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Abstract— In this paper, we address the problem of ex-
trinsically calibrating an inertial measurement unit (IMU)
with respect to an RGBD sensor. In particular, we study the
observability of the nonlinear IMU-RGBD calibration system
and prove that the calibration parameters are observable given
observations to a single point feature. Moreover, we show that
the system has four unobservable directions corresponding to
the global translation and rotations about the gravity vector.
Based on the results of the observability analysis, we design a
consistency-improved, observability constrained (OC) extended
Kalman filter (EKF)-based estimator for calibrating the sensor
pair while at the same time tracking its pose and creating a 3D
map of the environment. Finally, we validate the key findings
of the observability analysis and assess the performance of the
OC-EKF estimator both in simulation and experimentally.

I. INTRODUCTION AND RELATED WORK

In many robotic applications (e.g., search and rescue,

environmental monitoring, planetary exploration, etc.), it is

necessary to precisely know the robot’s 3D position and

orientation (pose). Over short periods of time, a robot

can track its pose by fusing rotational velocity and linear

acceleration measurements provided by an IMU. However,

the integration of the bias and noise contaminating the IMU

signals, makes the resulting estimates unreliable. For this

reason, most inertial navigation systems (INS) rely on GPS

measurements for bounding the estimation errors. For robots

operating in GPS-denied areas, alternative sensors, such as

cameras, have been employed for aiding INS, in what is

known as vision-aided (V)-INS. Specifically, by processing

observations of point features detected in images, a camera

can provide periodic corrections to the inertial estimates

(e.g., [1]). Although the small size, low weight and power

requirements of cameras make them ideal for mobile robots,

their inability to provide the depth to the scene poses certain

challenges. In particular, a feature needs to be reliably

tracked across multiple images and the baseline between

them must be accurately estimated in order to determine the

depth to it. Moreover, imprecise depth estimation can cause

large linearization errors which can reduce the estimation

accuracy and even lead to divergence.

An alternative to V-INS would be to fuse IMU measure-

ments with observations from an RGBD camera, such as

the Microsoft kinect [2], which directly measures the depth

to the scene. To do so, however, one needs to precisely
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determine the 6 degrees of freedom (dof) transformation be-

tween the two sensors. Although numerous algorithms have

been developed for IMU-noise characterization (e.g., [3]) and

for intrinsically calibrating cameras (e.g., [4]) and RGBD

sensors (e.g., [5]), to the best of our knowledge, there exists

no algorithm for IMU-RGBD extrinsic calibration. Instead,

one could potentially use methods designed for IMU-camera

calibration (e.g., [6], [7], [8], [9], [10]). However, these

would result in sub-optimal calibration accuracy since they

would neglect the depth information available in the RGBD

data. Furthermore, to date the conditions under which the

IMU-RGBD calibration parameters are observable are not

known. Previous efforts to study the observability properties

of the IMU-camera calibration system have either relied

on known calibration targets [8], or employed an inferred

measurement model (i.e., assuming the camera observes its

pose in the global frame, up to scale), which requires a non-

minimal set of visual measurements [9].

In order to address these limitations, this paper makes the

following key contributions:

• We study the observability of the nonlinear system

describing the IMU-RGBD camera calibration and for

the first time prove that although the system is unobserv-

able, the unknown 6-dof transformation lies within its

observable subspace and can be determined even when

only one (previously unknown) point feature is detected.

In this analysis, we do not make any assumptions about

the prior location of the feature or the pose of the cam-

era and do not rely on inferred camera measurements as

is the case in [8], [9]. This is achieved by employing a

new methodology for studying the observability of non-

linear systems [11] which employs appropriate change

of variables for isolating the unobservable modes of the

system.

• We analytically determine the vectors spanning the

unobservable directions of the IMU-RGBD calibration

system and use them in order to improve the consis-

tency of the EKF designed for estimating the unknown

calibration parameters.

• We validate the performance of the developed estimator,

both in simulation and experimentally, when performing

simultaneous localization, mapping, and IMU-RGBD

calibration.

The rest of the paper is structured as follows. In Section II-

A, we briefly describe the method of Hermann and Krener

[12] for studying the observability of nonlinear systems and

discuss the challenges for proving that a system is unobserv-



able when following this method. In Section II-B, we present

the approach introduced in [11] that employs change of

variables to appropriately factorize the observability matrix

and determine its unobservable directions. In Section III,

we apply this method to the specific problem of IMU-

RGBD calibration and show that although the calibration

parameters are observable, the global position and rotation

about the gravity vector are not. In Section IV, we present the

observability-constrained (OC) EKF algorithm we developed

for determining the unknown transformation and briefly

discuss how its consistency [13] is improved using the results

of Section III. In Section V, we assess the performance of

the OC-EKF algorithm both in simulation and experimentally

and verify its consistency. Finally, Section VI presents the

conclusions of this work and provides possible directions of

future research.

II. NONLINEAR SYSTEM OBSERVABILITY ANALYSIS

In this section, we provide a brief overview of the method

in [12] for studying the observability of nonlinear systems

and then introduce a new methodology for determining its

unobservable directions.

A. Observability Analysis with Lie Derivatives

Consider a nonlinear, continuous-time system:
{

ẋ = f0(x) +
∑l

i=1 fi(x)ui

y = h(x)
(1)

where u =
[
u1 . . . ul

]T
is its control input, x =

[
x1 . . . xm

]T
is the system’s state vector, y is the system

output, and fi, i = 0, . . . , l are the process functions. The

zeroth-order Lie derivative of a measurement function h is

defined as the function itself [12]:

L
0h = h(x) (2)

while the span of the ith order Lie derivative is defined as:

∇L
ih =

[
∂Lih
∂x1

∂Lih
∂x2

. . . ∂Lih
∂xm

]

(3)

For any ith order Lie derivative, Lih, the i+ 1th order Lie

derivative L
i+1
fj

h with respect to a process function fj can

be computed as:

L
i+1
fj

h = ∇L
ih · fj (4)

The observability matrix O of system (1) is defined as a

matrix with block rows the span of the Lie derivatives of

(1), i.e.,

O =










∇L
0h

∇L
1
fi
h

∇L
2
fifj

h

∇L
3
fifjfk

h

...










(5)

where i, j, k = 0, . . . , l. Based on [12], to prove that a system

is observable, it suffices to show that any submatrix of O
comprising a subset of its rows is of full column rank. In

contrast, to prove that a system is unobservable and find

its unobservable directions, we need to: (i) show that the

infinitely many block rows of O can be written as a linear

combination of a subset of its block rows, which form a

submatrix O′; and (ii) find the nullspace of O′ in order to

determine the system’s unobservable directions. Although

accomplishing (ii) is fairly straightforward, achieving (i)

is extremely challenging especially for high-dimensional

systems, such as the one describing the IMU-RGBD camera

calibration. If the system’s unobservable directions are given,

[14] provides a method to solve for the system’s observable

modes. However, this method does not overcome the diffi-

culty of finding a nonlinear system’s unobservable directions.

To address this issue, in the following section, we present

a new methodology that relies on change of variables

for proving that a system is unobservable and finding its

unobservable directions. In addition, our proposed method

directly determines the observable modes with which we can

construct an observable system.

B. Observability Analysis with Basis Functions

We start by proving the following:

Theorem 1: Assume that there exists a nonlinear trans-

formation β(x) =
[
β1(x)

T . . . βt(x)
T
]T

(i.e., a set of

basis functions) of the variable x in (1), such that:

(A1) h(x) = h′(β) is a function of β.

(A2)
∂β
∂x

· fi, i = 0, . . . , l, are functions of β;

(A3) β is a function of the variables of a set S comprising

system (1) Lie derivatives from order zero up to order p,

with p < ∞.

Then:

(i) The observability matrix of (1) can be factorized as:

O = Ξ ·B, where B ,
∂β
∂x

and Ξ is the observability matrix

of the following system (6).
{

β̇ = g0(β) +
∑l

i=1 gi(β)ui

y = h′(β)
(6)

where gi(β) ,
∂β
∂x

fi(x), i = 0, . . . , l.
(ii) System (6) is observable.

(iii) null(O) = null(B).
Proof: (i) Based on the chain rule, the span of any Lie

derivative ∇L
ih can be written as:

∇L
ih =

∂Lih

∂x
=

∂Lih

∂β

∂β

∂x
(7)

Thus the observability matrix O of (1) can be factorized as:

O =










∇L
0h

∇L
1
fi
h

∇L
2
fifj

h

∇L
3
fifjfk

h

...










=













∂L0h
∂β

∂L1

fi
h

∂β
∂L2

fifj
h

∂β
∂L3

fifj fk
h

∂β

...













∂β

∂x
= Ξ ·B (8)

Next we prove that Ξ is the observability matrix of the

system (6) by induction.

To distinguish the Lie derivatives of systems (1) and (6),

let I denote the Lie derivatives of system (6). Then, the span



of its zeroth-order Lie derivative is:

∇I
0h′ = ∇I

0h =
∂h

∂β
=

∂L0h

∂β
(9)

which corresponds to the first block row of Ξ.

Assume that the span of the ith order Lie derivative of (6)

along any direction can be written as ∇I
ih′ = ∂Lih

∂β
, which

corresponds to a block row of Ξ.

Then, the span of the i+1th order Lie derivative ∇I
i+1
gj

h′

with respect to the process function gj can be computed as:

∇I
i+1
gj

h′ =
∂Ii+1

gj
h′

∂β
=

∂(∇I
ih′ · gj)

∂β
=

∂(∂L
ih

∂β
· ∂β
∂x

fj(x))

∂β

=
∂(∂L

ih
∂x

· fj(x))

∂β
=

∂Li+1
fj

h

∂β
(10)

which is also the corresponding block row of Ξ. Therefore,

we conclude that Ξ is a matrix whose rows are the span of all

the Lie derivatives of system (6), thus Ξ is the observability

matrix of system (6).

(ii) In (A3), β is defined as a function of variables

in a set S comprising a subset of the Lie derivatives of

system (1). Hence if we can prove that the Lie deriva-

tives in set S are all observable, the state β of system

(6) is also observable. In the following, we will show

that the Lie derivatives included in S, defined as S ,

{L0h, L
1
fi
h, L

2
fifj

h, · · · , L
ph}, i, j = 0, . . . , l,

are all observable.

We start by multiplying both sides of the dynamic equation

of system (1) with the span of the jth-order Lie derivatives

∇L
jh to obtain

∇L
jh · ẋ = ∇L

jh · f0(x) +

l∑

i=1

∇L
jh · fi(x)ui (11)

Employing L
j+1
fi

h = ∇L
jh · fi (from the definition of Lie

derivatives) and ˙Ljh = ∇L
jh · ẋ (from the chain rule), we

obtain:

˙Ljh = L
j+1
f0

h+

l∑

i=1

L
j+1
fi

h · ui (12)

with which, we can construct a system in terms of all the

Lie derivatives in S as:










˙L0h
˙

L1
fi
h
˙

L2
fifj

h

...
˙Lp−1h











=










L
1
f0
h

L
2
fif0

h

L
3
fifjf0

h

...

L
p
f0
h










+











∑l
t=1 L

1
ft
h · ut

∑l
t=1 L

2
fift

h · ut
∑l

t=1 L
3
fifjft

h · ut

...
∑l

t=1 L
p
ft
h · ut











y = L
0h (13)

By directly computing its Lie derivatives, it is straightforward

to show that the observability matrix of system (13) contains

an identity matrix at the top, thus it is of full column rank.

Therefore, all the Lie derivatives in S are observable. Due

to the fact that the basis function β is a function of the Lie

derivatives in S (see (A3)), system (6) is also observable.

(iii) From O = Ξ · B, we have the relation null(O) =

null(B)+null(Ξ)∩range(B). Since we have proved system

(6) is observable, its observability matrix Ξ is of full column

rank. Therefore, we have null(O) = null(B). �
Based on Theorem 1, the unobservable directions can

be determined with much less effort. To find a system’s

unobservable directions, we first need to define the basis

functions that satisfy conditions (A1) and (A3), and verify

that condition (A2) is satisfied, or equivalently that the basis

function set is complete. Once all the conditions are fulfilled,

the unobservable directions of (1) correspond to the nullspace

of matrix B, which has finite dimensions, and thus it is easy

to analyze.

In the following section, we will leverage Theorem 1

to prove that the IMU-RGBD camera calibration system is

unobservable and find its unobservable directions. To do this,

in Section III-A we first present the formulation of the IMU-

RGBD camera calibration nonlinear system. In Section III-

B, we find the set of basis functions that satisfies the three

conditions of Theorem 1. In Section III-C, we construct

an observable system in terms of the basis functions. In

Section III-D, we determine the unobservable directions of

the IMU-RGBD camera calibration system by finding the

nullspace of matrix B.

III. OBSERVABILITY ANALYSIS OF THE IMU-RGBD

CAMERA 3D POSE ESTIMATION AND EXTRINSIC

CALIBRATION SYSTEM

In this section, we present the observability analysis for

the IMU-RGBD camera 3D pose estimation and extrinsic

calibration problem using basis functions. Since the Lie

derivatives for all the landmarks have identical form, for

simplicity we keep only one landmark in the state vector.

The extension to multiple landmarks is described in [15].

A. System Model

In the IMU-RGBD camera 3D pose estimation and extrin-

sic calibration problem, the state vector we estimate is:

x =
[
IsT

G

GvT
I

GpT
I

GpT
f

bT
a bT

g
CsT

I

IpT
C

]T

where IsG is the Cayley-Gibbs-Rodriguez parameterization

[16] representing the orientation of the global frame {G} in

the IMU’s frame of reference {I}, GvI and GpI represent

the velocity and position of {I} in {G}, ba and bg are the

biases in the gyroscope and accelerometer measurements,
CsI represents the orientation of {I} in the RGBD camera’s

frame of reference {C}, IpC is the position of {C} in {I},

and Gpf represents the estimated landmark in {G}.

1) System propagation model: The system model describ-

ing the time evolution of the states is:

I ṡG(t) =
1

2
D (Iω(t)− bg(t))

Gv̇I(t) =
Ga(t) = Gg +C(IsG(t))

T (Ia(t)− ba(t))
GṗI(t) =

GvI(t)
Gṗf(t) = 03×1

ḃa(t) = 03×1 ḃg(t) = 03×1

C ṡI(t) = 03×1
IṗC(t) = 03×1 (14)



where C(s) represents the corresponding rotation matrix of

s, Iω(t) =
[
ω1 ω2 ω3

]T
and Ia(t) =

[
a1 a2 a3

]T
are

the IMU rotational velocity and linear acceleration expressed

in {I}, bg(t) and ba(t) are the gyroscope and accelerometer

biases, D , 2 ∂s
∂θ

= I+⌊s×⌋+ssT , where θ = αk represents

a rotation by an angle α around the unit vector k.

2) System measurement model: The RGBD camera can

directly measure the 3D position of the landmark Cpf in its

own frame of reference as:

z = Cpf = C(CsI)C(IsG)(
Gpf −

GpI)−C(CsI)
IpC

(15)

B. Determining the System’s Basis Functions

In this section, we find basis functions based on the

conditions (A1) and (A3) of Theorem 1, until condition (A2)

is satisfied for all the defined basis functions.

For simplicity, we retain only a few of the subscripts and

superscripts in the state elements and write the system state

vector as:

x =
[
sT vT pT pT

f
bT
a bT

g sT
C

pT
C

]T

Then the IMU-RGBD camera 3D pose estimation and ex-

trinsic calibration system can be rewritten as:














ṡ
v̇
ṗ
ṗf

ḃa

ḃg

ṡC
ṗC














=














− 1

2
Dbg

g −CTba

v
0
0
0
0
0














︸ ︷︷ ︸

f0

+














1

2
D
0
0
0
0
0
0
0














︸ ︷︷ ︸

f1

ω +














0

CT

0
0
0
0
0
0














︸ ︷︷ ︸

f2

a

z = CCC (pf − p)−CCpC (16)

where C , C(s), CC , C(sC). Note that f0 is a 24 × 1
vector, while f1 and f2 are both 24× 3 matrices which is a

compact way for representing three process functions:

f1ω = f11ω1 + f12ω2 + f13ω3

f2a = f21a1 + f22a2 + f23a3 (17)

To define the basis functions for this system, we follow the

conditions of Theorem 1: (i) Select basis functions so that

the measurement function z can be expressed as a function

of β; (ii) Select the remaining basis functions as functions

of the system’s Lie derivatives, until condition (A2), (i.e.,
∂β
∂x

· fi is a function of β for any i), is satisfied by all the

basis functions. 1

For this problem, we define the first basis function directly

as the measurement function:

β1 , z = CCC(pf − p)−CCpC (18)

where β1 is a 3×1 vector representing in a compact form 3
basis functions. To check if the condition (A2) of Theorem 1

1Note that although the definition of the basis functions is not unique,
any basis functions that satisfy the conditions of Theorem 1 span the same
space.

is fulfilled, we compute the span of β1 with respect to x

∂β1

∂x
=

[
∂β1

∂θ
∂θ
∂s

∂β1

∂v
∂β1

∂p
∂β1

∂pf

∂β1

∂ba

∂β1

∂bg

∂β1

∂sC

∂β1

∂pC

]

=
[
CC⌊C(pf−p)⌋ ∂θ

∂s
0 −CCC CCC 0 0 ⌊β1⌋

∂θC
∂sC

−CC

]

and project it onto all the process functions:

∂β1

∂x
· f0 = −CC⌊C(pf − p)⌋bg −CCCv (19)

∂β1

∂x
· f1i = CC⌊C(pf − p)⌋ei

= ⌊CCC(pf − p)⌋CCei (20)

∂β1

∂x
· f2i = 0 (21)

where i = 1, 2, 3, e1 =
[
1 0 0

]T
, e2 =

[
0 1 0

]T
,

e3 =
[
0 0 1

]T
, ∂θ

∂s
1
2D = ∂θ

∂s
∂s
∂θ

= I3.

Obviously, ∂β1

∂x
· f0 and ∂β1

∂x
· f1i are not functions of

the defined basis function β1. To proceed, we will employ

condition (A3) of Theorem 1 to define additional basis

functions as nonlinear combinations of the system’s Lie

derivatives.

Since the basis function β1 equals to the zeroth-order Lie

derivative, then by definition, (19)-(21) are the first-order Lie

derivatives:

∂β1

∂x
· f0 = L

1
f0
h

∂β1

∂x
· f1i = L

1
f1i
h

∂β1

∂x
· f2i = L

1
f2i
h

Hereafter, we will make use of these Lie derivatives, which

are observable, to find more basis functions. First, by multi-

plying (CCei)
T to both sides of (20), we have:

(CCei)
T
L
1
f1i
h

=(CCei)
T ⌊CCC(pf − p)⌋CCei = 0 i = 1, 2, 3 (22)

Since CC = C(sC), (22) is a quadratic equation in the three

elements of sC for which, up to eight solutions can be found

for sC in terms of the Lie derivatives L
1
f1i
h [17]. Therefore,

we select the Cayley-Gibbs-Rodriguez parameterization of

the rotation between IMU and RGBD camera as a new basis

function.

β2 , sC (23)

Furthermore, we stack equation (20), for i = 1, 2, 3, into a

matrix form as:




L
1
f11

h

L
1
f12

h

L
1
f13

h



 = −





⌊CCe1⌋
⌊CCe2⌋
⌊CCe3⌋





︸ ︷︷ ︸

Y

CCC(pf − p) (24)

Since Y is a 9× 3 matrix of full column rank, CCC(pf −
p) can be determined in terms of the Lie derivatives L

1
f1i
h

and β2. Therefore, we define CCC(pf − p) as a new basis

function:

β3 , CCC(pf − p) (25)

After defining β2 and β3, note (19) still contains terms

not belonging to the defined basis function set, thus the

condition (A2) is not satisfied. To solve this problem, we

have to find new basis functions by employing higher-order



Lie derivatives. By definition, L2
f0f1i

h can be obtained as:

L
2
f0f1i

h = CC⌊bg⌋⌊C(pf − p)⌋ei −CC⌊Cv⌋ei i = 1, 2, 3

stacking these equations in a matrix form, we have:




−⌊⌊C(pf − p)⌋e1⌋ ⌊e1⌋
−⌊⌊C(pf − p)⌋e2⌋ ⌊e2⌋
−⌊⌊C(pf − p)⌋e3⌋ ⌊e3⌋





︸ ︷︷ ︸

V

[
bg

Cv

]

=





CT
C
L
2
f0f11

h

CT
C
L
2
f0f12

h

CT
C
L
2
f0f13

h





(26)

in which

CC = C(β2), C(pf − p) = C(β2)
Tβ3 (27)

are both expressed in terms of the previously defined basis

functions, and thus are also functions of the Lie derivatives.

V is a 9 × 6 matrix and it is easy to see that V is of

full column rank, in general, using Gaussian elimination.

Therefore, bg and Cv can be both determined in terms of the

Lie derivatives, hence we define them as new basis functions:

β4 , bg, β5 , Cv (28)

After finding β4 and β5, (19) can now be expressed in

terms of the basis functions.

We proceed by projecting the span of β5 onto the process

function f0:

∂β5

∂x
· f0 = −⌊Cv⌋bg +Cg − ba (29)

and note that Cg and ba are not functions of the defined

basis functions, thus condition (A2) is not fulfilled. There-

fore, our basis function set is not complete yet. Next we will

show how to find the missing basis functions from other

Lie derivatives. By definition, we obtain the third-order Lie

derivative L
3
f0f0f1i

h as:

L
3
f0f0f1i

h =CC⌊bg⌋
2⌊C(pf − p)⌋ei + 2CC⌊bg⌋⌊ei⌋Cv+

CC⌊ei⌋Cg, i = 1, 2, 3 (30)

Using equation (30), for i = 1, 2, Cg can be written in

terms of L3
f0f0f1i

h, CC , bg , C(pf −p), Cv, Cg, which are

all functions of Lie derivatives. Therefore, we can define Cg

as a new basis function:

β6 , Cg (31)

Subsequently, we consider the second-order Lie derivative

L
2
f0f0

h:

L
2
f0f0

h =−CC⌊bg⌋⌊C(pf − p)⌋bg −CCCg

+CCba − 2CC⌊bg⌋Cv (32)

and note that ba can be uniquely determined from L
2
f0f0

h,

CC ,bg , C(pf −p), Cv, Cg, which are all functions of Lie

derivatives. Thus, it satisfies condition (A3) and we define it

as a new basis function:

β7 , ba (33)

Up to this point, we have defined a set of basis functions,

and it is easy to verify that all three conditions of Theorem 1

are satisfied. Therefore, we have found the basis functions

spanning the observable space of the IMU-RGBD camera

system.

C. Observable System in Terms of Basis Functions

Since all of the previously defined basis functions are

functions of the Lie derivatives, the terms defined by any

operation between them remain functions of the Lie deriva-

tives. Therefore, we remove some redundant terms from the

previously defined basis functions, and redefine a new basis

function set as:

β′ =













β′
1

β′
2

β′
3

β′
4

β′
5

β′
6

β′
7













,













C(β2)
Tβ3

C(β2)
T (β3 − β1)
β2

β4

β5

β6

β7













=













C(pf − p)
pC

sC

bg

Cv

Cg

ba













(34)

With this new defined basis function set, we leverage
conclusion (i) of Theorem 1 to construct the observable
system in terms of the basis functions as:

β̇′ =
∂β′

∂x
ẋ =

∂β′

∂x

(

f0(x) +

l∑

i=1

fi(x)ui

)

=












−⌊C(pf − p)⌋bg −Cv
0
0
0

−⌊Cv⌋bg +Cg − ba

−⌊Cg⌋bg

0
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0
0
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ω +
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I
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a (35)

Note that even if more than the minimum number of required

basis functions are defined, it does not affect our analysis ex-

cept that the defined observable system in terms of the basis

functions is not a minimal system. In the following, we will

show how to find the unobservable directions of the IMU-

RGBD camera 3D pose estimation and extrinsic calibration

system by leveraging conclusion (iii) of Theorem 1.

D. Determining the System’s Observability Matrix

In this section, we determine the unobservable directions

of system (16) by finding the nullspace of the basis functions’

span B = ∂β′

∂x
.

Theorem 2: The IMU-RGBD camera 3D pose estimation

and extrinsic calibration system (16) is unobservable, and

its unobservable sub-space is spanned by 4 directions corre-

sponding to the IMU-RGBD camera global position and its

rotation around the gravity vector in the global frame.

Proof: In the previous section, we have proved that the

basis function β′ satisfies all three conditions of Theorem 1.

Therefore, null(O) = null(B), (i.e., the system’s unobserv-

able directions span the nullspace of matrix B), and we can

determine the observability properties of the IMU-RGBD



camera system by analyzing the rank condition of matrix B.

Stacking the spans of the basis functions β′ with respect to

the system state x, the matrix B is defined as:












⌊C(pf − p)⌋∂θ
∂s

0 −C C 0 0 0 0

0 0 0 0 0 0 0 I

0 0 0 0 0 0 I 0

0 0 0 0 0 I 0 0

⌊Cv⌋∂θ
∂s

C 0 0 0 0 0 0

⌊Cg⌋∂θ
∂s

0 0 0 0 0 0 0

0 0 0 0 I 0 0 0













(36)

Let A =
[
AT

1 AT
2 AT

3 AT
4 AT

5 AT
6 AT

7 AT
8

]T

be the right nullspace of matrix B. Hereafter, we employ

the relation BA = 0 to determine the elements of A.

Specifically, from the second, third, fourth and seventh rows

of the product BA, we have:

A5 = A6 = A7 = A8 = 0 (37)

Then, from the sixth row of the product, we have the relation

⌊Cg⌋∂θ
∂s

A1 = 0, thus A1 = ∂s
∂θ

Cg or A1 = 0.

If A1 = ∂s
∂θ

Cg, from the fifth row of BA we have A2 =
−⌊v⌋g, and from the first row, we have A3 = −⌊p⌋g and

A4 = −⌊pf⌋g.

If A1 = 0, from the fifth row of BA we have A2 = 0,

and from the first row A3 = A4 = I.

Using Gaussian elimination, it is easy to show that the rank

of matrix B is 20, thus the dimension of its right nullspace

is exactly four as we have found. In summary, the system’s

unobservable directions are spanned by the matrix:

N ,














∂s
∂θ

Cg 0
−⌊v⌋g 0
−⌊p⌋g I3
−⌊pf⌋g I3

0 0
0 0
0 0
0 0














=
[
Ng Np

]
(38)

where the first row is the perturbing term with respect to s,

while the corresponding term for θ is Cg. Therefore, the

unobservable directions are the global position of the IMU-

RGBD camera and the point landmark, Np, and their rotation

about the gravity vector, Ng . �

IV. ALGORITHM DESCRIPTION

We implemented the IMU-RGBD camera 3D pose esti-

mation and extrinsic calibration system (16) with the OC-

EKF proposed in [13]. Specifically, in [13] it was shown

that due to linearization errors, the filter gains spurious

information along unobservable directions, which results in

smaller uncertainty (that causes the filter to be inconsistent)

and larger estimation errors. To address this problem, the

authors proposed to modify the Jacobian matrices in both

the OC-EKF’s propagation and update steps, so as to avoid

changing the unobservable directions due to the linearization

errors.

Hereafter, we briefly describe the methodology of the

OC-EKF, while the interested reader is referred to [13] for

details. In OC-EKF, the spurious information is removed by

enforcing the following observability constraints:

Nk+1 = ΦkNk (39)

HkNk = 0, ∀k > 0 (40)

where Nk and Nk+1 are the unobservable directions pre-

sented in (38) at time-steps k and k+1, respectively, Φk is

the Jacobian matrix of the system propagation equation (14)

at time step k and Hk is the Jacobian matrix of the system

measurement equation (15) at time step k.

In [13], the authors showed that the two constraints (39)

and (40) are both satisfied when the EKF is linearized with

the true state x. However, when linearized with the estimated

state x̂, as in practice, neither (39) nor (40) hold. To address

this problem, hereafter we will show how to appropriately

modify Φk and Hk so as to satisfy the two constraints thus

retain the system’s observability properties.

(1) Modification of the State Transition Matrix Φk: Sub-

stituting the nullspace defined in (38), the observability

constraint (39) can be split into two constraints:

N
p
k+1 = ΦkN

p
k (41)

N
g
k+1 = ΦkN

g
k (42)

Due to the structure of Φk, as shown in [13], the constraint

(41) is automatically satisfied because all the block rows

result in 03 = 03 or I3 = I3. However, to fulfill constraint

(42), we need to modify Φk so as to satisfy the following

three constraints:

Φ11Ckg = Ck+1g (43)

Φ21Ckg = ⌊vk⌋g − ⌊vk+1⌋g (44)

Φ31Ckg = δt⌊vk⌋g + ⌊pk⌋g − ⌊pk+1⌋g (45)

where Φ11,Φ21,Φ31 are 3 × 3 matrices in the first block

column of the first, second and third block rows of state

transition matrix Φk. Constraint (43) can be simply satisfied

by modifying Φ∗
11 = Ck+1C

T
k .

Both of (44) and (45) are in the form Au = w, where

u and w comprise nullspace elements that are fixed, and

we seek to select another matrix A∗ that is closest to

the original matrix A in the Frobenius norm sense, while

satisfying constraints (44) and (45). To do so, we formulate

the following optimization problem

A∗ = argmin
A∗

||A∗ −A||
2
F (46)

s. t. A∗u = w

where || · ||F denotes the Frobenius matrix norm. The

optimal A∗ can be determined by solving its KKT optimality

condition [18], whose solution is

A∗ = A− (Au−w)(uTu)−1uT (47)

(2) Modification of the Measurement Jacobian Hk: During

the update, we seek to modify the Jacobian matrix Hk so as



to fulfill constraint (40), i.e.,

HkN
p
k = 0 (48)

HkN
g
k = 0 (49)

where

Hk =
[
Hθ 03×3 Hp Hpf

03×6 HθC
HpC

]

in which Hθ , Hp, Hpf
, HθC

and HpC
are the Jacobian

matrices corresponding to θ, p, pf , θC and pC . The only

nonzero elements in N
p
k are identity matrices corresponding

to the landmark and sensor position. Therefore, constraint

(48) requires Hf = −Hp.

On the other hand, constraint (49) requires

[
Hθ Hp

]
[

Ckg

(⌊pf⌋ − ⌊pk⌋)g

]

= 0 (50)

This is a constraint of the form Au = 0, where u is a

fixed quantity determined by elements in the nullspace, and

A comprises elements of the measurement Jacobian Hk. We

compute the optimal A∗ that satisfies this relationship using

(46) and (47), for the special case when w = 0.

V. SIMULATION AND EXPERIMENTAL RESULTS

We have employed the OC-EKF in both our simulations

and experiments, to: (i) Demonstrate the accuracy of our

proposed IMU-RGBD camera 3D pose estimation and ex-

trinsic calibration algorithm; (ii) Show that by removing

spurious information, the OC-EKF outperforms the standard

EKF; and (iii) Verify the system’s unobservable directions

by demonstrating the improvement of the OC-EKF which

was designed using these unobservable directions.

A. Simulation Results

In our simulation, the RGBD camera observes 20 land-

marks, which are randomly generated in a plane. The IMU

travels in front of this plane with constant local rotational

velocity
[
2.8648 0 2.8648

]T
deg/sec and linear accel-

eration
[
0 0.1 0

]T
m/sec2. The initial IMU velocity is

set to
[
0.02 0 0.01

]T
m/sec. The rotation matrix and

translation of the IMU in the RGBD camera frame is set to
[
−1 0 0; 0 0 1; 0 1 0

]
and

[
.1 .1 .1

]T
m.

The initial standard deviation of the translation and rotation

is set to 0.02 m and 2 degrees.

First, we examine the performance of the OC-EKF and

EKF in a single run. The estimation errors and 3σ bounds

of the IMU’s orientation around the gravity vector are

shown in Fig. 1(a). As evident, the EKF gains spurious

information, (its covariance decreases over time), while the

covariance of the OC-EKF does not. In addition, the EKF

becomes inconsistent gradually, while the OC-EKF remains

consistent.

In Fig. 1(b) and Fig. 1(c), we present the results of 20

Monte Carlo simulations. The RMSE (root mean square

errors) for the IMU position, orientation, and the transfor-

mation between the two sensors are all smaller for the OC-

EKF as compared to the EKF, which verifies the validity of

our observability analysis based on which the OC-EKF was

designed.

B. Experimental Results

We compare the performance of the OC-EKF with the

EKF in practice when performing simultaneous localization,

mapping and extrinsic IMU-RGBD camera calibration. In

our experimental setup, we utilize a platform comprised of

an InterSense NavChip IMU and a kinect, which has both

an RGB camera and an infrared (IR) depth-finding camera.

The intrinsic parameters of the kinect RGB camera and

IR camera, as well as the transformation between the two

cameras, are calibrated offline with the algorithm described

in [5].

We train a vocabulary tree [19] with the SIFT features

extracted in an indoor environment. During the experiments,

the SIFT features of each image are passed through into the

vocabulary tree’s leaves, and the leave indexes for each image

are recorded. Once a new image is captured, we pass all its

SIFT features through the vocabulary tree to its leaves, and

find the images with the most similar SIFT features. Then

the identities of the SIFT features in the current image are

determined by matching them to SIFT features in similar

images and employing a geometry consistency test. Since the

transformation between the IR camera and the RGB camera

is known, the corresponding 3D points captured by the IR

camera can also be associated.

In our experiment, the IMU-kinect platform travels in an

indoor office along a closed-loop trajectory, which means at

the end the platform comes back to its starting location. This

information is used to assess the estimated robot position

accuracy. The experimental results are depicted in Fig. 2.

The black line is the platform’s trajectory and the red stars

denote the estimated landmarks. The whole trajectory is 7.04
m, and the final position error is 7.5 cm for the OC-EKF and

8.1 cm for the EKF. We also plot the estimated translation

and rotation between the IMU and kinect in Fig. 2. As

evident, the estimated transformation when using the OC-

EKF is more stable than that from the EKF.

VI. CONCLUSION

In this paper, we present an observability analysis for

the IMU-RGBD camera 3D pose estimation and extrinsic

calibration problem in an unknown environment using Lie

derivatives. Due to the requirement of finding the infinite

dimensional observability matrix’s nullspace, it is quite chal-

lenging to determine a system’s unobservable directions.

To address this problem, we decompose the observability

matrix into the product of two matrices, Ξ and B, using

a nonlinear transformation (basis functions) of the original

variables. Then we find the system’s unobservable directions

from the nullspace of matrix B, which has finite dimensions.

Moreover, we construct an observable system using the

basis functions whose observability matrix is matrix Ξ, and

show that the basis functions are the IMU-RGBD camera

system’s observable modes. We present extensive simulation
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Fig. 1. Simulation results for the OC-EKF and EKF: (a) Error and 3σ bounds for the rotation about the gravity vector in a single run. (b) RMSE for the
translation and rotation between the two sensors over 20 Monte Carlo trials. (c) RMSE for the robot position and orientation over 20 Monte Carlo trials.
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Fig. 2. Experimental results: (a) The platform trajectory and estimated landmarks. (b) The rotation between the IMU and the kinect in quaternion
representation. (c) The translation between the IMU and the kinect.

and experimental results to show that the observability-

constrained (OC)-EKF designed to adhere to the system’s

unobservable directions significantly outperforms the EKF.

In our future work, we plan to perform observability

analysis of the IMU-camera extrinsic calibration system em-

ploying the same methodology and improve its consistency.
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