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Abstract

We present an efficient training approach to

text retrieval with dense representations that

applies knowledge distillation using the Col-

BERT late-interaction ranking model. Specif-

ically, we propose to transfer the knowledge

from a bi-encoder teacher to a student by

distilling knowledge from ColBERT’s expres-

sive MaxSim operator into a simple dot prod-

uct. The advantage of the bi-encoder teacher–

student setup is that we can efficiently add in-

batch negatives during knowledge distillation,

enabling richer interactions between teacher

and student models. In addition, using Col-

BERT as the teacher reduces training cost com-

pared to a full cross-encoder. Experiments on

the MS MARCO passage and document rank-

ing tasks and data from the TREC 2019 Deep

Learning Track demonstrate that our approach

helps models learn robust representations for

dense retrieval effectively and efficiently.

1 Introduction

For well over half a century, solutions to the ad

hoc retrieval problem—where the system’s task is

return a list of top k texts from an arbitrarily large

corpus D that maximizes some metric of quality

such as average precision or NDCG—has been

dominated by sparse vector representations, for

example, bag-of-words BM25. Even in modern

multi-stage ranking architectures, which take ad-

vantage of large pretrained transformers such as

BERT (Devlin et al., 2019), the models are de-

ployed as rerankers over initial candidates retrieved

based on sparse vector representations; this is some-

times called “first-stage retrieval”. One well-known

example of this design is the BERT-based reranker

of Nogueira and Cho (2019); see Lin et al. (2020)

for a recent survey.

∗Contributed equally.

The standard reranker architecture, while effec-

tive, exhibits high query latency, on the order of

seconds per query (Hofstätter and Hanbury, 2019;

Khattab and Zaharia, 2020) because expensive neu-

ral inference must be applied at query time on

query–passage pairs. This design is known as a

cross-encoder (Humeau et al., 2020), which ex-

ploits query–passage attention interactions across

all transformer layers. As an alternative, a bi-

encoder design provides an approach to ranking

with dense representations that is far more effi-

cient than cross-encoders (Lee et al., 2019; Reimers

and Gurevych, 2019; Khattab and Zaharia, 2020;

Karpukhin et al., 2020; Luan et al., 2021; Xiong

et al., 2021; Qu et al., 2020; Hofstätter et al., 2021).

Prior to retrieval, the vector representations can

be precomputed for each of the texts in a corpus.

When retrieving texts in response to a given query,

computationally expensive transformer inference is

replaced by much faster approximate nearest neigh-

bor (ANN) search (Liu et al., 2004; Malkov and

Yashunin, 2020).

Recently, researchers have proposed bi-encoders

that produce multiple vectors to represent a query

(or a passage) (Humeau et al., 2020; Luan et al.,

2021; Khattab and Zaharia, 2020), which have

proven to be effective both theoretically and empir-

ically. However, the main disadvantage of these de-

signs is their high storage requirements. For exam-

ple, ColBERT (Khattab and Zaharia, 2020) requires

storing all the WordPiece token vectors of each text

(passage) in the corpus. On the MS MARCO pas-

sage corpus comprising 8.8M passages, for exam-

ple, this requires 154 GiB.

Of course, a common alternative is to produce

single vectors for queries and passages (Reimers

and Gurevych, 2019). Although this design is

less storage-demanding, it sacrifices ranking ef-

fectiveness since its structure breaks rich interac-

tions between queries and passages compared to
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multi-vector bi-encoders or cross-encoders. Hence,

improving the effectiveness of single-vector bi-

encoders represents an important problem.

One approach to improving the effectiveness of

single-vector bi-encoders is hard negative mining,

by training with carefully selected negative exam-

ples that emphasize discrimination between rel-

evant and non-relevant texts. There are several

approaches to accomplish this. Karpukhin et al.

(2020) and Qu et al. (2020) leverage large in-batch

negatives to enrich training signals. Guu et al.

(2020) and Xiong et al. (2021) propose to mine hard

negatives using the trained bi-encoder itself. By

searching for global negative samples from an asyn-

chronously updated ANN index, the bi-encoder can

learn information not present in the training data

produced by sparse representations (Xiong et al.,

2021). However, both large in-batch negative sam-

pling and asynchronous ANN index updates are

computationally demanding. The later is especially

impractical for large corpora since it requires peri-

odic inference over all texts in the corpus to ensure

that the best negative examples are retrieved.

There is also work that explores knowledge dis-

tillation (KD) (Hinton et al., 2015) to enhance re-

trieval effectiveness and efficiency. Most related to

our study is Hofstätter et al. (2020), who demon-

strate that KD using a cross-encoder teacher signif-

icantly improves the effectiveness of bi-encoders

for dense retrieval. Similarly, Barkan et al. (2020)

investigate the effectiveness of distilling a trained

cross-encoder into a bi-encoder for sentence sim-

ilarity tasks. Gao et al. (2020a) explore KD com-

binations of different objectives such as language

modeling and ranking. However, the above pa-

pers use computationally expensive cross-encoder

teacher models; thus, combining them for KD with

more advanced negative sampling techniques can

be impractical.

In light of existing work on hard negative mining

and knowledge distillation, we propose to improve

the effectiveness of single-vector bi-encoders with

a more efficient KD approach: in-batch KD using

a bi-encoder teacher. The advantage of our design

is that, during distillation, it enables the efficient

exploitation of all possible query–passage pairs

within a minibatch, which we call tight coupling

(illustrated in Figure 1). This is a key difference

between our KD approach and previous methods

for dense retrieval, where only the scores of given

query–passage triplets (not all combinations) are
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Figure 1: Illustration of the differences between pair-

wise knowledge distillation and our proposed in-batch

knowledge distillation.

computed due to the computational costs of cross-

encoders (Hofstätter et al., 2020; Gao et al., 2020a;

Barkan et al., 2020).

The contribution of this work is a simple tech-

nique for efficiently adding in-batch negative sam-

ples during knowledge distillation when training a

single-vector bi-encoder. For the remainder of this

paper, we refer to this technique as “in-batch KD”

for convenience. We empirically show that our

model, even trained with BM25 negatives, can be

more effective than cross-encoder teachers. With

hard negatives, our method approaches the state of

the art in dense retrieval. Our in-batch KD tech-

nique is able to incorporate hard negatives in a

computationally efficient manner, without requir-

ing large amounts of GPU memory for large batch

sizes or expensive periodic index refreshes.

2 Background

We focus on improving the training efficiency and

retrieval effectiveness of dense retrieval and begin

by formalizing it as a dense representation learning

problem. To be more specific, we propose to use

knowledge distillation to enrich training signals and

stabilize the representation learning procedure of

bi-encoder models in the context of the well-known

Noise-Contrastive Estimation (NCE) framework.

2.1 Dense Retrieval with Bi-encoders

The bi-encoder design has been widely adopted

for dense retrieval (Lee et al., 2019; Chang et al.,

2020; Guu et al., 2020; Karpukhin et al., 2020;

Luan et al., 2021; Qu et al., 2020; Xiong et al.,

2021), where queries and passages are encoded

in a low-dimensional space. It aims to learn low-

dimensional representations that pull queries and

relevant passages together and push queries and

non-relevant passages apart.

Following the work of Mnih and Kavukcuoglu
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(2013), we formulate a common objective for dense

representation learning for passage retrieval. Given

a query q and a parameterized scoring function

φθ that computes the relevance between a query

and a candidate passage p, we define a probability

distribution over documents in a corpus D with

respect to relevance, as follows:

P q
θ (p,D) =

exp(φθ(q, p))
∑

p′∈D exp(φθ(q, p′))

=
exp(hq · hp)

∑

p′∈D exp(hq · hp′)
, (1)

where hq (hp) ∈ R
d denotes the query (passage)

representation produced by the bi-encoder. A typ-

ical bi-encoder uses a simple scoring function for

φθ, for example, the inner product of two vectors,

as shown above.

The main challenge of evaluating and computing

gradients of Eq. (1) is the prohibitively expensive

computation cost given the number of passages in

the corpus D, typically millions (or even more).

This is already setting aside the cost of using pre-

trained transformers such as BERT as the encoder

to compute hq and hp.

Thus, previous work approximates Eq. (1) by

NCE, which samples p ∈ D+ from training data

and p′ ∈ D′ = {D+ ∪ D−}, where D− is from a

noisy distribution such as candidates retrieved by

BM25 (Nogueira and Cho, 2019), filtered by fine-

tuned transformers (Qu et al., 2020), or retrieved

by an asynchronously updated bi-encoder model

itself (Xiong et al., 2021). Another simple yet

effective approach is in-batch negative sampling,

as used by Karpukhin et al. (2020), which takes

p and p′ of other queries within a minibatch as

negative examples in NCE.

2.2 Knowledge Distillation

Other than designing sophisticated sampling meth-

ods for p′, training bi-encoder models using knowl-

edge distillation (KD) with effective teacher mod-

els is another promising approach (Hofstätter et al.,

2020). In this case, we aim to make the bi-encoder

model mimic the teacher model’s probability distri-

bution as follows:

P q
θ;student(p,D

′) =
exp(hq · hp)

∑

p′∈D′ exp(hq · hp′)

≈
exp(φ

θ̂
(q, p)/τ)

∑

p′∈D′ exp(φ
θ̂
(q, p′)/τ)

= P q

θ̂;teacher
(p,D′), (2)

where φ
θ̂

denotes the relevance score estimated by

a pretrained model parameterized by θ̂ and τ , the

temperature hyperparameter used in the KD frame-

work. To improve retrieval effectiveness, one can

leverage pre-computed scores from pretrained mod-

els such as cross-encoders, e.g., BERT, bi-encoders,

e.g., ColBERT, or ensembled scores from multiple

models φ
θ̂
=

∑

j φθ̂;j
.

3 Our Approach

3.1 In-batch Knowledge Distillation

Using KD in Eq. (2) provides soft labels for bi-

encoder training, and can be integrated with the pre-

viously mentioned NCE framework. In this work,

we propose to enhance teacher–student interactions

by adding in-batch negatives to our knowledge dis-

tillation. Specifically, we estimate φθ on in-batch

examples from a minibatch B guided by an aux-

iliary teacher model φ
θ̂

through the minimization

of Kullback–Leibler (KL) divergence of the two

distributions:

argmin
θ

∑

q∈QB

∑

p∈D′

B

Lφθ,φθ̂
, (3)

where Lφθ,φθ̂
is:

P q

θ̂;teacher
(p,D′

B) log
P q

θ̂;teacher
(p,D′

B)

P q
θ;student(p,D

′
B)

. (4)

Note that here we consider all pairwise relationship

between queries and passages within a minibatch

that contains a query set QB and a passage set D′
B.

3.2 Teacher Model Choice

A cross-encoder has been shown to be an effective

teacher (Hofstätter et al., 2020; Gao et al., 2020a)

since it allows rich interactions between the inter-

mediate transformer representations of a query q
and a passage p. For example, a “vanilla” cross-

encoder design using BERT can be denoted as:

φ
θ̂;Cat

, Wf(hq⊕p), (5)

where the ranking score is first computed by the

hidden representation of the concatenation q ⊕ p
from BERT (along with the standard special tokens)

and then mapped to a scalar by a pooling operation

f and a mapping matrix W .

Although effective, due to BERT’s quadratic

complexity with respect to input sequence length,

this design makes exhaustive combinations be-

tween a query and possible candidates impractical,
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since this requires evaluating cross-encoders |B|2

times to compute Eq. (3) using Eq. (5). Thus, an

alternative is to conduct pairwise KD by comput-

ing the KL divergence of only two probabilities of

a positive pair (q, p) and a negative pair (q, p′) for

each query q. However, this might not yield a good

approximation of Eq. (2).

A bi-encoder can also be leveraged as a teacher

model, which has the advantage that it is more

feasible to perform exhaustive comparisons be-

tween queries and passages since they are passed

through the encoder independently. Among bi-

encoder designs, ColBERT is a representative

model that uses late interactions of multiple vec-

tors ({h1
q , . . . ,h

i
q}, {h

1
p, . . . ,h

j
p}) to improve the

robustness of dense retrieval, as compared to in-

ner products of pairs of single vectors (hq,hp).
Specifically, Khattab and Zaharia (2020) propose

the following fine-grained scoring function:

φ
θ̂;MaxSim

,
∑

i∈|hq |

max
j∈|hp|

h
i
q · h

j
p, (6)

where i and j are the indices of token repre-

sentations of a query q and a passage p of Col-

BERT (Khattab and Zaharia, 2020).

The contribution of our work is in-batch knowl-

edge distillation with a tightly-coupled teacher. The

computation of φ
θ̂;MaxSim

enables exhaustive in-

ference over all query–passage combinations in

the minibatch B with only 2·|B| computation cost,

enabling enriched interactions between teacher

and student. We call this design Tightly-Coupled

Teacher ColBERT (TCT-ColBERT). Table 1 pro-

vides a training cost comparison between different

teachers. When training with pairwise KD, cross-

encoders exhibit the highest training cost. On the

other hand, ColBERT enables in-batch KD at a

modest training cost compared to pairwise KD.

TCT-ColBERT provides a flexible design for bi-

encoders, as long as the encoders produce query

and passage representations independently. For

simplicity, our student model adopts shared en-

coder weights for both the query and the passage,

just like the teacher model ColBERT. Following

Khattab and Zaharia (2020), for each query (pas-

sage), we prepend the [CLS] token and another

special [Q] ([D]) token in the input sequence

for both our teacher and student models. The

student encoder outputs single-vector dense repre-

sentations (hq,hp) by performing average pooling

over the token embeddings from the final layer.

Table 1: Training cost comparison. We report the

training time per batch against the baseline (without

a teacher model) on a single TPU-v2. Our backbone

model is BERT-base, with batch size 96. The in-batch

cross-encoder training time is not available because it

exceeds the memory limit.

Teacher / KD strategy Pairwise In-batch

Cross-encoder (φθ̂;Cat) +48.1% OOM

ColBERT (φθ̂;MaxSim) +32.7% +33.5%

3.3 Hard Negative Sampling

Given that in-batch negative sampling is an effi-

cient way to add more information into knowledge

distillation, we wonder whether our tightly-coupled

teacher design works well when applied to more

sophisticated sampling methods. Following the

work of Xiong et al. (2021), we use our pretrained

bi-encoder model, namely TCT-ColBERT, to en-

code the corpus and sample “hard” negatives for

each query to create new training triplets by us-

ing the negatives D− of the bi-encoder instead of

BM25. Specifically, we explore three different

training strategies:

1. HN: we train the bi-encoder using in-batch hard

negatives without the guide of ColBERT.

2. TCT HN: we train the bi-encoder with TCT-

ColBERT;

3. TCT HN+: we first fine-tune our ColBERT

teacher with augmented training data containing

hard negatives and then distill its knowledge into

the bi-encoder student through TCT-ColBERT.

We empirically explore the effectiveness of these

strategies for both passage and document retrieval.

4 Experiments

In this section, we conduct experiments on the

MS MARCO passage and document corpora. For

passage ranking, we first train models on BM25

negatives as warm-up and compare different KD

methods. We then further train models on the hard

negatives retrieved by the BM25 warmed-up check-

point. For document ranking, following previous

work (Xiong et al., 2021; Zhan et al., 2020; Lu

et al., 2021), we start with our BM25 warmed-up

checkpoint for passage ranking and conduct addi-

tional hard negative training.
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Table 2: Passage retrieval results with BM25 negative training. For knowledge distillation (KD) methods, the

effectiveness of teacher (T) models is also reported. All our implemented models are labeled with a number and

superscripts represent significant improvements over the labeled model (paired t-test, p < 0.05).

Strategy Model
# params of

Teacher
MARCO Dev TREC-DL ’19

MRR@10 (T/S) R@1K NDCG@10 (T/S) R@1K

- (1) Baseline - - / .310 .945 - / .626 .658

Pairwise KD

KD-T1 (Hofstätter et al., 2020) 110M .376 / .304 .931 .730 / .631 .702
KD-T2 (Hofstätter et al., 2020) 467M .399 / .315 .947 .743 / .668 .737

(2) KD-T2 (Ours) 467M .399 / .3411 .9641 .743 / .6591 .7081

(3) KD-ColBERT 110M .350 / .3391 .9621 .730 / .6701 .7101

In-batch KD (4) TCT-ColBERT 110M .350 / .3441,3 .9671,3 .730 / .6851 .7451,2,3

4.1 Passage Retrieval

We perform ad hoc passage retrieval on the MS

MARCO passage ranking dataset (Bajaj et al.,

2016), which consists of a collection of 8.8M pas-

sages from web pages and a set of ∼0.5M relevant

(query, passage) pairs as training data. We evaluate

model effectiveness on two test sets of queries:

1. MARCO Dev: the development set of MS

MARCO comprises 6980 queries, with an aver-

age of one relevant passage per query.

2. TREC-DL ’19 (Craswell et al., 2019): the orga-

nizers of the Deep Learning Track at the 2019

Text REtrieval Conference (TREC) released 43

queries with multi-graded (0–3) relevance labels

on 9K (query, passage) pairs.

To evaluate output quality, we report MRR@10

(NDCG@10) for MARCO Dev (TREC-DL ’19)

and Recall@1K, denoted as R@1K. To compare

with current state-of-the-art models, we evaluate

our design, TCT-ColBERT, under two approaches

for negative sampling: (1) BM25 and (2) hard neg-

atives retrieved by the bi-encoder itself.

4.1.1 Training with BM25 Negatives

In this setting, models are trained using the official

public data triples.train.small, where

negative samples are produced by BM25. We com-

pare different bi-encoder models using BERT-base

as the backbone, which uses single 768-dim vectors

to represent each query and passage:

1. Baseline: a single-vector bi-encoder trained

with in-batch negatives, as discussed in Sec-

tion 2.1, which is similar to Karpukhin et al.

(2020) but with a smaller batch size.

2. Pairwise KD: the approach of Hofstätter et al.

(2020), who improve ranking effectiveness us-

ing cross-encoders with pairwise KD.

We also compare against two models, KD-T1 and

KD-T2, which use BERT-base bi-encoders as stu-

dent models. In the former, the student is distilled

from a BERT-base cross-encoder, while the latter

is distilled from ensembled cross-encoders com-

prising BERT-base, BERT-large, and ALBERT-

large. These figures reported in Table 2 are copied

from Hofstätter et al. (2020). For a fair comparison

with our models based on KL-divergence KD, we

also implement our KD-T2 using the precomputed

pairwise softmax probabilities provided by Hof-

stätter et al. (2020) (who use MSE margin loss

for KD). In addition, we adopt pairwise softmax

probabilities from fine-tuned ColBERT to train KD-

ColBERT for comparison.

All our models are fine-tuned with batch size

96 and learning rate 7 × 10−6 for 500K steps

on a single TPU-V2. For TCT-ColBERT, there

are two steps in our training procedure: (1) fine-

tune φ
θ̂;MaxSim

as our teacher model, (2) freeze

φ
θ̂;MaxSim

and distill knowledge into our student

model φθ. We keep all the hyperparameter settings

the same but adjust temperature τ = 0.25 for KD

at the second step. For all our models, including

the baseline, we initialize the student model using

the fine-tuned weights of the teacher model in the

first step. We limit the input tokens to 32 (150) for

queries (passages). To evaluate effectiveness, we

encode all passages in the corpus and conduct brute

force search over the vector representations.

Our main results, including paired t-test for sig-

nificance testing, are shown in Table 2. In addition

to the effectiveness of the student models, we also

show the effectiveness of the teacher models for

the KD methods.1

First, we see that pairwise KD methods show

significant improvements over the baseline, indicat-

1We report our trained ColBERT’s accuracy by reranking the
top-1000 candidates provided officially.
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Figure 2: Passage retrieval effectiveness on a synthetic corpus comprising relevant passages and BM25 results as

additional “distractors” randomly sampled from the corpus are added.

ing that information from BM25 negatives cannot

be fully exploited without teacher models. Sec-

ond, although KD-T2 improves the bi-encoder’s

effectiveness over KD-T1, it is not consistently

better than KD-ColBERT in terms of students’ ef-

fectiveness. We suspect that they have comparable

capabilities to discriminate most paired passages

(BM25 negative vs. positive samples), i.e., Col-

BERT is good enough to guide bi-encoder student

models to discriminate them. On the other hand,

our TCT-ColBERT model, which uses only one

teacher model and adds only 33% more training

time over the baseline, yields the best effectiveness,

demonstrating the advantages of our proposed in-

batch KD — exhaustive exploitation of all query–

document combinations in a minibatch.

To understand why TCT-ColBERT yields better

results, we study the models’ retrieval effectiveness

against carefully selected distractors. We start with

a small synthetic corpus composed of the relevant

passages and the top-1000 BM25 candidates of the

6980 (43) queries from MARCO Dev (TREC-DL

’19). To increase the corpus size, we gradually

add passages uniformly sampled from the corpus

without replacement. From Figure 2, we see that

the three KD models exhibit nearly the same ef-

fectiveness when the corpus only contains BM25

candidates. This shows that the bi-encoders learn

to discriminate relevant passages from the BM25

negative samples well. However, as the index size

increases, TCT-ColBERT demonstrates better rank-

ing effectiveness than the other pairwise KD meth-

ods, indicating that the learned representations are

more robust. We attribute this robustness against

“distractors” to the enriched information from in-

batch KD, where we are able to exploit all in-batch

query–document combinations.

4.1.2 Training with Hard Negatives

In this subsection, we evaluate TCT-ColBERT

when training with hard negatives (HNs). We com-

pare our model to four competitive approaches:

1. ANCE (Xiong et al., 2021) is the most represen-

tative work, which proposes asynchronous index

refreshes to mine hard negatives. The model is

trained for 600K steps with index refreshes ev-

ery 10K steps. ANCE uses RoBERTa-base as

its backbone.

2. LTRe (Zhan et al., 2020) further improves from

an ANCE checkpoint by adding more training

steps with the same hard negative mining ap-

proach; thus, the computation cost of index re-

freshes from ANCE cannot be neglected. LTRe

also use RoBERTa-base as its backbone.

3. SEED-Encoder (Lu et al., 2021) leverages a

pretraining strategy to enhance the capability of

the bi-encoder, which is further fine-tuned with

HNs using asynchronous index refreshes.

4. RocketQA (Qu et al., 2020) trains a bi-encoder

model using hard negatives denoised by a cross-

encoder, ERNIE-2.0-Large (Sun et al., 2019). It

further demonstrates that training bi-encoders

with many in-batch negatives (batch size up to

4096) significantly improves ranking effective-

ness; however, this approach is computationally

expensive (the authors report using 8×V100

GPUs for training). To the best of our knowl-

edge, RocketQA represents the state of the art

in single-vector bi-encoders for dense retrieval.

For a more fair comparison, we also report the

ranking effectiveness of their model trained with

a smaller batch size of 128.

For all the approaches above, we directly copy the

reported effectiveness from the original papers.
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Table 3: Passage retrieval results with hard negative training. All our implemented models are labeled with a

number and superscripts represent significant improvements over the labeled model (paired t-test, p < 0.05).

Model
# Index
Refresh

Batch
Size

MARCO Dev TREC-DL ’19

MRR@10 R@1K NDCG@10 R@1K

ANCE (Xiong et al., 2021) 60 32 .330 .959 .648 -
LTRe (Zhan et al., 2020) 60 32 .341 .962 .675 -
SEED-Encoder (Lu et al., 2021) ≥10 (est.) - .339 .961 - -
RocketQA (Qu et al., 2020) 1 128 .310 - - -
RocketQA (Qu et al., 2020) 1 4096 .364 - - -

(1) TCT-ColBERT 0 96 .344 .967 .685 .745
(2) w/ HN 1 96 .237 .929 .543 .674

(3) w/ TCT HN 1 96 .3541,2 .9711,2 .7052 .7651,2

(4) w/ TCT HN+ 1 96 .3591,2 .9701 .7191,2 .7601

For our TCT-ColBERT model, following the set-

tings of the above approaches, we first use our

TCT-ColBERT model trained on BM25 negatives

as a warm-up starting point and index all 8.8M

MARCO passages. Using the warmed-up index,

we retrieve top-200 passages for each training

query and randomly sample (with replacement)

hard negatives from the 200 candidates to form our

training data. Note that due to resource limitations

we do not conduct experiments with asynchronous

index refreshes since multiple V100 GPUs are re-

quired for such a model training scheme.2 In this

experiment, all the hyperparameter settings are the

same as the ones in the BM25 negative training,

except for training steps, which is set to 100K for

both student and teacher training.

Table 3 reports the results of our experiments

with hard negative training. First, we observe that

our TCT-ColBERT model trained with BM25 neg-

atives marginally outperforms the other models

trained with HNs, except for RocketQA. Compar-

ing the different training strategies discussed in

Section 3.3 (second main block of the table), we

see that the ranking effectiveness of TCT-ColBERT

(HN) degrades when training on hard negatives

without the guide of a teacher. This is consistent

with the findings of Qu et al. (2020) that hard neg-

atives contain noisy information (i.e., some hard

negatives may actually be relevant). Also, Xiong

et al. (2021) show that training bi-encoders with

hard negatives can be unstable: hard negatives ben-

efit ranking effectiveness only under certain hyper-

parameter settings.

In contrast, hard negative training using Col-

BERT’s in-batch KD further boosts ranking effec-

tiveness, especially when our teacher (ColBERT)

2Re-encoding the entire corpus takes ∼10 hours on one GPU.

is trained with the same hard negative samples be-

forehand. It is also worth noting that our TCT-

ColBERT (w/ TCT HN+) with batch size 96 yields

competitive ranking effectiveness compared to

RocketQA (the current state of the art), which uses

batch size 4096. These results demonstrate the

advantages of our TCT design: our approach effec-

tively exploits hard negatives in a computationally

efficient manner (i.e., without the need for large

batch sizes or periodic index refreshes).

4.2 Document Retrieval

To validate the effectiveness and generality of our

training strategy, we conduct further experiments

on document retrieval using the MS MARCO

document ranking dataset. This dataset contains

3.2M web pages gathered from passages in the MS

MARCO passage ranking dataset. Similar to the

passage condition, we evaluate model effectiveness

on two test sets of queries:

1. MARCO Dev: the development set contains

5193 queries, each with exactly one relevant

document.

2. TREC-DL ’19: graded relevance judgments are

available from the TREC 2019 Deep Learning

Track, but on only 43 queries.

Per official guidelines, we report different metrics

for the two query sets: MRR@100 for MARCO

Dev and NDCG@10 for TREC-DL ’19.

Following the FirstP setting for document re-

trieval described in Xiong et al. (2021), we feed

the first 512 tokens of each document for encoding,

and start with the warmed-up checkpoint for our en-

coder’s parameters trained for passage retrieval (us-

ing BM25 negatives, as described in Section 4.1.1).

The settings for fine-tuning our warmed-up encoder
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Table 4: Document retrieval results using the FirstP approach. All our implemented models are labeled with a

number and superscripts represent significant improvements over the labeled model (paired t-test, p < 0.05).

Model
MARCO Dev TREC-DL ’19

MRR@100 NDCG@10

ANCE (Xiong et al., 2021) .368 .614
LTRe (Zhan et al., 2020) - .634
SEED-Encoder (Lu et al., 2021) .394 -

(1) TCT-ColBERT .339 .573

(2) w/ TCT HN+ .3921 .613

(3) w/ 2× TCT HN+ .4181,2 .6501,2

(e.g., learning rate, training steps, top-200 negative

sampling) are the same as passage retrieval except

for batch size, which is set to 64.

Ranking effectiveness is reported in Table 4.

First, we observe that TCT-ColBERT (our warmed-

up checkpoint) performs far worse than other ap-

proaches to document retrieval using the FirstP

method. This may be due to the fact that FirstP

document retrieval is very different from passage

retrieval, making zero-shot transfer ineffective. Af-

ter applying HN training on both teacher and stu-

dent models (condition 2), the ranking effective-

ness increases significantly. In addition, we find

that another iteration of training with an index re-

fresh (condition 3) further improves ranking ef-

fectiveness. To sum up, in the document ranking

task, TCT-ColBERT yields competitive effective-

ness with a one-time index refresh and outperforms

other computationally expensive methods with one

additional index refresh.

4.3 Dense–Sparse Hybrids

In our final set of experiments, we show that dense

retrieval with single-vector representations can be

integrated with results from sparse retrieval to fur-

ther increase effectiveness. We illustrate the end-

to-end tradeoffs in terms of quality, time, and space

of different dense–sparse hybrid combinations on

the passage retrieval tasks.

Many papers (Luan et al., 2021; Gao et al.,

2020b; Ma et al., 2021; Lin et al., 2021) have

demonstrated that sparse retrieval can comple-

ment dense retrieval via a simple linear combina-

tion of their scores. In our implementation, for

each query q, we use sparse and dense techniques

to retrieve the top-1000 passages, Dsp and Dds,

with their relevance scores, φsp(q, p ∈ Dsp) and

φds(q, p ∈ Dds), respectively. Then, we compute

the final relevance score for each retrieved passage

φ(q, p), where p ∈ Dsp ∪ Dds, as follows:



















α · φsp(q, p) + min
p∈Dds

φds(q, p), if p /∈ Dds

α · min
p∈Dsp

φsp(q, p) + φds(q, p), if p /∈ Dsp

α · φsp(q, p) + φds(q, p), otherwise.

This technique is an approximation of a linear

combination of sparse and dense retrieval scores.

Specifically, if p /∈ Dsp(or Dds), we instead use the

minimum score of φsp(q, p ∈ Dsp), or φds(q, p ∈
Dds) as a substitute.

For the sparse and dense retrieval combina-

tions, we tune the hyperparameter α on 6000 ran-

domly sampled queries from the MS MARCO

training set. We conduct dense–sparse hybrid ex-

periments with sparse retrieval (BM25 ranking)

on the original passages (denoted BM25) and on

passages with docTTTTTquery document expan-

sion (Nogueira and Lin, 2019) (denoted doc2query-

T5). To characterize end-to-end effectiveness and

efficiency, we perform sparse retrieval with the Py-

serini toolkit (Lin et al., 2021) and dense retrieval

with Faiss (Johnson et al., 2017), but implement

the score combination in separate custom code.

Table 5 shows passage retrieval results in terms

of ranking effectiveness, query latency, and stor-

age requirements (i.e., index size) for each model

and Table 6 reports the component latencies of our

TCT-ColBERT dense–sparse hybrid.3 The cross-

encoder reranker of Nogueira and Cho (2019) pro-

vides a point of reference for multi-stage reranking

designs, which is effective but slow.

Generally, dense retrieval methods (whether

single-vector or multi-vector) are more effective

but slower than sparse retrieval methods, which

rely on bag-of-words querying using inverted in-

dexes. Single-vector dense models also require

more space than sparse retrieval methods. Moving

3Here we assume running dense and sparse retrieval in parallel.
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Table 5: End-to-end comparisons of output quality, query latency, and storage requirements for passage retrieval.

Ranking effectiveness Latency Storage

MARCO Dev TREC-DL ’19 ms/q GiB

Sparse retrieval
BM25 with Anserini (Yang et al., 2018) .184 .506 55 4
DeepCT (Dai and Callan, 2020) .243 .551 55 4
doc2query-T5 (Nogueira and Lin, 2019) .277 .551 64 14

Dense retrieval: single-vector
TAS-B (Hofstätter et al., 2021) .343 .722 64 13

RocketQA (Qu et al., 2020) .370 - 107b 13a

TCT-ColBERT .344 .685 107 13
TCT-ColBERT (w/ TCT HN+) .359 .719 107 13
Dense retrieval: multi-vector
ME-BERT (Luan et al., 2021) .334 .687 - 96
ColBERT (Khattab and Zaharia, 2020) .360 - 458 154

Hybrid dense + sparse
CLEAR (Gao et al., 2020b) .338 .699 - 17a

ME-HYBRID-E (Luan et al., 2021) .343 .706 - 100
TAS-B + doc2query-T5 (Hofstätter et al., 2021) .360 .753 67 27a

TCT-ColBERT + BM25 .356 .720 110 17
TCT-ColBERT + doc2query-T5 .366 .734 110 27
TCT-ColBERT (w/ TCT HN+) + BM25 .369 .730 110 17
TCT-ColBERT (w/ TCT HN+) + doc2query-T5 .375 .741 110 27

Multi-stage reranking
BM25 + BERT-large (Nogueira and Cho, 2019) .365 .736 3500 4
TAS-B + doc2query-T5 + Mono-Duo-T5 (Hofstätter et al., 2021) .421 .759 12800 27a

RocketQA with reranking (Qu et al., 2020) .439 - - 13a

a We estimate dense index size using 16-bit floats; for hybrid, we add the sizes of sparse and dense indexes.
b We assume latency comparable to our settings.

Table 6: Component latencies per query of our model.

Stage latency (ms) device

BERT query encoder 7 GPU
Dot product search 100 GPU
Score combination 3 CPU

from single-vector to multi-vector dense models,

we see that ColBERT exhibits higher effectiveness

but is slower and requires much more storage.

Finally, when integrated with sparse retrieval

methods, TCT-ColBERT is able to beat a ba-

sic multi-stage reranking design (BM25 + BERT-

large), but with much lower query latency, al-

though at the cost of increased storage. Hybrid

TCT-ColBERT (w/ TCT HN+) + doc2query-T5

compares favorably with a recent advanced model,

TAS-B + doc2query-T5 (Hofstätter et al., 2021),

which introduces topic-aware sampling and dual

teachers, incorporating part of our TCT-ColBERT

work. Nevertheless, even the best hybrid variant

of TCT-ColBERT alone, without further rerank-

ing, remains quite some distance from RocketQA,

the current state of the art (with reranking using

cross-encoders). This suggests that there remain

relevance signals that require full attention interac-

tions to exploit.

5 Conclusions

Improving the effectiveness of single-vector bi-

encoders is an important research direction in dense

retrieval because of lower latency and storage re-

quirements compared to multi-vector approaches.

We propose a teacher–student knowledge distilla-

tion approach using tightly coupled bi-encoders

that enables exhaustive use of query–passage com-

binations in each minibatch. More importantly, a

bi-encoder teacher requires less computation than a

cross-encoder teacher. Finally, our approach leads

to robust learned representations.

Overall, our hard negative sampling strategy

leads to an effective and efficient dense retrieval

technique, which can be further combined with

sparse retrieval techniques in dense–sparse hybrids.

Together, these designs provide a promising so-

lution for end-to-end text retrieval that balances

quality, query latency, and storage requirements.
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