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Figure 1: Using whatever mobile devices a user has with them, IMUPoser estimates full-body pose. In the best case, a user can 
have a smartphone, smartwatch and earbuds (pose from 3 devices). Of course, the number of devices will vary over time, e.g., 
earbud use is intermittent and not everyone wears a smartwatch. This means IMUPoser must track what devices are present, 
where they are located, and use whatever IMU data is available. Abbreviation key: L-Left, R-Right, H-Hand, and P-Pocket. 

ABSTRACT 
Tracking body pose on-the-go could have powerful uses in ftness, 
mobile gaming, context-aware virtual assistants, and rehabilitation. 
However, users are unlikely to buy and wear special suits or sensor 
arrays to achieve this end. Instead, in this work, we explore the 
feasibility of estimating body pose using IMUs already in devices 
that many users own — namely smartphones, smartwatches, and 
earbuds. This approach has several challenges, including noisy 
data from low-cost commodity IMUs, and the fact that the number 
of instrumentation points on a user’s body is both sparse and in 
fux. Our pipeline receives whatever subset of IMU data is available, 
potentially from just a single device, and produces a best-guess pose. 
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To evaluate our model, we created the IMUPoser Dataset, collected 
from 10 participants wearing or holding of-the-shelf consumer 
devices and across a variety of activity contexts. We provide a 
comprehensive evaluation of our system, benchmarking it on both 
our own and existing IMU datasets. 
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1 INTRODUCTION 
Full-body motion capture is commonplace in movie visual efects 
and is slowly entering the consumer realm in areas such as vir-
tual reality. Full-body pose tracking has obvious applications in 
gaming [38], ftness [28], rehabilitation [39], life logging [24], and 
context-aware interfaces [1, 5]. For example, digital assistants with 
knowledge of pose could help a football player improve their form, 
or a patient recovering from surgery monitor changes in their gait. 
However, at present, most consumers have no tools to track their 
pose, nor do they want to retroft sensors into their homes or wear 
special-purpose suits or accessory devices. However, if it was possi-
ble to generate useful pose information from devices users already 
own, it could have a signifcant impact. 

Most computing devices we carry with us contain IMUs, most 
notably smartphones, smartwatches, and wireless earbuds. In this 
work, we study how we can use this ecosystem of worn and mobile 
devices to estimate a user’s body pose in real-time and with no exter-
nal infrastructure. This approach introduces new challenges prior 
sparse IMU pose models (e.g., [21, 60]) have not faced. Uniquely, 
the position and number of tracked body locations can change on 
the go. For instance, a user can take a phone from their left pocket 
into their right hand, or a user can add to the number of sensed 
points by wearing their earbuds. Our model must accept various 
combinations of incomplete inputs and gracefully degrade as the 
number of active devices reduces (potentially to one). Secondarily, 
our system must work with IMU data received from consumer de-
vices that are noisier than professional-grade motion capture suits 
(e.g., XSens [63]) used in highly-related prior work such as Sparse 
Internal Poser [60], Deep Inertial Poser [21], and TransPose [65]. 
Table 1 provides an overview of the most related prior work. 

To evaluate our method, we created a novel dataset: professional-
grade Vicon optical tracking paired with commodity device IMU 
data from common worn/held locations. Unsurprisingly — given 

that we have at most three body positions to estimate hundreds 
of degrees of freedom in the human body – our pose output is an 
approximation. However, it is rarely wildly incorrect, and most 
often, the main gestalt of a user’s pose and locomotion mode is 
captured. This "low-f" pose output is ill-suited for high-fdelity 
applications, such as special efects motion capture or virtual reality 
avatars, where users expect a mostly-faithful body representation. 
Nonetheless, the adaptive and mobile nature of IMUPoser enables 
passive and longitudinal sensing of the user (potentially even from 
a single device), making it especially well-suited for health and 
wellness applications. For example, this low-f body tracking could 
be valuable for boosting accuracy in calorie counting, tracking 
progress in a physical therapy regime, and monitoring exercise 
form and rep count. We highlight some example uses in Figure 2. 

2 RELATED WORK 
We now review the related work in the area of full-body digitization. 
We look at both external and worn capture systems, and then review 
IMU-based pose-sensing approaches that are most related to our 
work. For an in-depth review of past and current approaches for 
pose estimation, we refer readers to surveys by Desmarais et al. 
[15] and Nguyen et al. [43]. 

2.1 Body Capture using External Sensors 
There exists a wide range of approaches and solutions to estimate 
users’ pose using external sensors. Commercial systems such as 
Vicon [58] and OptiTrack [41] use specialized hardware, including 
high-speed infrared cameras that track retrorefective markers at-
tached to users’ whole body or individual parts, such as the face or 
hands. After a calibration procedure, these systems can track large 
spaces at millimeter accuracy. These approaches are often used 
for movies, games, and character animation. The cost and setup 
requirements, however, preclude most consumer applications. 

Figure 2: Real-time pose estimation (inset photos) powered by consumer mobile devices (listed in each photo) could have uses 
across many domains, including sports (A), rehabilitation (B), ftness (C), and transportation (D). Note also that IMUPoser is 
robust to occlusion (E) and lighting conditions (F). Abbreviation key: L-Left, R-Right, H-Hand, and P-Pocket. 
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System # Inst. Joints Sensor FPS (Hz) Consumer Device Real-time MPJVE (cm) 

XSens [63] 17 120 ✕ ✕ -
SIP [60] 6 60 ✕ ✕ 7.71 
DIP [21] 6 60 ✕ ✓ 8.96 
Transpose [65] 6 90 ✕ ✓ 7.09 
PIP [64] 6 60 ✕ ✓ 5.95 
Tautges et al. [56] 4 25 ✕ ✕ -
IMUPoser (our work) 1–3 25 ✓ ✓ 12.08 

Table 1: Comparison of worn-IMU, full-body pose estimation systems. MPJVE is calculated on the DIP-IMU dataset [21]. 

Current approaches for whole-body pose estimation in consumer 
applications typically rely on cheaper sensors and require less cali-
bration. Depth cameras such as the Microsoft Kinect [45, 53, 61] and 
Intel RealSense [22] provide sufcient pose accuracy using medium-
cost sensors for applications in VR and gaming. Zimmermann et al. 
[71] and Michael et al. [37], for example, extend these approaches 
and combine depth imagery with RGB data for improved accuracy. 
Such commercially-available sensors provide a good balance be-
tween cost, availability and accuracy, however, they are generally 
immobile setups. Recent successes in computer vision and deep 
learning have made it possible to extract pose data from monocular 
RGB cameras. This includes approaches that infer 2D pose of one or 
multiple humans from a single image [11, 12, 46], multiple cameras 
[14], or estimating 3D poses from 2D images [34]. 

There also exists specialized external hardware for pose tracking 
in VR and AR [33]. For example, the HTC Vive [19, 20], Oculus 
Rift [36] and PlayStation VR [54] track the head, hand controllers 
and other limb-borne accessories using external sensor base sta-
tions. Any un-sensed joints can be roughly estimated with inverse 
kinematics [47, 50]. Other non-worn, external approaches for pose 
estimation include capacitive sensing [68], magnetic felds [44, 49], 
RF [69], and mechanical linkages [55]. 

2.2 Body Capture with non-IMU Worn Sensors 
Pose estimation using body-worn sensors is more portable and fexi-
ble than systems requiring external components. Much research has 
focused on capturing specifc body parts. For instance, hand pose 
is of great importance in VR/AR applications, and has been tracked 
using e.g., wrist-worn cameras [10, 29, 62], electrical impedance 
tomography [67], electromyography [30], depth sensors [16], mag-
netic trackers [13], and specialized gloves [17]. Faces are important 
too, most often captured using cameras [4, 57], but other methods 
such as ultrasound [23] and electromyography [18] have also been 
explored. 

Our research is more concerned with whole-body pose estimation. 
Many body-worn sensing approaches exist, ranging from exoskele-
tons [35], ultrasonic beacons [59], pressure sensors [66] and RFID 
[27]. Body-worn camera approaches are particularly popular, such 
as work by Shiratori et al. [52], Ng et al. [42], and Ahuja et al. [2, 3]. 
All of the latter approaches require specialized additional hardware 
that most users do not own. The goal of our work is to bring the 
fexibility of body-worn pose estimation to users without requiring 
them to purchase any new devices. One prior work with a similar 

mantra is Pose-On-The-Go [6], which estimates a user’s full-body 
pose using only the sensors in a smartphone and when held in the 
hand. However, much of the full-body pose is guessed (rather than 
tracked) by measuring absolute movement and using an animated, 
rigged (IK) avatar. 

2.3 Body Pose Estimation using Worn IMUs 
In this section, we focus on pose systems relying exclusively on 
worn IMUs, which most closely matches our technical approach 
(Table 1 provides an overview of prior systems). While single IMUs 
have been used to track individual limbs (such as arm pose in Arm-
Track [51]), it is more common to see "feets" of IMUs distributed 
across the body (e.g., the popular XSens [63] suit) for full-body 
pose estimation. Importantly, these setups are homogeneous in 
terms of IMUs (and thus performance and noise) and tend to use 
high-quality sensors running at high framerates not typically seen 
in consumer mobile devices. As we found, the IMUs utilized in 
Apple’s own ecosystem vary by device, and as such, the data varies 
in quality, noise and framerate. 

Among prior work using many body-worn IMUs, we see Taut-
ges et al. [56] able to generate visually plausible motion streams 
using four XSens IMUs. Sparse Inertial Poser [60] and Deep Iner-
tial Poser [21] use optimization and deep learning-based methods 
for full-body pose estimation using between 6 and 17 body-worn 
IMUs. Both systems use SMPL [31, 48], a statistical body model, as 
their pose output. Approaches such as TransPose [65] or Physical 
Inertial Poser [64] build on such eforts and provide more accurate 
representations and better models. All these works leverage the 
fact that the employed IMUs have known and calibrated positions, 
and the same noise profles. 

3 POSSIBLE DEVICE COMBINATIONS 
Smartphones, smartwatches, and earbuds have diferent possible 
body locations. For instance, a smartphone can be stored in the left 
or right pocket, held in the left or right hand, held to the head (to 
take a call), or not carried by the user at all (6 possible states). For 
smartwatches, they are either worn on the left or right wrist or not 
worn by the user (3 possible states). For earbud-like devices, they 
can be worn on the head, placed into a charging case and stored in 
the left or right pocket, or not carried by the user (4 possible states). 
Although at present, putting earbuds into a charging case generally 
puts them to sleep, we assume that in the future a frmware update 
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could allow for continuous IMU data streaming, especially given 
the larger battery in the case. 

Fully enumerated, this yields 72 possible device-location com-
binations. However, we eliminate three combinations where the 
user is both wearing earbuds and the phone is held to the head (to 
take a call), as this is not a typical use case. An additional invalid 
combination is no phone, smartwatch or earbuds, and thus our 
system would not run at all. This leaves 68 possible arrangements 
combinations — 14 combinations have 1 active device, 36 combi-
nations have 2 active devices, and 18 combinations have 3 active 
devices. 

Next, it is important to consider that some combinations of 
devices do not provide substantially diferent body data for our 
purposes. For instance, a user could wear a smartwatch on their 
left wrist and hold a smartphone in their left hand – the IMU 
data would be highly correlated, and thus we treat it as a single 
body point. Another example is storing a smartphone in the right 
pocket, along with earbuds in a charging case – again, the IMU data 
would be similar. Thus, what our system truly cares about are the 
combinations of body location enabled by the 68 possible device-
position combinations – these 24 combinations are illustrated in 
Figure 3. 

Figure 3: The 24 possible device-location combinations we 
support and investigate. 

We note that our system makes some simplifying assumptions 
about body positions. For example, in order for a hand position to be 
considered active, it requires either a smartphone to be held in that 
hand or a smartwatch worn on that wrist. Even though the signal is 
not identical, it is highly correlated such that the information power 
is similar. Similarly, a smartphone held to either ear is considered 
to be a head location (rather than left or right ear). We made the 
latter simplifcation because Apple’s AirPods (which we use in our 
real-time implementation) fuse their IMUs to provide a single-head 
6DOF estimate, rather than provide IMU data from each Airpod 
individually. 

4 IMPLEMENTATION 
Figure 4 provides an overview of our pipeline. We focus on three 
popular consumer devices: smartphone, smartwatch and wireless 
earbuds/headphones. Each of these devices contains an IMU, the 
ability to wirelessly transmit data, and some local compute. We 

envision our model executing on the most capable device carried by 
the user, with the other less-capable devices streaming their IMU 
data over e.g., Bluetooth. 

4.1 Model 
For the learning architecture, we use a two-layer Bidirectional 
LSTM, inspired by prior works [21, 65]. Although we did exper-
iment with newer architectures such as transformers, we found 
these models did not perform well in practice. LSTMs produced 
smoother output predictions than the other models we tested. For 
each available IMU, our system uses orientation (represented as 
a 3×3 rotation matrix) as well as acceleration as input, both in a 
global coordinate frame of reference. In contrast to prior work, we 
do not normalize these inputs to be relative to a root IMU sensor 
location, such as the pelvis, as our available devices vary. We fatten 
and concatenate these inputs to form an input vector of size 60: 
5 possible IMU locations × (3 acceleration axes + 3×3 orientation 
rotation matrix), which we input to the model. Of note, our model 
can ingest any subset of the available IMU data, with absent devices 
masked (i.e., values set to zero). 

The input vector is frst transformed into an embedding of di-
mension 256 using a ReLU [40] activated linear layer. Next, these 
embeddings are fed sequentially into a Bidirectional LSTM of hid-
den dimension 256. A fnal linear layer outputs 144 SMPL [31] pose 
parameters — 24 joints represented as 6D rotations (which is a 
smoother representation space [70]). SMPL also provides a body 
mesh (6890 vertices), which can be seen in Figures 1, 4 and 7. In 
total, our neural network model has 10.7M trainable parameters. 
During training, a forward kinematics module calculates joint po-
sitions from these pose parameters and further minimizes it with 
respect to the ground truth. 

4.2 IMU Dataset Synthesis 
To train our pose model, we required a signifcant volume of data. 
For this, we can leverage existing motion capture databases to gen-
erate a large synthetic corpus. Specifcally, we use AMASS [32], 
a compilation of 24 motion capture datasets (ACCAD, BioMotion, 
CMU MoCap, MIXAMO, Human Eva, Human 3.6M, etc.) totaling 
almost 63 hours of high-quality, high-resolution motion capture 
data in the SMPL [31] format. A wide variety of motions and ac-
tivity contexts are included, such as locomotion, sports, dancing, 

Figure 4: Overview of our real-time system architecture. 
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exercising, cooking, and freestyle interactions. For additional de-
tails on the composition of the AMASS dataset, please refer to [32]. 
We note that AMASS has been used in much prior work [21, 64, 65] 
as the basis for deriving synthetic datasets. 

The consumer devices we use for our study and real-time demo 
(described in Sections 5.2.1 and 8) run at a common framerate of 25 
FPS. Thus we resample AMASS’ 60∼120 FPS data to 25 FPS. We then 
follow the synthetic data generation process used in TransPose [65] 
and DIP [21]. In short, we "attach" virtual IMUs to specifc vertices 
in the SMPL mesh (the left and right wrists, the left and right front 
pant pockets, and the scalp) and compute synthetic acceleration 
data using adjacent frames in the global frame of reference. To 
generate synthetic orientation data, we calculate joint rotations 
relative to the global frame by compounding local rotations starting 
from the joint to the pelvis (root) following the SMPL kinematic 
chain. We scale acceleration data (�/�2) by 30 to be suitable for 
neural networks [65]. Finally, rather than adding synthetic high-
frequency noise to our dataset, we instead smooth both synthetic 
and real-world data using an averaging window of length 5 frames 
(200 ms), similar to [26]. 

We use this pipeline to create 24 sets of data, one for each of 
our 24 device-location combinations (Figure 3), which we combine 
into a single dataset. We simulate missing devices by masking-out 
(i.e., zeroing-out) IMU data for those locations. For example, even 
in our best-case scenario of three devices present, this means that 
2/5�ℎ� of the input vector is null. 63 hours of AMASS data × 25 FPS 
× 24 device-location combinations yields 134.8M synthetic IMU 
instances with paired ground truth SMPL poses for training. 

4.3 Training 
The model is trained end-to-end using PyTorch and PyTorch Light-
ning deep learning frameworks. We use a batch size of 256 and 
update the weights using the Adam optimizer with a learning rate 
of 3�−4. While training, we use non-overlapping windows of paired 
IMU and pose data in 5-second (125 samples) chunks. As mentioned 
earlier, we train our model to regress to full-body pose and full-body 
joint positions using mean squared error (MSE) loss. Our total loss 
is the sum of these two individual losses. We train our model for 
80 epochs (22 hours) on an NVIDIA Titan X GPU. 

4.4 Joint Rotation Refnement 
As the last step of our inference pipeline, we adopt the Inverse 
Kinematic refnement method presented in [25] to perform a fnal 
refnement of our output pose. Although our model predicts the 
rotation of legs, hands and head, it does not necessarily fully honor 
the absolute orientation ofered by the IMUs, even when weighted 
heavily in our loss term. However, it is logical to take advantage 
of IMU orientation for limbs with devices, as it is both an absolute 
value and considerably less noisy than accelerometer data. More 
specifcally, as we have absolute orientation from the IMUs, we 
optimize certain bone orientations for each instrumented joint. In 
particular, for the wrist joint (smartwatch/phone), we optimize the 
elbow and the shoulder orientations, and similarly for the head 
(earbuds/phone) and hip (smartphone/earbuds case) joints. We im-
plement this using the PyTorch framework and optimize this error 

using the MSE loss and the Adam optimizer. We allow this opti-
mization to run for 10 iterations on each frame, which we found to 
not impede real-time performance. 

5 EVALUATION 
We systematically isolate and analyze the efcacy of IMUPoser 
across diferent datasets and conditions. 

5.1 DIP-IMU Dataset 
To test the performance of our model on real (and not synthetic) 
IMU data, we use DIP-IMU [21], an IMU-based MoCap dataset. 
While smaller than the AMASS dataset we used for training, it 
ofers a good variety of poses and activities across fve classes: 
upper-body (arm raises, stretches, swings, etc.), lower-body (leg 
raises, squats, lunges, etc.), interaction (gestures to interact with 
everyday objects), freestyle (jumping jacks, punching, kicking, etc.) 
and locomotion (walking, side steps, etc.). A secondary beneft of 
using DIP-IMU is that it has been used for evaluation in other 
similar works [21, 26, 64, 65], permitting direct comparison. DIP-
IMU used the commercially-available Xsens [63] IMU-based system 
to capture data from 10 participants. The data is sampled at 60 Hz, 
leading to a total dataset size of approximately 90 mins. 

5.2 IMUPoser Dataset 
As noted above, DIP-IMU used the professional-grade XSens system 
for data collection, which costs approximately $4000 USD. All of the 

Figure 5: IMUPoser data collection setup. Participants wore 
2 smartwatches, kept 2 smartphones in their front pockets, 
and wore wireless earbuds. 41 retrorefective motion capture 
markers were also placed around the body to track ground 
truth body pose. 
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Figure 6: Accuracy across diferent device combinations. Error is Mean Per Joint Vertex Error (MPJVE) in cm. Note how error 
decreases as the number of devices increases. 

IMUs are matched, ofering similar noise and tracking performance. 
To complement this dataset with a consumer device equivalent, we 
collected our own dataset. 

5.2.1 Data Collection Apparatus. Our data collection apparatus 
consisted of two smartphones (Apple iPhone 11 Pro) placed in the 
left and right front pockets, two smartwatches (Apple Watch Series 
6) placed on the left and right wrists, and one pair of Apple AirPods 
Pro worn in the ears (Figure 5). The sampling rate of our system was 
confgured to 25 Hz, the maximum sampling rate of the AirPods. 
The Apple Watch and AirPods communicated over Bluetooth to the 
iPhones, and the two iPhones relayed all IMU data to a laptop for 
data processing and recording. Although users had all fve devices 
on them during data capture, we only use a subset of these devices 
for pose estimation, as described in Section 3. 

For ground truth pose, we use a Vicon Motion Capture System 
system [58] with twelve MX40 cameras and four T160 cameras 
capturing at 120FPS. We used Vicon Blade 3.2 for capture and data 
export and Vicon IQ 2.5 for data cleaning. We downsample the Vicon 
data and synchronize it with our collected IMU data streams. For 
analysis, we ft an SMPL mesh to the Vicon data using Mosh++ [32]. 

5.2.2 Device Calibration. In contrast to commercial IMU-based 
motion capture systems like XSens, smartphones, smartwatches, 
and earbuds fail to provide IMU orientations in a common (global) 
frame of reference. If a device contains a magnetometer, the man-
ufacturer usually provides a way to access the orientation of the 
device in a global frame of reference oriented with Earth’s gravi-
tation and magnetic felds. While the iPhones and Apple Watches 
that we used for this study contained magnetometers, we found 
their global orientation data to be fairly noisy. Moreover, the Apple 
AirPods do not contain magnetometers and hence only provide 
orientation relative to the initial frame of reference of the head. As 
a result, we opted to use the XArbirtraryCorrectedZVertical frame 
of reference provided by the Swift CoreMotion API [8]. 

Before the study began, we aligned all the devices to a common 
frame of reference and recorded their orientation values over a 
window of three seconds. This acted as calibration data, bringing 

all the devices into the same global frame of reference. In practice, 
since the AirPods only sampled IMU data when they were in a 
participant’s ears, the common frame of reference was set to that. 
In line with prior works [21, 65], we asked participants to make a 
T-pose for three seconds to calculate the orientation ofsets between 
the device and the bone joint that it was attached to. The T-pose 
acts as a template pose wherein rotations are identity and thus 
known for each joint. This helps calibrate for users wearing the 
devices in diferent orientations, for example, a phone held in the 
hand vs. a watch worn on the wrist. 

5.2.3 Data Collection Procedure. For our data collection, we re-
cruited 10 participants (5 identifed as female, 5 identifed as male) 
with a mean age of 22. The study lasted roughly 45 minutes and 
paid $20 in compensation. We asked participants to wear and store 
the fve devices in the way that felt most natural to them. Other 
than requesting the participants to wear pants with pockets, we did 
not control for diferences in clothing, pocket styles, or smartwatch 
placement preference on the wrist, so as to get realistic real-world 
variation. For our Vicon-derived ground truth, we placed 41 optical 
markers on participants. In order to keep the markers secure, we 
asked participants to tuck in their shirts and provided velcro straps 
where needed. 

Inspired by prior works [6, 21], we collected our data using an 
"obstacle course"-style procedure. We extended the classes in the 
DIP-IMU dataset and included the following motions: 

• Upper Body: Right arm raises, left arm raises, both arm raises, 
right arm swings, left arm swings, both arms swinging, arms 
crossing across the torso, and arms crossing behind the head. 

• Lower Body: Right leg raises, left leg raises, squats, lunges with 
left leg, and lunges with right leg. 

• Locomotion: Walking in a straight line, walking in a fgure 8, 
walking in a circle, sidesteps with legs crossed, and sidesteps 
with feet touching. 

• Freestyle: Jumping jacks, tennis swings, boxing with alternate 
arms, kicking with the dominant leg, push-ups, and dribbling a 
basketball. 
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• Head Motions: Moving head up-and-down, moving head left-to-
right, leaning head from shoulder-to-shoulder, and moving head 
in circles. 

• Interaction: Scrolling on a smartphone while seated in a chair. 
• Miscellaneous: Waving with right arm, waving with left arm, 
clapping, hopping on right leg, hopping on left leg, jogging in a 
straight line, and jogging in a circle. 

The upper body, lower body, locomotion, freestyle, head motions, 
interaction and miscellaneous scenarios lasted for 69.7, 43.4, 95.3, 
76.2, 36.8, 19.2, and 74.3 seconds on average, respectively, resulting 
in roughly 7 minutes of data per participant. All the motions were 
continuous and data was also captured while participants were 
transitioning from one category to another. 

5.3 Evaluation Protocol 
In order to compare with prior works, we follow the exact method 
detailed in [21, 26, 64, 65]. Specifcally, we use data from the frst 
eight participants of DIP-IMU as training data, with the last two 
participants used for testing. We fne-tune our AMASS-trained 
model using this training data downsampled to 25 Hz to match both 
our AMASS training data and our real-time system’s capabilities. 
We further test this model on our IMUPoser Dataset, helping to 
assess real-world accuracy and performance. Our model is evaluated 
in an online fashion. In particular, we feed a rolling window of 125 
samples (5-second history) with a 1-sample overlap, emulating 
real-world use. This data is smoothed using an averaging flter, as 
described in Section 4.2. We analyze these results using diferent 
evaluation metrics across various device-location combinations. 
Also following prior work [21, 64, 65], we make use of the following 

evaluation metrics to quantify the performance of our full-body 
pose estimation pipeline: 

(1) Mean Per Joint Rotation Error: MPJRE measures the mean global 
angular error across all joints in degrees (°). 

(2) Mean Per Joint Position Error: MPJPE measures the mean Eu-
clidean distance error of all estimated joints in centimeters (cm) 
with the root joint (pelvis) aligned. 

(3) Mean Per Joint Vertex Error: MPJVE measures the mean Eu-
clidean distance error across all vertices of the estimated SMPL 
mesh in centimeters (cm) with the root joint (pelvis) aligned. 

(4) Mean Per Joint Jitter (Jitter): Jitter measures the average jerk 
of the predicted motion [65]. A lower jerk value signifes a 
smoother and more natural motion. 

We use mesh error (MPJVE) as our primary evaluation metric 
for most tasks, due to its ease of understanding and its utility as a 
benchmark for comparison with prior work. 

6 RESULTS 
We frst describe IMUPoser’s accuracy across device-location com-
binations, before changing our focus to look at results by body 
region. We conclude this section with a comparison to other related 
systems. 

6.1 Accuracy Across Device-Location 
Combinations 

To simplify presentation of results, we group the 24 possible device-
location combinations (Figure 3) into 12 supersets based on the num-
ber of devices present and their body locations (ignoring left/right 

Figure 7: Sample SMPL mesh predictions for diferent device placements and combinations. The red color indicates the per 
vertex error in meters (ranging from 0 to 1 m). 
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placements). Figure 6 presents the results for the IMUPoser and DIP-
IMU datasets. Note, that our model has not been fne-tuned on the 
IMUPoser Dataset. Across all device combinations, we fnd a MPJVE 
of 14.1 cm on the IMUPoser Dataset and a MPJVE of 12.1 cm with 
DIP-IMU. When averaging the results across both datasets, having 
one device on the user results in a MPJVE of 16.27 cm (SD=9.93 cm), 
which decreases to 13.9 cm (SD=8.36 cm) when a second device 
is present. The lowest error, unsurprisingly, is when three devices 
are present – a MPJVE of 11.1 cm (SD=6.51 cm) across all possible 
three-device combinations. 

Figure 7 ofers example mesh predictions across diferent device-
location combinations. As expected, accurate head orientation es-
timation is only plausible when earbuds are present. Other times 
the head regresses to the most natural orientation given where the 
body is facing. Global body orientation works best when at least 
two devices are present. Lastly, motions that have a characteris-
tic cadence, such as walking, work well across all combinations. 
Similarly, activities with symmetric limb motions, such as jumping 
jacks, work fairly well even with no sensor data from important 
limbs. On the other hand, activities with uncorrelated limb motions 
fail unless limbs are instrumented. 

6.2 Accuracy Across Body Regions 
Figure 8 provides a breakdown of system accuracy across diferent 
body regions for the IMUPoser and DIP-IMU datasets. We note 
that the accuracy for a limb with an instrumented point is always 
greater than that of an uninstrumented one. For example, averaging 
across both datasets and with an IMU present on the right hand, 
the MPJVE is 14.65 cm for the right arm (right hand = 17.2 cm) vs. 
21.6 cm for the left arm (left hand = 26.9 cm). Unsurprisingly, the 
highest error is when none of the limbs in a particular body region 
have IMU data. 

Also unsurprising is that the lowest error is achieved when both 
left and right limbs have IMUs present. For example, with only 
one IMU on the arms, the MPJVE for both arms is 18 cm (right 
hand = 22.17 cm; left hand = 20.4 cm). Whereas with both arms 
having IMUs, the MPJVE is 14.5 cm (right hand = 17.35 cm; left 
hand = 16.9 cm). A partial exception to this trend is the legs. Unlike 

the arms, which can move independently, legs tend to move in 
tandem (out of phase when walking, or in phase for activities such 
as jumping). This means that even one IMU on the legs is still highly 
efective at predicting both legs, and two IMUs ofer just a modest 
gain. Looking at our results, the MPJVE for the left leg is 10.3 cm 
(left foot = 15.65 cm) when the IMU is in the left pocket, and the 
error for the right leg is 10.4 cm (right foot = 16 cm) when the 
IMU is in the right pocket. When both IMUs are present (i.e., left 
and right pockets), the error of the left and right legs drop very 
modestly to 10.05 cm and 9.75 cm, respectively. 

We note that error accumulates along the kinematic chain (see 
Figure 7). Across all conditions, the average error of the end-efectors 
(left hand, right hand, left foot, right foot, head) is 20.28 cm and 
17.29 cm on the IMUPoser Dataset and DIP-IMU Dataset, respec-
tively (vs. 12.92 cm and 11.23 cm for joints that are not end-efectors). 

6.3 Comparison to Prior Work 
To the best of our knowledge, no prior research has investigated 
deriving full-body pose from such a sparse set of consumer-grade 
devices equipped with IMUs. Table 2 ofers a quantitative compar-
ison against key prior work, all evaluated on the same DIP-IMU 
Dataset [21]. 

Unsurprisingly, for a system that uses between 1 and 3 IMUs, 
our model is less accurate than those utilizing 6 sensors (i.e., IMUs 
placed on each limb). However, compared to DIP [21] and Transpose 
[65], our MPJVE is only worse by 3.2 cm and 5.0 cm, respectively. 
It is interesting to note that the Jitter of our system is in line with 
prior work (1.9 vs. 1.4 of TransPose). At a high level, even with 
an impoverished sensing confguration, we are able to produce 
natural, realistic and smooth pose estimation sequences. In the 
future, we hope to combine physics-backed models (as in PIP) to 
further improve the pose estimation of our system. 

7 ACTIVE DEVICE TRACKING 
A crucial piece of information our pose model needs before it can 
run is: 1) What devices are present on the user? And 2) where these 
devices are located on the body? For this, we created a separate 
piece of software, which runs in parallel with our pose model. 

Figure 8: Summarized accuracy results across diferent body regions evaluated on the DIP-IMU and IMUPoser datasets. 
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System # Inst. Joints MPJRE (°) MPJPE (cm) MPJVE (cm) Jitter (102�/�3) 
SIP (ofine) 6 8.7 6.7 7.7 3.8 
DIP (online) 6 15.1 7.3 8.9 30.13 
TransPose (online) 6 8.8 5.9 7.1 1.4 
PIP (online) 6 - - 5.9 0.24 
IMUPoser (online) 1–3 23.9 9.7 12.1 1.9 

Table 2: Comparison of IMUPoser to key prior work, all evaluated on the DIP-IMU Dataset [21]. 

7.1 Implementation 
To determine where devices are located on the body, we require 
three pieces of information from the user, which we envision being 
collected when a user frst purchases a device. 1) In which pocket 
do they typically store their phone? 2) In which hand do they 
typically hold their phone? And 3) On which arm would they wear 
a smartwatch? After this basic initialization, we use a series of 
automated heuristics. 

We make the assumption a smartphone is held in the hand if 
the screen is on and the IMU is reporting even slight motion. If the 
user is wearing a smartwatch, we can use the distance between 
the watch and phone (provided by Apple’s NINearbyObject API 
[9], which uses UWB) to guess the holding hand automatically (see 
Figure 10). If no smartwatch is worn, our system falls back on the 
hand specifed by the user during setup. If the smartphone screen is 
of and the IR proximity sensor is triggered, we assume the phone 
is in a pocket. If the user has a smartwatch, we can similarly use 
UWB-derived distance to guess the pocket. If no smartwatch is 
worn, we default to the user-specifed pocket. 

As most users wear watches in a consistent location, the logic 
for smartwatches is simpler. If it is connected to the iPhone and 
moving, we assume it is worn on the user-specifed hand. Similarly, 
for Airpods, if they are connected to the iPhone, we know they are 
in the ear. When in their charging case, Airpods go to sleep and 
stop transmitting IMU data. However, we believe that Apple could 
modify the Airpods frmware such that in the future they could 
continue to transmit IMU data even when stored in a pocket. 

7.2 Evaluation 
As a preliminary evaluation of our active device tracking predic-
tion, we ran a user study with 7 participants (5 identifed as male, 2 
identifed as female; mean age 27.8; all right-handed with a pref-
erence for wearing watches on the left wrist). The study lasted 
approximately 15 minutes and paid $5. To initialize our system, we 
recorded participants’ answers to the three preference questions 
listed in the previous section. We then asked users to transition 
between 15 device combinations, in a random order, documented in 
Figure 9. When a device was not in a requested set, it was set aside 
on a nearby table. For each requested device-location combination, 
we asked participants to walk around for about 10 seconds, then sit 
down briefy, rise to stand again, and lastly return to the starting 
position. Before the next trial began, the necessary devices were 
given or taken from the participants. Throughout the study, our 
active device tracking process ran, making live predictions about 
what devices were active and where they were located. A trained 

experimenter conducted the study, marking the start and stop of 
each device combination trial, alongside ground truth labels. 

Across all participants and all data instances, the accuracy of 
earbuds and smartwatch tracking was 100%, owing to their known 
locations and very reliable detection of worn vs. not worn. Smart-
phone tracking is the most challenging, with fve possible states 
(not present, left pocket, right pocket, left hand, right hand). We 
found the instance-wise accuracy for smartphone tracking was 
90.8%. 

Figure 9: Device combinations tested as part of our active 
device tracking study. Blue denotes presence in the set. 

8 REAL-TIME IMPLEMENTATION 
To help demonstrate the imminent feasibility of our approach, we 
created a real-time implementation of IMUPoser, which can be 
seen in our Video Figure. It is comprised of two main processes 
working together. First is active device tracking, which monitors 
what devices are available to provide IMU data and predicts where 
they are located on the body. Second is our pose model, which is 
passed the location inferences and IMU data. 

8.1 Proof-of-Concept Device Ecosystem 
As a proof-of-concept implementation, we use an Apple iPhone 
11 Pro, Apple Watch Series 6, and AirPods Pro. Apple ofers a 
mature inter-device API that allows these devices to exchange 
data. Each device reports 6DOF IMU data at diferent rates, with 
the slowest being AirPods at roughly 25 FPS. We also note that 
although AirPods come as a pair, they fuse their individual IMUs 
into a single 6DOF head estimate. 

8.2 Output 
As a proof of concept, we use an iPhone optionally connected to an 
Apple Watch and AirPods. The iPhone streams all available IMU 
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Figure 10: Active device tracking across diferent device combinations. Active devices are highlighted with a white circle for 
illustration and the foreground laptop shows the live tracking result. 

data back to a MacBook Air (2021), which runs our active device 
tracking and pose estimation processes, with a mean inference time 
of 26.8 ms. We believe our model could be run on a mobile phone 
with additional engineering efort. Regardless of where the model 
runs, it is capped at 25 FPS, the reporting frequency of our slowest 
IMU (Airpods). Before running our system, we must perform the 
same calibration as in data collection (see Section 5.2.2). For real-
time output, we visualize the SMPL mesh. 

9 OPEN SOURCE 
To enable other researchers and practitioners to build upon our 
system, we have made our dataset, architecture, trained models, and 
visualization tools freely available at https://github.com/FIGLAB/ 
IMUPoser with the gracious permission of our participants. 

10 LIMITATIONS AND FUTURE WORK 
While IMUPoser enables pathways to full-body pose estimation 
with minimal user instrumentation, it has pros and cons like any 
other technical approach. While IMUPoser can glean insights about 
the pose of limbs for which it has no direct sensor data, it is im-
portant to note that such a pose is only an approximate result. For 
cases where the motion of the instrumented joint is completely 
independent of that of the uninstrumented one, IMUPoser tends 
to regress to the mean pose. IMUPoser can support the incorpora-
tion of new joint locations by using the corresponding SMPL mesh 
vertices for training. Thus, in the future, IMUPoser can potentially 
support and track new device placements, such as a phone in a back 
pants pocket, coat pocket, armband, etc. The fdelity of the system 
could also be improved by integrating additional consumer devices 
(e.g., smart shoes, eye-wear, rings) into the ecosystem. This would 
help expand the range of poses supported by IMUPoser, allowing it 
to track dynamic activities such as cycling, kayaking, skiing, etc. 

Unlike Transpose [65] and PIP [64], the current implementation 
of IMUPoser does not predict global root translation. In the future, 
using better learning methods and multimodal cues when available 
(e.g., visual odometry from the smartphone [6]) could help predict 
translation. Along similar lines, the overall accuracy of the system 
could be improved by including contextual cues such as the activity 
being performed [7] or the user’s location. 

Another limitation of our system is active device tracking. Cur-
rently, this is a basic, proof-of-concept implementation that needs 
further refnement before it can be deployed for consumer use. Fur-
thermore, all of the devices need to be in a homogeneous ecosystem 
(e.g., Apple) to work efectively. In the future, the use of a common 
industry-wide standard to connect and network between diferent 
consumer devices can help mitigate this issue. 

Finally, we envision IMUPoser executing on the most capable 
device the user happens to be carrying. In most cases, this will be a 
smartphone, but not always, especially in the future. For instance, 
it is possible today for a user to go for a run with a smartwatch 
and wireless headphones, but no phone. In the near future, it seems 
possible there will be AirPod-like devices that can operate indepen-
dently (e.g., hearables). 

11 CONCLUSION 
In this paper, we presented IMUPoser – a system for real-time, full-
body pose estimation using IMUs present in consumer devices such 
as phones, smartwatches and earbuds. Our system must automati-
cally track devices that are available and where they are currently 
located on the body, and use streaming IMU data to estimate pose. 
Our evaluations show that IMUPoser can contend with the noisy 
signals of consumer IMUs and produce natural and temporally-
coherent pose estimates with as little as one device. This opens up 
new and interesting whole-body applications with no additional 
user instrumentation. 
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