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Recent papers have promoted the view that model-based

methods in general, and those based on Approximate

Bayesian Computation (ABC) in particular, are flawed in a

number of ways, and are therefore inappropriate for the

analysis of phylogeographic data. These papers further

argue that Nested Clade Phylogeographic Analysis

(NCPA) offers the best approach in statistical phylogeo-

graphy. In order to remove the confusion and misconcep-

tions introduced by these papers, we justify and explain

the reasoning behind model-based inference. We argue

that ABC is a statistically valid approach, alongside other

computational statistical techniques that have been suc-

cessfully used to infer parameters and compare models in

population genetics. We also examine the NCPA method

and highlight numerous deficiencies, either when used

with single or multiple loci. We further show that the

ages of clades are carelessly used to infer ages of demo-

graphic events, that these ages are estimated under a sim-

ple model of panmixia and population stationarity but are

then used under different and unspecified models to test

hypotheses, a usage the invalidates these testing proce-

dures. We conclude by encouraging researchers to study

and use model-based inference in population genetics.
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Introduction

How is it possible to use genetic data from related popula-

tions or species to figure out their recent evolutionary his-

tory? Each data set is open to various interpretations, yet

in any particular case some interpretations might be better

justified than others. The challenge is to develop a geneti-

cal and evolutionary theory that is general enough to

include real histories, and yet simple but detailed enough

that it can be used in a statistical framework to infer details

of a specific history, including (importantly) measures of

uncertainty.

The idea of a genealogy, or gene-tree, to represent the

history of a sample of homologous gene copies is one of

biology’s most successful models thanks to its generality

and flexibility. However, statistical inference under the

gene-tree model is difficult. For many years investigators,
� 2010 Blackwell Publishing Ltd
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often using mitochondrial sequences, struggled to interpret

trees generated from their data in terms of demographic

processes, such as population separation or gene exchange.

In the early days, this field of phylogeography relied on

heuristic and descriptive analyses, and it was essentially

not statistical.

The situation changed with the introduction of Nested

Clade Phylogeographical Analysis (NCPA) (Templeton

1998; Templeton et al. 1995). In combining an analysis of

estimated gene-tree structure with an inference key to

make conclusions about the demographic causes of the

shape of the gene-tree, the method served a generation of

evolutionary biologists eager to make sense of their data.

To address the concern that gene-tree estimates can be

wrong, the method accommodates a network of connec-

tions based on which haplotypes are likely to be connected

in the true genealogy (Crandall 1996; Templeton et al.

1992). To address the concern that different unlinked genes

can have widely different histories, even when sampled

from the same organisms, ‘cross-validation’ of multiple loci

was proposed (Templeton 2002, 2004a). Notwithstanding

the apparent flexibility and generality of NCPA, or its pop-

ularity, the method has been subject to a number of criti-

cisms (Knowles & Maddison 2002; Petit & Grivet 2002;

Hey & Machado 2003; Panchal & Beaumont 2007; Knowles

2008; Manolopoulou 2008), and has been vigorously

defended (Templeton 2004b, 2008, 2009b).

Today, in contrast to the years when NCPA first came

on the scene, there are other approaches available for

developing complex demographic inferences. The origins

of these methods actually predate NCPA, going back to the

first likelihood-based models for demographic and phylo-

genetic inference (Cavalli-Sforza & Edwards 1967; Thomp-

son 1973; Felsenstein 1981) and the development of

coalescent theory (Kingman 1982; Hudson 1983; Tajima

1983). Although they vary considerably in details, these

methods differ sharply from NCPA in two fundamental

ways. First, they are explicitly based on demographic mod-

els that include parameters such as population size and

migration rates. Second they use the genealogy as an unob-

served variable that connects data to model parameters but

need not be explicitly inferred (Hey & Nielsen 2007). These

model-based approaches share the goal of computing a

likelihood function (i.e. the probability of the data as a

function of the parameters within a given model). Being

likelihood-based, these methods open doors for population

geneticists and phylogeographers to the repertoire of likeli-

hood-based analyses, including maximum likelihood esti-

mation of model parameters and likelihood-ratio

hypothesis tests (e.g. Griffiths & Tavaré 1994; Kuhner et al.

1995; Beerli & Felsenstein 1999), as well as Bayesian analy-

ses (Wilson & Balding 1998), including Approximate

Bayesian Computation (ABC) (Tavare et al. 1997; Pritchard

et al. 1999; Beaumont et al. 2002).

Templeton (2010), in response to Nielsen & Beaumont

(2009), heavily promotes NCPA for analysing phylogeo-

graphic data, incorrectly asserting that it uses ‘a likelihood

function that explicitly incorporates the randomness associ-
� 2010 Blackwell Publishing Ltd
ated with the coalescent and mutational processes’. He also

repeats many claims from Templeton (2009a) where he

strongly criticizes the use of ABC methods for analysing

phylogeographic data in general, and their application to

discriminate between various human evolutionary scenar-

ios in particular (Fagundes et al. 2007). He concluded that

‘because of its multiple flaws, ABC should not be used for

hypothesis testing’. Yet ABC is simply a Monte Carlo

method that can be used to approximate posterior distribu-

tions or likelihood surfaces from a model (see e.g. Tavare

et al. 1997; Pritchard et al. 1999; Beaumont et al. 2002, for

more details on ABC approaches). It is a numerical tool for

solving problems within a statistical framework. Thus the

majority of criticisms that Templeton (2009a, 2010) aims at

ABC are also aimed more generally against model-based

inference in population genetics. We feel compelled to

react against this broadly unsupported attack on model-

based inference, and to point out important misconceptions

underlying Templeton’s critique.

First, we highlight Templeton misconceptions of model-

based inference, of Bayesian methods in general and of

ABC in particular. Next, we underline major deficiencies of

NCPA when inferring past demographic scenarios, and

errors or misleading statements in Templeton’s promotion

of the method.
Misconceptions about model-based methods

Model specification

In population biology, as in many other scientific areas,

there has been a longstanding tension between proponents

and opponents of model-based inferences. The most famil-

iar example is the debate between cladists and likelihood-

ists in phylogenetics. Although Templeton (2009a) claims

to accept both hypothesis testing and models, including

likelihood and Bayesian methods, many of his criticisms

echo old arguments against the use of model-based infer-

ences in phylogenetics. He argues that it is a flaw of ABC,

and of model-based methods that they do not cover the

entire ‘hypothesis space’ (Templeton 2009a, p. 320), but

instead compare only a small number of potentially mis-

specified and subjectively chosen models (Templeton

2010). However, for realistic problems, exhaustive cover-

age of all hypotheses is impossible. Moreover, the situa-

tion that ‘all hypotheses being compared are false’

(Templeton 2009a, p. 320) is in fact the norm in science,

since models at best only approximate reality, as recog-

nized in the widely cited words attributed to George Box:

‘all models are wrong, but some are useful’ (Box & Dra-

per 1987, p. 424). As an aside, the distinction between ‘(i)

testing a null hypothesis and (ii) assessing the relative fit

of alternative hypotheses’ (Templeton 2009a, p. 320) is

reminiscent of the 1930s debate between Fisherian and

Neyman-Pearson hypothesis testing; the Neyman–Pearson

approach of choosing among a limited set of competing

models came to dominate statistical practice (Gigerenzer

et al. 1990).
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Strong vs. weak inference

Invoking Popper (1959), Templeton (2007) contends that by

relying on successive dichotomous tests NCPA can make

‘strong’ phylogeographic inferences, which is not possible

with model-based methods. However, ‘strong scientific

inference’ (cf. Platt 1964) arises when the influence of

unknown factors on the final result is minimized by ran-

domization (Macneil 2008), which also underlies Fisher’s

(1925) null hypothesis testing. That is, without a properly

randomized experiment, causal explanations are necessarily

weak because they are potentially confounded with unob-

served effects. Since they are based on observational data,

phylogeographic studies are not amenable to randomized

interventions and therefore all phylogeographic inference

methods, including NCPA, lead to ‘weak scientific inference’

in the sense that it does not arise from planned scientific

experiments. Popper was fiercely opposed to inductivism,

whereby facts are gathered and then general laws identified.

In this regard, rather than being a Popperian falsification

method, NCPA can in fact be viewed as an anti-Popperian

inductivist approach (Beaumont & Panchal 2008), since a

story is built out of the patterns in the data.
Unspecified models cannot be tested

Templeton (2009a) argues that since NCPA tests null

hypotheses without reference to an explicit alternative, it

does not rely on a restricted set of alternative models. How-

ever, except for testing the null hypothesis of no correlation

between geographic and genetic distances, we show below

that NCPA’s inferences about specific phylogeographic

hypotheses are invalid. Moreover, since no alternative model

is specified, there can be no measure of the relative support

for the different hypotheses entertained by NCPA. The spec-

ification of alternative models is necessary to correctly assess

the support of data for a complex demographic model. This

inevitably incurs additional possibilities of model misspecifi-

cation, but there are many statistical techniques for assessing

the fit of a model. The use of explicit models expose their

authors to critiques, but it is the price to pay for science to

make progress, as other researchers may propose better

models that can be tested against the data, leading to an

increasing refinement of the models, and in our understand-

ing of the demographic patterns that they reflect.
Simulations under specific models

Templeton continuously rejects the use of simulations to val-

idate models and to infer parameters. As evidence for ‘the

extreme ambiguity of inference via computer simulations’,

Templeton (2010) mentions two studies on human evolution

(Eswaran et al. 2005; Fagundes et al. 2007) which simulate

different evolutionary scenarios using different data sets

and arrive at different conclusions. Two studies leading to

different conclusions of course do not invalidate the com-

mon tools that are used. As previously stated, the use of

simulations in the ABC inference procedure criticized by
Templeton is just a means to evaluate or approximate the

likelihood function. Templeton also argues against the use

of simulations for evaluating the relative merits of different

inference methods, because this requires the full specifica-

tion of the parameter space to be explored, and implies that

choices need to be made concerning which models are used

and contrasted. A related criticism by Templeton (2009b) is

that the models that have been used to test NCPA are unli-

kely and therefore the high false-positive rate attributed to

NCPA is also unlikely. However, an explicit model specifi-

cation procedure, which is the rule in physics and most

other sciences, involves no hidden assumption, and the

impact of alternative parameterizations can be conveniently

studied. Because it is transparent, it is open to criticism and

the use of alternative specifications. By varying the condi-

tions of the simulations it is possible to determine when

methods fail and when they perform well. Indeed, without

such objective testing, it is impossible to have any assess-

ment of the performance of a statistical procedure. If a

method consistently leads to wrong inferences under all or

most conditions explored, as we later argue is the case with

NCPA, it should be discarded.
Misconceptions about Bayesian methods

We recognize that there are alternative ways to perform

statistical inference. This is well reflected in this paper

authorship, and arises from different epistemological tradi-

tions lying deep in the history of statistics. Our aim in this

section is not to argue for the relative merits of one

approach over another, but simply to correct factual errors

concerning Bayesian inference that are to be found in Tem-

pleton (2009a, 2010), and to present the main arguments

that underpin it.
Statistical validity of ABC

Templeton (2009a) presents an extensive critique of the

ABC method, which is simply a way to perform model-

based inference in a Bayesian setting when model likeli-

hoods are intractable and thus need to be approximated by

simulations. For example Templeton questions ‘the statisti-

cal validity of all inferences made by the ABC method’ (p.

325) and argues that ‘the ‘posterior probabilities’ that

emerge from ABC [are] mathematically impossible … to be

probabilities’ (p 329). However, when the summary statis-

tics used in ABC are statistically sufficient and parameter

estimation uses only the simulations that exactly match the

observed data, ABC is exact Bayesian inference (Marjoram

& Tavare 2006). Thus Templeton is in effect claiming that

standard Bayesian inferences are invalid, and that Bayesian

posterior probabilities are mathematically incapable of

being probabilities.
Comparison of alternative models

Bayesian analysis is fundamentally a decision-making

approach, in which the goal is to evaluate the relative sup-
� 2010 Blackwell Publishing Ltd
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port for different models under comparison. In contrast,

Fisherian testing of a point null hypothesis using P-values

only rejects models that inadequately explain the data.

There is a large literature on the problems that arise when

taking null hypothesis testing out of its original context in

the analysis of designed experiments (see e.g. Berger &

Sellke 1987). Templeton’s claim that in ‘ABC there is no

null hypothesis, which complicates the computation of

sampling error’ (2009a, p.325) is incorrect: sampling error

is evaluated in each model under consideration, and is not

dependent on the specification of a null hypothesis.
Priors

Templeton’s criticisms that in ABC a model can be rejected

because ‘the simulated parameter values are wrong’ (Tem-

pleton 2009a, p. 323), and that ‘parameter ranges and dis-

tributions are only guessed based upon the subjective

opinion of the investigators’ (Templeton 2010), are classical

objections made against Bayesian approaches, which need

the specification of a prior distribution for all the parame-

ters of a model. Priors might be mis-specified and their

choice may indeed carry some subjectivity, but their impact

on posterior distributions, parameter inference, and model

choice can be quantified (Berger 1990; Gelman et al. 1996).
Global parameter inference

Templeton’s comment that NCPA ‘separate[s] out different

phylogeographical components is a great advantage over

ABC’ (Templeton 2009a, p. 324) ignores the fact that testing

subsets of the data separately precludes any assessment of

uncertainty in the overall conclusions. The fact that a

method, like ABC, permits this assessment is a clear

advantage over NCPA. A sound statistical approach

should work with all data and parameters at once, and

thus incorporate dependencies among the parameters and

avoid multiple uses of the data. In particular, unlike

NCPA, Bayesian methods avoid the problem of using an

estimate as if it were the true value. Uncertainty in param-

eter values is explicitly modelled, at odds with NCPA,

where for instance very little or no uncertainty in the topol-

ogy of the gene-tree is assumed for the analysis.
Sampling error

Templeton’s argument that simulated statistics and

observed statistics cannot be compared because the

observed statistic (s) is ‘current generation’ while a simu-

lated statistic (s’) is ‘long-term’ (see fig. 2 in Templeton

2009a) is wrong. The error in the argument can be made

explicit by replacing ‘statistics’ with ‘data’. The aim of

model-based methods is to examine the relative probability

of obtaining the data for different combinations of parame-

ter values. It is acknowledged that the observations are

influenced by both sampling error and evolutionary sto-

chasticity in the model, and this is explicitly accounted for

by ABC which simulates data sets with sample sizes and
� 2010 Blackwell Publishing Ltd
number of loci matching exactly those observed. As men-

tioned before, ABC is then simply a way of using simula-

tions to make inferences.
Simulation weighting

Templeton’s claim of an artefactual increase in statistical

power by computing a distance between observed and

simulated summary statistics, ||s - s’||, is incorrect. In

ABC, ||s - s’|| is not ‘a generalized goodness of fit statistic’

(Templeton 2009a, p. 328), but is used to determine if a

simulation is retained for parameter estimation. For

retained simulations, ||s - s’|| is also used as a weight allo-

cated to the simulated parameter values in approximating

the posterior distribution. Note that the ABC method is

exact when simulations are retained if ||s - s’|| = 0 and s

is sufficient, since the fraction of retained simulations pro-

vide a direct estimate of the likelihood. If the retention

interval increases then, typically, the posterior distributions

become wider, and the posterior tends to the prior with

increasing retention intervals. Thus the ABC approach is

inherently conservative. How the approximated density

converges to the true distribution (conditional on the sum-

mary statistics) as ||s - s’|| tends to zero is an area of

active research (e.g. Ratmann et al. 2009; Blum & François

2010).
Posterior densities and Bayesian model choice

The section in Templeton (2009a, p. 326–327) that discusses

full distributions and local probabilities contains a number

of erroneous statements, as explained below. Templeton’s

Figure 3 is used to suggest that conditioning inferences on

observed statistics may lead to wrong decisions in Bayesian

model choice. The interpretation of the figure is actually

problematic in itself. The graph plots the posterior density

against the value of a summary statistic. Bayesian inference

typically aims to compute the posterior distribution of

parameter values, not statistics. Conceivably what is meant

is the posterior predictive distribution of the values of a

summary statistic, conditional on the observed summary

statistic. The posterior predictive distribution is typically

used in Bayesian model checking (Gelman et al. 1996). Cen-

tral to Templeton’s argument are (i) the assumption that

observed statistics may often lie in the tails of this distribu-

tion, and (ii) that ABC (and by extension, Bayesian) model

choice procedures are based on an examination of this dis-

tribution around the observed statistics, while the center of

mass of the distribution can be further away from the

observed statistics, and thus lead to wrong inferences.

These premises are incorrect, because, if the model fits

well, the observed summary statistic does not necessarily

lie within the tails of the posterior predictive distribution.

Furthermore, as discussed in more detail below, Bayesian

model choice is not based on the posterior predictive distri-

bution at all, as implied in the discussion in Templeton

(2009a, p. 326–327). An alternative interpretation of Tem-

pleton’s Figure 3 is that it is, in fact, the prior predictive
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distribution—that is the distribution of summary statistics

under the model when the parameters are drawn from the

prior. With this interpretation, the prior predictive distribu-

tion at the observed summary statistic is also the marginal

likelihood. In the context of ABC, ratios of marginal likeli-

hoods (Bayes factors) can be approximated as the ratio of

the number of simulations made under alternative models

that are arbitrarily close to the observed data. Within the

Bayesian framework this procedure is correct and is not

based on a notion of ‘local probability’, and Templeton’s

criticisms of a specific deficiency in ABC are therefore also

unfounded. Templeton further argues against the use of

ABC (and hence Bayesian) methods for model comparison

because they cannot take dimensionality into account, and

he implies that they will always choose over-determined

models. Indeed he appears to criticize ABC approaches for

not using the correction of Schwarz (1978) in his Bayesian

information criterion (BIC). However, from a Bayesian per-

spective there is no need to correct for dimension, nor to

call for Schwarz (1978), since the marginal likelihood natu-

rally allows for differences in model dimensionality (see

e.g. MacKay 2002, chapter 28.1 about Occam’s razor). In

fact, the penalty in Schwarz’s (1978) BIC stems from a Tay-

lor expansion of a standard Bayes Factor (see also Scher-

vish 1995), which illustrates the automatic penalty for

dimension and over-parameterization when using Bayes

factors.
Sample size

In the section on ‘Sample size’, Templeton (2009a, p. 327)

claims that ‘ABC has severe constraints on sample size’.

This is a misleading statement. Indeed one of the main

motivations behind the approach is that it can potentially

deal with larger data sets than can currently be handled

with other model-based procedures. There are constraints

set by computation time for very large data sets, but with

efficient simulation methods implemented on computer

clusters sample size is not a major limitation of the

approach for most practical applications. Further, Temple-

ton argues that the samples sizes (8–12 individuals per

continent) used in Fagundes et al. (2007) are too small to

lead to reliable estimates, arguing that such size do not

meet NCPA requirements. However, as noted above, the

ABC framework, by simulating exactly the observed sam-

ple sizes, handles any sample sizes correctly. Small sample

sizes simply lead to wider credible intervals than large

sample sizes. ABC methods are not markedly constrained

by the use of multiple loci, and, as is to be expected, the

precision of estimates tends to increase when summary sta-

tistics are based on many loci (e.g. Excoffier et al. 2005).
Recent developments in ABC methods

In order to put the comments of Templeton (2009a) in con-

text it is perhaps helpful to provide a brief overview of the

current status of ABC, which is now quite widely used in

statistical inference. For example, it has been applied to
infectious disease epidemiology (Tanaka et al. 2006; Luciani

et al. 2009; McKinley et al. 2009) and systems biology (Rat-

mann et al. 2009; Toni et al. 2009). Whereas several studies

have now shown that parameter posterior distributions

inferred by ABC are very similar to those provided by full-

likelihood approaches (see e.g. Marjoram et al. 2003; Bortot

et al. 2007; Beaumont et al. 2009; Leuenberger & Wegmann

2010), the approach is still in its infancy and continues to

evolve, and to be improved. For instance, Marjoram et al.

(2003) developed a Markov chain Monte Carlo (MCMC)

ABC approach, improving the sampling efficiency of con-

ventional ABC, which must otherwise explore sometimes

very wide priors while posterior distributions may only

occupy a narrow region of parameter space. This MCMC-

ABC has some problems (Sisson et al. 2007), which are

addressed in variants of the original approach (see e.g. Bec-

quet et al. 2007; Bortot et al. 2007; Wegmann et al. 2009).

Recently, sequential Monte Carlo (SMC) techniques have

been adapted to ABC in order to further improve its effi-

ciency (see e.g. Sisson et al. 2007; Beaumont et al. 2009; Del

Moral et al. 2009). As noted by Beaumont et al. (2002) effi-

cient conditional density estimation is a key aspect of ABC,

and this has been developed further in Blum & Francois

(2009). Further related developments involve the choice of

statistics to summarize datasets (Joyce & Marjoram 2008;

Sousa et al. 2009) and how they can be combined (Hamil-

ton et al. 2005; Wegmann et al. 2009). A number of software

packages now allow an easy implementation of ABC mod-

els, such as DIY-ABC (Cornuet et al. 2008) or popABC

(Lopes et al. 2009), which can accommodate a wide range

of evolutionary models, and be used for both model choice

and parameter estimation.
Theoretical and statistical problems in NCPA

NCPA inferences are typically not tested by users

Templeton (2009a,b) claims that NCPA is embedded into a

strong statistical framework, as it is based on the rejection

of null models and hypothesis testing based on likelihood

ratios contrasting NCPA inferences. It is interesting to

examine what aspects of the NCPA procedure actually

involve hypothesis testing and the rejection of null models.

In the hundreds of published empirical studies based on

this method, the only statistical procedure of NCPA is a

simple permutation test of the null hypothesis of no associ-

ation between clades and geographic location (see e.g.

Knowles 2008; Petit 2008). However, the processes inferred

by NCPA have never been tested as null models to see if

they can actually give rise to data sets similar to those

observed. Therefore NCPA inferences are typically pre-

sented without further attempt at model checking or vali-

dation. There is thus no measure of confidence that can be

assigned to the inferences being made, nor any indication

of support in the data for alternative processes. Moreover,

almost all published NCPA inferences are based on the

analysis of a single locus and NCPA internal cross-valida-

tion is not used.
� 2010 Blackwell Publishing Ltd
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Lack of NCPA expectations under different scenarios

When (i) there is a lack of strong prior knowledge of the uni-

verse of biological possibilities, or (ii) because of the possibil-

ity of multiple processes leading to the same output, it has

been claimed that the ‘broader coverage’ of processes makes

NCPA the method of choice (Templeton 2004b). However, as

emphasized above, because the interpretation of the patterns

of genetic variation is not associated with a defined model,

there is no basis for evaluation of the inferences made with

the dichotomous inference key of NCPA. In other words

there is no explicit description of the patterns of variation in

NCPA outcome expected under one historical scenario rela-

tive to another. There is no study verifying that the interpre-

tations of the distance statistics used in NCPA (i.e. DC and DN

values) actually correspond to what is expected under the

processes NCPA claims to be able to distinguish. This does

not mean that model-based inference is not without its chal-

lenges, especially with regards to issues surrounding model

choice (as reviewed in Hey & Machado 2003; Knowles 2004,

2009; Nielsen & Beaumont 2009), but these difficulties should

not be used as a justification for resorting to a method with

undefined statistical properties (Knowles 2008). Any sound

statistical method needs to provide an assessment of its error

or uncertainty. Even if NCPA was not flawed in the many

other ways described in this paper, the inference of phylogeo-

graphic processes based on pure verbal logic with no alter-

nate models and no statistical support should be enough to

relegate it to be regarded as an exploratory tool at best.
Cross-validation using multi-locus data lacks rigor

The suggestion that the new multilocus NCPA somehow

overcomes these problems is likewise indefensible, and the

statistical test on which it relies is flawed (see details below).

Additionally, the claim that when NCPA analyses of two or

more loci lead to the same inference, this constitutes a rigor-

ous ‘cross-validation’, is not based on any statistical concept

of validation. Any concordance in observed patterns across

two loci depends on the evolutionary variance of the process

itself, which is not evaluated in NCPA, and which may vary

extensively among different evolutionary processes. For

instance, patterns of molecular diversity after a range expan-

sion can be highly correlated among unlinked loci, and the

observation of similar patterns at two loci is expected (e.g.

Di Rienzo et al. 1998), whereas a population bottleneck often

induces a much larger evolutionary variance across loci (e.g.

Bonneuil 1998; Teshima et al. 2006). Thus, the probability for

a given number of loci to show congruent patterns can only

be evaluated under a given evolutionary model. The fact

that the number of false inferences drops with additional

loci is expected, but there is no control over the resulting

type II error.
NCPA inference key has still not been properly tested

The NCPA procedure consists of four main tasks: (i) the

construction of cladograms; (ii) the computation of
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summary statistics based on geographic patterns associated

with these cladograms; (iii) permutation tests to assess their

statistical significance; (iv) biological interpretation of the

‘significant’ summary statistics. Task (iv) is carried out via

an ‘inference key’, which is consulted each time a statisti-

cally significant summary statistic is identified. The con-

comitant problem of multiple testing has been previously

highlighted (Knowles & Maddison 2002; Panchal & Beau-

mont 2007) and acknowledged by Templeton (2008, 2009b).

The inference key was originally provided in Templeton et

al. (1995), and leads to a conclusion either that there are

insufficient data to make an inference, or that some speci-

fied demographic event has occurred in the history of the

population. Examples and discussion of the high rate of

false positives generated by use of the inference key are

given in Nielsen and Beaumont (2009) and in Panchal and

Beaumont (2007), as well as in a later section of this article

(see Table 1). An important point to note, however, is that

the procedure is superficially similar in scope to the deci-

sion tree, or classification tree, used in machine learning

and statistics (Breiman et al. 1984). The aim of the classifica-

tion tree is to model a categorical dependent variable (the

classification) as a function of independent variables. A sine

qua non of such a procedure is that it must be validated on

a training set to measure classification error and compare

its performance against different algorithms, before it is

applied to real classification problems. There is no evidence

that the rules encapsulated in the key of Templeton et al.

(1995), including its later revisions (Templeton 2004b) have

been generated through a training set, as required for a

valid statistical procedure. It would appear that the rules

are based solely on reasoned opinions (Templeton et al.,

1995). A post hoc justification of this inference tree, which

appears to uphold the purely verbal reasoning by which it

was originally constructed, has been made through analysis

of empirical data sets, but the demographic history in these

empirical data sets is not known for certain. In the follow-

ing section, further grounds for doubt about the validity of

these conclusions are raised.
Positive controls do not rigorously test the validity of
NCPA

The repeated claim that the inferences from NCPA have

been ‘extensively validated’ refers to two studies in which,

respectively, 13 and 150 empirical data sets with ‘strong a

priori expectations’ were analysed (Templeton 1998,

2004b). Vigorous defence of this approach as a rigorous test

of NCPA performance (and hence, its validation) has been

made (e.g. Templeton 2009b), including claims that any for-

mer criticisms are ‘outdated’ or based on ‘factual errors’.

However we emphasize that NCPA has never been suc-

cessfully verified by researchers independent of its author.

Evaluations of NCPA based on simulated data (Knowles

& Maddison 2002; Panchal & Beaumont 2007) and empiri-

cal data (Templeton 1998, 2004b) consistently inferred mul-

tiple processes other than those expected (in case of the

empirical datasets) or other than the actual processes (in



Table 1 NCPA false positive rates of inference. Results are broken down by FST, lattice size, and model. The false positive rate, as

defined in Panchal & Beaumont (2010), is shown for both single and multiple loci

Model FST

Lattice size

3 · 3 7 · 7 10 · 10

Single locus Multiple loci Single locus Multiple loci Single locus Multiple loci

Panmictic 0 0.665 0.088 0.788 0.204 0.783 0.217

Stepping Stone 0.03 0.753 0.300 0.747 0.150 0.781 0.129

0.05 0.791 0.333 0.834 0.175 0.851 0.200

0.10 0.879 0.386 0.903 0.300 0.903 0.358

0.20 0.895 0.429 0.942 0.396 0.969 0.479

Lattice with Cauchy

Disperal Kernel

0.03 0.723 0.188 0.618 0.000 0.576 0.000

0.05 0.783 0.179 0.654 0.000 0.649 0.000

0.10 0.818 0.125 0.753 0.000 0.694 0.000

0.20 0.888 0.042 0.831 0.000 0.802 0.000

Island Model 0.03 0.914 0.613 0.883 0.358 0.823 0.291

0.05 0.950 0.704 0.886 0.467 0.878 0.321

0.10 0.975 0.717 0.949 0.567 0.904 0.454

0.20 0.980 0.708 0.982 0.667 0.941 0.617

The proportions shown here are (for single loci) each based on 1200 data sets. In the case of multiple loci, the single locus

simulations were grouped into sets of five, and hence the proportions are based on 240 data sets.
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case of the simulated data with known history). However,

as mentioned above, Templeton has never conducted any

validating simulation study. When applied to empirical

data he has even suggested that these additional inferences

may not be false positives, but rather unexpected discover-

ies. When these ‘unexpected discoveries’ were found by

other authors in simulated datasets, they were of course

classified as false positives (Knowles & Maddison 2002;

Panchal & Beaumont 2007), but again, not by Templeton

(2009a,b), who strongly argues that the simulated data

and ⁄ or their interpretation must be flawed in one way or

the other. It is also worth noting that while Templeton’s

‘extensive validation’ relies almost exclusively on ‘positive

controls’ based on single-locus studies, he charges that any

critique of NCPA that is applied to single-locus data is out-

dated and unfair, given the more recent multilocus NCPA

(Templeton 2009a,b). It should not be ignored that in doing

so he is implicitly suggesting that all preceding papers that

have used NCPA may have led to wrong inferences.
The ages of inferred events are crudely approximated
by gene tree coalescent times

An important outcome of NCPA analysis is the dating of

inferred events. Estimated dates are subsequently used (i)

to build complex evolutionary scenarios from NCPA (see

e.g. Templeton 2002) (ii) to treat estimated dates as if they

were the observed ages of inferred events in likelihood-ratio

tests (Templeton 2004a), and (iii) to invalidate conflicting

results obtained by other authors on other data sets (Tem-

pleton 2009a, 2010). It is therefore important to understand

the estimation method and its foundations. Templeton
(2004a) proposes to estimate the age of a given event

inferred by NCPA as the ‘age of the youngest monophyletic

clade that contributed in a statistically significant fashion to

the inference’. The rationale is that ‘the age of the youngest

clade marking an event or process is expected to be largely

coincident with the age of the event itself in most cases’

(Templeton 2002), but several authors have underlined the

dangers of dating population events from coalescent times

on gene trees (see e.g. Pamilo & Nei 1988; Nichols 2001;

Degnan & Rosenberg 2009). Therefore, the events whose

ages are estimated in NCPA are at best, genealogical events,

and not demographic events as claimed. That is not to say

that temporal and spatial inferences of genealogical events

may not be informative, but by themselves they cannot

directly lead to statements about demography.
Coalescent theory is not applied correctly

Templeton (2004a) estimates the time since the most recent

common ancestor (TMRCA) of a given clade by applying

results of Tajima (1983) on the expected coalescent time of

a pair of genes (noted hereafter T2) conditional on the

number of sites at which they differ (say p). There are seri-

ous problems attached to this estimation in the NCPA con-

text. First, T2 is not equal to the TMRCA of a sample of n

genes (noted here Tn). In a stationary panmictic population,

Tn is roughly twice as large as T2, but the relation between

T2 and Tn is different for more complex evolutionary sce-

narios. Second, since Templeton ignores sample sizes and

only concentrates on the number of different DNA

sequences in a given clade (say k), he is using Tajima’s the-

ory as if it could be applied to estimate the average
� 2010 Blackwell Publishing Ltd
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TMRCA, Tk, among k haplotypes given their average num-

ber of pairwise differences pk, while Tajima’s theory can

only be used to estimate T2 as the average T2 over all

n(n – 1) ⁄ 2 pairs of genes in the clade. Third, Tajima’s deri-

vations are only strictly valid under a specific evolutionary

model, which is that of a panmictic population of constant

size, while Templeton applies this theory to haplotypes

found in a clade that shows some support for demographic

events that depart from stationarity (e.g. short or long

range migrations in a subdivided population, population

spatial expansion, or vicariance events). Fourth, as noted

by Rannala & Bertorelle (2001) subclades within a geneal-

ogy do not follow the standard coalescent, but are condi-

tional on the other parts of the genealogy and not

independent, contrary to the assumption of Templeton’s

method. Thus, NCPA age inferences are not model-free,

but are in fact based on a simple evolutionary model (iso-

lated, random-mating and constant-size population) that is

used precisely to establish that a different model applies!

This weakness seems to have previously been overlooked,

and suggests that evolutionary scenarios inferred by NCPA

are not only based on unreliably-inferred demographic

events, but also on a wrong timing of these events.
Likelihood ratio tests are not based on valid likelihoods

Multi-locus hypothesis testing in NCPA is based on the

age distribution of inferred events, and basically evaluates

the probability of a given number of loci showing NCPA-

inferred events within a given time period. We now reex-

amine the theoretical foundations of this approach.

Templeton (2004a) proposed to take into account the sto-

chasticity of the coalescent process by (incorrectly) assum-

ing that Tk has a Gamma distribution with the same mean

and variance as T2 as derived by Tajima (1983). He

obtained its distribution conditional on its mean (T̂k) and

on pk (defined above) as

fðTkjT̂kpkÞ ¼
T̂pk

k e�Tk 1þpkð Þ=T̂k

T̂k

1þpk

� �1þpk

C 1þ pkð Þ
: ð1Þ

Note that T̂k is an estimate but is used here as if it were

known without error, but that is a minor point compared

to the use of this theory in an evolutionary context where

it does not apply. Templeton (2004a) then uses eqn (1) to

infer the probability that a given NCPA-inferred event E

occurs before a given time T as

PrðTE � TÞ ¼
ZT

t¼0

fðtjT̂k;pkÞdt: ð2Þ

However, Pr TE � Tð Þ is at best the probability that the

TMRCA occurred before time T in a panmictic and station-

ary population. The use of eqn (2) as the probability of a

given demographic event within a given time interval thus

goes beyond the already doubtful assumption that the

TMRCA of a clade can be used to date an inferred event.

Indeed, it further assumes that the timings of these events
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are distributed as if they were coalescent times, which is a

very strong assumption. This assumption is invalid because

phenomena like vicariance events or episodes of interconti-

nental gene flow (or any other NCPA-inferred event) will

alter the distribution of coalescent time between two DNA

sequences, which will therefore not follow eqn (1). Despite

these problems, Templeton (2009a) used eqn (1) further to

estimate the probability of no gene flow between two conti-

nents between times Tl and Tu where an episode of gene

flow has been dated by NCPA at the i-th locus at T̂ki
as

PrðTl � TE � TuÞ ¼
ZTu

ti¼Tl

fðtijT̂ki
;pki
Þdti: ð3Þ

However, this equation merely describes the probability

that two genes drawn from a stationary panmictic popula-

tion and differing at pki sites do not coalesce between Tl

and Tu, given their expected coalescence time of T̂ki
, and it

has nothing to do with the probability of an absence of

gene flow between continents. It follows that such an equa-

tion cannot be used in likelihood ratio tests as proposed

for NCPA, and that these likelihood ratio tests are not test-

ing phylogeographic hypotheses. Moreover, these likeli-

hoods cannot be simply fixed as their inapplicability does

not stem from mathematical errors, but from a misinterpre-

tation of what they are supposed to describe. Therefore,

Templeton’s assertions that NCPA ‘multilocus tests are

based on explicit probability distributions and likelihood

ratios’ (Templeton 2009a, p. 322), or that NCPA uses ‘a

likelihood function that explicitly incorporates the random-

ness associated with the coalescent and mutational pro-

cesses’ (Templeton 2010) are wrong.
Problems with multi-locus NCPA

In a recent article, Panchal & Beaumont (2010) have evalu-

ated the merit of the multi-locus method promoted by

Templeton, using an automated program (ANeCA-ML).

They have simulated multi-locus test data sets under a

variety of conditions and analysed them under NCPA fol-

lowing closely the descriptions in Templeton (2002, 2004a,b).

Four demographic scenarios are considered: panmixia, as

described in Panchal & Beaumont (2007); an island model; a

strict 4-neighbor stepping stone model; a lattice model with

a Cauchy dispersal kernel allowing for long-distance dis-

persal. All the demes are laid out in a 2-D lattice (of sides 3,

7 and 10 demes) to provide geographical coordinates for

NCPA. The data consist of sets of 5 loci, each of 500 bp,

evolving under a Kimura 2-parameter model.

The multi-locus analysis reveals a number of problems in

addition to those described above for single-locus NCPA:

1 Inferences are identified as cross-validated in NCPA

when two different clades provide the same inference

for the same geographical region, but the necessary

degree of overlap of geographical area covered by clades

is unspecified and thus arbitrary. For example in

Templeton (2002), because of large variation in sample
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size among loci, inferences were deemed cross-validated

if the two loci agreed on the same continent.

2 Hypotheses of concordance of temporal events can be

rejected for a group of clades, but then subsets of these

may be found in which the hypothesis is not rejected.

Each of these subsets can then be deemed to support the

hypothesis of a particular event. For example, in Temple-

ton (2002, fig. 3) the hypothesis that all 5 loci support the

same temporal event is rejected. But then the loci are

grouped (apparently by eye from their inferred event

times) into a set of two loci (mtDNA and Y-chromo-

some), and a set of three (autosomal) loci, leading to a

claim that forms the basis of the entire paper that there

were two colonization events out of Africa. As an aside,

no account seems to be taken that these differences are

to be expected from the different mode of inheritance of

these loci, and therefore the claim may be baseless.

3 There is no relative weight attached to the various

inferences that result from NCPA. The outcome is all-

or-nothing with no measure of uncertainty, whereas a

model-comparison procedure (either Bayesian or frequen-

tist) would allow for the possibility that the data sup-

ported an island model but also a lattice model, or it

supported a stepping-stone model and a lattice model.

4 The reduction in false-positive rate arising from the use

of multiple loci is very patchy, and depends on the (gen-

erally unknown) true scenario. This contrasts with the

case of model-based inference in which the false positive

rate is generally well controlled and the whole motiva-

tion for using more loci is to increase power (Rannala &

Yang 2003).

Table 1 summarizes results found in Panchal and Beau-

mont (2010). It can be seen that with more loci the false-

positive rate is indeed reduced, but due to the very specific

nature of the inferences yielded by NCPA, it is highly vari-

able across simulated scenarios. For example under the

stepping stone model only Restricted Gene Flow (RGF) with

isolation by distance is regarded as a true positive, and any

inference including Long Distance Dispersal (LDD) is

regarded as a false-positive. Under the lattice model with

LDD, a much larger range of inferences are allowed that

include RGF with isolation by distance, and RGF with LDD.

In the island model all inferences of RGF are regarded as

true positives as long as they do not include isolation by

distance. A direct consequence of this is that the false posi-

tive rate for the island model remains very high (54%)

whereas that for the lattice model with LDD is less than 5%.

In the latter case a much wider range of inferences were

deemed consistent with the scenario, whereas with the

island model any inference with isolation-by-distance was

deemed a false positive. The rates decrease with increasing

lattice size, and increase with increasing level of population

structure. The rates for single loci are typically always quite

high. In conclusion, the use of multiple loci tends to reduce

the false-positive rate in NCPA. However when there is

population structure, it does not lead to improved discrimi-

nation among its possible causes because in this case the
most frequent inference is restricted gene flow with isola-

tion by distance, irrespective of whether the data comes

from an island model or a stepping stone model.
Conclusions

Gleaning useful information about evolutionary processes

from population genetic data is hard, and requires appreci-

ation of the mathematical and conceptual underpinnings of

population genetics theory. Such requirements are taken

for granted by experimentalists in the physical sciences,

while in evolutionary biology there remains a tendency to

treat statistical procedures uncritically as ‘black boxes’, and

to accept apparently easy solutions, especially those that fit

with common-sense nostrums. We argue here that the need

for rational, quantitative assessment of population genetics

models and estimates is unavoidable.

In this article we have demonstrated that the majority of

criticisms by Templeton (2009a, 2010) of ABC are in fact

directed at model-based inference more generally, and are

unfounded. Other criticisms arise from profound miscon-

ceptions of the ABC procedure itself, and are easily rebutted.

Templeton promotes the use of NCPA, and we demonstrate

that, despite its past popularity among empiricists, there are

many problems associated with the method: there is no justi-

fication for the adoption of specific alternative hypotheses

following the rejection of a simple null hypotheses by a per-

mutation test; there is no measure of confidence in its sup-

port for hypotheses or estimates; the inference key of NCPA

has not been properly validated, including error rate esti-

mates; the ages of inferred events are estimated from a sim-

ple evolutionary model (the standard coalescent) in

precisely those situations when it does not apply; the likeli-

hood ratio tests are not based on valid likelihoods. As a

result, it maintains a highly inflated false positive rate, even

when applied to multi-locus data.

Current model-based statistical methodology does not

match in scope the breadth of inference claimed by NCPA,

but the latter’s claims are not based on real, external valida-

tion. ABC has limitations, but like full-likelihood methods,

it is based on explicit models, uses all the data simulta-

neously in inference, and allows an assessment of uncer-

tainty in all inferences. Geographic and genetic information

are intimately linked (Novembre et al. 2008), and the use of

geographic information can certainly bring additional

insights on past evolutionary processes such as environ-

mental adaptations, range expansions and migrations.

While most inferential approaches integrating geography

only use information on allele frequencies (e.g. Guillot et al.

2005; Novembre et al. 2005; Francois et al. 2006; Corander et

al. 2008), coalescent-based approaches seem in an ideal

position to enable us to integrate molecular information

into phylogeographic inferences (see e.g. Manolopoulou

2008; Itan et al. 2009;). Ongoing advances in computation

and methodology will undoubtedly yield increasing flexi-

bility in the range of evolutionary and historical scenarios

that can be considered, ensuring a major role for model-

based approaches in reconstructing realistic demographic
� 2010 Blackwell Publishing Ltd
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and evolutionary scenarios from the spatial distribution of

genetic data. It should enable us to have a better apprecia-

tion of the complex and subtle relationships between demo-

graphic history, natural selection, and genomic diversity.
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