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Abstract—This paper presents a convenient self-calibration
method for an IMU (Inertial Measurement Unit) using matrix
factorization. Using limited information about applied loads
(accelerations or angular rates) available from natural references,
the proposed method can linearly solve all the parameters of an
IMU in any configuration of its inertial components.

Our factorization-based calibration method exploits the bi-
linear form of an IMU measurement, which is the product of
intrinsic calibration parameters and exerted loads. For a redun-
dant IMU, we prove that partial knowledge of the loads, such
as magnitude, can produce a linear solution space for a proper
decomposition of the measurement. Theoretical analysis on this
linear space reveals that a one-dimensional null space should
be considered when load magnitudes are all equal (e.g. gravity
loads). Degenerate load distributions are also geometrically iden-
tified to avoid singular measurement collection.

Since a triad IMU has a lower number of sensor components
than a four-dimensional parameter space, we propose an iterative
factorization in which only initial bias is required. A wide
convergence region of the bias can provide an automatic setting
of the initial bias as the mean of the measurements.

Performance of the proposed method is evaluated with respect
to various noise levels and constraint types. Self-calibration
capability is demonstrated using natural references, which are
gravity for accelerometers and image stream from an attached
camera for gyroscopes. Calibration results are globally optimal
and identical with those of nonlinear optimization.

Index Terms—Calibration and identification, self-calibration,
redundant and triad IMU, factorization method, linear algorithm

I. INTRODUCTION

An IMU (Inertial Measurement Unit) has been widely used

for inertial navigation of moving vehicles and motion detection

of hand-held devices. IMUs are commonly referred to as

tri-axial sensor clusters since a minimal setup to sense 3D

motion requires three accelerometers and three gyroscopes

aligned to each orthogonal axis (n = 3, n is the number

of sensor components). The deliberate redundancy (n ≥ 4)

like a tetrahedron [1] and other polyhedrons [2]–[5] shown

in Fig. 1 has also been studied for fault-tolerance in safety-

critical military and space operations as well as for innovative

sensor arrangement such as an all-accelerometer unit capable

of measuring angular velocity [5].

One long-standing problem of these custom designed IMUs

is calibration, which is aggravated by a skewed alignment of
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Fig. 1. An experimental system for the IMU self-calibration: A redundant IMU
(n = 6) consists of two tri-axial MEMS-based IMUs in a skewed alignment.
A camera is commonly equipped with the IMU in most sensor systems and
can provide constraints for gyroscope calibration.

redundant sensor components like Fig. 1. This calibration is

the parameter estimation of bias, scale factor, and alignment

of every inertial sensor component in order to identify a

transformation from raw measurements to acceleration or an-

gular velocity in 3D. Traditional calibration methods [6]–[11]

are precise, but require expertise, labor, time and specialized

equipment. A key and often costly process in such methods

involves obtaining complete knowledge of true motions (loads)

exerted on the IMU.

One recent prevalent response to these challenges is self-

calibration, which requires no artificial calibration object or

user interaction [12]–[15]. This method exerts an abundant set

of readily attainable loads on the IMU and finds calibration

parameters that match with partially known information about

the exerted motions. For instance, gravity is always exerted

on accelerometers and its magnitude is known. Once measure-

ments are collected at various attitudes with respect to gravity

in a static condition, the gravity magnitude provides a suffi-

cient constraint for a parameter search. Common drawbacks

of this approach are that it is based on nonlinear optimization,

not scalable for a large number of sensor components, and

limited to a specific sensor configuration. Hence, the issues

we will address in self-calibration are: (1) finding a linear so-

lution that requires no initial parameters, (2) extending to any

triad or redundant configurations, (3) providing a generalized

description on partially known motion.

A new perspective on the self-calibration problem has been

explored through the factorization method [16]–[18], originally

invented for 3D reconstruction of camera motions and scene

objects from multi-view images in computer vision [19]. The

factorization-based calibration proposed in this paper takes

advantage of a bilinear form of IMU measurement. In other

words, IMU measurement can be decomposed as the product

of intrinsic calibration parameters (bias, scale factor and align-

ment) and exerted loads (accelerations or angular velocities).

Hence, IMU calibration becomes equivalent to recovering

these original factors producing given measurements, based on
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partial information about applied loads, such as magnitudes.

Note that finding a linear solution for this recovery is not trivial

but challenging because the IMU measurement model is affine

due to the bias.

In the factorization method, the parameter dimension per

component cannot exceed the number of sensor components.

Since the IMU’s parameter dimension is four, we will prove

that a linear solution exists for a redundant IMU (n ≥ 4) which

has extra components. One interesting property we will present

regarding the linear solution space is that a one-dimensional

null space exists when solely the gravity magnitude is used

for accelerometer calibration. Thus, more intriguing properties,

such as degenerate load set, will be investigated through

theoretical analysis of this solution space.

For a triad IMU (n = 3), we will propose an iterative

factorization method in which its bias is excluded for di-

mension reduction and then separately updated based on the

factorization error resulting from incorrect bias compensation.

Compared to other nonlinear methods [12]–[15], this iterative

method requires only an initial bias, and its convergence region

is wide enough to automatically set an initial bias as the mean

of the measurements.

The main contributions and features of the factorization-

based IMU calibration approach presented in this paper are

summarized as follows:

• Accelerometer self-calibration using gravity

• Gyroscope self-calibration using image feature tracks

• Linear solution for a redundant IMU

• Iterative linear solution for a triad IMU (initial bias only)

• Identification of degenerate calibration load sets

In Fig. 1, a camera affixed to the IMU is used to provide

constraints for gyroscope self-calibration. We will obtain the

magnitude of angular velocity from images containing distant

scene objects [20].

II. RELATED WORK

Traditionally, IMU calibration requires complete load iden-

tification. A robotic manipulator [6] or special mechanical

platform [7] were used for precise realization of the desired

orientation of an IMU. Diesel [8] proposed a rotation sequence

of nine orientation points for tri-axial IMUs, and Nebot

and Durrant-Whyte [9] initialized bias and alignment using

GPS data. IMU mechanization states (position, velocity and

orientation) are compared with external high-precision devices,

such as optical position tracking systems [10] [11] or speed-

controlled turning tables [3]. In fusion of an IMU and other

absolute sensors like GPS, calibration has been casted as a

state estimation problem using the Kalman filter [21]–[25].

In accelerometer self-calibration using gravity, Skog and

Händel [13] and Syed et al. [14] presented nonlinear least-

squares solutions which minimize magnitude errors. Since

convergence region was small in their work, a procedure to flip

over an IMU was required in order to find an initial param-

eter [14]. Won and Golnaraghi [15] enlarged the convergence

region using a sophisticated iterative method. Drawbacks of

these nonlinear methods are primarily related to the fact that all

calibration parameters are searched at the same time, requiring

a small initial error. Furthermore, their sensor configuration

models are not universal, but specific to a tri-axial IMU, thus

not scalable for additional sensor components.

The factorization method was first introduced by Tomasi

and Kanade [19] [26] for 3D reconstruction of camera motions

and scene objects based on feature tracking of an orthographic

camera. Since factorization exploits a bilinear formulation of

image measurements, it has inspired new approaches in other

domains where a similar bilinear formulation is available, for

example, force/torque sensor calibration [16], [17], [27] and

object color modeling [28]. The most relevant work to our

proposed method is the shape-from-motion [16] [17] presented

by Voyles et al. This calibration scheme applies a few load

weights on a force/torque sensor at various directions, and

decomposes a large volume of raw measurements into a load

matrix and shape matrix of all the strain-gauge components

using known load magnitudes. Our initial work on IMU

calibration [18] focused on applying factorization to a redun-

dant configuration using motion magnitudes and orthogonal

motions generated by a right-angle iron. In this paper, we

present a comprehensive approach for self-calibration for both

redundant and triad IMUs through additional rigorous analysis

on a linear solution space.

From a mathematical point of view, our essential achieve-

ment in the factorization method is the identification of a linear

solution space even in cases when a measurement model is

affine due to a non-zero bias. While a reconstruction matrix

(Q in Section V) was found by a nonlinear cylindrical fitting

in the shape-from-motion [17], our rank analysis on a solution

space reveals that Q is not only linearly solvable but also has

a special case where an one-dimensional null space is present

if all the load constraints have the same magnitude.

III. PROBLEM FORMULATION

This section provides an overview of our factorization

method based on the bilinear formulation of IMU measure-

ments. Since no differences exist between the use of ac-

celerometers or gyroscopes as an inertial sensor, motion refers

to either force (acceleration) f or angular velocity ω exerted on

the IMU. In addition, the terms, motion and load, are identical

and will be used interchangeably.

A. Affine measurement model

Suppose that the IMU is an accelerometer (or gyroscope)

cluster of n single-axis components and its components are

arbitrarily aligned to each other, as shown in Fig. 2.

A measurement model of each component z is affine, z =
af + b, i.e., linearly proportional to an external motion f and

a non-zero b for null motion. In 3D, the measurement zi of

an i-th component in the IMU is expressed as the sum of the

projection of a motion f on the sensitivity axis si and the

non-zero bias bi in an IMU local coordinate:

zi = f⊤si + bi, i = 1, . . . , n (1)

where the scale factor ai = ‖si‖.
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Fig. 2. (Left) An accelerometer or gyroscope unit composed of n single-
axis components in an arbitrary configuration. (Right) An affine measurement
model (z = aif + bi) of a single-axis inertial sensor component with the
scale factor ai = ‖si‖ and the bias bi.

B. Bilinear Form

Once m motions are applied on the n-component IMU,

the measurements are collected into a matrix Z ∈ Rm×n as

follows:

Z =




f⊤1 s1 + b1 f⊤1 s2 + b2 · · · f⊤1 sn + bn
f⊤2 s1 + b1 f⊤2 s2 + b2 · · · f⊤2 sn + bn

...
...

...

f⊤ms1 + b1 f⊤ms2 + b2 · · · f⊤msn + bn


 (2)

where zij is the j-th component’s output for the i-th motion

fi (i = 1, . . . ,m, j = 1, . . . , n).

The measurement matrix Z can be rewritten as a product of

two matrices, Fb and Sb
1, which are called an augmented

motion matrix and a shape matrix [19], respectively. Each

measurement zij is a product of an augmented motion vector

[f⊤i 1] and a shape parameter [s⊤j bj ].

Z =




f⊤1 1
f⊤2 1
...

...

f⊤m 1




[
s1 s2 · · · sn
b1 b2 · · · bn

]
=

[
F 1

] [S
b

]
= Fb Sb (3)

If the external calibration device used in a traditional cali-

bration method precisely captures all the motions (f1, . . . , fm),
the calibration parameter could become as simple as a least

squares solution, Sb = F+
b Z = (F⊤

b Fb)
−1F⊤

b Z when m ≥ 4.

Contrarily, in the factorization method, calibration aims at

estimating Sb from partially known motions, which are readily

obtainable without the use of calibration devices.

C. Reconstruction constraints

Given Z, constraints are required for finding the true motion

and shape matrix since there exist infinitely many factoriza-

tions that can decompose Z into a product of two matrices.

The first constraint is a matrix rank condition on Z. Let p
denote the dimension of calibration parameters per component

in Sb (p = 4). Since Z is constructed from Fb ∈ Rm×p

and Sb ∈ Rp×n, the rank of Z should be at most p when

min(m,n) ≥ p and when Z is noiseless. This is called

the proper rank constraint [19]. Singular value decomposition

1The subscript b is intended to clarify that the bias b is explicitly considered
in the shape matrix while the motion matrix is augmented with an extra
column of ones on the right.

(SVD) [29] can be used to factor Z into two rank-p matrices,

F̂b and Ŝb, as follows:

Z = UΣV⊤ = (UΣ1/2)(Σ1/2V⊤) = F̂b Ŝb (4)

where Σ is a p×p diagonal, U and V are an m×p and n×p
unitary matrix, respectively. An ambiguity remains because it

is possible to insert any invertible matrix A4×4 inbetween:

Z = F̂bŜb = (F̂b A4×4) (A
−1
4×4 Ŝb) = Fb Sb (5)

The second constraint is drawn from partially known cal-

ibrating motions (f1, . . . , fm). Suppose that each piece of

information about motions is expressed as an inner product:

f⊤i fj = cij (6)

which represents a partial knowledge of a pair of motions

or a single motion such as motion magnitude ‖fi‖2 = cii or

orthogonal motion f⊤i fj = 0 [18]. We call a set of such motion

constraints a load constraint set C. A procedure for finding

A4×4 from constraint set C is a key step in factorization and

will be explained in detail in Section V.

Finally, once A4×4 is obtained from C, the calibration step

is completed from the simultaneous recovery of the shape

parameters in Sb and applied motions in Fb as follows.

Sb = A−1
4×4 Ŝb, Fb = F̂b A4×4 (7)

D. Redundant IMU vs. triad IMU

The proper rank constraint demands that the number of

components (n) should be no less than the shape parameter

dimension (p = 4), i.e., n ≥ p. This constraint is satisfied by a

redundant IMU (n ≥ 4) but violated by a triad IMU (n = 3).

In other words, the SVD in (4) fails to produce an Ŝb ∈ Rp×n

when p = 4 and n = 3.

One possible workaround for a triad IMU is reducing the

parameter dimension to p = 3 by excluding the bias b from

Sb and iteratively estimating the bias from the factorization

error. An iterative factorization method for a triad IMU will

be presented in Section VII.

IV. NATURAL REFERENCES

One significant merit of our factorization method is that

knowledge of load magnitudes is sufficient to calibrate an

IMU with no initial parameters. This enables a self-calibration

procedure using load magnitudes that are readily obtainable

in nature. We introduce the gravity and distant scene objects

viewed in a camera as natural references and will validate

them in experiments.

A. Intra-relation load constraint set C∗

We first define the intra-relation constraint set C∗ since

the case i= j in (6) is considered for load magnitudes. For

inter-relation load constraints, see Appendix B or [18] for an

orthgonal case cij = 0.

Definition 1. C∗ is an intra-relation load constraint set which

is composed only of load magnitudes, i.e., C∗ = {cii =
f⊤i fi | i = 1, . . . ,m}. Also, C∗

τ refers to a constraint set when

all the magnitudes in C∗ are equal, i.e., cii = τ for all i.
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Fig. 3. Gravity magnitude constraint C∗
τ=1 for the accelerometer self-

calibration: an accelerometer unit is oriented at different attitudes with respect
to gravity in a static condition. (‖fi‖ = g, for all i)

Fig. 4. Angular speed constraint C∗ for the gyroscope self-calibration: a
camera affixed to a gyroscope unit is randomly rotated in front of distant scene
objects. The angular speed ‖ω‖ is obtained from feature correspondences
between two consecutive images and a known time interval.

B. Gravity magnitude for accelerometer calibration

Suppose that an IMU is arbitrarily placed at m different

orientations in a static condition as shown in Fig. 3. Although

the direction of each load fi is unknown, its magnitude is

known as ‖fi‖ = g for i = 1, . . . ,m since an accelerometer

unit is exposed to the identical force (gravity g).

This gravity magnitude constraint can be denoted by C∗
τ=1

from Definition 1 (a known constant magnitude is scaled to 1

without loss of generality). Interesting properties of a solution

space for C∗
τ=1 will be discussed in Section VI.

C. Camera rotation speed for gyroscope calibration

To obtain the magnitude of an angular velocity ω exerted

on an IMU, we use a camera affixed to the IMU like Fig. 1.

The camera’s rotation speed ‖ωc‖ is, which is the same as

‖ω‖ regardless of coordinate system, can be obtained when

feature correspondence (x1,x2) between two images (I1, I2)

and its time interval ∆t are given.

For a camera motion that purely rotates by Rc (no transla-

tion, tc = 0), there exists an infinite homography H:

x1
∼= Hx2, H = KRcK

−1 (8)

where ∼= is an up-to-scale equality in homogeneous coordi-

nates and K is a camera calibration matrix [20].

Suppose H is estimated from a given set of feature corre-

spondences {xi
1,x

i
2}. Since H and Rc are similar matrices for

K in (8) and they share the same eigenvalues [29], we have

eig(H) = (1, ejθc , e−jθc) where θc is the rotation angle of

Rc and ‖ω‖ = θc/∆t. When the IMU is randomly rotated m
times, a load constraint C∗ = (‖ω1‖, . . . , ‖ωm‖) is prepared

for the factorization method.

When scene objects are distant, it is possible to relax the

rotating camera in (8) to tc 6= 0. An error in θc is negligible

if ρ = d/‖tc‖ ≥ 500 in Fig. 4 (see Section VIII for more

details). Note that there is no need for calibrating the camera

or placing a known calibration object.

V. REDUNDANT IMU CALIBRATION

The calibration problem is now equivalent to finding a non-

singular matrix A4×4 in (5). Given a load constraint set C, a

linear solution for A4×4 will be presented when an IMU has

a redundant sensor configuration (n ≥ 4).

A. Shape recovery using load constraints

Given the load constraint set C in (6), a set of linear

constraints for A4×4 in (5) are constructed. Let A4×4 be

partitioned into the following block matrices.

A4×4 =
[
A4×3 a4

]
=

[
A3×3

u⊤ a4

]
(9)

Firstly, the last column a4 is immediately recoverable with-

out use of C. Since the last column of Fb = [F 1] is constant,

the pseudo-inverse of F̂b finds a least squares solution for a4:

a4 = F̂b

+
1 (10)

Secondly, the remaining columns A4×3 are associated with

C. From (7), each true load fi ∈ R3×1 is rewritten as

fi = A⊤
4×3 f̂b,i for i = 1, . . . ,m (11)

where f̂b,i ∈ R4×1 is at the i-th row of F̂b.

Suppose that k load constraints exist in C. Plugging (11) into

each load constraint cij yields a quadratic equation for A4×3.

The Kronecker product ⊗ rewrites this as a linear equation

in terms of q ∈ R10×1, which is a vector of lower triangular

elements in a symmetric matrix Q = A4×3A
⊤
4×3:

cij = f⊤i fj = f̂⊤b,i (A4×3A
⊤
4×3) f̂b,j = f̂⊤b,i Q f̂b,j (12)

= [̂fb,i ⊗ f̂b,j ]
⊤vec(Q) = [̂fb,i ⊗ f̂b,j ]

⊤T16×10 q (13)

where T16×10 is a constant matrix that converts a vectorized

Q into a minimal parameter q (see Appendix A for details on

q and T16×10). Stacking all the constraints in C produces a

linear system equation L ∈ Rk×10 for q:

c = Lq (14)

where L = S [̂fb,i ⊗ f̂b,j ]
⊤T16×10, c is a vector of {cij} in C,

and S is a row stacking operator that uses all the constraints

in C.

It is noteworthy that Q ∈ R4×4 is not a full-rank but rank-

3 matrix because rank(Q) = rank(A4×3) = 3. Rewriting Q

using the block matrices in (9)

Q =

[
A⊤

3×3A3×3 A⊤
3×3u

u⊤A3×3 u⊤u

]
,

[
Q3×3 q13

q⊤
13 q44

]
(15)

reveals that Q (equivalently q) is internally subject to the

following two constraints, which we call a q-constraint:

det(Q) = 0 (16a)

min{eig(Q3×3)} > 0 (16b)

where the first rank constraint2 is due to a non-invertible rank-3

Q, and the second positivity constraint indicates that Q3×3 =

2This nonlinear constraint can be rewritten as q⊤
13 Q

−1
3×3 q13 − q44 = 0.
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f(®) = det(Q)

g(®) = min(eig(Q3£3))

(a) case 1: a single solution (b) case 2: multiple solutions (c) case 3: no solution

Fig. 5. Three cases of the number of solutions for q when rank(L) = 9: Among
four roots of f(α), a true α should be real and make Q3×3 a positive definite.
A single solution exists when no noise in Z(case 1). Multiple or no solutions
for q may exist when there is a noise in Z (case 2 and 3).

A⊤
3×3A3×3 is a positive definite by construction and thus its

eigenvalues should be all positive.

When L in (14) is full-rank with a sufficient number (k)

of load constraints, i.e., rank(L) = 10 when k ≥ 10, a least

squares solution q is obtained from the pseudo-inverse of L.

In addition, when no noise is present in Z, the following

particular solution qp also inherently satisfies the q-constraint.

q = qp s.t. qp = L+c (17)

On the other hand, even when L is not full-rank, q is still

solvable if rank(L) = 9. This is because q ∈ R10×1 actually

has 9 degrees of freedom when the rank condition of the q-

constraint (16a) is considered. The solution for q spans an

one-dimensional null space N of L with an unknown scalar

α:

q = qp + αqn s.t. qp = L+c, qn ∈ N (L). (18)

The rank and positivity condition in the q-constraint (16) are

used to determine α. Plugging (18) into the rank condition

(16a) yields a fourth-order polynomial f(α) whose coeffi-

cients3 are parameterized by qp and qn. Among up to four

possible roots, a true α should be real-valued and which makes

Q3×3 a positive definite matrix as in (16b). Fig. 5 shows

that three possible cases exist for the number of q solutions

depending on the location of α. Only one α meets the q-

constraint when no noise in Z (This will be proved later in

Proposition 2 in Section VI).

Once q is obtained, A4×3 = [A⊤
3×3 u]⊤ in (9) is found

via Cholesky decomposition of a symmetric positive-definite

Q3×3:

A3×3 = chol(Q3×3), u = A−⊤
3×3q13 (19)

Finally, the reconstruction of true Sb and Fb is completed

as (7) by the found A4×4. Note that this final reconstruction is

fundamentally ambiguous up to a three-dimensional rotation

R since Z = FS+ b = (FR)(R⊤S) + b because a sensor’s

internal orthonormal coordinate system can be chosen freely.

This fact is already reflected in the solution when the Cholesky

decomposition of Q3×3 in (19) determines A3×3 up to a

rotation matrix R. See Appendix C for how to determine R

for an external frame.

3A symbolic computation of det(Q(qp + αqn)) = 0 produces the
coefficients of a fourth-order polynomial f(α).

Algorithm 1: Redundant IMU calibration (n ≥ 4)

Input: Z, C, Output: Sb

p = 4, k = |C|
[U,S,V] = svd(Z)

F̂b = UpΣ
1/2
p , Ŝb = Σ

1/2
p V⊤

p

foreach cij in C do

Lk = [̂fb,i ⊗ f̂b,j ]
⊤T16×10

if C = C∗τ=1 or |C| = 9 then

[U,S,V] = svd(L)

qp = L+c, qn = last_col(V)
α = q_constraint(qp,qn)
Q = convert(qp + αqn)

else

q = L+c, Q = convert(q)
[U,S,V] = svd(Q)
Q = U3S3V3

A3×3 = chol(Q3×3)

A4×4 =

[
A3×3

q⊤
13A

−1
3×3

F̂b

+
1

]

Sb = A−1
4×4 Ŝb, Fb = F̂b A4×4

B. Solution space

Table I summarizes the solution schemes according to

rank(L) and typical examples for each scheme. One key

example is that L is always rank deficient when the gravity

magnitude is solely used in accelerometer calibration, i.e.,

rank(L) ≤ 9 when C = C∗
τ=1. For gravity magnitude, Propo-

sition 1 and 2 in Section VI-B claim that f(α) has one real

root for a true α and triple roots which violate the positivity

condition of the q-constraint (16b).

More analysis on the solution space L will be described in

Section VI, including a minimum number of constraints |C|min

and degenerate load condition DF.

C. Practical Issues

Since the measurement Z is inevitably corrupted by noise,

additional steps are required to meet the assumptions made

for factorization. Some considerations and caveats are:

• In the SVD of Z in (4), a noisy Z ∈ Rm×n may have a

rank greater than p. The rank-p enforcement on Z is

Ẑ = (UpΣ
1/2
p )(Σ1/2

p V⊤
p ) = F̂b Ŝb (20)

where Σp is the top left p× p block of Σ, and Up and

Vp are the first p columns of U and V, respectively. Ẑ

is a closest rank-p matrix to Z in terms of the Frobenius

norm.

• When rank(L) = 10, a least squares solution qp (17) may

result in a full-rank Q which violates the rank condition

of the q-constraint (16a). To enforce the rank-3 Q, the

smallest singular value of Q is set to zero with the SVD

of Q.

• When rank(L) = 9, multiple solutions for q may exist

(case 2 in Fig. 5) but the corresponding Sb values are
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discriminative enough to identify inappropriate solutions

which have severely distorted and warped shapes. Since

the bias is generally uniform, a true solution can be

selected as the one with the smallest variance of b.

• If the measurement noise in Z is too high, the solution

for q does not always produce a positive-definite Q3×3.

Thus, the Cholesky decomposition fails to obtain A3×3.

This sensitivity to noise can be reduced if further loads

are made so that more constraints are used.

Algorithm 1 shows the factorization-based redundant cali-

bration that takes these practical issues into account.

VI. ADVANCED DISCUSSION ON LINEAR SOLUTION SPACE

In this section, we discuss the linear solution space of L in

(14) constructed by a load constraint C in the redundant IMU

calibration.

A. Minimum number of constraints

Let |C| denote the number of independent constraints found

in C. The factorization is equivalent to finding the q subject to

the q-constraint (16). The degrees of freedom of q ∈ R10×1

is nine because A3×3 in A4×3 is up to a rotation matrix R

(i.e., 12 − 3 = 9). Hence, nine load constraints are sufficient

to find q,

|C|min = 9 (21)

which corresponds to the case rank(L) = 9 in (18).

B. Gravity magnitude constraint

From Definition 1, a load constraint set that is solely com-

posed of the gravity magnitude is C∗
τ=1. The following lemmas

provide analytic tools to investigate the rank of L.

Definition 2. rank(L|F̂b, C) is the rank of L when F̂b and C
are given for the construction of L in (14).

Lemma 1. rank(L|F̂b, C) = rank(L|Fb, C) for any C.

Lemma 2. rank(L|F̂b, C) = min{10, rank(S[fb,i ⊗ fb,j ])}
Proof: (for Lemma 1 and 2) From (7), fb,i = A⊤

4×4 f̂b,i.

The mixed-product and transpose property of the Kronecker

product [29] rewrite L in (13) as follows:

L(F̂b, C) = S [̂fb,i ⊗ f̂b,j ]
⊤T16×10 (22)

= S[fb,i ⊗ fb,j ]
⊤(A4×4 ⊗A4×4)

⊤T16×10, (23)

L(Fb, C) = S[fb,i ⊗ fb,j ]
⊤ T16×10 (24)

Based on rank(XY) ≤ min{rank(X), rank(Y)}, L has the

same rank for F̂b and Fb since rank(A4×4⊗A4×4) = 16 and

rank(T16×10) = 10 from an invertible A4×4 and T16×10 in

Appendix A. Lemma 2 is proven by the same rank property

from (24).

Lemma 1 and 2 enable us to analyze the rank of the linear

system L(F̂b, C) through a true Fb instead of F̂b. When C =
C∗
τ=1, L has the following properties:

TABLE I. Solution schemes for a redundant IMU according to rank(L)

rank(L) solution for q and examples

< 9
q is indeterminate

ex) lack of load constraints: |C| < |C|min = 9.
ex) degenerate load configuration F ∈ DF in Fig. 7.

9
q = L+c+ αqn, qn ∈ N (L)
determine α using q-constraint (16)

ex) minimal constraints: |C| = 9
ex) gravity magnitudes: C = C∗τ=1 s.t. |C∗| ≥ 9

10
q = L+c
for noisy Z, enforce rank(Q) = 3 using SVD

ex) non-minimum mixed constraint: C − C∗ 6= ∅
ex) various magnitudes: C = (C∗ − C∗τ=1)

|C| denotes the number of constraints in C.

Proposition 1. When C = C∗
τ=1, rank(L) ≤ 9.

Proof: Let fi = [xi, yi, zi]
⊤. The column expansion of the

matrix S[f⊤b,i⊗f⊤b,i] with f⊤b,i = [f⊤i 1] shows that six duplicated

columns exist in (25) and thus the maximum rank is bounded

to 10 as seen in (26).

rank(S[f⊤b,i ⊗ f⊤b,i]) = rank(S[(fi ⊗ fi)
⊤ f⊤i f⊤i 1]) (25)

= rank(S[(fi ⊗ fi)
⊤ 1]) (26)

= rank(S[x2
i y2i z2i xiyi yizi zixi xi yi zi 1]) (27)

= rank(S[x2
i y2i z2i xiyi yizi zixi xi yi zi]) (28)

≤ 9 (29)

Since fi in C∗
τ=1 are subject to x2

i + y2i + z2i − 1 = 0 for

all i, the first three columns and the last column in (27) are

linearly dependent and thus their maximum rank decreases by

one. From Lemma 2, rank(L) ≤ 9 for C∗
τ=1.

Proposition 2. When C = C∗
τ=1, only one root of f(α) satisfies

the q-constraint.

Proof: Q = A4×3A
⊤
4×3 = A4×4 diag(1, 1, 1, 0)A⊤

4×4

from (12). Suppose A4×4 = I. From f̂b,i = fb,i = [xi yi zi 1]
⊤

and C∗
τ=1 (x2

i +y2i +z2i −1 = 0 for all i), a linear system Lq =
1 is satisfied by the following particular and null solutions:

L = S[x2
i 2xiyi 2zixi 2xi y

2
i 2yizi 2yi z

2
i 2zi 1] (30)

qp =
1

4
[ 1 0 0 0 1 0 0 1 0 3 ]⊤ (31)

qn =
1

2
[ 1 0 0 0 1 0 0 1 0 -1]⊤ (32)

Then, q = qp + αqn is equal to a symmetric matrix Q s.t.

Q =




q1
q2 q5
q3 q6 q8
q4 q7 q9 q10


=

1

4




1+2α
0 1+2α
0 0 1+2α
0 0 0 3−2α


 (33)

The rank condition of the q-constraint yields det(Q) =
f(α) = (1 + 2α)3(3 − 2α) = 0, which has two real roots,

α = 1.5 or −0.5. Only α = 1.5 is true because α = −0.5
cannot produce a positive definite Q3×3. This uniqueness of
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Q1 : unit sphere
(kfik = 1; i = 1; : : : ;m)

Q2 : cone

f1
fm

f2
Fig. 6. Degenerate condition of calibration load set F in C∗

τ=1: F is degenerate
if F = (f1, . . . , fm) lies on the intersection of Q1 (sphere) and Q2 (any other
quadric, e.g., cone).

¼(µ1)
¼(Á1)
¼(Á2)

¼(µ2)
(a) F 2 DF (b) F 2 DF (c) F 62 DF

¼(Á1)
¼(Á2)
¼(Á3)

Fig. 7. Examples of degenerate and non-degenerate calibration load sets F

in C∗
τ=1: (a) F ∈ DF when F is on Q2 : π(φ1)π(φ2) generated by two

discrete roll angles φ, (b) F ∈ DF when F is on Q2 : π(θ1)π(θ2)
generated by two discrete pitch angles θ, (c) F 6∈ DF when F is on a
non-quadric π(φ1)π(φ2)π(φ3) generated by three discrete roll angles.

α satisfying the q-constraint is invariant to the multiplication

of Q by any invertible matrix A4×4.

Regardless of the number of measurements (m ≥ |C|min)

that are collected in Z, Proposition 1 and 2 claim that the

accelerometer calibration based on gravity magnitude should

take a one-dimensional null space of L into account and have

a unique reconstruction for Sb.

C. Degenerate load configuration

Proposition 1 shows a case where a particular load constraint

set produces a null space in L. We also investigate a case when

a particular geometric distribution of loads (f1, . . . , fm) causes

a null space N (L). If the dimension of a null-space is greater

than one, i.e., rank(L) < 9, the linear system L is unsolvable,

leading to failure in factorization.

Definition 3. DF is a degenerate set of calibration loads F =
(f1, . . . , fm), which becomes rank(L|Fb, C) < 9.

Proposition 3. When C = C∗, N (L) 6= ∅ if and only if a

calibration load set F = (f1, . . . , fm) lies on a quadric Q,

i.e., [f⊤i 1]Q[f⊤i 1]⊤ = 0 for i = 1, . . . ,m.

Proof: Let LS = S[(fi ⊗ fi)
⊤ 1]) be the stacked

matrix as seen in (27). N (L) is not empty if and only if

a non-zero a exists such that LSa = 0. Given C∗, a can be

represented by a quadric Q: Q is a symmetric matrix in R4×4

and f⊤b,i Q(a) fb,i = 0, i.e., a0x
2
i + a1y

2
i + a2z

2
i + a3xiyi +

a4yizi+a5zixi+a6xi+a7yi+a8zi+a9 = 0 for all i. Hence,

a non-empty N (L) is equivalent to the existence of a quadric

Q on which F lies.

Proposition 4. When C = C∗
τ=1, F ∈ DF if and only if F =

(f1, . . . , fm) lies on a non-sphere quadric Q2.

Proof: The degeneracy condition, rank(L) < 9, occurs

when at least two linearly independent vectors (a1,a2, . . .)
exist such that LSa1 = LSa2 = · · · = 0. Proposition 1 shows

that C∗
τ=1 already has a1 = [1 1 1 0 0 0 0 0 0 0 -1]⊤, which

is a unit sphere Q1 : x2
i +y2i +z2i −1 = 0. Thus, a2 represents

another quadric Q2, which is not a unit sphere.

Based on Proposition 3, we see that geometric properties

in DF for an intra-relation constraint C∗ can be analyzed

via 3D quadric fitting. The dimension η of N (L) is equal

to the number of quadrics (Q1, . . . ,Qη) that can represent

F simultaneously. For example, C∗
τ=1 has η = 2 when the

loads in F ∈ D∗
F

are distributed at the intersection of a unit

sphere Q1 and any other quadric Q2 as in Fig. 6. In essence,

DF in C∗
τ=1 is determined based on whether another possible

quadric fitting of F exists other than the original constraint

(geometrically a unit sphere) as shown the following remarks:

Remark 1. When C = C∗
τ=1, F ∈ DF if F lies on one or two

cutting planes of a unit sphere.

Remark 2. When C = C∗
τ=1, F 6∈ DF if F lies on three and

more cutting planes of a unit sphere.

If loads in F are distributed on two planes like Fig. 7(a-b),

they lie on π = π1π2 = (a1xi+b1yi+c1zi+d1)(a2xi+b2yi+
c2zi + d2) = 0. By Proposition 4, F is degenerate because π

is able to represent a non-sphere quadric Q2. In contrast, if

F is distributed on more than two planes like Fig. 7(c), it is

not degenerate because a unit sphere Q1 is the only quadric

which F lies on. The cubic polynomial (
∏n≥3

i=1 πi = 0) cannot

be represented by a quadric.

When an IMU is randomly oriented manually in the cali-

bration, it is far less likely that F forms a non-sphere quadric.

However, special attention should be paid when pivotal devices

such as a tripod are used. More specifically, one should make

sure to generate at least three roll or pitch angles during

measurement collection.

VII. TRIAD IMU CALIBRATION

The factorization method allows the shape parameter di-

mension (p) up to the number of components (n). For a triad

IMU (n = 3), the exclusion of the bias from Sb reduces the

parameter dimension to p = 3 in S. The bias is iteratively

estimated outside of the factorization loop using motion re-

construction errors compared with a load constraint C. Note

that the following iterative algorithm is specific to C∗.

A. Iterative algorithm

Let D denote bias-compensated measurements in which the

bias is subtracted from Z in (2):

D =



f⊤1 s1 f⊤1 s2 · · · f⊤1 sn

...
...

...

f⊤ms1 f⊤ms2 · · · f⊤msn


 = FS (34)
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A bilinear formulation of D is the product of two matrices,

F and S, and rank(D) = 3. The constraints used for the

factorization are identical with those for a redundant IMU

except that D is used instead of Z.

Suppose that an initial bias b0 is given. At the k-th iteration,

the proper rank constraint (p = 3) on Dk yields

Dk = Z− 1m×1b
k (35)

= (F̂A3×3)(A
−1
3×3 Ŝ) (36)

from svd(Dk) = UΣV⊤, F̂ = UΣ1/2 and Ŝ = Σ1/2V⊤.

True shape and motion matrices are now indeterminate up

to an invertible matrix A3×3. From fi = A⊤
3×3f̂i, each load

constraint in C∗ produces one linear equation for q′:

cii = f̂⊤i (A3×3A
⊤
3×3)f̂i = f̂⊤i Q3×3 f̂i (37)

= [̂fi ⊗ f̂j ]
⊤T9×6 q

′ (38)

where q′ ∈ R6×1 is a vector of lower triangular elements of

a symmetric matrix Q3×3, and T9×6 is a constant conversion

matrix from a vectorized Q3×3 to q′ (see Appendix A). Then,

q′ can be found from the following linear system equation:

L′q′ = c (39)

where L′ = S [̂fi ⊗ f̂i]
⊤T9×6. Note that q′ is solvable only

if L′ has a full rank because q′ has no internal constraints

like the rank condition of the q-constraint in (16a). Then, the

factorization is completed via the Cholesky decomposition of

Q3×3 into A3×3. The best reconstruction at the k-th step is

given as Fk = F̂A3×3 and Sk = A−1
3×3 Ŝ.

Since Dk is incompletely compensated due to the bias error

in bk, we update a new bias bk+1 for the next iteration as

fi =

√
cii

‖fki ‖
fki , i = 1, . . . ,m (40)

Sb =
[
F 1

]+
Z (41)

bk+1 = last-row(Sb). (42)

and the iteration continues until ‖bk+1 −bk‖ < ε for a given

termination threshold ε.

Since the bias residual in bk contaminates Dk, the recon-

structed motion and shape matrices, Fk and Sk, are also incor-

rect. The least squares solution q′ in (39) has a residual that

leaves Fk incompletely constrained by C∗. Hence, each load

constraint in C∗ is explicitly re-enforced on the reconstructed

motion Fk in order to find an improved bias. In other words,

the magnitude of each motion fki is normalized to ‖fki ‖2 = cii.
Then, a new bias bk+1 for the next iteration is computed from

the updated Fk and the measurement Z.

B. Convergence region

Advantages of this iterative factorization over nonlinear

methods [13]–[15] includes its requirement for just an initial

bias. There is no need to presume initial values of scale factors

and alignments.

Convergence of the bias is demonstrated to be insusceptible

to initial bias error. The simulation and experiments in Fig. 11

Algorithm 2: Triad IMU calibration using C∗ (n = 3)

Input: Z, C∗, b0, ε, Output: Sb

p = 3, k = 0
repeat

[U,S,V] = svd(Z− bk)

F̂ = UpΣ
1/2
p , Ŝ = Σ

1/2
p V⊤

p

foreach cii in C do

L′
i = [̂fb,i ⊗ f̂b,i]

⊤T9×6

q′ = L′+c, Q3×3 = convert(q′)
A3×3 = chol(Q3×3)

S = A−1
3×3 Ŝ, F = F̂A3×3

foreach fi in F do

fi = (
√
cii/‖fi‖) fi

Sb =
[
F 1

]+
Z

bk+1 = last-row(Sb)
k ← k + 1

until ‖bk+1 − bk‖ < ε

and 16 show that the convergence region is wide enough to

cover ‖b0 − b∗‖ < ‖s‖ (when ‖f‖ = 1) for a true bias b∗.

When Z is generated by C∗
τ=1, one automatic setting for each

initial bias would be b0 = mean(Z) because no measurements

are greater than a scale factor from the bias.

VIII. PERFORMANCE EVALUATION

The performance of factorization-based IMU calibration is

evaluated mainly for an accelerometer unit under the gravity

magnitude constraint C∗
τ=1 in Fig. 3. In the following numeri-

cal simulations, a true shape Sb has a unit scale factor and unit

bias, ‖si‖ = bi = 1 for i = 1, . . . , n, and consists of multiple

tri-axial units while each unit is skewed to each other.

A. Numerical example

The following is an example of measurements collected

into Z, with the absence of measurement noise, from a four-

component accelerometer unit and ten different attitudes in

static conditions (n = 4,m = 10). From the SVD of the Z

with rank(Z) = 4, F̂b and Ŝb are computed as

Z =




0.134 1.433 0.750 1.393
0.134 0.567 0.750 1.826
0.412 1.000 0.191 1.866
0.792 1.847 0.511 1.026
0.792 0.153 0.511 1.873
1.208 1.847 0.511 0.818
1.208 1.000 0.022 1.588
1.588 1.701 0.595 0.642
1.588 0.299 0.595 1.342
1.866 1.000 0.500 0.921




F̂b Ŝb

=




−0.75 0.22 0.64 −0.26
−0.67 0.71 0.21 −0.32
−0.78 0.49 0.24 0.40
−0.86 −0.30 0.48 0.03
−0.70 0.66 −0.38 −0.08
−0.88 −0.53 0.26 0.01
−0.85 0.11 −0.20 0.57
−0.89 −0.68 −0.02 −0.13
−0.76 0.11 −0.73 −0.23
−0.85 −0.41 −0.53 −0.08






−1.25 −1.40 −0.60 −1.61
−0.68 −0.72 0.08 1.13
−1.00 0.90 0.09 −0.04
0.04 0.13 −0.84 0.17



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TABLE II. Calibration performance for C∗
τ=1 with respect to noise (σ) and component size (n) (simulation)

bias (berr , %) scale (‖s‖err , %) alignment (∠s1si,err , deg)

σ (%) n = 4 n = 6 n = 20 n = 4 n = 6 n = 20 n = 4 n = 6 n = 20

0.25 -0.01± 0.82 -0.01± 0.56 0.00± 0.31 -0.02± 0.84 -0.01± 0.59 0.00± 0.32 0.00± 0.42 0.00± 0.22 0.00± 0.12
0.5 0.02± 1.67 0.01± 1.11 0.01± 0.60 0.09± 1.72 0.04± 1.16 0.02± 0.63 0.00± 0.83 0.00± 0.44 0.00± 0.23
1.0 0.23± 3.53 -0.01± 2.17 -0.03± 1.31 0.66± 3.54 -0.04± 2.27 -0.07± 1.37 0.01± 1.75 0.01± 0.86 0.00± 0.48
4.0 2.24± 27.0 -0.03± 10.9 -0.58± 5.30 7.43± 27.0 0.27± 11.4 -1.55± 5.33 0.03± 8.04 -0.01± 3.58 -0.04± 1.95
8.0 1.58± 45.6 -0.10± 23.3 -2.27± 13.0 11.1± 46.3 1.04± 24.2 -5.88± 12.1 -0.20± 14.8 -0.10± 7.21 -0.18± 4.36

The load size is fixed to 36 (m = 36). See Figure 8 for the plot.

From C∗
τ=1, L has a one-dimensional null space. The corre-

sponding solutions for q and α are

qp =




1.28
−0.15
−0.01
0.00
0.39
0.01

−0.09
0.42
0.00
0.15




, qn =




0.40
−0.11
0.03
0.23

−0.55
−0.01
0.10

−0.65
0.00

−0.21




, α =




0.65
0.65
0.65

−2.14




Since only α = −2.14 satisfies the q-constraint (16), the true

Sb and Fb are recovered as

A4×4 =




0.65 0 0 −1.24
0.13 1.24 0 0.18

−0.11 0.03 1.34 −0.01
−0.76 −0.17 −0.05 −0.12




Sb =



1 0 0 −0.50
0 1 0 −0.50
0 0 1 −0.71
1 1 1 1


 , Fb =




−0.87 0.43 −0.25 1
−0.87 −0.43 −0.25 1

.

.

.
.
.
.

.

.

.
.
.
.

0.59 0.70 −0.40 1
0.59 −0.70 −0.40 1
0.87 0.00 −0.50 1




B. Performance of gravity magnitude constraint

The performance of accelerometer calibration in C∗
τ=1 was

assessed through simulation in terms of the following three

factors: Gaussian measurement noise (σ), number of loads

(load size m = |C∗
τ=1|), and number of sensor components

(component size n). In order to reflect a true scenario in

in-field calibration, the IMU’s attitude (roll and pitch) was

randomly selected but bounded within ±60 degrees. Gaussian

noise σ was given as a percentage of the scale factor ‖si‖.

For every triplet (σ,m, n), a Monte-Carlo simulation was

performed with 1000 trials. From Fig. 8 to 10, the bias and

scale factor error were evaluated for every sensor component

and alignment error was evaluated using vector angles of all

possible pairs of sensor components.

Fig. 8 and 9 show that calibration error decreases linearly

as component size (n) increases from 4 to 24, load size (m)

increases from 9 to 144, or as measurement noise (σ) decreases

from 8 to 0.25%. Table II shows the errors in more details and

indicates that the factorization method is an unbiased estimator

unless the measurement noise becomes too severe (σ ≥ 4.0%).

Fig. 10 shows a case where angular motion constraints

(inter-relation constraint) and C∗
τ=1 (intra-relation constraint)

are used together. Half of the constraints are given as f⊤i fj = 0
from multiple pairs of orthogonal loads [18]. Compared with
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Fig. 8. IMU calibration performance with respect to component size (n) and
noise (σ) when the gravity magnitude constraint C∗

τ=1 is used.
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Fig. 9. IMU calibration performance with respect to load size (m) and noise
(σ) when the gravity magnitude constraint C∗

τ=1 is used.
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Fig. 10. IMU calibration performance of mixed constraint types when the
gravity magnitude constraint C∗

τ=1 (50%) and the orthogonal motion con-
straint (50%) are used together.

Fig. 9 that uses C∗
τ=1 only, the bias and scale factor error

decrease almost half as load size increases while the alignment

error is greater for a small m. This indicates that additional

knowledge about angular relation constrains the bias and scale

factor more when m is large.

Since a typical MEMS-based accelerometer [30] has a noise

of less than σ = 0.25%, the calibration result for an off-the-

shelf IMU is expected to be better than 0.01% accuracy and

0.5% precision when m = 30 and n = 6. The minimal load

and component size (m = 9, n = 4) have 0.02% accuracy and

0.8% precision when σ = 0.25%.

Calibration failure occurs when no solution for q produces

a positive definite Q3×3 in (16), which is usually induced by

high measurement noise. Table III shows the failure rate for

1000 trials in simulation when C∗
τ=1 is used. Failure begins to

occur when the noise becomes larger than σ = 2.0% and is

significantly reduced as the load and component size increases.

In a practical sense, this failure would be little concern because
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Fig. 11. Bias convergence region of the iterative factorization for a tri-
axial IMU (m = 10 and C∗

τ=1). Each plot shows a cross section along
b3 and the rows correspond to 1.0, 4.0 and 8.0% noise level, respectively.
The intensity indicates the percentage of bias convergence. Initial condi-
tions, b0 = [b1 b2 b3], in the white region always converge to the true
b∗ = [1 1 1] while those in the black region always trap in local minima.
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Fig. 12. Systematic error in camera rotation angle θc = phase(eig(H)) in
terms of the distance ratio ρ. The homography H is estimated using image
feature correspondence when the true θc is 10 degrees.

TABLE III. Failure rate (%) of the factorization method for a redundant IMU
when C∗

τ=1 is used

noise (%) n = 4 n = 6 n = 10 n = 20

0.5 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0
2.0 0.2 0.0 0.0 0.0
4.0 9.6 6.7 1.4 0.0
8.0 31.3 30.4 18.4 6.2

the noise from a real accelerometer (σ = 0.2%) typically

corresponds to a zero failure rate.

C. Bias convergence region for a triad IMU

The iterative factorization for the triad IMU in Section VII

requires an initial bias b0. In order to numerically evaluate its

convergence region, we tested for every initial point between

b0
min = −[1 1 1] to b0

max = [3 3 3] in a 0.1 resolution when

a true shape is given as b∗ = [1 1 1] and S∗ = I3×3.

Fig. 11 shows the percentage of bias convergence obtained

by running Monte Carlo simulation. Initial biases in the white

region always converge to the true bias b∗ but those in the

black region always trap in local minima. For low to moderate

noise level (σ ≤ 4.0%), a continuous convergence region B
exists which spherically expands around the true bias. Since

the radius of this central volume is at least one, we can

conclude that initial biases in ‖b0 −b∗‖ < 1 all converges to

a global minimum. In other words, initial error provided for

the bias can be as large as 100% of the scale factor.

D. Homography angle for gyroscope calibration

In Fig. 4 and Section IV-C, θc has a systematic error in cases

of non-zero camera translation (tc 6= 0) and finite scene points

(d 6= ∞) due to the violation of a rotating camera. Let ρ =
d/‖tc‖ denote a distance ratio between the distance d from the

scene points and camera translation ‖tc‖. A rotating camera

assumption on θc is valid only if ρ = ∞. For a finite ρ, a

systematic error of θc(H) is evaluated by the simulation as

ρ increases from 10 to 500 in Fig. 12. The error is biased

when ρ < 100 and its variance decreases logarithmically as

ρ increases. When ρ ≥ 200, the mean squared error of θc
becomes less than 1%.

IX. EXPERIMENTS

A series of experiments on the factorization method was

conducted using a low-cost small IMU/camera system, shown

in Fig. 1 and 13. The redundant IMU (n = 6) was made of

two tri-axial IMUs (O-Navi Gyrocube) which we aligned with

a skewed angle. MEMS inertial components are Analog De-

vices’ ADXL-203 and ADXRS-150 whose measuring ranges

are ±2g and ±200 ◦/sec, respectively. A multi-channel 11-

bit A/D converter sampled the output voltage at 100Hz. The

Sentech CCD board camera captured 640 × 480 resolution

images at 30 frames/sec.

All the experimental data sets of the IMU outputs and

images tagged with timestamps are available online at http:

//www.cs.cmu.edu/~myung/simCAL/data.

A. Accelerometer self-calibration

To rapidly and reliably collect measurements subject to the

gravity magnitude constraint C∗
τ=1, we placed the IMU on a

tripod and oriented it within ±60 degrees. Various attitudes

were applied randomly but we made certain to have at least

three different roll or pitch angles so as to prevent a degenerate

load configuration DF like Fig. 7 (a-b).

Fig. 14 shows how the measurement matrix Z was collected

from the output of six accelerometers during the tripod op-

eration shown in Fig. 13. In total, four calibration datasets

(E1, . . . ,E4) were generated with more than 20 loads, each

at different times several days apart. The noise in Z was

measured as 0.73, which corresponds to σ = 0.2% when

scaled by an average scale factor (‖s‖ = 365.0).

Note that redundant calibration treats two tri-axial IMUs

as a whole (n = 6) and triad calibration treats each tri-

axial IMU individually (n = 3, s123 and s456). Table IV

compares accelerometer parameters that were calibrated by

these two methods, respectively, and shows little difference

between them.

The estimation variance of calibration parameters over four

experiments is plotted in Fig. 15. Deviations of the scale factor

‖si‖ and alignment ∠sisj for each component are less than

0.5% and 0.1◦, respectively. They are nearly same as the
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Fig. 13. The IMU placed on a tripod randomly oriented at various attitudes
with respect to gravity.

0 50 100 150 200

500

750

1000

1250

[sec]

Fig. 14. The output of six accelerometers generated when the IMU is randomly
oriented by a tripod. At each arrow in the plot, the output is collected into the
measurement matrix Z when a static gravity is exerted on the accelerometers.

simulation evaluation (0.59% and 0.22◦ when σ = 0.25%,

m = 36 and n = 6 in Table II). The bias b show a relatively

large deviation 1% since an operating temperature severely

affects the bias of a MEMS component but was not maintained

the same between the experiments.

An initial bias for the triad calibration was automatically

provided as the mean of measurements, i.e., b0 = mean(Z)
and no convergence failure occurred in Table IV. The con-

vergence rate in Fig. 16 shows that the bias asymptotically

approaches to a steady state. For some initial condition, an

overshoot is observed at the very beginning of the iteration.

The convergence takes about 500 iterations when b0 is at a

distance as far as 75% of the gravity magnitude.

Fig. 17 shows the accelerometer shape and motion matrix,

S and F, reconstructed by the factorization method. Each load

in F that is located on a unit sphere reveals an applied attitude,

and the shape of S recovers two tri-axial units arranged in a

skewed angle.

B. Gyroscope self-calibration

Two sets of outdoor images (E5 and E6) in Fig. 18 were

collected at different distances from the scene objects. The

camera on a tripod was oscillated on diverse axes while the

camera translation was limited to ‖tc‖ < 0.1m. A far distance

to the buildings (d > 50m for E5 and d > 300m for E6)

validates the pure camera rotation assumption by ρ ≥ 500.

Firstly, as shown in Fig. 19, we chose m peaks and filled

the measurement Z with average gyroscope outputs zi over

camera frame intervals ∆ti closest to the peaks. The mea-

surement noise was measured as 2.0 (equal to σ = 0.66%
when scaled by ‖s‖ = 300). Secondly, two neighboring images

(Ii, I
′
i) closest to each peak were chosen for the homography

computation in Section IV-C. More than 200 feature points xi

were selected in Ii by the Harris corner detector [31] [32] and

TABLE IV. Accelerometer calibration results from both redundant (n = 6)
and triad (n = 3) calibration methods when C∗

τ=1. (Results are mainly shown
for the first three components.)

No. m n b1 b2 b3 ‖s1‖ ‖s2‖ ‖s3‖ ∠s12 ∠s13 ∠s14

E1 36 6 906.7 933.1 927.1 364.5 362.7 366.6 89.89 90.82 44.76
3 906.5 933.6 926.8 364.3 362.2 366.3 89.85 90.85 –

E2 25 6 910.1 935.7 928.6 365.8 364.2 366.5 89.90 90.75 44.81
3 909.7 935.7 927.8 365.7 363.9 365.8 89.91 90.82 –

E3 24 6 905.8 930.9 924.1 363.9 362.2 364.3 89.84 90.63 44.74
3 905.6 930.9 922.3 363.4 361.7 362.4 89.82 90.68 –

E4 20 6 905.5 932.3 928.0 364.8 363.2 368.1 90.09 90.84 44.93
3 905.4 932.2 922.9 362.5 361.7 362.8 90.06 90.92 –

b1 b2 b4 b5
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Fig. 15. Estimation variance of accelerometer parameters: each parameter,
individually obtained from four experiments, is compared using two methods,
left (red) from the redundant calibration (n = 6) as a whole and right (blue)
from the triad calibration (n = 3) of each tri-axial IMU in Fig. 1.
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Fig. 16. Convergence rate of the bias in the iterative linear calibration (n = 3)
for the first three accelerometer components in the E4 experiment. Initial bias
b0 = [1100 1100 1100] (left) or b0 = mean(Z) (right).

Loads(f1,...,f20)

Acc(s1,s2,s3)

Acc(s4,s5,s6)

(Top View)

Fig. 17. The accelerometer’s shape and motion matrix (F and S) reconstructed
from the factorization-based redundant calibration (n = 6) in E4 experiment.
All the gravity loads are located on a unit sphere. The two tri-axial IMUs are
(s1, s2, s3) and (s4, s5, s6).

then tracked to x′
i in I ′i by KLT tracker [33] [34]. Given feature

correspondence (xi, x
′
i), the homography Hi such that x′

i =
Hixi was found based on RANSAC to remove outliers [20].

Finally, the angular speed ‖ωi‖ = θi/∆ti was obtained from

θi = phase(eig(Hi)) and ∆ti = 1/30s. These m angular speeds
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TABLE V. Gyroscope calibration results from the redundant (n = 6) and triad (n = 3) calibration methods when C∗ is given by image feature tracks.

No. m n b1 b2 b3 b4 b5 b6 ‖s1‖ ‖s2‖ ‖s3‖ ‖s4‖ ‖s5‖ ‖s6‖ ∠s12 ∠s13 ∠s45 ∠s56 ∠s14 ∠s15

E5 128 6 925.2 924.1 1046.8 1101.1 952.5 1016.9 290.9 295.8 291.3 297.2 282.5 297.9 91.75 90.57 91.05 89.25 45.05 51.54

3 924.5 925.0 1047.0 1100.7 953.7 1016.8 290.7 295.7 291.4 297.0 281.9 298.0 91.86 90.42 91.22 89.30 – –

ω=0 926.9 923.6 1046.0 1100.0 953.4 1015.7

E6 180 6 923.3 924.8 1041.8 1091.6 949.1 1014.8 290.2 294.8 290.8 293.5 285.9 297.3 90.22 89.80 90.89 89.32 46.15 50.81

3 922.9 924.2 1041.1 1092.0 949.3 1014.5 289.7 294.4 290.7 294.2 285.1 297.0 90.31 89.88 90.81 89.16 – –

ω=0 927.4 925.1 1042.0 1094.7 952.3 1013.8

ω = 2.75 rad/s ω = 2.66 rad/s ω = 1.95 rad/s ω = 2.48 rad/s ω = 2.28 rad/s

ω = 1.95 rad/s ω = 2.37 rad/s ω = 2.32 rad/s ω = 3.31 rad/s ω = 3.35 rad/s

ω = 2.52 rad/s ω = 2.61 rad/s ω = 2.39 rad/s ω = 2.22 rad/s ω = 2.41 rad/s

ω = 2.45 rad/s ω = 1.10 rad/s ω = 1.97 rad/s ω = 2.56 rad/s ω = 3.07 rad/s

Fig. 18. Feature correspondences of distant scene points between two neigh-
boring frames around the peaks in Fig. 19. The distance to the buildings is
far greater than the amount of camera translation (ρ ≥ 500). The buildings
in E6 (bottom) are farther than those in the E5 (top) experiment.
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Fig. 19. The output of six gyroscopes generated when the IMU is oscillated
multiple times in different axes by a tripod. The output at each peak (indicated
by arrows) is collected into the measurement matrix Z.

Loads(f1,...,f128)

Gyro(s1,s2,s3)

Gyro(s4,s5,s6)

(Top View)

Fig. 20. The gyroscope’s shape and motion matrix (F and S) reconstructed
from factorization-based redundant calibration (n = 6) in the E5 experiment.
Each angular velocity in F has a different magnitude. Two tri-axial IMUs are
(s1, s2, s3) and (s4, s5, s6).

TABLE VI. Comparison between factorization and two nonlinear methods for
accelerometer calibration experiments (E1 to E4). The parameter difference
∆ between factorization and nonlinear minimization is very small.

Factorization Constrained (Econ) Weighted (Ewls)

EZ EC EZ EC EZ EC

E1 0.093 0.00088 0.136 0.00000 0.090 0.00076

E2 0.123 0.00060 0.163 0.00000 0.098 0.00079

E3 0.122 0.00074 0.167 0.00000 0.102 0.00094

E4 0.116 0.00086 0.151 0.00000 0.110 0.00087

Param. difference ∆b ∆‖s‖ ∆∠s ∆b ∆‖s‖ ∆∠s

E1 0.003 0.045 0.002 0.001 0.031 0.001

E2 0.010 0.023 0.003 0.000 0.030 0.002

E3 0.024 0.036 0.006 0.003 0.027 0.002

E4 0.017 0.049 0.009 0.001 0.031 0.003

T 0.03 ± 0.02 sec 22.1 ± 9.9 sec 2.3 ± 0.8 sec

EZ =
∑m,n

i,j=1(f
⊤
i sj+bj−zij)

2 and EC =
∑k

(i,j)∈C
(f⊤i fj − cij)

2

∆b is a mean difference of b after minimization (so are ∆‖s‖ and ∆∠sij ).

T is a computation time in seconds when implemented in MATLAB.

constituted the load constraint C∗ = (‖ω1‖, . . . , ‖ωm‖) for the

gyroscope calibration (m = 128 for E5, m = 180 for E6).

Table V compares gyroscope parameters found by the re-

dundant and triad calibration, respectively, in exactly the same

way as done in Table IV. Additional comparison is made for

b obtained at a stationary condition (ω = 0). The estimated

parameters are almost identical regardless of the calibration

method at less than 0.3% deviation within each dataset.

The parameter variances between E5 and E6 are relatively

large compared to the accelerometer case. This is because

‖ωi‖ in C∗ has a limited accuracy due to a number of system-

atic errors from image processing. The calibration accuracy is

expected to logarithmically increase as more load constraints

are combined. In the accelerometer case, a relatively small

number of motions is sufficient since the gravity magnitude is

an absolute knowledge about applied motions.

Fig. 20 shows the reconstructed shape and motion matrix,

S and F, of the gyroscope unit. The distribution of F reveals

that we rotated the IMU around the same axis multiple times

but with different magnitudes.

C. Factorization method and nonlinear minimization

The IMU calibration can be casted as a nonlinear mini-

mization problem [13]–[15]. Many solutions to this nonlinear

problem are computationally complex due to high dimension-

ality (F, S and b) and require physically reasonable initial

parameters to start with, which is not always straightforward

to obtain in practice. So the factorization can serve as a good

initializer for nonlinear methods.
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We compared two cost functions, constrained function

Econ and weighted least-squares function Ewls, depending on

whether C is treated as hard or soft constraints as follows:

Econ =

m,n∑

i,j=1

(f⊤i sj+bj−zij)
2 s.t. f⊤i fj = cij in C (43)

Ewls =

m,n∑

i,j=1

(f⊤i sj+bj−zij)
2

σ2
zij

+
k∑

(i,j)∈C

(f⊤i fj − cij)
2

σ2
cij

(44)

where σz and σc are variances of IMU measurements and load

constraints, respectively.

Table VI shows nonlinear refinement results that begin with

the parameters obtained from the factorization. In the con-

strained optimization on Econ, EZ increases slightly due to the

hard constraint EC = 0 but the parameter difference remains

small. The difference between the weighted least-squares Ewls

and the factorization is much smaller since the factorization

also uses the soft constraint Lq = c in (14). Note that when C
consists of inferred measurements like camera images in the

gyroscope case, Ewls is more appropriate since its minimum

provides the maximum likelihood parameter estimate under

Gaussian noise. A similar cost to Ewls is also used in bundle

adjustment [35] in computer vision, which finds jointly optimal

structure and camera poses in visual reconstruction.

From the fact that the parameter difference is nearly neg-

ligible in Table VI, we can conclude that factorization results

are very close to a global optimum. The factorization is not

only numerically stable but also at least a hundred times

more computationally efficient than the nonlinear methods.

Therefore, in cases where a limited computational resource

prohibits those nonlinear methods, it would be sufficient to

use the factorization-based calibration result.

X. CONCLUSION AND FUTURE WORK

We have presented a new factorization-based approach to

IMU self-calibration. Our factorization method is not only a

linear solution but also applicable to any sensor configurations

that a three-dimensional IMU may have. Given no prior infor-

mation about calibration parameters, we provided an automatic

calibration that only requires magnitudes of applied loads.

The load of a known magnitude is readily attainable from

natural references without external calibration devices. We

demonstrated that gravity and distant scene objects captured

by a camera are sufficient inputs for in-field or in-situ IMU

calibration.

Since a measurement model is affine due to the bias,

we thoroughly investigated the property of the factorization’s

reconstruction space to find a linear solution. We proved that

the rank of the linear solution space varies depending on

the constraint type, revealing that the gravity magnitude is

subject to a one-dimensional null space. This rank analysis is

also useful to identify degenerate load configurations and a

minimum number of constraints.

In the factorization method, the number of sensor compo-

nents is equal to a maximum dimension of linearly recoverable

parameters. For redundant IMUs, we presented a linear method

that finds all the four-dimensional calibration parameters si-

multaneously. For triad IMUs, an iterative linear method was

presented where an initial bias is required but possible to be

automatically set as the mean of measurements due to its wide

convergence region.

Compared to nonlinear optimization, the merits of the

proposed factorization-based calibration include all the advan-

tages that a linear solution offers such as no initial guess,

local minima or heavy computation. The calibration accuracy

and precision in the simulation and experiments is almost

equivalent to those achieved by a nonlinear optimization.

One area for future work is an identification of scale factor

nonlinearity. For gyroscopes, this would be achievable by

repeating the factorization with different load magnitudes C∗
τ

while τ increments from 0 to a maximum range using a speed-

controlled turntable.

APPENDIX A

CONVERSION MATRIX T16×10 AND T9×6

In the redundant IMU calibration, when the symmetric Q

in (13) is parameterized by q as follows, T16×10 is

q =




q1
q2
...

q10


 , Q =




q1 q2 q3 q4
q2 q5 q6 q7
q3 q6 q8 q9
q4 q7 q9 q10


 (45)

T16×10=




1
1 1

1 1
1 1

1
1 1

1 1

1
1 1

1




⊤

(46)

In the triad IMU calibration, when the symmetric Q3×3 in

(38) is parameterized by q′ as follows, T9×6 is

q′ =



q1
...

q6


 , Q3×3 =



q1 q2 q3
q2 q4 q5
q3 q5 q6


 (47)

T9×6=




1
1 1

1 1

1
1 1

1




⊤

(48)

APPENDIX B

ORTHOGONAL LOAD CONSTRAINT (cij = 0)

In addition to C∗ in Section IV-A, the load constraint (6)

also includes an inter-relation case cij (i 6= j), which would

be hard to find from natural references. One simple and cheap

way to obtain cij in practice is to use a right-angle iron shown

in Fig. 21. This apparatus can rapidly produce a high volume

of orthogonal load constraints (cij = 0) for both accelerometer
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Fig. 21. A right-angle iron on a flat surface conveniently provides a set of
orthogonal load constraints cij = 0 (f⊤1 f2 = f⊤1 f3 = · · · = 0 or ω

⊤
1 ω2 =

ω
⊤
1 ω3 = · · · = 0).

and gyroscope calibration. Since all the adjacent surfaces of

the right-angle iron are orthogonal, putting the iron on its six

surfaces by turns (f⊤i fj = 0) or rotating the iron manually on

a surface contact (ω⊤
i ωj = 0) produces mutually orthogonal

motions. See [18] for further details.

APPENDIX C

IMU COORDINATES IN AN EXTERNAL FRAME

In Section V-A, non-coordinate-specific load constraints (6)

makes the coordinate rotation R chosen freely. When IMU

coordinates I need to be specified with respect to an external

frame O, one simple case is that some of (f1, . . . , fm) are

known in terms of O to determine R. In general, the trans-

formation (R and possibly a translation T) between I and O
can be obtained by hand-eye calibration [36]. Once an IMU is

intrinsically calibrated by the factorization method, its relative

motions are available from IMU mechanization in I when

it moves. If corresponding motions are also obtained in O,

it is well known that the transformation between these two

frames can be estimated by solving a problem in the form of

AX = XB [36].
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