
In-Datacenter Performance Analysis of a Tensor Processing Unit

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,

Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao,

Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir

Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug

Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander

Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,

James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean,

Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni,

Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt

Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter,

Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,

Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon

Google, Inc., Mountain View, CA USA
jouppi@google.com

ABSTRACT

Many architects believe that major improvements in cost-energy-

performance must now come from domain-specific hardware.

This paper evaluates a custom ASIC—called a Tensor Processing

Unit (TPU)— deployed in datacenters since 2015 that accelerates

the inference phase of neural networks (NN). The heart of the

TPU is a 65,536 8-bit MAC matrix multiply unit that offers a peak

throughput of 92 TeraOps/second (TOPS) and a large (28 MiB)

software-managed on-chip memory. The TPU’s deterministic

execution model is a better match to the 99th-percentile response-

time requirement of our NN applications than are the time-varying

optimizations of CPUs and GPUs that help average throughput

more than guaranteed latency. The lack of such features helps

explain why, despite having myriad MACs and a big memory, the

TPU is relatively small and low power. We compare the TPU to a

server-class Intel Haswell CPU and an Nvidia K80 GPU, which

are contemporaries deployed in the same datacenters. Our

workload, written in the high-level TensorFlow framework, uses

production NN applications (MLPs, CNNs, and LSTMs) that

represent 95% of our datacenters’ NN inference demand. Despite

low utilization for some applications, the TPU is on average about

15X – 30X faster than its contemporary GPU or CPU, with

TOPS/Watt about 30X – 80X higher. Moreover, using the GPU’s

GDDR5 memory in the TPU would triple achieved TOPS and

raise TOPS/Watt to nearly 70X the GPU and 200X the CPU.

CCS CONCEPTS

� Computer systems organization → Neural Networks

Permission to make digital or hard copies of part or all of this

work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for third-party components

of this work must be honored. For all other uses, contact the

Owner/Author. ISCA '17, June 24-28, 2017, Toronto, ON, Canada

© 2017 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-4892-8/17/06.

https://doi.org/10.1145/3079856.3080246

KEYWORDS

DNN, MLP, CNN, RNN, LSTM, neural network, deep learning,

domain-specific architecture, accelerator, TensorFlow, TPU, GPU

ACM Reference format:

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, et al.,

Google, Inc., Mountain View, CA USA 2017. In-Datacenter Performance

Analysis of a Tensor Processing Unit. In Proceedings of ISCA ’17,

Toronto, ON, Canada, June 24-28, 2017, 12 pages.
https://doi.org/10.1145/3079856.3080246

1 INTRODUCTION TO NEURAL

NETWORKS

The synergy between the large data sets in the cloud and the

numerous computers that power it has enabled a renaissance in

machine learning. In particular, deep neural networks (DNNs)

have led to breakthroughs such as reducing word error rates in

speech recognition by 30% over traditional approaches, which

was the biggest gain in 20 years [17]; cutting the error rate in an

image recognition competition since 2011 from 26% to 3.5% [30,

56, 22]; and beating a human champion at Go [53].

Neural networks (NN) target brain-like functionality and are

based on a simple artificial neuron: a nonlinear function (such as

max(0, value)) of a weighted sum of the inputs. These pseudo

neurons are collected into layers, with the outputs of one layer

becoming the inputs of the next in the sequence. The “deep” part

of DNN comes from going beyond a few layers, as the large data

sets in the cloud allowed more accurate models to be built by

using extra and larger layers to capture higher levels of patterns or

concepts, and GPUs provided enough computing to develop them.

The two phases of NN are called training (or learning) and

inference (or prediction), and they refer to development versus

production. The developer chooses the number of layers and the

type of NN, and training determines the weights. Virtually all

training today is in floating point, which is one reason GPUs have

been so popular. A step called quantization transforms floating-

point numbers into narrow integers—often just 8 bits—which are

usually good enough for inference. Eight-bit integer multiplies

can be 6X less energy and 6X less area than IEEE 754 16-bit

1

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada N. P. Jouppi et al.

floating-point multiplies, and the advantage for integer addition is

13X in energy and 38X in area [15].

 Three kinds of NNs are popular today:

1. Multi-Layer Perceptrons (MLP): Each new layer is a set

of nonlinear functions of a weighted sum of all outputs

(fully connected) from the prior one.

2. Convolutional Neural Networks (CNN): Each layer is a

set of nonlinear functions of weighted sums at different

coordinates of spatially nearby subsets of outputs from

the prior layer, which allows the weights to be reused.

3. Recurrent Neural Networks (RNN): Each subsequent

layer is a collection of nonlinear functions of weighted

sums of outputs and the previous state. The most

popular RNN is Long Short-Term Memory (LSTM).

The art of the LSTM is in deciding what to forget and

what to pass on as state to the next layer. The weights

are reused across time steps.

Table 1 shows two examples of each of the three types of

NNs—which represent 95% of NN inference workload in our

datacenters—that we use as benchmarks. Typically written in

TensorFlow [1], they are surprisingly short: just 100 to 1500 lines

of code. Our benchmarks are small pieces of larger applications

that run on the host server, which can be thousands to millions of

lines of C++ code. The applications are typically user facing,

which leads to rigid response-time limits.

 Each model needs between 5M and 100M weights (9th

column of Table 1), which can take a lot of time and energy to

access. To amortize the access costs, the same weights are reused

across a batch of independent examples during inference or

training, which improves performance.

This paper describes and measures the Tensor Processing Unit

(TPU) and compares its performance and power for inference to

its contemporary CPUs and GPUs. Here is a preview of the

highlights:

� Inference apps usually emphasize response-time over

throughput since they are often user facing.

� As a result of latency limits, the K80 GPU is just a little

faster for inference than the Haswell CPU, despite it having

much higher peak performance and memory bandwidth.

� While most architects are accelerating CNNs, they are just

5% of our datacenter workload.

� The TPU is about 15X – 30X faster at inference than the K80

GPU and the Haswell CPU.

� Four of the six NN apps are memory bound; if the TPU were

revised to have the same memory as the K80 GPU, it would

be about 30X – 50X faster than the GPU and CPU.

� Despite having a much smaller and lower power chip, the

TPU has 25 times as many MACs and 3.5 times as much on-

chip memory as the K80 GPU.

� The performance/Watt of the TPU is 30X – 80X that of its

contemporary CPUs and GPUs; a revised TPU with K80

memory would be 70X – 200X better.

2 TPU ORIGIN, ARCHITECTURE,

IMPLEMENTATION, AND SOFTWARE

Starting as early as 2006, we discussed deploying GPUs, FPGAs,

or custom ASICs in our datacenters. We concluded that the few

applications that could run on special hardware could be done

virtually for free using the excess capacity of our large

datacenters, and it’s hard to improve on free. That changed in

2013 when a projection showed people searching by voice for

three minutes a day using speech recognition DNNs would double

our datacenters’ computation demands, which would be very

expensive using conventional CPUs. Thus, we started a high-

priority project to produce a custom ASIC quickly for inference

(and bought off-the-shelf GPUs for training). The goal was to

improve cost-performance by 10X over GPUs. Given this

mandate, in just 15 months the TPU was designed, verified [55],

built, and deployed in datacenters. (Space limits the amount and

the level of detail on the TPU in this paper; see [46], [47], [48],

[49], [57], and [60] for more.)

Rather than be tightly integrated with a CPU, to reduce the

chances of delaying deployment, the TPU was designed to be a

coprocessor on the PCIe I/O bus, allowing it to plug into existing

servers just as a GPU does. Moreover, to simplify hardware

design and debugging, the host server sends TPU instructions for

it to execute rather than the TPU fetching them itself. Hence, the

TPU is closer in spirit to an FPU (floating-point unit) coprocessor

than it is to a GPU.

The goal was to run whole inference models in the TPU to

reduce interactions with the host CPU and to be flexible enough to

match the NN needs of 2015 and beyond, instead of just what was

required for 2013 NNs. Figure 1 shows the block diagram of the

TPU.

The TPU instructions are sent from the host over the PCIe

Gen3 x16 bus into an instruction buffer. The internal blocks are

typically connected together by 256-byte-wide paths. Starting in

Name LOC
Layers Nonlinear

function
Weights

TPU Ops /

Weight Byte

TPU Batch

Size

% of Deployed TPUs

in July 2016 FC Conv Vector Pool Total

MLP0 100 5 5 ReLU 20M 200 200
61%

MLP1 1000 4 4 ReLU 5M 168 168

LSTM0 1000 24 34 58 sigmoid, tanh 52M 64 64
29%

LSTM1 1500 37 19 56 sigmoid, tanh 34M 96 96

CNN0 1000 16 16 ReLU 8M 2888 8
5%

CNN1 1000 4 72 13 89 ReLU 100M 1750 32

Table 1. Six NN applications (2 per NN type) that represent 95% of the TPU’s workload. The columns are the NN name; lines of

code; types and number of layers in the NN (FC is fully connected, Conv is convolution, Vector is self-explanatory, Pool is pooling,

which does nonlinear downsizing on the TPU; nonlinear function; number of weights; TPU operations per byte (operational

intensity in Figure 5); batch size; and TPU application popularity in July 2016. One DNN is RankBrain [14]; one LSTM is a subset

of GNM Translate [59]; one CNN is Inception; and the other CNN is DeepMind AlphaGo [53, 27].

2

In-Datacenter Performance Analysis of a Tensor Processing Unit ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

the upper-right corner, the Matrix Multiply Unit is the heart of the

TPU. It contains 256x256 MACs that can perform 8-bit multiply-

and-adds on signed or unsigned integers. The 16-bit products are

collected in the 4 MiB of 32-bit Accumulators below the matrix

unit. The 4 MiB holds 4096, 256-element, 32-bit accumulators.

The matrix unit produces one 256-element partial sum per clock

cycle. We picked 4096 by first noting that the operations per byte

needed to reach peak performance (roofline knee in Section 4) is

~1350, so we rounded that up to 2048 and then duplicated it so

that the compiler could use double buffering while running at

peak performance.

When using a mix of 8-bit weights and 16-bit activations (or

vice versa), the Matrix Unit computes at half-speed, and it

computes at a quarter-speed when both are 16 bits. It reads and

writes 256 values per clock cycle and can perform either a matrix

multiply or a convolution. The matrix unit holds one 64 KiB tile

of weights plus one for double buffering (to hide the 256 cycles it

takes to shift a tile in). This unit is designed for dense matrices.

Sparse architectural support was omitted for time-to-deployment

reasons. The weights for the matrix unit are staged through an on-

chip Weight FIFO that reads from an off-chip 8 GiB DRAM

called Weight Memory (for inference, weights are read-only; 8

GiB supports many simultaneously active models). The weight

FIFO is four tiles deep. The intermediate results are held in the 24

MiB on-chip Unified Buffer, which can serve as inputs to the

Matrix Unit. A programmable DMA controller transfers data to or

from CPU Host memory and the Unified Buffer.

Figure 2 shows the floor plan of the TPU die. The 24 MiB

Unified Buffer is almost a third of the die and the Matrix Multiply

Unit is a quarter, so the datapath is nearly two-thirds of the die.

The 24 MiB size was picked in part to match the pitch of the

Matrix Unit on the die and, given the short development schedule,

in part to simplify the compiler (see Section 7). Control is just 2%.

Figure 3 shows the TPU on its printed circuit card, which inserts

into existing servers like an SATA disk.

As instructions are sent over the relatively slow PCIe bus,

TPU instructions follow the CISC tradition, including a repeat

field. The average clock cycles per instruction (CPI) of these

CISC instructions is typically 10 to 20. It has about a dozen

instructions overall, but these five are the key ones:

1. Read_Host_Memory reads data from the CPU host

memory into the Unified Buffer (UB).

2. Read_Weights reads weights from Weight Memory

into the Weight FIFO as input to the Matrix Unit.

3. MatrixMultiply/Convolve causes the Matrix

Unit to perform a matrix multiply or a convolution from the

Unified Buffer into the Accumulators. A matrix operation

takes a variable-sized B*256 input, multiplies it by a

256x256 constant weight input, and produces a B*256

output, taking B pipelined cycles to complete.

4. Activate performs the nonlinear function of the

artificial neuron, with options for ReLU, Sigmoid, and so on.

Its inputs are the Accumulators, and its output is the Unified

Buffer. It can also perform the pooling operations needed for

convolutions using the dedicated hardware on the die, as it is

connected to nonlinear function logic.

5. Write_Host_Memory writes data from the Unified

Buffer into the CPU host memory.

The other instructions are alternate host memory read/write, set

configuration, two versions of synchronization, interrupt host,

Figure 1. TPU Block Diagram. The main computation is the

yellow Matrix Multiply unit. Its inputs are the blue Weight

FIFO and the blue Unified Buffer and its output is the blue

Accumulators. The yellow Activation Unit performs the

nonlinear functions on the Accumulators, which go to the

Unified Buffer.

Figure 2. Floorplan of TPU die. The shading follows Figure 1.

The light (blue) datapath is 67%, the medium (green) I/O is

10%, and the dark (red) control is just 2% of the die. Control

is much larger (and much harder to design) in a CPU or GPU.

Figure 3. TPU Printed Circuit Board. It can be inserted into

the slot for a SATA disk in a server.

3

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada N. P. Jouppi et al.

debug-tag, nop, and halt. The CISC MatrixMultiply

instruction is 12 bytes, of which 3 are Unified Buffer address; 2

are accumulator address; 4 are length (2 dimensions for

convolutions); and the rest are opcode and flags.

The philosophy of the TPU microarchitecture is to keep the

matrix unit busy. It uses a 4-stage pipeline for these CISC

instructions, where each instruction executes in a separate stage.

The plan was to hide the execution of the other instructions by

overlapping their execution with the MatrixMultiply

instruction. Toward that end, the Read_Weights instruction

follows the decoupled-access/execute philosophy [54], in that it

can complete after sending its address but before the weights are

fetched from Weight Memory. The matrix unit will stall if the

input activation or weight data is not ready.

We don’t have clean pipeline overlap diagrams, because our

CISC instructions can occupy a station for 1000s of clock cycles,

unlike the traditional RISC pipeline with 1 per stage. Situations

occur when the activations for one network layer must complete

before the matrix multiplications of the next layer can begin; we

see a RAW pipeline stall where the matrix unit waits for explicit

synchronization before safely reading from the Unified Buffer.

As reading a large SRAM uses much more power than

arithmetic, the matrix unit uses systolic execution to save energy

by reducing reads and writes of the Unified Buffer [31, 44, 40]. It

relies on data from different directions arriving at cells in an array

at regular intervals where they are combined. Figure 4 shows that

data flows in from the left, and the weights are loaded from the

top. A given 256-element multiply-accumulate operation moves

through the matrix as a diagonal wavefront. The weights are

preloaded, and take effect with the advancing wave alongside the

first data of a new block. Control and data are pipelined to give

the illusion that the 256 inputs are read at once, and that they

instantly update one location of each of 256 accumulators. From a

correctness perspective, software is unaware of the systolic nature

of the matrix unit, but for performance, it does worry about the

latency of the unit.

The TPU software stack had to be compatible with those

developed for CPUs and GPUs so that applications could be

ported quickly to the TPU. The portion of the application run on

the TPU is typically written in TensorFlow and is compiled into

an API that can run on GPUs or TPUs [33]. Like GPUs, the TPU

stack is split into a User Space Driver and a Kernel Driver. The

Kernel Driver is lightweight and handles only memory

management and interrupts. It is designed for long-term stability.

The User Space driver changes frequently. It sets up and

controls TPU execution, reformats data into TPU order, translates

API calls into TPU instructions, and turns them into an

application binary. The User Space driver compiles a model the

first time it is evaluated, caching the program image and writing

the weight image into the TPU’s weight memory; the second and

following evaluations run at full speed. The TPU runs most

models completely from inputs to outputs, maximizing the ratio of

TPU compute time to I/O time. Computation is often done one

layer at a time, with overlapped execution allowing the matrix

multiply unit to hide most non-critical-path operations.

3 CPU, GPU, AND TPU PLATFORMS

The six production applications in Table 1 are our workload for

this paper. As mentioned above, these six are representative of

95% of TPU use in our datacenters. Ironically, deploying and

measuring popular small DNNs like AlexNet or VGG is difficult

on production machines. However, one of our CNNs derives from

Inception V2, which is widely used.

The benchmark platforms are server-class computers that were

available in 2015 when the TPUs were deployed. This restriction

meant that they must include at least SECDED protection of

internal SRAM as well as external DRAM memory like the TPU,

which excludes some choices such as the Nvidia Maxwell GPU.

For our company to purchase and deploy them, they also had to be

sensibly configured machines, and not awkward artifacts

assembled solely to win benchmarks.
Table 2 lists our choices. The traditional CPU server is

represented by an 18-core, dual-socket Haswell processor from

Figure 4. Systolic data flow of the Matrix Multiply Unit.

Model

Die Benchmarked Servers

mm2 nm MHz TDP
Measured TOPS/s

GB/s
On-Chip

Memory
Dies DRAM Size TDP

Measured

Idle Busy 8b FP Idle Busy

Haswell

E5-2699 v3
662 22 2300 145W 41W 145W 2.6 1.3 51 51 MiB 2 256 GiB 504W 159W 455W

NVIDIA K80

(2 dies/card)
561 28 560 150W 25W 98W -- 2.8 160 8 MiB 8

256 GiB (host)

+ 12 GiB x 8
1838W 357W 991W

TPU <331* 28 700 75W 28W 40W 92 -- 34 28 MiB 4
256 GiB (host)

+ 8 GiB x 4
861W 290W 384W

Table 2. Benchmarked servers use Haswell CPUs, K80 GPUs, and TPUs. Haswell has 18 cores, and the K80 has 13 SMX

processors. Figure 10 shows measured power. The low-power TPU allows for better rack-level density than the high-power GPU.

The 8 GiB DRAM per TPU is Weight Memory. GPU Boost mode is not used (see Section 8). SECDED and no Boost mode reduce

K80 bandwidth from its advertised 240 to 160 GB/s. No Boost mode and single die vs. dual die performance reduces advertised K80

peak TOPS/s from 8.7 to 2.8. (*The TPU die is less than half the Haswell die size.)

4

In-Datacenter Performance Analysis of a Tensor Processing Unit ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Intel. This platform is also the host server for GPUs or TPUs.

Haswell was fabbed in an Intel 22nm process. Both the CPU and

GPU are very large dies: about 600 mm2!

The 2.3 GHz CPU clock rate doesn’t include Turbo mode

because it seldom occurs in our datacenters for NN apps. Haswell

has different clock rates depending on whether programs use

AVX instructions, which our NN apps often use. The higher clock

rate of Turbo mode (for programs that avoid AVX) occurs when

they don’t use all their cores. Thus, another reason Turbo mode is

rare in our datacenters is that our apps typically do use all the

cores, plus they can run other datacenter jobs to fill any idle cores.

The GPU accelerator is the Nvidia K80. Each K80 card

contains two dies and offers SECDED on internal memory and

DRAM. Nvidia states that the “K80 Accelerator dramatically

lowers datacenter cost by delivering application performance with

fewer, more powerful servers” [38]. NN researchers frequently

used K80s in 2015, and they were chosen for new cloud-based

GPU offerings as recently as September 2016 [7]. Up to eight K80

dies can be installed in four cards on this server, which is the

configuration we benchmark.

As the number of dies per server varies between 2 to 8, we

usually show results normalized per die (Figures 5–8, Figures 10–

11, and Tables 3, 5, and 7), but we occasionally show whole

systems (Figure 9). We hope this distinction is clear.

4 PERFORMANCE: ROOFLINES, RESPONSE-

TIME, AND THROUGHPUT

To illustrate the performance of the six apps on the three

processors, we adapt the Roofline Performance model from high-

performance computing (HPC) [58]. This simple visual model is

not perfect, yet it offers insights into the causes of performance

bottlenecks. The assumption behind the model is that applications

don’t fit in on-chip caches, so they are either computation-limited

or memory bandwidth-limited. For HPC, the Y-axis is

performance in floating-point operations per second, thus the peak

computation rate forms the “flat” part of the roofline. The X-axis

is operational intensity, measured as floating-point operations per

DRAM byte accessed. Memory bandwidth is bytes per second,

which turns into the “slanted” part of the roofline since

(FLOPS/sec)/ (FLOPS/Byte) = Bytes/sec. Without sufficient

operational intensity, a program is memory bandwidth-bound and

lives under the slanted part of the roofline.

The gap between the actual operations per second of an

application and the ceiling directly above it shows the potential

benefit of further performance tuning while leaving operational

intensity untouched; of course, optimizations that increase

operational intensity (such as cache blocking) may yield even

greater benefit.

To use the Roofline model for the TPU, when NN

applications are quantized, we first replace floating-point

operations with integer operations. As weights do not normally fit

in on-chip memory for NN applications, the second change is to

redefine operational intensity to be integer operations per byte of

weights read (see the tenth column of Table 1).

Figure 5 shows the Roofline model for a single TPU die on

log-log scales. The TPU has a long “slanted” part of its roofline,

where operational intensity means that performance is limited by

memory bandwidth rather than by peak compute. Five of the six

applications are happily bumping their heads against the ceiling:

the MLPs and LSTMs are memory bound, and CNNs are

computation bound. CNN1, despite a high operational intensity, is

running at only 14.1 TOPS while CNN0 runs at 86 TOPS.

Table 3 explains what happened with CNN1, based on the

performance counters that give us partial visibility into TPU

operation. The TPU spends less than half of its cycles performing

matrix operations for CNN1 (column 7, row 1). On each of those

active cycles, only about half of the 65,536 MACs hold useful

weights because some layers in CNN1 have shallow feature

depths. About 35% of cycles are spent waiting for weights to load

from memory into the matrix unit, which occurs during the 4 fully

connected layers that run at an operational intensity of just 32 (see

the last fallacy in Section 8). This leaves roughly 19% of cycles

not explained by the matrix-related counters. Because of

overlapped execution on the TPU, we do not have exact

accounting for those cycles, but we can see that 23% of cycles

have stalls for RAW dependences in the pipeline, and 1% are

spent stalled for input over the PCIe bus.

Figures 6 and 7 show rooflines for a single Haswell die and

for a single K80 die. The six NN applications are generally further

below their ceilings than was the TPU in Figure 5. Response time

is the reason. Many of these NN applications are parts of end-

user-facing services. Researchers have demonstrated that small

increases in response time cause customers to use a service less

[51]. Hence, while training may not have hard response time

deadlines, inference usually does. That is, inference prefers

latency over throughput.

For example, the 99th-percentile response time limit for

MLP0 was 7 ms, which was required by the application

developer. (The inferences per second and 7 ms latency include

the server host time as well as the accelerator time.) Table 4

shows that Haswell and the K80 run at just 42% and 37%,

respectively, of the highest throughput achievable for MLP0 if the

response time limit was relaxed. These bounds affect the TPU as

well, but at 80% it is operating much closer to its highest MLP0

throughput. As compared to CPUs and GPUs, the single-threaded

Figure 5. TPU (die) roofline. Its ridge point is far to the right

at 1350 multiply-accumulate operations per byte of weight

memory read. The 2 LSTMs and 2 MLPs are under the

slanted part of the roofline, so they are bottlenecked by

memory bandwidth on the TPU. The 2 CNNs are limited by

the peak computation rate.

5

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada N. P. Jouppi et al.

Application MLP0 MLP1 LSTM0 LSTM1 CNN0 CNN1 Mean Row

Array active cycles 12.7% 10.6% 8.2% 10.5% 78.2% 46.2% 28% 1

 Useful MACs in 64K matrix (% peak) 12.5% 9.4% 8.2% 6.3% 78.2% 22.5% 23% 2

 Unused MACs 0.3% 1.2% 0.0% 4.2% 0.0% 23.7% 5% 3

Weight stall cycles 53.9% 44.2% 58.1% 62.1% 0.0% 28.1% 43% 4

Weight shift cycles 15.9% 13.4% 15.8% 17.1% 0.0% 7.0% 12% 5

Non-matrix cycles 17.5% 31.9% 17.9% 10.3% 21.8% 18.7% 20% 6

RAW stalls 3.3% 8.4% 14.6% 10.6% 3.5% 22.8% 11% 7

Input data stalls 6.1% 8.8% 5.1% 2.4% 3.4% 0.6% 4% 8

TeraOps/sec (92 Peak) 12.3 9.7 3.7 2.8 86.0 14.1 21.4 9

Table 3. Factors limiting TPU performance of the NN workload based on hardware performance counters. Rows 1, 4, 5, and 6 total

100% and are based on measurements of activity of the matrix unit. Rows 2 and 3 further break down the fraction of 64K weights

in the matrix unit that hold useful weights on active cycles. Our counters cannot exactly explain the time when the matrix unit is

idle in row 6; rows 7 and 8 show counters for two possible reasons, including RAW pipeline hazards and PCIe input stalls. Row 9

(TOPS) is based on measurements of production code while the other rows are based on performance-counter measurements, so

they are not perfectly consistent. Host server overhead is excluded here. CNN1 results are explained in the text.

TPU has none of the sophisticated microarchitectural features that

consume transistors and energy to improve the average case but

not the 99th-percentile case: no caches, branch prediction, out-of-

order execution, multiprocessing, speculative prefetching,

address coalescing, multithreading, context switching, and so

forth. Minimalism is a virtue of domain-specific processors.

Table 3 shows TPU performance, but it doesn’t account for

host server time, which can be divided into running the host share

of the application and talking to the TPU. Table 5 lists the second

part, but the first part is hard. Queueing theory shows that long

input queues raise throughput—by ensuring that the computer is

never idle—but stretch response time. Thus, most applications

keep their input queues empty. Alas, we can’t measure when the

TPU is idle since it is waiting for the CPU to do its portion of the

application or because the CPU is also idle due to an empty input

queue.

Table 6 gives the bottom line of relative inference

performance per die including the host server overhead for the

two accelerators versus the CPU. The next-to-last column shows

the geometric mean of the relative performance for the six NN

applications, which suggests the K80 die is 1.1X the speed of a

Haswell die, that the TPU die is 14.5 times as fast, and thus the

TPU die is 13.2 times as fast as the GPU die. Figure 8 shows their

relative speeds visually.is

Type Batch 99th% Response Inf/s (IPS) % Max IPS

CPU 16 7.2 ms 5,482 42%

CPU 64 21.3 ms 13,194 100%

GPU 16 6.7 ms 13,461 37%

GPU 64 8.3 ms 36,465 100%

TPU 200 7.0 ms 225,000 80%

TPU 250 10.0 ms 280,000 100%

Table 4. 99th% response time and per die throughput (IPS)

for MLP0 as batch size varies for MLP0. The longest

allowable latency is 7 ms. For the GPU and TPU, the

maximum MLP0 throughput is limited by the host server

overhead. Larger batch sizes increase throughput, but as the

text explains, their longer response times exceed the limit, so

CPUs and GPUs must use less-efficient, smaller batch sizes (16

vs. 200). They run 2.3X – 2.7X slower than if response time

was unbound, but the for the more deterministic TPU, the

slowdown from the 99th% response-time limit is just 1.2X.

Figure 6. Intel Haswell CPU (die) roofline with its ridge point

at 13 multiply-accumulate operations/byte, which is much

further left than in Figure 5. LSTM0 and MLP1 are faster on

Haswell than on the K80, but it is vice versa for the other

DNNs. Response time limits DNN performance (Table 4).

Figure 7. NVIDIA K80 GPU die Roofline. The higher memory

bandwidth moves the ridge point to 9 operations per weight

byte, which is further left than in Figure 6. The DNNs are far

from their Roofline because of response time caps (Table 4).

MLP0 MLP1 LSTM0 LSTM1 CNN0 CNN1

21% 76% 11% 20% 51% 14%

Table 5. Time for host CPU to interact with the TPU

expressed as percent of TPU execution time (from TPU

performance counters). This fraction is the time the CPU and

TPU are communicating over the PCIe bus, not including the

time the CPU is doing a portion of the application but not

interacting with the TPU. As the text explains, it’s hard for

the TPU to measure if the CPU is idle or working on the

application.

6

In-Datacenter Performance Analysis of a Tensor Processing Unit ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Recall that architects use the geometric mean when they

don’t know the actual mix of programs that will be run [23]. For

this study, however, we do know the mix (Table 1). The weighted

mean in the last column of Table 6 using the actual mix increases

the GPU to 1.9X and the TPU to 29.2X, so the TPU die is now

15.3 times as fast as the GPU die.

Type
DNN LSTM CNN

GM WM
0 1 0 1 0 1

GPU 2.5 0.3 0.4 1.2 1.6 2.7 1.1 1.9

TPU 41.0 18.5 3.5 1.2 40.3 71.0 14.5 29.2

Ratio 16.7 60.0 8.0 1.0 25.4 26.3 13.2 15.3

Table 6. K80 GPU die and TPU die performance relative to

CPU for the NN workloads. GM and WM are geometric and

weighted mean (using the mix from Table 1). Relative

performance for the GPU and TPU includes host server

overhead.

Figure 8. Figures 5-7 combined into a log-log graph. Stars are

for the TPU, triangles are for the K80, and circles are for

Haswell. All TPU stars are at or above the other two rooflines.

5 COST-PERFORMANCE, TCO, AND

PERFORMANCE/WATT

When buying computers by the thousands, cost-performance

trumps performance. The best cost metric in a datacenter is total

cost of ownership (TCO). The actual price we pay for thousands

of chips depends on negotiations between the companies

involved. For business reasons, we can’t publish such price

information or data that might let them be deduced. However,

power is correlated with TCO, and we can publish Watts per

server, so we use performance/Watt as our proxy for

performance/TCO in this paper. In this section, we compare

whole servers rather than single dies, which Table 2 lists in the

“Benchmarked Server” columns.

 Figure 9 shows the geometric and weighted mean

performance/Watt for the K80 GPU and TPU relative to the

Haswell CPU. We present two different calculations of

performance/Watt. The first (“total”) includes the power

consumed by the host CPU server when calculating

performance/Watt for the GPU and TPU. The second

(“incremental”) subtracts the host CPU server power from the

GPU and TPU beforehand.

For total-performance/Watt, the K80 server is 1.2X – 2.1X

Haswell. For incremental-performance/Watt, when Haswell

server power is omitted, the K80 server is 1.7X – 2.9X. The TPU

server has 17X – 34X better total-performance/Watt than Haswell,

which makes the TPU server 14X – 16X the performance/Watt of

the K80 server. The relative incremental-performance/Watt—

which was our company’s justification for a custom ASIC—is

41X – 83X for the TPU, which lifts the TPU to 25X – 29X the

performance/Watt of the GPU.

Figure 9. Relative performance/Watt (TDP) of GPU server

(blue) and TPU server (red) to CPU server, and TPU server to

GPU server (orange). TPU’ is an improved TPU that uses

GDDR5 memory (see Section 7). The green bar shows its ratio

to the CPU server, and the lavender bar shows its relation to

the GPU server. Total includes host server power, but

incremental doesn’t. GM and WM are the geometric and

weighted means.

6 ENERGY PROPORTIONALITY

Thermal Design Power (TDP) affects the cost of provisioning

power, as you must supply sufficient power and cooling when

hardware is at full power. However, the cost of electricity is based

upon the average consumed as the workload varies during the

day. [6] found that servers are 100% busy less than 10% of the

time and advocated energy proportionality: servers should

consume power proportional to the amount of work performed.

The estimate of power consumed in the prior section is based

upon the fraction of the TDP that has been seen in our datacenters.

We measured performance and power of servers including

CPUs, TPUs, and GPUs as the offered workload utilization varies

from 0% to 100%, collected in buckets of 10% delta of workload

[32]. Figure 10 shows server power divided by the number of dies

per server for the three chips by varying CNN0’s workload.

We see that the TPU has the lowest power—40W per die—

but it has poor energy proportionality: at 10% load, the TPU uses

88% of the power it uses at 100%. (The short design schedule

prevented inclusion of many energy-saving features.) Not

surprisingly, Haswell is the best at energy proportionality of the

group: it uses 56% of the power at 10% load as it does at 100%.

The K80 is closer to the CPU than the TPU, using 66% of the full

load power at 10% workload. LSTM1, which is not computation

bound, performs similarly: at 10% load the CPU uses 47% of full

power, the GPU uses 78%, and the TPU uses 94%.

7

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada N. P. Jouppi et al.

What happens to the server power usage when running

CNN0 if it becomes a host to accelerators? When the GPU and

TPU are at 100% load, the CPU server uses 52% of full power for

the GPU and 69% for the TPU. (The CPU does more work for the

TPU because it is running so much faster than the GPU.)

Consequently, the Haswell server plus four TPUs use <20%

additional power but run CNN0 80 times faster than the Haswell

server alone (4 TPUs vs. 2 CPUs).

Figure 10. Watts/die for CNN0 as utilization varies from 0%

to 100%. A server has 2 CPUs and 8 GPUs or 4 TPUs, so we

normalize power by dividing by 2, 8, and 4, respectively.

Figure 11. Weighted mean TPU performance as metrics scale

from 0.25x to 4x: memory bandwidth (memory), clock rate +

accumulators (clock+), clock rate (clock), matrix unit

dimension + accumulators2 (matrix+) and matrix unit alone

(matrix).

MLP0 MLP1 LSTM0 LSTM1 CNN0 CNN1

6.8% 10.9% 7.7% 5.4% 8.2% 11.2%

Table 7. Difference in clock cycles between the TPU hardware

performance counters and the TPU performance model. The

average delta is 8%.

MLP0 MLP1 LSTM0 LSTM1 CNN0 CNN1

11.0 2.3 4.8 4.5 1.5 13.9

Table 8. Maximum MiB of the 24 MiB Unified Buffer used per

NN application. A 14 MiB Unified Buffer is sufficient for them

now, due to improvements in the new software allocator.

7 EVALUATION OF ALTERNATIVE TPU

DESIGNS

Like an FPU, the TPU coprocessor is relatively easy to evaluate,

so we created a performance model for our six applications. Table

7 shows the differences between the model results and the

hardware performance counters, which average below 10%. We

then modeled performance as we varied the memory bandwidth,

the clock rate and number of accumulators, and the matrix

multiply unit size.

Figure 11 shows the mean performance sensitivity of TPU

die as we scale these parameters over the range for 0.25x to 4x. It

plots weighted means, but the geometric means look similar. In

addition to evaluating the impact of only raising clock rates (clock

in Figure 11), we also plot a design (clock+) where the clock rate

is increased and the number of accumulators is correspondingly

scaled so the compiler can keep more memory references in flight.

Likewise, we plot matrix unit expansion if we increase the

number of accumulators with the square of the rise in one

dimension (matrix+), since the number of multipliers in the matrix

grows in both dimensions, as well as just increasing the matrix

unit alone (matrix).

First, increasing memory bandwidth (memory) has the

biggest impact: performance improves 3X on average when

memory increases 4X. Second, clock rate has little benefit on

average with or without more accumulators. The reason is the

MLPs and LSTMs are memory bound but only the CNNs are

compute bound. While hard to see in Figure 11, since it shows

only the weighted mean of all six DNNs, increasing the clock rate

by 4X has almost no impact on MLPs and LSTMs but improves

performance of CNNs by about 2X. Third, the average

performance in Figure 11 slightly degrades when the matrix unit

expands from 256x256 to 512x512 for all apps, whether or not

they get more accumulators. The issue is analogous to internal

fragmentation of large pages, only worse since it’s in two

dimensions. Consider the 600x600 matrix used in LSTM1. With a

256x256 matrix unit, it takes 9 steps to tile 600x600, for a total of

18 us of time. The larger 512x512 unit requires only four steps,

but each step takes four times longer, for 32 us of time. Our CISC

instructions are long, so decode is insignificant and does not hide

the overhead of loading from the DRAM.

Table 8 shows the utilization of the 24 MiB Unified Buffer,

which was initially sized to allow MLPs to run at batch sizes up to

2048. We recently improved the storage allocator for the Unified

Buffer, which reduces the memory needed for the largest of the

six applications to 14 MiB. For the first 18 months of deployment,

the TPU used its full capacity while the new allocator was being

developed. Now the extra capacity adds margin for adopting

bigger models.

We next used the performance model to evaluate a

hypothetical TPU die (TPU’) that could be designed in the same

process technology if we had more than 15 months. More

aggressive logic synthesis and block design might have increased

the clock rate by 50%. Designing an interface circuit for GDDR5

memory, as in the K80, would improve Weight Memory

bandwidth by more than a factor of five, shifting its roofline ridge

point from 1350 to 250. As Figure 11 shows, increasing clock rate

to 1050 MHz but not helping memory makes little change. If we

left the clock at 700 MHz but used GDDR5 for Weight Memory,

the geometric mean increase jumps to 2.6 and the weighted mean

8

In-Datacenter Performance Analysis of a Tensor Processing Unit ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

to 3.9. Doing both raises the geometric mean (2.9) but not the

weighted mean, so TPU’ just has faster memory.

Figure 11 does not include host server time. We used Table 5

to calculate time for the host server interaction overhead for the

TPU. Adding that same extra time drops TPU’ means from 2.6 to

1.9 and 3.9 to 3.2. This change is both optimistic, since it doesn’t

include CPU time to run its share of the app, and pessimistic, as

we likely would aggressively tune the host code given a 3X faster

TPU’.

Replacing just the DDR3 Weight Memory with the K80-

equivalent GDDR5 memory requires doubling the number of

memory channels to four. This improvement would expand die

size by about 10%. However, higher memory bandwidth reduces

pressure on the Unified Buffer, so reducing the Unified Buffer to

14 MiB could gain back 10% in area. GDDR5 would also increase

the TPU system power budget from 861 Watts to about 900

Watts, as there are 4 TPUs per server.

Figure 9 above shows the relative total-performance

/Watt/die of TPU’ leaps to 31X – 86X over Haswell and 25X –

41X over the K80. The incremental metric soars to 69X–196X

over Haswell and 42X – 68X over the K80.

8 DISCUSSION

This section follows the fallacy and pitfall with rebuttal style of

[23].

● Fallacy: NN inference applications in datacenters value

throughput as much as response time.

We were surprised that our developers had strong response-time

demands, as some suggested in 2014 that batch sizes would be

large enough for the TPU to reach peak performance or that

latency requirements would not be as tight. One driving

application was off-line image processing, and the intuition was

that if interactive services also wanted TPUs, most of them would

just accumulate larger batches. Even the developers of one

application in 2014 that cared about response time (LSTM1) said

the limit was 10 ms in 2014, but shrank it to 7 ms when they

actually ported it to the TPU. The unexpected desire for TPUs by

many such services combined with the impact on and preference

for low response time changed the equation, with application

writers often opting for reduced latency over waiting for bigger

batches to accumulate. Fortunately, the TPU has a simple and

repeatable execution model to help meet the response-time targets

of interactive services and such high peak throughput that even

small batch sizes result in higher performance than contemporary

CPUs and GPUs.

● Fallacy: The K80 GPU architecture is a good match to

NN inference.

GPUs have traditionally been seen as high-throughput

architectures that rely on high-bandwidth DRAM and thousands

of threads to achieve their goals. This perspective helps explain

why the K80 is only a little faster at inference than Haswell and

much slower than the TPU. Successors to the K80 will surely

include optimizations to improve peak inference performance, but

given their throughput-oriented architectural approach, it may be

more challenging for GPUs to meet the strict latency limits. And

as Section 7 shows, there is plenty of headroom to improve the

TPU, so it’s not an easy target.

● Pitfall: Architects neglected important NN tasks.

We are pleased by the attention that the architecture community is

paying to NN: 15% of the papers at ISCA 2016 were on hardware

accelerators for NN [2, 11 , 13, 21, 29, 34, 35, 45, 52]! Alas, all

nine papers looked at CNNs, and only two mentioned other NNs.

CNNs are more complex than MLPs and are prominent in NN

competitions [50], which might explain their allure, but they are

only about 5% of our datacenter NN workload. While CNNs may

be common in edge devices, the volume of convolutional models

hasn’t yet caught up with MLPs and LSTMs in the datacenter. We

hope that architects try to accelerate MLPs and LSTMs with at

least as much gusto.

● Pitfall: For NN hardware, Inferences Per Second (IPS)

is an inaccurate summary performance metric.

Our results show that IPS is a poor overall performance summary

for NN hardware, as it’s simply the inverse of the complexity of

the typical inference in the application (e.g., the number, size, and

type of NN layers). For example, the TPU runs the 4-layer MLP1

at 360,000 IPS but the 89-layer CNN1 at only 4,700 IPS, so TPU

IPS vary by 75X! Thus, using IPS as the single-speed summary is

even more misleading for NN accelerators than MIPS or FLOPS

are for regular processors [23], so IPS should be even more

disparaged. To compare NN machines better, we need a

benchmark suite written at a high-level to port it to the wide

variety of NN architectures. Fathom is a promising new attempt at

such a benchmark suite [3].

● Fallacy: The K80 GPU results would be much better if

Boost mode were enabled.

We didn’t use K80 Boost mode but measured its impact on

LSTM1. Boost mode increased the clock rate by a factor of up to

1.6—from 560 to 875 MHz—which increased performance by

1.4X, but it also raised power by 1.3X. The net gain in

performance/Watt is 1.1X, and thus Boost mode would have a

minor impact on LSTM1.

● Fallacy: CPU and GPU results would be similar to the

TPU if we used them more efficiently or compared to

newer versions.

We originally had 8-bit results for just one DNN on the CPU, due

to the significant work to use AVX2 integer support efficiently.

The benefit was ~3.5X. It was less confusing (and less space) to

present all CPU results in floating point, rather than having one

exception, with its own roofline. If all DNNs had similar speedup,

performance/Watt ratio would drop from 41X – 83X to 12X –

24X. The new 16-nm, 1.5GHz, 250W P40 GPU can perform 47

Tera 8-bit ops/sec, but wasn’t available in early 2015, so isn’t

contemporary with our three platforms. We also can’t know the

fraction of P40 peak delivered within our rigid time bounds. (It

also doesn’t offer SECDED on internal memory, so we can’t

deploy it in our datacenters.) If we compared newer chips, Section

7 shows that we could triple performance of the 28-nm, 0.7GHz,

40W TPU just by using the K80’s GDDR5 memory (at a cost of

an additional 10W).

● Pitfall: Performance counters added as an afterthought

for NN hardware.

The TPU has 106 performance counters, and we would like even

more (see Table 3). The raison d'etre for NN accelerators is

performance, and it is way too early in their evolution to have

good intuition about what is going on.

● Fallacy: After two years of software tuning, the only

path left to increase TPU performance is hardware

upgrades.

The performance of CNN1 on the TPU could improve if

developers and compiler writers did more work to match CNN1 to

the TPU hardware. For example, developers could reorganize the

applications to aggregate multiple short batches out of the

9

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada N. P. Jouppi et al.

convolution layers into a single, deeper batch (from 32 to 128) for

the four fully connected layers. Such a single layer would improve

utilization of the matrix unit (see Table 3). As CNN1 currently

runs more than 70 times faster on the TPU than the CPU, the

CNN1 developers are already very happy, so it’s not clear

whether or when such optimizations would be performed.

● Pitfall: Being ignorant of architecture history when

designing a domain-specific architecture.

Ideas that didn’t fly for general-purpose computing may be ideal

for domain-specific architectures. For the TPU, three important

architectural features date back to the early 1980s: systolic arrays

[31], decoupled-access/execute [54], and CISC instructions [41].

The first reduced the area and power of the large matrix multiply

unit, the second fetches weights concurrently during operation of

the matrix multiply unit, and the third better utilizes the limited

bandwidth of the PCIe bus for delivering instructions. History-

aware architects could have a competitive edge.

9 RELATED WORK

Two survey articles document that custom NN ASICs go back at

least 25 years [25, 4]. For example, CNAPS chips contained a 64

SIMD array of 16-bit by 8-bit multipliers, and several CNAPS

chips could be connected together with a sequencer [19]. The

Synapse-1 system was based upon a custom systolic multiply-

accumulate chip called the MA-16, which performed sixteen 16-

bit multiplies at a time [44]. The system concatenated several

MA-16 chips together and had custom hardware to do activation

functions.

Twenty-five SPERT-II workstations, accelerated by the T0

custom ASIC, were deployed starting in 1995 to do both NN

training and inference for speech recognition [5]. The 40-Mhz T0

added vector instructions to the MIPS instruction set architecture.

The eight-lane vector unit could produce up to sixteen 32-bit

arithmetic results per clock cycle based on 8-bit and 16-bit inputs,

making it 25 times faster at inference and 20 times faster at

training than a SPARC-20 workstation. They found that 16 bits

were insufficient for training, so they used two 16-bit words

instead, which doubled training time. To overcome that drawback,

they introduced “bunches” (batches) of 32 to 1000 data sets to

reduce time spent updating weights, which made it faster than

training with one word but no batches.

The more recent DianNao family of NN architectures

minimizes memory accesses both on the chip and to external

DRAM by having efficient architectural support for the memory

access patterns that appear in NN applications [28, 11]. All use

16-bit integer operations and all designs synthesized down to

layout, but no chips were fabricated. The original DianNao uses

an array of 64 16-bit integer multiply-accumulate units with 44

KB of on-chip memory and is estimated to be 3 mm2 (65 nm), to

run at 1 GHz, and to consume 0.5W. Most of this energy went to

DRAM accesses for weights, so one successor DaDianNao (“big

computer”) includes eDRAM to keep 36 MiB of weights on chip.

The goal was to have enough memory in a multichip system to

avoid external DRAM accesses. The follow-on PuDianNao

(“general computer”) is aimed more at support vector machines.

Another offshoot is ShiDianNao (“vision computer”) aimed at

CNNs, which avoids DRAM accesses by connecting the

accelerator directly to the sensor.

The Convolution Engine is also focused on CNNs for image

processing [43]. This design deploys 64 10-bit multiply-

accumulator units and customizes a Tensilica processor estimated

to run at 800 MHz in 45 nm. It is projected to be 8X to 15X more

energy-area efficient than an SIMD processor, and within 2X to

3X of custom hardware designed just for a specific kernel.

The Fathom benchmark paper seemingly reports results

contradictory to ours, with the GPU running inference much faster

than the CPU [3]. However, their CPU and GPU are not server-

class, the CPU has only four cores, the applications do not use the

CPU’s AVX instructions, and there is no response-time cutoff [8].

Catapult [42] is the most widely deployed example of using

reconfigurability to support DNNs, which many have proposed.

They chose FPGAs over GPUs to reduce power as well as the risk

that latency-sensitive applications wouldn’t map well to GPUs.

FPGAs can also be re-purposed, such as for search, compression,

and network interface cards [Put15]. The TPU project actually

began with FPGAs, but we abandoned them when we saw that the

FPGAs of that time were not competitive in performance

compared to the GPUs of that time, and the TPU could be much

lower power than GPUs while being as fast or faster, potentially

making it much better than FPGAs and GPUs.

Although first published in 2014, Catapult is a TPU

contemporary since it deployed 28-nm Stratix V FPGAs into

datacenters concurrently with the TPU in 2015. Catapult has a 200

MHz clock, 3,926 18-bit MACs, 5 MiB of on-chip memory, 11

GB/s memory bandwidth, and uses 25 Watts. The TPU has a 700

MHz clock, 65,536 8-bit MACs, 28 MiB, 34 GB/s, and typically

uses 40 Watts. A revised version of Catapult was deployed at

larger scale in 2016 [9].

Catapult V1 runs CNNs—using a systolic matrix

multiplier—2.3X as fast as a 2.1 GHz, 16-core, dual-socket server

[39]. Using the next generation of FPGAs (14-nm Arria 10) of

Catapult V2, performance might go up to 7X, and perhaps even

17X with more careful floor-planning [40]. Although it’s apples

versus oranges, a current TPU die runs its CNNs 40X to 70X

versus a somewhat faster server (Tables 2 and 6). Perhaps the

biggest difference is that to get the best performance the user must

write long programs in the low-level hardware-design-language

Verilog [36] versus writing short programs using the high-level

TensorFlow framework. That is, reprogrammability comes from

software for the TPU rather than from firmware for the FPGA.

10 CONCLUSION

Despite living on an I/O bus and having relatively low memory

bandwidth that limits utilization of the TPU—four of the six NN

applications are memory-bound—a small fraction of a big number

can nonetheless be relatively large, as the Roofline performance

model demonstrates. This result suggests a “Cornucopia

Corollary” to Amdahl’s Law: low utilization of a huge, cheap

resource can still deliver high, cost-effective performance.

The TPU leverages the order-of-magnitude reduction in

energy and area of 8-bit integer systolic matrix multipliers over

32-bit floating-point datapaths of a K80 GPU to pack 25 times as

many MACs (65,536 8-bit vs. 2,496 32-bit) and 3.5 times the on-

chip memory (28 MiB vs. 8 MiB) while using less than half the

power of the K80 in a relatively small die. This larger memory

helps increase the operational intensity of applications to let them

utilize the abundant MACs even more fully.

We found that despite a recent emphasis on CNNs in the

architecture community, they constitute only about 5% of the

representative NN workload for our datacenters, which suggests

more attention should be paid to MLPs and LSTMs. Repeating

history, it’s similar to when many architects concentrated on

10

In-Datacenter Performance Analysis of a Tensor Processing Unit ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

floating-point performance when most mainstream workloads

turned out to be dominated by integer operations.

We observed that inferences per second (IPS) is more a

function of the NN than of the underlying hardware, and so IPS is

an even worse single performance metric for NN processors than

MIPS and MFLOPS are for CPUs and GPUs.

We also learned that inference applications have serious

response-time bounds because they are often part of user facing

applications, thus NN architectures need to perform well when

coping with 99th-percentile latency deadlines. While the K80 may

excel at training, on average it is just a little faster than Haswell at

inference for our workload, perhaps because of its emphasis on

throughput rather than latency; that conflicts with the strict

response-time deadlines of our inference applications.

The TPU die leverages its advantage in MACs and on-chip

memory to run short programs written using the domain-specific

TensorFlow framework 15 times as fast as the K80 GPU die,

resulting in a performance per Watt advantage of 29 times, which

is correlated with performance per total cost of ownership.

Compared to the Haswell CPU die, the corresponding ratios are

29 and 83. While future CPUs and GPUs will surely run inference

faster, a redesigned TPU using circa 2015 GPU memory would go

two to three times as fast and boost the performance/Watt

advantage to nearly 70 over the K80 and 200 over Haswell.

In summary, the TPU succeeded because of the large—but

not too large—matrix multiply unit; the substantial software-

controlled on-chip memory; the ability to run whole inference

models to reduce dependence on its host CPU; a single-threaded,

deterministic execution model that proved to be a good match to

99th-percentile response time limits; enough flexibility to match

the NNs of 2017 as well as of 2013; the omission of general-

purpose features that enabled a small and low power die despite

the larger datapath and memory; the use of 8-bit integers by the

quantized applications; and that applications were written using

TensorFlow, which made it easy to port them to the TPU at high-

performance rather than them having to be rewritten to run well

on the very different TPU hardware.

Order-of-magnitude differences between products are rare in

computer architecture, which may lead to the TPU becoming an

archetype for domain-specific architectures. We expect that many

will build successors that will raise the bar even higher.

ACKNOWLEDGEMENTS

We thank the leadership of our company for recognizing the need

for a TPU and for providing the resources to build, distribute,

evaluate, and publish. Special thanks go to Luiz Barroso and

James Laudon for helping start the project. It takes a village to

design, verify, and implement the hardware and software of a

system like a TPU and to manufacture, deploy, and use it at scale,

which is why there are many authors. (All authors but Dave

Patterson worked on the TPU; he joined in 2016.) The first four

authors did the bulk of the evaluation in this paper, which is why

they are in front, with the rest in alphabetical order. Norm Jouppi

was also the senior architect of the whole project; the reward for

his yeoman’s work is being the lead author.

REFERENCES

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,

Corrado, G.S., Davis, A., Dean, J., Devin, M. Ghemawat, S., et al.

2016. TensorFlow: Large-scale machine learning on heterogeneous

distributed systems. arXiv:1603.04467.

[2] Albericio, J., Judd, P., Hetherington, T., Aamodt, T., Jerger, N.E.

and Moshovos, A., 2016 Cnvlutin: Ineffectual-Neuron-Free Deep

Neural Network Computing. Proc. Int’l Symp. on Computer

Architecture.

[3] Adolf, R., Rama, S., Reagen, B., Wei, G.Y. and Brooks, D., 2016,

September. Fathom: reference workloads for modern deep learning

methods. IEEE Int'l Symp. on Workload Characterization (IISWC).

[4] Asanović, K. 2002. Programmable Neurocomputing, in The

Handbook of Brain Theory and Neural Networks: Second Edition,

M. A. Arbib (Ed.), MIT Press, ISBN 0-262-01197-2, November

2002.

[5] Asanović, K. 1998. Asanović, K., Beck, Johnson, J., Wawrzynek, J.,

Kingsbury, B. and Morgan, N., November 1998. Training Neural

Networks with Spert-II. Chapter 11 in Parallel Architectures for

Artificial Networks: Paradigms and Implementations, N.

Sundararajan and P. Saratchandran (Eds.), IEEE Computer Society

Press, ISBN 0-8186-8399-6. https://people.eecs.berkeley.edu/

~krste/papers/annbook.pdf

[6] Barroso, L.A. and Hölzle, U., 2007. The case for energy-

proportional computing. IEEE Computer, vol. 40.

[7] Barr, J. September 29, 2016, New P2 Instance Type for Amazon

EC2 – Up to 16 GPUs. https://aws.amazon.com/blogs /aws/new-p2-

instance-type-for-amazon-ec2-up-to-16-gpus/

[8] Brooks, D. November 4, 2016. Private communication.

[9] Caulfield, A.M., Chung, E.S., Putnam, A., Angepat, H., Fowers, J.,

Haselman, M., Heil, S., Humphrey, M., Kaur, P., Kim, J.Y. and Lo,

D.2016. A Cloud-Scale Acceleration Architecture. MICRO-49

conference.

[10] Cavigelli, L., Gschwend, D., Mayer, C., Willi, S., Muheim, B. and

Benini, L., 2015, May. Origami: A convolutional network

accelerator. Proc. 25th edition on Great Lakes Symp. on VLSI.

[11] Chen, Y.H., Emer, J. and Sze, V., 2016. Eyeriss: A Spatial

Architecture for Energy-Efficient Dataflow for Convolutional Neural

Networks. Proc. Int’l Symp. on Computer Architecture.

[12] Chen, Y., Chen, T., Xu, Z., Sun, N., and Teman, O., 2016. DianNao

Family: Energy-Efficient Hardware Accelerators for Machine

Learning, Research Highlight, CACM, 59(11).

[13] Chi, P., Li, S., Qi, Z., Gu, P., Xu, C., Zhang, T., Zhao, J., Liu, Y.,

Wang, Y. and Xie, Y., 2016. PRIME: A Novel Processing-In-

Memory Architecture for Neural Network Computation in ReRAM-

based Main Memory. Proc. Int’l Symp. on Computer Architecture.

[14] Clark, J. October 26, 2015, Google Turning Its Lucrative Web

Search Over to AI Machines. Bloomberg Technology,

http://www.bloomberg.com.

[15] Dally, W. February 9, 2016. High Performance Hardware for

Machine Learning, Cadence ENN Summit.

[16] Dean, J. and Barroso, L.A., 2013. The tail at scale. CACM, 56(2).

[17] Dean, J. July 7, 2016 Large-Scale Deep Learning with TensorFlow

for Building Intelligent Systems, ACM Webinar.

[18] Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P.,

2015, July. Deep Learning with Limited Numerical Precision. ICML.

[19] Hammerstrom, D., 1990, June. A VLSI architecture for high-

performance, low-cost, on-chip learning. 1990 IJCNN Int'l Joint

Conference on Neural Networks.

[20] Han, S.; Pool, J.; Tran, J.; and Dally, W., 2015. Learning both

weights and connections for efficient neural networks. In Advances

in Neural Information Processing Systems.

[21] Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A. and

Dally, W.J., 2016. EIE: efficient inference engine on compressed

deep neural network. Proc. Int’l Symp. on Computer Architecture.

[22] He, K., Zhang, X., Ren, S. and Sun, J., 2016. Identity mappings in

deep residual networks. Also in arXiv preprint arXiv:1603.05027.

11

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada N. P. Jouppi et al.

[23] Hennessy, J.L. and Patterson, D.A., 2018. Computer architecture: a

quantitative approach, 6th edition, Elsevier.

[24] Hölzle, U. and Barroso, L., 2009. The datacenter as a computer.

Morgan and Claypool.

[25] Ienne, P., Cornu, T. and Kuhn, G., 1996. Special-purpose digital

hardware for neural networks: An architectural survey. Journal of

VLSI signal processing systems for signal, image and video

technology, 13(1).

[26] Intel, 2016, Intel® Xeon® Processor E5-4669 v3,

http://ark.intel.com/products/85766/Intel-Xeon-Processor-E5-4669-

v3-45M-Cache-2_10-GHz.

[27] Jouppi, N. May 18, 2016. Google supercharges machine learning

tasks with TPU custom chip. https://cloudplatform.googleblog.com.

28] Keutzer, K., 2016. If I could only design one circuit…: technical

perspective. CACM, 59(11).

[29] Kim, D., Kung, J.H., Chai, S., Yalamanchili, S. and Mukhopadhyay,

S., 2016. Neurocube: A Programmable Digital Neuromorphic

Architecture with High-Density 3D Memory. Proc. Int’l Symp. on

Computer Architecture.

30] Krizhevsky, A., Sutskever, I. and Hinton, G., 2012. Imagenet

classification with deep convolutional neural networks. Advances in

neural information processing systems.

[31] Kung, H.T. and Leiserson, C.E., 1980. Algorithms for VLSI

processor arrays. Introduction to VLSI systems.

[32] Lange, K.D., 2009. Identifying shades of green: The SPECpower

benchmarks. IEEE Computer, 42(3).

[33] Larabel, M. March 10, 2016, Google Looks To Open Up

StreamExecutor To Make GPGPU Programming Easier, Phoronix,

https://www.phoronix.com/ scan.php?page=news_item&px=Google-

StreamExec-Parallel.

[34] LiKamWa, R., Hou, Y., Gao, J., Polansky, M. and Zhong, L., 2016.

RedEye: Analog ConvNet Image Sensor Architecture for Continuous

Mobile Vision. Proc. Int’l Symp. on Computer Architecture.

[35] Liu, S., Du, Z.D., Tao, J.H., Han, D., Luo, T., Xie, Y., Chen, Y. and

Chen, T., 2016. Cambricon: An instruction set architecture for neural

networks. Proc. Int’l Symp. on Computer Architecture.

[36] Metz, C. September 26, 2016, Microsoft Bets Its Future On A

Reprogrammable Computer Chip, Wired Magazine,

https://www.wired.com/2016/09/microsoft-bets-future-chip-

reprogram-fly/

[37] Nvidia, January 2015. Tesla K80 GPU Accelerator. Board

Specification https://images.nvidia.com/ content/pdf/kepler/Tesla-

K80-BoardSpec-07317-001-v05.pdf.

[38] Nvidia, 2016. Tesla GPU Accelerators For Servers.

http://www.nvidia.com/object/tesla-servers.html.

[39] Ovtcharov, K., Ruwase, O., Kim, J.Y., Fowers, J., Strauss, K. and

Chung, E.S., February 2, 2015. Accelerating deep convolutional

neural networks using specialized hardware. Microsoft Research

Whitepaper. www.microsoft.com/en-us/research/publication/

accelerating-deep-convolutional-neural-networks-using-specialized-

hardware/

[40] Ovtcharov, K., Ruwase, O., Kim, J.Y., Fowers, J., Strauss, K. and

Chung, E.S., 2015, August. Toward accelerating deep learning at

scale using specialized hardware in the datacenter. 2015 IEEE Hot

Chips 27 Symp.

[41] Patterson, D.A. and Ditzel, D.R., 1980. The case for the reduced

instruction set computer. ACM SIGARCH Computer Architecture

News, 8(6), pp. 25-33.

[42] Putnam, A., Caulfield, A.M., Chung, E.S., Chiou, D.,

Constantinides, K., Demme, J., Esmaeilzadeh, H., Fowers, J., Gopal,

G.P., Gray, J., Haselman, M., Hauck, S., Heil, S., Hormati, A., Kim,

J-Y., Lanka, S., Larus, J., Peterson, E., Pope, S., Smith, A., Thong,

J., Xiao, P.Y., Burger, D. 2016. A Reconfigurable Fabric for

Accelerating Large-Scale Datacenter Services. CACM, 59(11).

[43] Qadeer, W., Hameed, R., Shacham, O., Venkatesan, P., Kozyrakis,

C. and Horowitz, M.A., 2013, June. Convolution engine: balancing

efficiency & flexibility in specialized computing. Proc. Int’l Symp.

on Computer Architecture.

[44] Ramacher, U., Beichter, J., Raab, W., Anlauf, J., Bruels, N.,

Hachmann, U. and Wesseling, M., 1991. Design of a 1st Generation

Neurocomputer. In VLSI Design of Neural Networks. Springer US.

[45] Reagen, B., Whatmough, P., Adolf, R., Rama, S., Lee, H., Lee, S.K.,

Hernández-Lobato, J.M., Wei, G.Y. and Brooks, D., 2016. Minerva:

Enabling low-power, highly-accurate deep neural network

accelerators. Proc. Int’l Symp. on Computer Architecture.

[46] Ross, J., Jouppi, N., Phelps, A., Young, C., Norrie, T., Thorson, G.,

Luu, D., 2015. Neural Network Processor, Patent Application No.

62/164,931.

[47] Ross, J., Phelps, A., 2015. Computing Convolutions Using a Neural

Network Processor, Patent Application No. 62/164,902.

[48] Ross, J., 2015. Prefetching Weights for a Neural Network Processor,

Patent Application No. 62/164,981.

[49] Ross, J., Thorson, G., 2015. Rotating Data for Neural Network

Computations, Patent Application No. 62/164,908.

[50] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,

Huang, Z., Karpathy, A., Khosla, A., Bernstein, M. and Berg, A.C.,

2015. Imagenet large scale visual recognition challenge. Int'l Journal

of Computer Vision, 115(3).

[51] Schurman, E. and Brutlag, J., 2009, June. The user and business

impact of server delays, additional bytes, and HTTP chunking in

web search. In Velocity Web Performance and Operations

Conference.

[52] Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R.,

Strachan, J.P., Hu, M., Williams, R.S. and Srikumar, V., 2016.

ISAAC: A Convolutional Neural Network Accelerator with In-Situ

Analog Arithmetic in Crossbars. Proc. Int’l Symp. on Computer

Architecture.

[53] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den

Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,

Lanctot, M. and Dieleman, S., 2016. Mastering the game of Go with

deep neural networks and tree search. Nature, 529(7587).

[54] Smith, J.E., 1982, April. Decoupled access/execute computer

architectures. Proc. Int’l Symp. on Computer Architecture.

[55] Steinberg, D., 2015. Full-Chip Simulations, Keys to Success. Proc.

Synopsys Users Group (SNUG) Silicon Valley 2015.

[56] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,

Erhan, D., Vanhoucke, V. and Rabinovich, A., 2015. Going deeper

with convolutions. Proc. IEEE Conference on Computer Vision and

Pattern Recognition.

[57] Thorson, G., Clark, C., Luu, D., 2015. Vector Computation Unit in a

Neural Network Processor, Patent Application No. 62/165,022.

[58] Williams, S., Waterman, A. and Patterson, D., 2009. Roofline: an

insightful visual performance model for multicore architectures.

CACM, 52(4).

[59] Wu, Y., Schuster, M., Chen, Z., Le, Q., Norouzi, M., Macherey, W.,

Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A.,

Johnson, M., Liu, X., Kaiser, Ł., Gouws, S., Kato, Y., Kudo, T.,

Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young,

C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G.,

Hughes, M., and Dean, J. September 26, 2016, Google's Neural

Machine Translation System: Bridging the Gap between Human and

Machine Translation, http://arxiv.org/abs/1609.08144.

[60] Young, C., 2015. Batch Processing in a Neural Network Processor,

Patent Application No. 62/165,020.

[61] Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B. and Cong, J., 2015,

February. Optimizing FPGA-based accelerator design for deep

convolutional neural networks. Proceedings of the 2015

ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays.

12

