RMSE below 4◦ was achieved by combining that algorithm with the Outwalk protocol mentioned

in Section 1.3. Finally, a mean error (RMSE not available) below 2◦ was reported for the proprietary

algorithm used in [30]. While it employs calibration poses and optional calibration motions to identify
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sensor-to-segment orientations (and, thus, the joint axis coordinates), the algorithm uses a biomechanical

model and kinematic constraints to overcome integration drift [19].

It is important to note that almost all the mentioned RMS errors were obtained with the reference

system markers being rigidly attached (usually in clusters on rectangular or L-shaped cardboard or plastic

tiles) to the inertial sensors in order to eliminate the effect of soft tissue and skin motion artifacts on

the measured joint angle difference [21,30]. The only exception from this statement is the work of

Takeda et al. [13], who placed optical markers on anatomical landmarks, as it is common practice in

optical gait analysis. However, they obtain a significantly larger RMS error than those authors who

connected the reference markers to the IMUs. This means that most previous publications only compare

the measurement accuracy of the optical and the inertial system, instead of comparing the results of an

optical gait analysis to those of an inertial gait analysis. We believe that this aspect has received too little

attention in previous publications. Therefore, we will place optical reference markers on anatomical

landmarks during the experiments in Section 4, although this might increase the observed error.

Which of the reviewed methods is most suitable for a specific application depends also on the available

sensor information. In many of the mentioned publications, the orientations of the thigh and shank are

used to calculate the flexion/extension angle [13,14,18,24]. This is straight forward if reliable sensor

orientation estimates are available and if the local joint axis coordinates are known. However, knowing

the joint axis allows one to reduce the problem to one dimension immediately. Therefore, especially

if reliable orientation estimates are not immediately available, it might be advantageous to use one of

the methods in [9,10] instead or to combine them in a new way. We will examine both approaches in

Sections 3.2 and 4.

3. New Methods for Inertial Sensor-Based Joint Angle Measurement

As explained in Section 1, handling arbitrary sensor-to-segment mounting is a major challenge in gait

analysis with inertial sensors. Manual measurements, as well as calibration poses and movements, are

commonly suggested solutions. Furthermore, we pointed out that the use of magnetometers is typically

limited by the assumption of a homogeneous magnetic field. In this section, we describe a set of methods

for IMU-based joint angle estimation that allow us to face these two challenges in a new way. We will

combine elements of the methods reviewed above, but unlike most previous attempts, we will:

• avoid sensor-to-segment mounting assumptions;

• require no manual measurements of any distances, etc.;

• not rely on the accuracy with which the subject performs predefined postures or movements;

• and avoid the use of magnetometers.

Instead of employing any of these commonly used assumptions and restrictions, we make use of the

fact that the knee joint behaves approximately like a mechanical hinge joint. The kinematic constraints

that result from this fact are exploited to obtain the position vector and the direction vector of the knee

flexion/extension axis in the local coordinates of both sensors. As outlined above, this information is

crucial to precise joint angle calculation. We will use it to fill the gap between the sensor coordinate
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systems and the joint-related coordinate systems in which the angles are defined. Subsequently, this will

allow us to calculate flexion/extension joint angles on joints with a major axis of motion, for example

the knee and the ankle during walking. All of the methods that we will introduce use only angular rates

and accelerations, while the use of magnetometer readings is completely avoided.

Before we describe the respective algorithms, let us define the available measurement signals. Assume

that two inertial sensors, one attached to the upper leg and the other attached to the lower leg, measure

the accelerations, a1(t), a2(t) ∈ R3, and angular rates, g1(t), g2(t) ∈ R3, at some sample period,

∆t. Additionally, we calculate the time derivatives ġ1(t), ġ2(t)∈ R3 of the angular rates via the third

order approximation:

ġ1/2(t) ≈
g1/2(t− 2∆t)− 8g1/2(t−∆t) + 8g1/2(t+∆t)− g1/2(t+ 2∆t)

12∆t
(1)

3.1. Identification of the Joint Axis and Position

Both the location of the sensors on the segments and their orientation with respect to the segments are

assumed to be completely unknown. In particular, we do not assume that any of the local sensor axes

coincides with the knee joint axis or the longitudinal axis of the segment or bone. Therefore, neither

the direction nor position of the knee flexion/extension axis are known. However, these coordinates can

be identified from the measurement data of arbitrary motions by exploiting kinematic constraints, as

explained in [12]. The first step of this identification is the gathering of identification data, while the

knee is moved around its degrees of freedom in an arbitrary manner (i.e., we do not assume any type

of particular motion, like walking or motions in a certain direction). About every tenth of a second, a

dataset, S(i), of the form:

S(i) = {a1(ti), a2(ti), g1(ti), g2(ti), ġ1(ti), ġ2(ti)} (2)

is recorded (of course, the time between taking two datasets must be a multiple of the sample period,

i.e., ∆t|(ti+1 − ti) ∀i). Thereby, a total number of N ≫ 1 datasets are collected, which will be used in

the subsequent sections to identify local joint axis and position coordinates.

3.1.1. Identification of the Joint Axis Coordinates

The datasets, S(i), i ∈ [1, N ], are used to identify the unit-length direction vectors, j1, j2 ∈ R3, of the

knee flexion/extension axis in the local coordinates of both sensors. It is important to note that j1 and j2

are constants and depend only on the orientation in which the sensor is mounted with respect to the joint.

As explained in [12], the angular rates, g1(t), g2(t), measured on a hinge joint differ only by the joint

angle velocity vector and a (time-variant) rotation matrix. Hence, their projections into the joint plane

(i.e., the geometrical plane to which the joint axis is the normal vector) have the same lengths for each

instant in time, which is equivalent to:

||g1(t)× j1||2 − ||g2(t)× j2||2 = 0 ∀t (3)

where || · ||2 denotes the Euclidean norm. This constraint holds regardless of where and in which

orientation the sensors are mounted on the segments. In particular, every dataset, S(i), i ∈ [1, N ], must
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fulfill Equation (3). We can therefore identify j1 and j2 by minimizing the left-hand side of Equation (3)

for all datasets in a least squares sense. More precisely, we write j1 and j2 in spherical coordinates:

j1 = (cos(φ1) cos(θ1), cos(φ1) sin(θ1), sin(φ1))
T (4)

j2 = (cos(φ2) cos(θ2), cos(φ2) sin(θ2), sin(φ2))
T (5)

and define the sum of squared errors:

Ψ(φ1, φ2, θ1, θ2) :=
N
∑

i=1

e2i , ei = ||g1(ti)× j1||2 − ||g2(ti)× j2||2 (6)

Figure 3 depicts the typical form of this cost function. Since Equation (3) is invariant with respect

to the signs of j1 and j2, this cost function has four minima, which correspond to the four possible

combinations of signs, (j1, j2), (−j1, j2), (j1,−j2) and (−j1,−j2). By minimizing Ψ(φ1, φ2, θ1, θ2) over

its arguments, we identify these true joint axis coordinates. This optimization might be implemented

using a Gauss-Newton algorithm, as further described in [12], or any other standard optimization

method [31].

Figure 3. Sum of squares Ψ(j1, j2) of the error in the kinematic constraint (3). The two

minima represent the true local coordinates, j1 and −j1, of the joint axis direction vector.

3.1.2. Matching Signs of the Joint Axis Coordinates

In Section 3.2, we will use j1 and j2 to approximate the gyroscope-based joint angle velocity by

g1(t) · j1 − g2(t) · j2. Therefore, it is important to ensure that the signs of j1 and j2 match, i.e., that

they point to the same direction. In practice, this can easily be achieved by a quick look at the sensor’s

mounting orientation. An example is given in Figure 1b, where the z-axis of both sensors point roughly

laterally (i.e., the coordinate axis points into the lateral half space, which is an easy observation; we do

not restrict the mounting orientation in any way). If instead, to give another example, the local y-axis

of the first sensor points roughly medially, while the local z-axis of the second sensor points roughly

laterally, then the x-coordinate of j1 and the z-coordinate of j2 should have opposite signs. In case the

mounting of the sensors cannot be observed, the correct pairing of the signs can also be determined from

the inertial data itself. As a first step, we choose a period from the identification data during which the

angular velocities around the joint axis were negligible, i.e., g1(t) · j1 ≈ 0, g2(t) · j2 ≈ 0. Then, as
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demonstrated in Figure 4, the traces of the angular rates in the local joint planes of the two sensors reveal

the correct pairing. They are congruent up to rotation if the signs match, and they are rotated mirror

images of each other if the signs do not match. For the present data analysis, this step is implemented as

an automatic routine in the joint axis identification algorithm.

Figure 4. Projection of the measured angular rates of both sensors into the joint plane

(defined by the coordinates in Equation (13)) for a motion with little flexion/extension. In

both plots, the projections have the same length at each moment in time, cf. Equation (3).

However, when the joint axis signs match, the two curves are congruent up to some rotation

around the origin, while in the case of opposite signs, they are mirror images of each other.
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3.1.3. Identification of the Joint Position Coordinates

For a number of methods in the literature and for one of the methods that will be introduced in

Section 3.2, it is useful to determine the position of the sensors with respect to the joint, i.e., in other

words, the joint center position in the local coordinates of the sensors. Again, it should be noted that

the vectors, o1, o2 ∈ R3, from the joint center to the origin of the first and the second sensor frame are

constants that do not change during motion and only depend on the mounting position and orientation.

A method is introduced in [12] that allows us to determine these quantities on spheroidal joints from

the inertial data of arbitrary motions that excite all degrees of freedom of the joint. It exploits the fact

that the acceleration of each sensor can be thought of as the sum of the joint center’s acceleration and

the acceleration due to the rotation of that sensor around the joint center. Apparently, the acceleration

of the joint center must be the same in both local frames, up to some time-variant rotation matrix

that corresponds to the rotation of both local frames to each other. Mathematically, this constraint is

expressed by:

||a1(t)− Γg1(t)(o1)||2 − ||a2(t)− Γg2(t)(o2)||2 = 0 ∀t (7)

Γgi(t)(oi) := gi(t)× (gi(t)× oi) + ġi(t)× oi, i = 1, 2

where Γgi(t)(oi) is the radial and tangential acceleration due to rotation around the joint center. By

subtracting Γgi(t)(oi), the measured acceleration, ai(t), is shifted by −oi yielding the acceleration of the

joint center.
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In [12], this argument is given for spheroidal joints only. However, the very same constraint also holds

on a hinge joint. Every point on the hinge joint axis is a solution of Equation (7). More precisely, every

pair of coordinates, o1, o2, that describes a point on the joint axis fulfills that constraint for any given

motion that the joint might perform. Therefore, we use the same arbitrary motion data, S(i), i ∈ [1, N ],

as in Section 3.1.1, and define another sum of squared errors:

Ψ̃(o1, o2) :=
N
∑

i=1

e2i , ei = ||a1(t)− Γg1(t)(o1)||2 − ||a2(t)− Γg2(t)(o2)||2 (8)

We minimize Ψ̃(o1, o2) over its arguments via a Gauss-Newton algorithm, the implementation of

which is described in [12]. As mentioned above, any other optimization method [31] might be employed

as well. Since the result of that optimization, denoted by ô1, ô2, refers to an arbitrary point along the

joint axis, we shift it as close as possible to the sensors by applying:

o1 = ô1 − j1
ô1 · j1 + ô2 · j2

2
, o2 = ô2 − j2

ô1 · j1 + ô2 · j2
2

(9)

which uses the previously identified joint axis coordinates. For the present data analysis, this step is

implemented as the final step of an automatic algorithm for joint position identification.

3.2. Calculation of the Flexion/Extension Angle

We assume that the local joint axis coordinates, j1, j2, and the local joint position coordinates,

−o1,−o2, have been successfully identified using the methods described above. As explained in

Section 1.3, this is crucial for IMU-based joint angle measurement. The identified values of j1, j2 and

o1, o2 are now used to calculate the flexion/extension angle of an anatomical joint with one major degree

of freedom. While we consider a knee joint to explain the methods, we extend them to the more general

case of saddle and spheroidal joints in Section 3.3.

Figure 5. Two algorithms for IMU-based knee angle calculation are considered.

(Left) Sensor orientation estimates are used to calculate the orientational difference (i.e.,

the joint angle) around a given axis. (Right) The problem is reduced to one dimension

immediately by integrating the difference of the angular rates around the joint axis. Then, an

acceleration-based joint angle estimate is used to remove drift.
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Figure 5 shows the main ideas of the two methods for joint angle measurement that we will describe.

The first method assumes that each IMU provides highly accurate estimates of its orientation with respect

to a common fixed reference coordinate system. Together with the local joint axis coordinates, these

orientations directly yield an accurate flexion/extension angle. This approach is well known from the

literature [13,14,29]. The second and novel method reduces the problem to the joint plane from the very

start by integrating both angular rates only around the joint axis, which yields a highly accurate, but

slowly drifting, joint angle. This angle is combined in a sensor fusion with a noisy, but driftless, joint

angle estimate that is calculated from the measured accelerations. At this point, the second method also

uses the joint position vectors, but unlike the first method, it does not rely on magnetometer readings.

3.2.1. Joint Angle from Sensor Orientation Estimates

As mentioned previously, some inertial sensors include on-board orientation estimation, which

is usually based on a sensor fusion of the acceleration, angular rate and magnetic field vector

measurements. These estimates describe the orientation of the sensors with respect to a fixed reference

coordinate system, either in quaternions, rotation matrices or Euler angles. As mentioned in Section 2,

it is an established method to use sensor orientation estimates for the calculation of joint angles; see,

e.g., [13,14,29]. In the following, we assume that the orientation of both sensors with respect to a

common fixed reference frame (i.e., the reference frame must be identical for each sensor) are given by

rotation matrices, which we denote by R1(t) and R2(t). They shall be defined, such that they transform

a locally measured vector into the reference frame, i.e., we have R1(t)j1 = R2(t)j2 ∀t. Under these

circumstances, the flexion/extension angle αacc+gyr+mag(t) can simply be computed as:

αacc+gyr+mag(t) = ∢3d (R1(t)(j1 × c), R2(t)(j2 × c)) , c ∦ j1, c ∦ j2 (10)

where ∢3d( ) denotes the (signed) angle between two vectors in R3 and c ∈ R3 can be any vector that

makes none of the vector products zero (e.g., c = [1, 0, 0]T can be used, unless j1 or j2 happens to

be exactly [±1, 0, 0]T ). It is important to note that, by construction, this joint angle can only be as

precise as the employed sensor orientation estimates, and it might be drifting if the orientation estimates

are drifting.

3.2.2. Joint Angle from Accelerometer and Gyroscope Readings

In the following, we will compute the flexion/extension angle only from accelerations and angular

rates. A gyroscope-based flexion/extension angle can be calculated by integrating the difference of the

angular rates around the joint axis, i.e.,

αgyr(t) =

∫ t

0

(g1(τ) · j1 − g2(τ) · j2)dτ (11)

Furthermore, the knowledge of the joint axis coordinates allows us to employ many of the restrictive

methods from the literature reviewed above, which require the sensor axes to coincide with joint axes or

segment axes. In particular, we can extend the approach used in [9] to three-dimensional space. We shift

the measured accelerations onto the joint axis by applying:
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ã1(t) = a1(t)− Γg1(t)(o1), ã2(t) = a2(t)− Γg2(t)(o2) (12)

with Γg1/2(t)(o1/2) defined in Equation (7). As explained in Section 3.1.3, ã1(t) and ã2(t) are the same

quantity measured in two different local coordinate systems, which rotate with respect to each other

around one axis. Therefore, the flexion/extension angle can be approximated by the angle between

the projections of ã1(t) and ã2(t) into the joint plane (ideally, the two angles are identical, but due to

measurement inaccuracies, it is rather an approximation). Consequently, we define a pair of joint plane

axes x1/2, y1/2 ∈ R3 for each local frame:

x1 = j1 × c, y1 = j1 × x1, x2 = j2 × c, y2 = j2 × x2, c ∦ j1, c ∦ j2, (13)

and we calculate the accelerometer-based joint angle by:

αacc(t) = ∢2d

([

ã1(t) · x1

ã1(t) · y1

]

,

[

ã2(t) · x2

ã2(t) · y2

])

(14)

where ∢2d( ) denotes the (signed) angle between two vectors in R2. The resulting angle, αacc(t), is not

affected by drift, since we did not employ any integration to calculate it. We shall note that the above

equations are sensitive to measurement errors if the shifted accelerations, ã1/2(t), are almost collinear

with the joint axes j1/2. However, in almost every practical situation, the gravitational acceleration

dominates the acceleration signals a1(t), a2(t) and ã1(t), ã2(t). Therefore, the errors should only be

significant when the knee axis is close to vertical or during the periods in which the knee is strongly

accelerated in the medial or lateral direction. Both situations are rare in walking and most other motions

of sports or daily activities. Please also note that Γg1/2(t)(o1/2) in Equation (12) is typically small

compared to gravitational acceleration and therefore sensitivity to inaccuracies in o1, o2 is low.

Figure 6 shows the typical course of the two angles, αgyr(t) and αacc(t), that we derived in this

subsection. The gyroscope-based angle is very precise on short time scales, but exhibits some slow

drift of about 1.5 ◦/s (please note that the drift depends on the the bias of the gyroscopes). The

accelerometer-based angle does not drift, but it is affected by the accelerometer noise and seems to

be less reliable in moments of large acceleration changes. Therefore, it is advantageous to combine both

angles using a standard tool of sensor fusion, e.g., a complementary filter [32] or a Kalman filter. The

result shall be denoted by αacc+gyr(t). A simple implementation example is given by:

αacc+gyr(t) = λαacc(t) + (1− λ) (αacc+gyr(t−∆t) + αgyr(t)− αgyr(t−∆t)) , λ ∈ [0, 1] (15)

Figure 6 presents the result of the sensor fusion for a weight λ = 0.01 and a sample period

∆t = 0.02 s. As demonstrated, αacc+gyr(t) does not follow the spikes of the acceleration-based angle

and also does not exhibit the drift of the gyroscope-based angle. In Section 4, we will examine how

accurate this IMU-based flexion/extension angle measurement is.
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Figure 6. Sensor fusion of the gyroscope-based and the accelerometer-based knee angle of a

leg prosthesis. The noisy, but driftless, angle, αacc(t), is combined with the very precise, but

drifting, angle, αgyr(t), using the complementary filter (15). The resulting angle, αacc+gyr(t),

is accurate on small and on large time scales.

3.3. Extension to Saddle and Spheroidal Joints

The method that was introduced in the previous subsection assumes that two segments are connected

by a joint with one rotational degree of freedom. As mentioned before, the human knee is not exactly

such a hinge joint, since it admits some rotation in the frontal and the transversal plane of up to about

8◦ [26]. These motions are even stronger when saddle or spheroidal joints, e.g., the ankle or the hip,

are considered. Therefore, we briefly discuss the influence of these additional motions on the methods

proposed above. Since the joint position estimation introduced in Section 3.1.3 exploits the kinematic

constraint of a spheroidal joint, it works just as well when such motions occur, as demonstrated in [12]

for ankle joints. Likewise, the joint axis estimation, which exploits the kinematic constraint (3) of a

hinge joint, can be employed on saddle and spheroidal joints. However, it will always identify the main

axis of motion, i.e., the axis that minimizes the sum of squares in (6). This means that other motion may

occur. However, while the identification data is recorded, flexion/extension must be dominant in order

to obtain the corresponding axis. In Section 4, we will demonstrate that, in the case of the ankle joint,

data from normal walking is sufficient to properly identify the dorsiflexion/plantarflexion axis.

The calculation of joint angles, as described above, is limited to rotations around the identified joint

axis in both methods. While both methods might also be adapted and employed for abduction/adduction

and inversion/eversion angle measurements, we focus only on flexion/extension. As mentioned above,

this is in accordance with numerous authors [9,13,17,18,24]. Nevertheless, small additional rotations

in the other dimensions do not affect any of the geometrical arguments used in the algorithms above.

Therefore, they can be employed for flexion/extension angle measurement on real saddle or spheroidal

joints, e.g., the hip or the ankle. In Section 4, we will examine how accurate these methods work on the

plantar/dorsiflexion of ankle joints.

4. Experimental Results and Discussion

The two methods that were introduced in Section 3 are now evaluated in repeated gait experiments

with a transfemoral amputee (age 40, height 182 cm, weight 83 kg, K-Level 4, i.e., the highest level of
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the Amputee Mobility Predictor). The subject is wearing a leg prosthesis and has given informed consent

to the investigations. Reflection markers are placed on the body segments of the subject at corresponding

physiological landmarks; see Figure 7. The 3D positions of these markers are recorded at 120 Hz by an

optical motion tracking system with ten cameras (Vicon V612 [33]). Furthermore, we use elastic body

straps to equip the upper and lower leg, as well as the foot, of both the prosthesis and the contralateral leg

with one inertial measurement unit (Xsens MTw [1]) each, as depicted in Figure 7. At a measurement

rate of 60 Hz, these six devices provide 3D accelerations and angular rates in local coordinates, as well as

estimates of sensor orientations with respect to a common global reference frame. We neither restrict the

mounting of the IMUs to certain locations or orientations, nor do we measure these quantities. Instead,

the subject is instructed to perform circling motions of the upper leg, the lower leg and the foot with a

few arbitrary changes in direction and amplitude. This motion is executed for about ten seconds on both

sides (see Figure 2 and [20] for an illustration). The methods from Sections 3.1.1 and 3.1.3 are used

to estimate the knee axis direction and position, as well as the ankle joint position on both sides from

the recorded inertial data. Subsequently, the subject walks repeatedly about ten meters at a self-selected

speed on a straight line within the range of an optical gait analysis system and far away from potential

magnetic disturbances. The data that is gathered during these walking trials is, on the one hand, used

to identify the ankle plantar/dorsiflexion axis on both sides. On the other hand, we calculate the knee

flexion/extension angles and the ankle plantar/dorsiflexion angle of both legs using the methods from

Sections 3.2.1 and 3.2.2.

Figure 7. Placement of inertial measurement units and optical markers on the legs of a

transfemoral amputee. The optical markers are placed at the typical physiological landmarks.

The IMUs are attached using body straps without restricting their position or orientation.

The resulting ankle and knee angle traces of two different trials are provided in Figures 8 and 9.

The difference between the prosthesis and the human leg is considerable, but this aspect is outside the

focus of this manuscript and, therefore, shall not be discussed here. For additional orientation, gait

phase transitions are indicated, which were detected based on inertial measurement data from the foot
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sensor using an offline version of the algorithm described in [34,35]. With respect to the optical system,

both IMU-based methods achieve a root-mean-square deviation of less than 0.6◦ on the prosthesis side

and more than 3◦ on the contralateral side. The deviations of the subsequent trials are summarized in

Table 1. In all trials, both IMU-based approaches yield similar values, although they use the inertial data

in completely different ways.

Figure 8. Comparison of the two IMU-based knee flexion/extension angle measurements

(αacc+gyr+mag(t) and αacc+gyr(t)) with the result of an optical gait analysis system (αopt(t)).

On the prosthesis side, there is no significant deviation (epr < 0.6◦). However, on the

contralateral side, skin and muscle motion effects, which are strongest during push-off and

heel-strike, lead to RMS errors ecl of almost 4◦.
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Figure 9. Comparison of the two IMU-based ankle plantar/dorsiflexion angle measurements

(αacc+gyr+mag(t) and αacc+gyr(t)) with the result (αopt(t)) of an optical gait analysis system.

Both on the prosthesis side and on the contralateral side, the deviation is about 1◦.
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Table 1. Deviations between the knee flexion/extension and ankle plantar/dorsiflexion angle

measurements of the optical and the inertial system for six gait trials of a transfemoral

amputee. Results are given for αacc+gyr only, since both methods yield very similar results.

The deviations vary little (σ ≈ 1◦). For the knee angles, the same difference in the accuracies

of the prosthesis and human leg is observed as in Figure 8.

Trials RMSE

1 2 3 4 5 6 σ Average

knee
prosthesis 0.46◦ 0.89◦ 0.59◦ 0.95◦ 0.57◦ 0.77◦ 0.19◦ 0.71◦

contralateral 3.25◦ 2.76◦ 3.10◦ 3.16◦ 0.40◦ 3.83◦ 1.20◦ 3.30◦

ankle
prosthesis 0.92◦ 1.03◦ 0.91◦ 0.65◦ 0.67◦ 0.69◦ 0.16◦ 0.81◦

contralateral 0.95◦ 1.50◦ 1.25◦ 1.53◦ 1.85◦ 2.61◦ 0.57◦ 1.62◦

It is important to note that the errors on the human leg are about four times larger than on

the prosthesis. One might suppose that this is because of the human knee being less close to a

perfect hinge joint. However, we just explained in Section 3.3 that the IMU-based algorithms ignore

abduction/adduction and internal/external rotations, just as the optical analysis does. Therefore, a more

reasonable explanation is found in the following remarkable difference between the two sides: on the

prosthesis, the IMUs and the optical markers are rigidly connected by the artificial thigh and shank.

However, on the human leg, the inertial sensors and the markers move relative to each other as a result

of muscle and skin motions. This argument is supported by the fact that deviations between optical

and IMU-based angles are largest during push-off and heel strike, i.e., when the leg is accelerated and

decelerated. Furthermore, there are a number of experimental studies (see Section 2) in which the optical

markers were placed directly on the inertial sensors or onto rigid plastic or wood parts that also held the

inertial sensors. In these studies, deviations of less than 2◦ were observed, which further supports the

argument that the deviations in Figure 8 result from skin and muscle motions.

5. Conclusions

In the previous sections, we discussed methods for IMU-based joint angle measurement on the human

body. Special attention was dedicated to the challenge of arbitrary mounting orientation and position.

We proposed a set of methods that allow us to determine the local joint axis and position coordinates

from arbitrary motions by exploitation of the kinematic constraints of the joint. We believe that these

methods are more practical and more robust than previously suggested methods that require the subject

to perform a precise calibration movement or pose than methods that require one to attach the sensors in

specific positions or orientations

In addition, we described two methods for the calculation of precise flexion/extension angles on

hinge, saddle and spheroidal joints. The first method is known from the literature and requires precise

estimates of the sensors’ orientations with respect to a common fixed reference frame. The second and

novel method employs only accelerometer and gyroscope readings. Since the use of magnetometers

is avoided, it can be used indoors and in the proximity of magnetic disturbances. Both methods were

evaluated against an optical gait analysis system on the gait of a transfemoral amputee. We obtained
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highly precise results with RMSE of about 1◦ on the ankle joints, as well as on the prosthetic knee, and

discussed the effect of skin and muscle motions on the contralateral knee, which led to slightly larger

deviations of about 3◦. Future research will be dedicated to the question of how these effects can be

compensated for or minimized.

Furthermore, the proposed algorithms are such that it is straight forward to implement them for online

use. Therefore, and since they supersede manual measurements and precise calibration movements, these

new methods open the door to a plug-and-play gait analysis, in which one simply attaches the IMUs,

moves the legs for a few seconds and then receives joint angle measurements in real time. This will be

the subject of our future research, including extensions for 2D and 3D angle measurements on ankle and

hip joints.
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