In Defense of Word Embedding for
Generic Text Representation

Guy Lev, Benjamin Klein, and Lior Wolf

The Blavatnik School of Computer Science
Tel Aviv University, Tel Aviv, Israel

Abstract. Statistical methods have shown a remarkable ability to cap-
ture semantics. The word2vec method is a frequently cited method for
capturing meaningful semantic relations between words from a large text
corpus. It has the advantage of not requiring any tagging while training.
The prevailing view is, however, that it lacks the ability to capture se-
mantics of word sequences and is virtually useless for most purposes,
unless combined with heavy machinery. This paper challenges that view,
by showing that by augmenting the word2vec representation with one
of a few pooling techniques, results are obtained surpassing or compa-
rable with the best literature algorithms. This improved performance is
justified by theory and verified by extensive experiments on well studied
NLP benchmarks.’

1 Introduction

Document retrieval and text analytics, in general, benefit from a fixed-size rep-
resentation of variable sized text. The most basic method in the field, and still
highly influential, is the bag-of-words (BOW) method. It has obvious shortcom-
ings, such as uniform distances between the contribution of every two words to
the vector representation and invariance to word order. However, these short-
comings can be partially ameliorated by incorporating techniques such as tf-idf
and by considering n-grams instead of single words. However, the usage of one di-
mension per dictionary word leads to a representation that is sparse with respect
to the information content and does not capture even the simplest synonyms.
Recently, semantic embeddings of words in vector spaces have gained a re-
newed interest, especially the word2vec method [19] and related methods. It has
been demonstrated that not only are words with similar meanings embedded
nearby, but natural word arithmetic can also be convincingly applied. For exam-
ple, the calculated difference in the embedding vector space between “London”
and ‘““England” is similar to the one obtained between “Paris” and “France”.
Word2vec representations are learned in a very weakly supervised manner from
large corpora, and are not explicitly constrained to abide by such regularities.
Despite the apparent ability to capture semantic similarities, and the sur-
prising emergence of semantic regularities that support additivity, word2vec em-
beddings have been criticized as a tool for higher level NLP. First, the Neural
Network employed to learn the word2vec embeddings is a simple “shallow” (not
deep) network, capable, by common conception, of capturing only low-level infor-
mation. Taking an analogy from the field of image recognition, where very deep

! This work is inspired by [10].

networks are being deployed, word2vec is considered to be a low-level “edge
detection” operator, incapable of capturing complex compositional semantics.
Second, word2vec has been criticized for being almost equivalent to the much
earlier methods of frequency matrix factorization [17]. Third, it has been argued
that in order to capture more than single words, mechanisms should be added in
order to account for order and hierarchical compositions [32]. The alleged inabil-
ity of vector embeddings to solve mid- and high-level NLP problems was also
demonstrated in various NLP papers, where an average of vector embeddings
served as a baseline method.

It is the purpose of this paper to challenge the commonly held view that
the word2vec representation is inadequate and markedly inferior to more sophis-
ticated algorithms. The poor performance of the word2vec representation can
probably be traced to aggregation techniques that do not take sufficient account
of numerical and statistical considerations. It is shown in this paper that proper
pooling techniques of the vectors of the text words leads to state of the art or
at least very competitive results.

Given a text to represent, we consider it as a multi-set, i.e., as a generalized
set in which each element can appear multiple times. We advocate the use of
principal component analysis (PCA) or independent component analysis (ICA)
as an unsupervised preprocessing step that transforms the semantic vector space
into independent semantic channels. For pooling, as shown, the mean vector
performs well. In some situations, the more powerful Fisher Vector (FV) [22]
representation provides improved results.

Fisher Vectors provide state-of-the-art results on many different applications
in the domain of computer vision [29, 21, 7,23]. In all of these contributions, the
FV of a set of local descriptors is obtained as a concatenation of gradients of
the log-likelihood of the descriptors in the set with respect to the parameters
of a Gaussian Mixture Model (GMM) that was fitted on a training set in an
unsupervised manner. In our experiments, we do not observe a clear benefit
to GMM over a simple Gaussian Model. Due to the clear disadvantage of the
extra parameter (the number of mixture components), we focus on modeling by
a unimodal Gaussian. Furthermore, to account for the non-Gaussian nature of
the data incurred by the ICA transformation, we propose to use Generalized
Gaussian Models. The corresponding Fisher Vectors are derived and formulas
are also given to the approximation of the Fisher Information Matrix in order
to allow for normalization of the dynamic range of the FV variant presented.

2 Previous work

Representing text as vectors Word2vec [18,19] is a recently developed technique
for building a neural network that maps words to real-number vectors, with the
desideratum that words with similar meanings will map to similar vectors. This
technique belongs to the class of methods called “neural language models”. It
uses a scheme that is much simpler than previous work in this domain, where neu-
ral networks with many hidden units and several non-linear layers were normally
constructed (e.g., [5]), word2vec [18] constructs a simple log-linear classification

network [20]. Two such networks are proposed: the Skip-gram and the Contin-
uous Bag-of-words (CBOW) architectures. In our experiments, we employ the
Skip-gram architecture, which is considered preferable.

Attention has recently shifted into representing sentences and paragraphs
and not just words. The classical method in this domain is Bag of Words [30].
Socher et al. [31] have analyzed sentences using a recursive parse tree. The
combination of two subtrees connected at the root, by means of generating a new
semantic vector representation based on the vector representations of the two
trees, is performed by concatenating their semantic vector representations and
multiplying by a matrix of learned parameters. In a recent contribution by Le et
al. [15], the neural network learns to predict the following word in a paragraph
based on a representation that concatenates the vector representation of the
previous text and the vector representations of a few words from the paragraph.
This method, called the paragraph vector, achieves state-of-the-art results on the
Stanford Sentiment Treebank dataset surpassing a model that averages neural
word vectors and ignores word order.

In [40], Yu et al. are using distributed representations that are based on
deep learning for the task of identifying sentences that contain the answer to a
given question. Given word embeddings, their first model generates the vector
representation of a sentence by taking the mean of the word vectors that compose
the sentence. Since their first model does not account for word ordering and
other structural information, they developed a more complex model that works
on the word embedding of the bigrams. Their model matches state of the art
performance on the TREC answer selection dataset.

Pooling methods were one of the primary steps in many computer vision pipelines
in the era before the advent of Deep Learning. Many different pooling methods
were suggested in the last decade, each contributing to the improvement in ac-
curacy on the standard object recognition benchmarks. One of the most known
and basic pooling techniques was borrowed from the NLP community when Sivic
et al. [30] used clustering over local features of image patches in order to create
a bag of words representation for computer vision applications. Richer represen-
tations like VLAD [13] and FV [22] were later introduced and were the main
contributors to the increasing in accuracy in object recognition benchmarks.
Specifically, the FV representation is today the leading pooling technique
in traditional computer vision pipelines and provided state-of-the-art results on
many different applications [29,21,7,23]. Although already introduced in 2007,
the FV pooling method was able to surpass the bag of words representation only
after introducing improvements such as normalization techniques that have dra-
matically enhanced its performance. Some of the most widely used improvements
were introduced by Perronnin et al. [23]. The first improvement is to apply an
element-wise power normalization function, f(z) = sign(z)|z|® where 0 < o < 1
is a parameter of the normalization. The second improvement is to apply a L2
normalization on the FV after applying the power normalization function. By
applying these two operations [23] achieved state-of-the-art accuracy on an im-

age recognition benchmark called CalTech 256 and showed superiority over the
traditional Bag of Visual Words model.

3 Pooling

In our approach, a single sentence is represented as a multi-set of word2vec
vectors. The notation of a multi-set is used to clarify that the order of the
words in a sentence does not affect the final representation and that a vector
can appear more than once (if the matching word appears more than once in
the sentence). In order to apply machine learning models to the sentences, it is
useful to transform this multi-set into a single high dimensional vector with a
constant length. This can be achieved by applying pooling.

Since word2vec is already an extremely powerful representation, we find that
conventional pooling techniques or their extensions are sufficiently powerful to
obtain competitive performance. The pooling methods that are used in this paper
are: (1) Mean vector pooling; (2) FV of a single multivariate Gaussian; (3) FV
of a single multivariate generalized Gaussian. These are described in the next
sections.

3.1 Mean vector

This pooling technique takes a multiset of vectors, X = {x1,22,..., 2N} € RP,
and computes its mean: v = % va:l x;. Therefore, the vector v that results from
the pooling is in RP.

The disadvantage of this method is the blurring of the text’s meaning. By
adding multiple vectors together, the location obtained — in the semantic em-
bedding space — is somewhere in the convex hull of the words that belong to the
multi-set. A better approach might be to allow additivity without interference.

3.2 Fisher Vector of a multivariate Gaussian

Given a multiset of vectors, X = {x1,z2,...,zn5} € RP, the standard FV [22] is
defined as the gradients of the log-likelihood of X with respect to the parameters
of a pre-trained Diagonal Covariance Gaussian Mixture Model. It is common
practice to limit the FV representation to the gradients of the means, u and to
the gradients of the standard deviations, o (the gradients of the mixture weights
are ignored).

Since we did not notice a global improvement in accuracy when increasing the
number of Gaussian in the mixture, we focus on a single multivariate Gaussian.
As a consequence, there are no latent variables in the model and it is, therefore,
possible to estimate the parameters A = {u, o} of this single diagonal covariance
Gaussian by using maximum likelihood derivations, instead of using the EM
algorithm which is usually employed when estimating the parameters of the
Gaussian Mixture Model. Under this simplified version of the FV, the gradients
from which the FV is comprised are:

OL(X|N) _ i Tia—pa | OL(X]N) _ 5 ((xi,d Cpa)? 1) "
2 ’ _ o3 o

Ot -1 Y4 94 i—1 J.d

and, therefore, the resulting representation is in R?P. Applying PCA and ICA as
a preprocessing step is investigated in this work with the purpose of sustaining
the diagonal covariance assumption.

As in [22], the diagonal of the Fisher Information Matrix, F', is approximated
in order to normalize the dynamic range of the different dimensions of the gradi-
ent vectors. For a single Gaussian model, the terms of the approximated diagonal

Fisher Information Matrix become: F},, = =5 ; F,, = 2.
Tk,d Tk,d

The FV is the concatenation of two normalized parti:ﬂ derivative vectors:

—1/2 9L(X|A —~1/2 9L(X|A
Fud/ 78(;@') and ng/ B(Ud‘).
It is worth noting the linear structure of the FV pooling, which is apparent

from the equations above. Since the likelihood of the multi-set is the multipli-
cation of the likelihoods of the individual elements, the log-likelihood is linear.
Therefore, the Fisher Vectors of the individual words can be computed once
for each word and then reused. For all of our experiments, the multivariate
Guassian (or the generalized Gaussian presented next) is estimated only once,
from all word2vec vectors. These vectors are obtained, precomputed on a sub-
set of the Google News dataset, from https://code.google.com/p/word2vec/.
Therefore, the encoding is independent of the dataset used in each experiment,
is completely generic, and is very efficient to compute as a simple summation of
precomputed Fisher Vectors (same runtime complexity as mean pooling).

Following the summation of the Fisher Vectors of the individual words, the
Power Normalization and the L2 Normalization that were introduced in [24] (see
Section 2) are employed, using a constant a = 1/2.

3.3 Fisher Vector of a generalized multivariate Gaussian

A generalization of the FV that is presented here for the first time, in which
the FV is redefined according to a single multivariate generalized Gaussian dis-
tribution. The need for this derivation is based on the observation (see below)
that word2vec vectors are not distributed in accordance with the multivariate
Gaussian distribution.

The generalized Gaussian distribution is, in fact, a parametric family of sym-
metric distributions and is defined by three parameters: m which is the location
parameter and is the mean of the distribution, s the scale parameter and p the
shape parameter. The probability density function of the Generalized Gaussian
Distribution (GGD) in the univariate case is:

1 |z — m|P
Al _ _Em 2
ggd(x;m, s, p) 2sp1/pp(1+l/p)6xp(Py) (2)

The estimation of the parameters of a univariate Generalized Gaussian Dis-
tribution is done according to [2].

Under the common assumption in the F'V that the covariance matrix is di-
agonal, the multivariate generalized Gaussian distribution is defined:

D 1 |(Ed7md|pd
ggd(m. s.p) = [ap (za=mal™y g,

d—1 23d1031/pdp(1 +1/pa) Pasy’

Since the dimensions of the multivariate GGD are independent, the param-
eters of the GGD can be estimated dimension-wise.

The FV can now be redefined as the gradients of the log-likelihood of X =
{x1,72,..., 25} € RP with respect to the parameters of a pre-trained Diagonal
Covariance Multivariate Generalized Gaussian Distribution. In practice, the FV
is defined in this work only according to the gradients of m and s, since the
gradients according to p do not seem to improve the results.

The log likelihood is defined as:

. 1/pa S wia — malPe
L(m,s,p|X) =) |-Nlog (23dpd I+ Upd)) B pash’
d=1 d

(4)

The resulting FV in R?P is given by:

N
LB 3" stz
9L(m, s, p|X) 3
T ae = N sat "y feia = mal ©)

The diagonal of Fisher Information Matrix, F', for this distribution is ap-
proximated in order to normalize the dynamic range of the different dimensions

of the gradient vectors. Let F,, and Fs, be the terms of diagonal of F' that
9L(m,s,p| X) and 3E(m,S,P|X)' Then:

correspond respectively to

By, —/ 99d (X|\) [Z 9L (z’wl dx (7)

Where A = {m, s,p} Then:

ulA
”Ld _ Z / 3£ $f|>\ 3£(I ‘) gd(xtyxu|>\)d$tdzu

it e Omqg
ut;éu
al 2

OL (x¢|N)

Since the samples are i.i.d given A and also the dimensions are independent:

omy om

OL (s gl A OL (2. al A
/M éTt;l')ggd (@g,a|N) dxt,d/ (GT:M{/gd (Tu,alA) dTy.a

/ OL (x¢|X) OL (x4 |N) 090 (1, |) dandzs
T, Ty d

T,d

- 52— gg9d(x1,alX)
Using the fact that (73‘” 3md log(ggd (wt,al)\)) = W'
OL (z4,4|\) 0
/x (gr:;ﬂ gd (24 g|\) doy g = / ggd Zp gl A) dxy = i /Zi,d 99d (x¢ g|A) dxy =0

Therefore, the first expression in the sum of (8) is equal to 0. Assuming that

the dimensions are independent, the second expression in the sum of (8) is equal
oL (we,|n
0300 [, {ani‘i)} 99d (x14|A) dx,.

OL(wiy|N)

6’”’7,,1

2
Note that fﬂft [} ggd (24,|\) dxy, is the value of the Fisher Infor-
d

mation Matrix of a univariate generalized Gaussian distribution for a single
sample. Therefore according to [2]:

20, |N)1? -yr
~/zt [8£(‘§md)\)} 990 (71, dov, = s2I' (%) p(2 p)?p ©)

Therefore:)
_ p—1

Fmd —N. (p 1)F< p) (10)
52 p() p2-)/p

Similarly, since fwtd [‘%(;S’j)‘)] 99d (x4,]\) dzy, = % according to [2], it can

be shown that: Fy, = N - L.

The normalized partial derivatives of the FV are then F,

—1/290L(X]|\
Py, /2L 1)

In [27], Sanchez et al. state that applying the Principal Components Analysis
(PCA) on the data before fitting the GMM is the key to make the FV perform
well. In experiments on PASCAL VOC 2007, they show that accuracy does
not seem to be overly sensitive to the exact number of PCA components. The
explanation is that transforming the descriptors by using PCA is a better fit to
the diagonal covariance matrix assumption.

Following this observation, a transformation that will cause the transformed
descriptors to be a better fit to the diagonal covariance matrix assumption is
sought for the generalized gaussian FV. The optimal transformation will result in
transformed descriptors that are dimension independent and are non-Gaussian
signals. While PCA suffers from the implicit assumption of an underlying Gaus-
sian distribution [14], the Independent Component Analysis (ICA) [16] explicitly
encourages non-Gaussian distributions.

Figure 1 depicts the estimated shape parameters p for each dimension of
the word2vec representation, and for all dictionary words used. As can be seen,
the shape varies between the dimensions, depending on whether we consider
the raw word2vec representation, the representation post-PCA, or that after

1/2 AL(X|N)
o, an nd

Fig. 1. The shape parameter p of the generalized Gaussian distribution. This parameter
was estimated for each dimension of the word2vec representation, based on all word2vec
vectors, i.e., a distribution was fit to each coordinate separately. (a) the raw word2vec
vectors; (b) after applying PCA, retaining the original dimensionality; (c¢) after applying
ICA. In all three plots, x-axis is the vector coordinate index from 1 to 300, y-axis is
the estimated p. Note that the range of the y-axis differs between the plots.

applying ICA. The baseline distribution is not a Gaussian one, but most shape
parameters are between 1.9 and 2.1. Post-PCA, the shape parameters are mostly
in a narrow band around 1.9. Post-ICA, the shape parameters follow an almost
linear trend between 0.8 and 2.

Finally, The Power Normalization and L2 Normalization are applied using
a = 1/p on the resulting FV. While similar to the conventional FV, this constant
is not justified directly, we found it experimentally to slightly outperform a = 1/2
for this case.

3.4 Classification

The pooled representation of a sentence can be used in combination with any
classifier to make predictions based on the sentence. In addition, many of our
experiments require the comparison of two sentences. Let u and v be the pooled
representations of the two sentences. Our unified representation is given by the
concatenation of their difference and their mean: [(1‘;1;1))/‘2] This provides infor-
mation on both the location of the two vectors and the difference between them,
in a symmetric manner.

4 Experiments

We perform our experiments on multiple benchmarks: the TREC Answer Selec-
tion Dataset, The SemEval-2012 Semantic Sentence Similarity benchmark, and
the very recent Yahoo! and AG topic classification benchmarks.

4.1 Answer selection

The answer sentence selection dataset contains factoid questions each associated
with a list of answer sentences. It was created by Wang et al. [36] from the Text
REtrieval Conference (TREC) QA track (8-13) dataset, with candidate answers
automatically selected from each question’s document pool. This selection was

based on a combination of overlapping non-stop word counts and pattern match-
ing, and was followed by manual tagging for parts of the dataset. Overall, there
are 4718, 1148, and 1517 question-answer pairs in the train, validation, and test
set, respectively.

The task is to rank the candidate answers based on their relation to the
question. Two standard success metrics are used and in both higher is better:
Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR). MRR mea-
sures the rank of any correct answer and MAP examines the ranks of all the
correct answers and accounts for recall. The two scores are calculated using the
official trec_eval evaluation scripts.

We compare our results with the state of the art [36, 11,35, 38,28, 39, 40].
Our method employs the concatenated diff+mean vector of Section 3.4. Linear
SVM is used with a parameter C' tuned on the development set.

As can be seen in Table 1, the most basic pooling method of average pool-
ing is already preferable, when applied to word2vec transformed by PCA, to
the literature methods. Moreover, when adding FV pooling, the results further
improve. Best results are obtained using the ICA + generalized Gaussian FV
representation.

It is interesting to compare our method to the method of [40], which also
relies on word embedding. While our method employs word2vec, [40] employs
the Collobert and Westons neural language model [8] as provided by Turian
et al. [33]. The unigram model of [40] is similar to our mean pooling method.
However, it uses the classification model of [6]: given vector representations of
a question q and an answer a (both in R%), the probability of the answer being
correct is p(y = 1|q,a) = o(q” M a + b), where the transformation matrix
M € R%*? and the bias term b are learned model parameters. The bigram model
of [40] is a 1D Convolution Neural Network (CNN) with a single convolution layer
and a filter size of 2.

The authors of [40] suggest that vector representation based approaches are
“not very well equipped for dealing with cardinal numbers and proper nouns,
especially considering the small dataset”. Therefore, they augment these with
two counting based features: word co-occurrence count and word co-occurrence
count weighted by idf values. The output of the unigram or bigram model is
concatenated in their experiments with these features and then a logistic classifier
is applied. In our experiments, we do not observe the need to add such features.

Recently, an extended training set called TRAIN-ALL was proposed [40].
This is a significantly larger training set that was labeled automatically, using
pattern matching, and contains many labeling errors. The best result obtained
on this dataset [40] has a MAP of 0.711 (MRR 0.785) using the deep learning
bigram + count method. Our best result is superior on this training set as well:
MAP of 0.720 (MRR 0.824). Stacking [37], using a fourth linear SVM, all three
ICA variants, improves results on TRAIN-ALL to MAP 0.7372 (MRR 0.8511).

4.2 Semantic Sentence Similarity

The task of Semantic Sentence Similarity (STS) has gained considerable atten-
tion. Semantic embedding models are at a disadvantage for this task, since the

Method MAP MRR Table 1. Experimental re-
Wang et al. [36] 0.603 0.685 sults on the TREC An-
Heilman and Smith [11] 0.609 0.692 swer Selection benchmark. A
Wang and Manning [35] 0.595 0.695 long list of literature results
Yao et al. [38] 0.631 0.748 are presented, including the
Severyn and Moschitti [28] 0.678 0.736 state of the art results ob-
baseline: word counts [39] 0.571 0.627 tained by Yih et al. [39)]
baseline: tf-idf Word Count [39] 0.596 0.652 and the very recent results
Yih et al. LR [39] 0.682 0.762 of Yu et al. [40]. PCA fol-
Yih et al. BDT [39] 0.694 0.789 lowed by mean pooling out-
Yih et al. LCLR [39] 0.709 0.770 perform all literature results;
deep learning unigram [40] 0.539 0.628 ICA + generalized Gaussian
deep learning unigram+count [40]| 0.689 0.773 FV performs even better. Yu
deep learning bigram [40] 0.548 0.644 et al. [40] also present results
deep learning bigram+count [40} 0.706 0.780 on a larger and noisier train-
mean pooling 0.665 0.752 ing set called TRAIN ALL.
PCA + mean pooling 0.710 0.807 Training on this training set
ICA + mean pooling 0.679 0.783 (not shown in the table), we
Gaussian FV 0.662 0.763 obtain a slight improvement
PCA+Gaussian FV 0.621 0.743 only; However, our results
ICA + Gaussian FV 0.705 0.810 are still better than Yu et
generalised Gaussian FV 0.654 0.757 al. [40]: MAP 0.720 vs. 0.711;
PCA + generalized Gaussian FV | 0.623 0.729 MRR 0.824 vs. 0.785.

ICA + generalized Gaussian FV | 0.719 0.824

structure of the sentences is complex, and explicit matching between parts of the
sentence greatly aids the similarity judgment. In our experiments below, we aim
to show that word2vec pooling provides a reasonable pipeline, and that when
added to a set of literature scores, state of the art results are obtained.

The experimental setup used in the STS task [1] was followed, and for tech-
nical reasons (availability of DKPro scores) we employ 3 out of the 5 datasets
presented: msr-par, msr-vid, and smt-eur. Each sentence pair in the datasets
was given a score from 0 (lowest similarity) to 5 (highest similarity) by human
judges. We compare our results to the state of the art results [25, 3,34, 12, 26].

The authors of [3] have released a toolbox called DKPro that contains code
for the computation of 75 similarities [4] that is a superset of the 20 similarities
used in [3]. Unable to completely identify the 20 similarities, we have rerun the
entire set of 75 similarities as an additional pipeline. When taking log scale of
the similarities, it seems to outperform [3] on the msr-par benchmark but not
on the other two.

We compute the two representations of each pair of sentences and combine
them (Section 3.4). For the regression problem of the STS benchmarks, we use
the effective K-clusters Regression Forests (KRF) [9] method, with the default
parameters. Interestingly, on the STS benchmarks the exact combinations of
PCA or ICA and pooling method did not show any clear winners. The results of
all 9 combinations (including no feature transformation) were almost indistin-
guishable. We, therefore, present the results of PCA followed by average pooling,
which is the most basic method we recommend. We also present results obtained

Method msr-par msr-vid smt-eur

ADW [25] 0.694 0.887 0555 | Lable 2. Results on
UKP2 [3] 0.683 0.873 0528 | the STS benchmarks.
TLsyn [34] 0.608 0.862 0.361 | Our results are shown
TLsim [34] 0.734 0.880 0.477 | for PCA followed by
VD [12] _ 0.890 _ mean pooling orlﬂy,
MTL-GP [26] 0.732 0.888 0.562 | Since other pooling
DKPro scores [4] (log transformed) | 0.734 0.887 0.540 ?p“OT‘S gave almost
PCA+mean pooling 0537 0827 0513 identical results.
PCA+mean pooling U DKPro scores| 0.739 0.895 0.617

when combining the mean pooling similarity with the DKPro similarities. This
is done by the ridge regression method on the 76 similarities, where the regular-
ization parameter was obtained using cross validation on the training set.

The results are presented in Table 2. The results obtained by average pooling
would have placed this system as one of the top systems of the SemEval-2012
competition [3, 34]. When combined with the DKPro similarities, state-of-the-art
results are obtained.

4.3 Topic classification

A week before the submission date, Zhang and LeCun have published a Techni-
cal Report presenting topic classification results obtained using deep temporal
convolutional networks [41]. The paper presents word2vec as an inferior baseline,
performing even worse than the basic bag-of-words method. It is claimed that
this might be a result of using the same word2vec representation for all datasets,
or “it might also be the case that the hope for linear separability of word2vec is
not valid at all”. As we show below, this is not the case, and word2vec performs
on par with the best results of [41].

Pooling of word2vec in [41] is performed by running k-means on the word
vectors (k = 5000), and then using histograms of length 5000 to represent the
text, based on nearest centroid association. This is followed by logistic regression.
This metod is vastly different from the pooling methods we advocate for.

We performed experiments on two of the datasets used in [41]: Yahoo! and
AG. While the exact splits used were not made available yet (personal com-
munication), the protocols for building the benchmarks are available. We ver-
ified that different random sampling of train/test have only a minimal effect
on the results, with a SD of about 0.005 accuracy. The Yahoo! Answers Topic
Classification benchmark is based on the Yahoo! Answers Comprehensive Ques-
tions and Answers version 1.0 dataset available through the Yahoo! Webscope
program. Topic classification is performed on the 10 largest main categories,
where each class contains 140,000 (5,000) random training (testing) samples.
Out of all the answers and other meta-information, only the best answer content
and the main category information are used for the benchmark. From the AG’s
corpus of news article http://www.di.unipi.it/~gulli/AG_corpus_of _news_
articles.html, the 4 largest categories are used, employing only the title and
description fields. From each category, random 40,000 (1,100) samples are taken
for training (testing).

Method Yahoo! AG | Table 3. Results on the topic classi-
Large ConvNet + Thesaurus [41]| 0.699 0.916| fication benchmarks (accuracy). Our
Bag of Words [41] 0.666 0.883| word2vec based methods are much
word2vec bag-of-centroids [41] 0.588 0.853| better than the word2vec baseline
PCA+mean pooling+linear SVM| 0.688 0.896 | of [41] and nearly as good as the best
PCA+mean pooling + KNN 0.672 0.906 | reported method of [41].

ICA+3 pooling methods +KNN |0.703 0.910

0.915, 0.8956,

091 08954 Fig. 2. Results on the AG
0'9;: 08952 benchmark when varying
085 0895 the papameters of the learn-
089 - ing algorithm. (a) varying
0885 the parameter k of the KNN

0.8946

algorithm. (b) varying the
parameter C of linear SVM
(a) (b) (log scale).

10 20 30 40 50 o 894‘}6

Since each vector is classified independently (no pairs), we simply employ
linear SVM or the k-nearest neighbor algorithms. The results are depicted in
Table 3. As can be seen, our word2vec considerably outperforms the baseline
given in [41] and is only slightly worse than the results of the deep networks.
Needless to say, the deep networks were completely retrained for each benchmark,
and are extremely resource-heavy; A single epoch on the Yahoo! benchmark took
a day to train. Also, our system has only the parameters of the classifiers, and as
can be seen in Figure 2, it is insensitive to the choice of these parameter. This,
in comparison to the tens of hyperparameters of the deep network solutions.

In this experiment too, the pooling method did almost no difference. For
example, for AG KNN classification, all 9 options where at an accuracy level
above 0.899. However, by stacking the results obtained, for example, by the
three ICA-based pooling methods, performance is slightly improved to 0.910 on
this benchmark, and 0.703 on the Yahoo! benchmark.

5 Conclusion

With proper pooling, vector embeddings perform almost as well, if not better,
than the best available methods. On the other hand, the proposed pipeline is
generic and mostly unsupervised, and only requires a shallow off-the-shelf train-
ing in order to adapt to the problem at hand. The Fisher Vector pooling methods
share the same runtime complexity as the baseline mean pooling method, and
improve results significantly in two out of the three tasks we examined.

Word order is not properly addressed, as is apparent in the STS experiments.
We plan to tackle this using a hierarchical pooling scheme that represents text
by a list of pooled vectors. In addition, we plan to study pooling of other types
of vector embedding such as co-occurance based ones.

Acknowledgments

This research is supported by the Intel Collaborative Research Institute for Com-
putational Intelligence (ICRI-CI).

References

10.

11.

Agirre, E., Diab, M., Cer, D., Gonzalez-Agirre, A.: Semeval-2012 task 6: A pilot
on semantic textual similarity. In: Proceedings of the First Joint Conference on
Lexical and Computational Semantics. pp. 385-393. SemEval 12, Association for
Computational Linguistics, Stroudsburg, PA, USA (2012), http://dl.acm.org/
citation.cfm?id=2387636.2387697

Agro, G.: Maximum likelihood estimation for the exponential power function pa-
rameters. Communications in Statistics-Simulation and Computation 24(2), 523-
536 (1995)

Bér, D., Biemann, C., Gurevych, 1., Zesch, T.: Ukp: Computing semantic textual
similarity by combining multiple content similarity measures. In: Proceedings of
the First Joint Conference on Lexical and Computational Semantics - Volume 1:
Proceedings of the Main Conference and the Shared Task, and Volume 2: Proceed-
ings of the Sixth International Workshop on Semantic Evaluation. pp. 435-440.
SemEval ’12; Association for Computational Linguistics, Stroudsburg, PA, USA
(2012), http://dl.acm.org/citation.cfm?id=2387636.2387707

Bér, D., Zesch, T., Gurevych, I.: Dkpro similarity: An open source framework for
text similarity. In: Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics: System Demonstrations. pp. 121-126. Association for
Computational Linguistics (2013), http://aclweb.org/anthology/P13-4021
Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic lan-
guage model. J. Mach. Learn. Res. 3, 1137-1155 (Mar 2003), http://dl.acm.org/
citation.cfm?id=944919.944966

Bordes, A., Chopra, S., Weston, J.: Question answering with subgraph embeddings.
CoRR abs/1406.3676 (2014), http://arxiv.org/abs/1406.3676

Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the de-
tails: an evaluation of recent feature encoding methods. In: British Machine Vision
Conference (2011)

Collobert, R., Weston, J.: A unified architecture for natural language processing:
Deep neural networks with multitask learning. In: Proceedings of the 25th Interna-
tional Conference on Machine Learning. pp. 160-167. ICML 08, ACM, New York,
NY, USA (2008), http://doi.acm.org/10.1145/1390156.1390177

Hara, K., Chellappa, R.: Growing regression forests by classification: Applications
to object pose estimation. In: Computer Vision-ECCV 2014, pp. 552-567. Springer
(2014)

Hartley, R.: In defense of the eight-point algorithm. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 19(6), 580-593 (Jun 1997)

Heilman, M., Smith, N.A.: Tree edit models for recognizing textual entailments,
paraphrases, and answers to questions. In: Human Language Technologies: The
2010 Annual Conference of the North American Chapter of the Association for
Computational Linguistics. pp. 1011-1019. HLT ’10, Association for Computa-
tional Linguistics, Stroudsburg, PA, USA (2010), http://dl.acm.org/citation.
cfm?id=1857999.1858143

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Hodosh, P.Y.A.L.M., Hockenmaier, J.: From image descriptions to visual denota-
tions: New similarity metrics for semantic inference over event descriptions. Trans-
actions of the Association for Computational Linguistics (2014)

Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into
a compact image representation. In: Proc. IEEE Conf. Comput. Vision Pattern
Recognition. pp. 3304-3311 (jun 2010), http://lear.inrialpes.fr/pubs/2010/
JDSP10

Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local im-
age descriptors. In: Computer Vision and Pattern Recognition, 2004. CVPR 2004.
Proceedings of the 2004 IEEE Computer Society Conference on. vol. 2, pp. II-506.
IEEE (2004)

Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents.
In: Proceedings of the 31th International Conference on Machine Learning, ICML
2014, Beijing, China, 21-26 June 2014. JMLR Proceedings, vol. 32, pp. 1188-1196.
JMLR.org (2014), http://jmlr.org/proceedings/papers/v32/lel4 .html

Lee, T.W.: Independent component analysis: theory and applications [book re-
view|. IEEE Transactions on Neural Networks 10(4), 982-982 (1999), http:
//dblp.uni-trier.de/db/journals/tnn/tnn10.html#Lee99a

Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factor-
ization. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Wein-
berger, K. (eds.) Advances in Neural Information Processing Systems 27,
pp. 2177-2185. Curran Associates, Inc. (2014), http://papers.nips.cc/paper/
5477-neural-word-embedding-as-implicit-matrix-factorization.pdf
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. CoRR abs/1301.3781 (2013)

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems. pp. 3111-3119 (2013)

Mnih, A., Hinton, G.: Three new graphical models for statistical language mod-
elling. In: Proceedings of the 24th International Conference on Machine Learning.
pp. 641-648. ICML 07, ACM, New York, NY, USA (2007), http://doi.acm.org/
10.1145/1273496.1273577

Peng, X., Zou, C., Qiao, Y., Peng, Q.: Action recognition with stacked fisher vec-
tors. In: Computer Vision-ECCV 2014, pp. 581-595. Springer (2014)

Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image cate-
gorization. In: Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE
Conference on. pp. 1-8. IEEE (2007)

Perronnin, F., Liu, Y., Sdnchez, J., Poirier, H.: Large-scale image retrieval with
compressed fisher vectors. In: Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on. pp. 3384-3391. IEEE (2010)

Perronnin, F.; Sanchez, J., Mensink, T.: Improving the fisher kernel for large-
scale image classification. In: Computer Vision-ECCV 2010, pp. 143-156. Springer
(2010)

Pilehvar, T.M., Jurgens, D., Navigli, R.: Align, disambiguate and walk: A unified
approach for measuring semantic similarity. In: Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
pp. 1341-1351. Association for Computational Linguistics (2013), http://aclweb.
org/anthology/P13-1132

Rios, M., Specia, L.: Uow: Multi-task learning gaussian process for semantic textual
similarity. In: Proceedings of the 8th International Workshop on Semantic Evalua-
tion (SemEval 2014). pp. 779-784. Association for Computational Linguistics and

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Dublin City University, Dublin, Ireland (August 2014), http://www.aclweb.org/
anthology/S14-2138

Sénchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the
fisher vector: Theory and practice. International journal of computer vision 105(3),
222-245 (2013)

Severyn, A., Moschitti, A.: Automatic feature engineering for answer selection and
extraction. In: EMNLP. pp. 458-467. ACL (2013), http://dblp.uni-trier.de/
db/conf/emnlp/emnlp2013.html#SeverynM13

Simonyan, K., Parkhi, O.M., Vedaldi, A., Zisserman, A.: Fisher vector faces in the
wild. In: Proc. BMVC. vol. 1, p. 7 (2013)

Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering
objects and their location in images. In: Computer Vision, 2005. ICCV 2005. Tenth
IEEE International Conference on. vol. 1, pp. 370-377. IEEE (2005)

Socher, R., Lin, C.C., Ng, A.Y., Manning, C.D.: Parsing Natural Scenes and Nat-
ural Language with Recursive Neural Networks. In: Proceedings of the 26th Inter-
national Conference on Machine Learning (ICML) (2011)

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A., Potts, C.:
Recursive Deep Models for Semantic Compositionality Over a Sentiment Tree-
bank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing. pp. 1631-1642. Association for Computational Linguistics,
Seattle, Washington, USA (Oct 2013), http://www.aclweb.org/anthology-new/
D/D13/D13-1170.bib

Turian, J., Ratinov, L., Bengio, Y.: Word representations: A simple and gen-
eral method for semi-supervised learning. In: ACL (2010), http://cogcomp.cs.
illinois.edu/papers/TurianRaBe2010.pdf

Sari¢, F., Glavas, G., Karan, M., Snajder, J., Bagié¢, B.D.: Takelab: Systems
for measuring semantic text similarity. In: Proceedings of the First Joint Con-
ference on Lexical and Computational Semantics - Volume 1: Proceedings of
the Main Conference and the Shared Task, and Volume 2: Proceedings of the
Sixth International Workshop on Semantic Evaluation. pp. 441-448. SemEval
"12, Association for Computational Linguistics, Stroudsburg, PA, USA (2012),
http://dl.acm.org/citation.cfm?id=2387636.2387708

Wang, M., Manning, C.D.: Probabilistic tree-edit models with structured latent
variables for textual entailment and question answering. In: Proceedings of the
23rd International Conference on Computational Linguistics. pp. 1164-1172. COL-
ING ’10, Association for Computational Linguistics, Stroudsburg, PA, USA (2010),
http://dl.acm.org/citation.cfm?id=1873781.1873912

Wang, M., Smith, N.A., Mitamura, T.: What is the jeopardy model? a quasi-
synchronous grammar for qa. In: Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natu-
ral Language Learning (EMNLP-CoNLL). pp. 22-32. Association for Computa-
tional Linguistics, Prague, Czech Republic (June 2007), http://www.aclweb.org/
anthology/D07-1003

Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241-259 (Feb 1992),
http://dx.doi.org/10.1016/50893-6080(05)80023-1

Yao, X., Van Durme, B., Callison-Burch, C., Clark, P.: Answer extraction as se-
quence tagging with tree edit distance. In: Proceedings of the 2013 Conference of
the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies. pp. 858-867. Association for Computational Linguis-
tics, Atlanta, Georgia (June 2013), http://www.aclweb.org/anthology/N13-1106

39. tau Yih, W., Chang, M.W., Meek, C., Pastusiak, A.: Question answering using
enhanced lexical semantic models. In: Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics. ACL Association for Computa-
tional Linguistics (August 2013), http://research.microsoft.com/apps/pubs/
default.aspx?id=192357

40. Yu, L., Hermann, K.M., Blunsom, P., Pulman, S.: Deep Learning for Answer Sen-
tence Selection. In: NIPS Deep Learning Workshop (Dec 2014), http://arxiv.
org/abs/1412.1632

41. Zhang, X., LeCun, Y.: Text Understanding from Scratch. ArXiv e-prints (Feb 2015)

