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Abstract: This article is the series of methodology of clinical prediction model construction (total 16 

sections of this methodology series). The first section mainly introduces the concept, current application 

status, construction methods and processes, classification of clinical prediction models, and the necessary 

conditions for conducting such researches and the problems currently faced. The second episode of 

these series mainly concentrates on the screening method in multivariate regression analysis. The third 

section mainly introduces the construction method of prediction models based on Logistic regression and 

Nomogram drawing. The fourth episode mainly concentrates on Cox proportional hazards regression 

model and Nomogram drawing. The fifth Section of the series mainly introduces the calculation method of 

C-Statistics in the logistic regression model. The sixth section mainly introduces two common calculation 

methods for C-Index in Cox regression based on R. The seventh section focuses on the principle and 

calculation methods of Net Reclassification Index (NRI) using R. The eighth section focuses on the principle 

and calculation methods of IDI (Integrated Discrimination Index) using R. The ninth section continues to 

explore the evaluation method of clinical utility after predictive model construction: Decision Curve Analysis. 

The tenth section is a supplement to the previous section and mainly introduces the Decision Curve Analysis 

of survival outcome data. The eleventh section mainly discusses the external validation method of Logistic 

regression model. The twelfth mainly discusses the in-depth evaluation of Cox regression model based on R, 

including calculating the concordance index of discrimination (C-index) in the validation data set and drawing 

the calibration curve. The thirteenth section mainly introduces how to deal with the survival data outcome 

using competitive risk model with R. The fourteenth section mainly introduces how to draw the nomogram 

of the competitive risk model with R. The fifteenth section of the series mainly discusses the identification 

of outliers and the interpolation of missing values. The sixteenth section of the series mainly introduced the 
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Introduction to Clinical Prediction Models

Background

For a doctor, if there is a certain “specific function” to 

predict whether a patient will have some unknown outcome, 

then many medical practice modes or clinical decisions 

will change. Such demand is so strong that almost every 

day we will hear such a sigh “If I could know in advance, 

I would certainly not do this!”. For example, if we can 

predict that a patient with malignant tumor is resistant to 

a certain chemotherapy drug, then we will not choose to 

give the patient the drug; if we can predict that a patient 

may have major bleeding during surgery, then we will be 

careful and prepare sufficient blood products for the patient 
during the operation; if we can predict that a patient with 

hyperlipidemia will not benefit from some lipid-lowering 

drug, then we can avoid many meaningless medical 

interventions.

As a quantitative tool for assessing risk and benefit, the 
clinical prediction model can provide more objective and 

accurate information for the decision-making of doctors, 

patients and health administrators, so its application is 

becoming more and more common. Under this kind of 

rigid demand, researches of clinical prediction model are in 

the ascendant.

The current medical practice model has evolved from 

empirical medicine to evidence-based medicine and then 

to precise medicine. The value of data has never been more 

important. The rapid development of data acquisition, data 

storage and analysis and technology of prediction in the 

big data era has made the vision of personalized medical 

treatment become more and more possible (1,2). From the 

perspective of the evolvement of medical practice models, 

accurately predicting the likelihood of a certain clinical 

outcome is also an inherent requirement of the current 

precise medical model.

This paper will summarize the researches of clinical 

prediction model from the concept, current application 

status, construction methods and processes, classification 

of clinical prediction models, necessary conditions for 

conducting such researches and the current problems.

Concept of clinical prediction model

Clinical predictive model refers to using a parametric/semi-

parametric/non-parametric mathematical model to estimate 

the probability that a subject currently has a certain disease 

or the likelihood of a certain outcome in the future (3). It 

can be seen that the clinical prediction model predicts the 

unknown by the knowing, and the model is a mathematical 

formula, that is, the known features are used to calculate 

the probability of the occurrence of an unknown outcome 

through this model (4,5). Clinical prediction models are 
generally modeled by various regression analysis methods, 

and the statistical nature of regression analysis is to find the 
“quantitative causality.” To be simple, regression analysis 

is a quantitative characterization of how much X affects Y. 
Commonly used methods include multiple linear regression 

model, logistic regression model and Cox regression 

model. The evaluation and verification of the effectiveness 
of prediction models are the key to statistical analysis, 

data modeling, and project design, and it is also the most 

demanding part of data analysis technology (6).

Based on the clinical issues we have studied, clinical 

prediction models include diagnostic models, prognostic 

models and disease occurrence models (3). From a statistical 

point of view, prediction models can be constructed as long 

as the outcome of a clinical problem (Y) can be quantized 
by the feature (X). The diagnostic model is common in 

cross-sectional studies, focusing on the clinical symptoms 

and characteristics of study subjects, and the probability of 

diagnosing a certain disease. The prognostic model focuses 

on the probability of outcomes such as recurrence, death, 

disability, and complications in a certain period of time of a 

particular disease. This model is common in cohort studies. 

There is another type of prediction model that predicts 

whether a particular disease will occur in the future based 

on the general characteristics of the subject, which is also 

advanced variable selection methods in linear model, such as Ridge regression and LASSO regression.
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common in cohort studies. There are many similarities 

among the diagnostic model, the prognostic model and 

the disease occurrence model. Their outcomes are often 

dichotomous data and their effect indicators are the absolute 

risks of the outcome occurrence, that is, the probability of 

occurrence, not the effect indicators of relative risk such as 

relative risk (RR), odds ratio (OR) or hazard ratio (HR). At 

the technical level of the model, researchers will face with 

the selection of predictors, the establishment of modeling 

strategies, and the evaluation and verification of model 

performance in all of these models.

Applications of clinical prediction models

As described in the background part, clinical prediction 

models are widely used in medical research and practice. 

With the help of clinical prediction models, clinical 

researchers can select appropriate study subjects more 

accurately, patients can make choices more beneficial for 

themselves, doctors can make better clinical decisions, and 

health management departments can monitor and manage 

the quality of medical services better and allocate medical 

resources more rationally. The effects of clinical prediction 

models are almost reflected in any of the three-grade 

prevention system of diseases:

Primary prevention of disease

The clinical prediction model can provide patients 

and doctors with a quantitative risk value (probability) 

of diagnosing a particular disease in the future based 

on current health status, offering a more intuitive and 

powerful scientific tool for health education and behavioral 
intervention. For example, the Framingham Cardiovascular 

Risk Score based on the Framingham’s studies on heart 

clarified that lowering blood lipids and blood pressure could 
prevent myocardial infarction (7).

Secondary prevention of disease

Diagnostic models often use non-invasive, low-cost and 

easy-to-acquire indicators to construct diagnostic means 

with high sensitivity and specificity and to practice the idea 
of “early detection, early diagnosis, early treatment”, which 

has important significance of health economics.

Tertiary prevention of disease

The prognostic model provides quantitative estimates 

for probabilities of disease recurrence, death, disability 

and complications, guiding symptomatic treatment and 

rehabilitation programs, preventing disease recurrence, 

reducing mortality and disability, and promoting functional 

recovery and quality of life. 

There are several mature prediction models in clinical 

practice. For example, Framingham, QRISK, PROCAM, 
and ASSIGN scores are all well-known prediction models. 

The TNM staging system for malignant tumors is the most 

representative prediction model. The biggest advantage 

of TNM is that it is simple and fast, and the greatest 

problem is that the prediction is not accurate enough, 

which is far from the expectations of clinicians. The need 

to use predictive tools in clinical practice is far more than 

predicting disease occurrence or predicting the prognosis 

of patients. If we can predict the patient’s disease status in 

advance, for example, for patients with liver cancer, if we 

can predict whether there is microvascular infiltration in 

advance, it may help surgeons to choose between standard 

resection and extended resection, which are completely 

different. Preoperative neoadjuvant radiotherapy and 
chemotherapy is the standard treatment for T1-4N+ middle 

and low rectal cancer. However, it is found during clinical 

practice that the status of lymph nodes estimated according 

to the imaging examinations before surgery is not accurate 

enough, and the proportion of false positive or false 

negative is high. Is it possible to predict the patient’s lymph 

node status accurately based on known characteristics before 

radiotherapy and chemotherapy? These clinical problems 

might be solved by constructing a suitable prediction model.

Research approach of clinical prediction models

Clinical prediction models are not as simple as fitting a 

statistical model. From the establishment, verification, 

evaluation and application of the model, there is a complete 

research process of the clinical prediction model. Many 

scholars have discussed the research approaches of clinical 

prediction models (8-11). Heart Magazine recently 

published a review, in which the authors used risk score for 

cardiovascular diseases (CVD) as an example to explore how 

to construct a predictive model of disease with the help of 

visual graphics and proposed six important steps (12):

(I) Select a data set of predictors as potential CVD 

influencing factors to be included in the risk score;
(II) Choose a suitable statistical model to analyze the 

relationship between the predictors and CVD;

(III) Select the variables from the existing predictors 

that are significant enough to be included in the 

risk score;
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(IV) Construct the risk score model;

(V) Evaluate the risk score model;

(VI) Explain the applications of the risk score in clinical 

practice.

The author combined literature reports and personal 

research experience and summarized the research steps as 

shown in Figure 1.

Clinical problem determine research type selection

Clinical prediction models can answer questions about 

etiology, diagnosis, patients’ response to treatment and 

prognosis of diseases. Different research types of design 

are required for different problems. For instance, in 

regard to etiology studies, a cohort study can be used 

to predict whether a disease occurs based on potential 

causes. Questions about diagnostic accuracy are suitable 

for cross-sectional study design as the predictive factors 

and outcomes occur at the same time or in a short period 

of time. To predict patients’ response to treatment, cohort 

study or randomized controlled trial (RCT) can be applied. 

For prognostic problems, cohort study is suitable as there 

are longitudinal time logics for predictors and outcomes. 

Cohort study assessing the etiology requires rational 

selection of study subjects and control of confounding 

factors. In studies of diagnostic models, a “gold standard” 

or reference standard is required to independently diagnose 

the disease, and the reference standard diagnosis should 

be performed with blind method. That is to say, reference 

standard diagnosis cannot rely on information of predictors 

in prediction models to avoid diagnostic review bias. 

Assessing patients’ response to treatment is one type of 

interventional researches. It is also necessary to rationally 

select study subjects and control the interference of non-

test factors. In studies of prognostic model, there is a 

vertical relationship between predictors and outcomes, and 

researchers usually expect to obtain outcome of the disease 

in the natural status, so prospective cohort study is the most 

common prognostic model and the best type of research 

design.

Establishment of study design and implementation 

protocol, data collection and quality control

Good study design and implementation protocol are 

needed. First, we need to review the literatures to determine 

the number of prediction models to be constructed:

(I) At present, there is no prediction model for a 

specific clinical problem. To construct a new model, 
generally a training set is required to construct the 

model and a validation set to verify the prediction 

ability of the model.

(II) There are prediction models at present. To 

construct a new model, a validation set is applied 

to build the new model and the same training data 

set is applied to verify the prediction ability of the 

existing model and the new model respectively.

(III) To update the existing models, the same validation 

set is used to verify the prediction ability of the two 

models.

With regard to the generation of training data sets and 

validation data sets, data can be collected prospectively or 

retrospectively, and the data sets collected prospectively 

are of higher quality. For the modeling population, the 

sample size is expected to be as large as possible. For 

prospective clinical studies, the preparation of relevant 

documents includes the research protocol, the researcher’s 

operation manual, the case report form, and the ethical 

approval document. Quality control and management of 

data collection should also be performed. If data is collected 

retrospectively, the data quality should also be evaluated, 

the outliers should be identified, and the missing values 

should be properly processed, such as filling or deleting. 

Finally, the training data set for modeling and the validation 

set for verification are determined according to the actual 
situations. Sometimes we can only model and verify in the 

same data set due to realistic reasons, which is allowed, but 

the external applicability of the model will be affected to 

some extent.

Establishment and evaluation of clinical prediction 

models

Before establishing a prediction model, it is necessary to 

clarify the predictors reported in the previous literature, 

determine the principles and methods for selecting 

predictors, and choose the type of mathematical model 

applied. Usually a parametric or semi-parametric model 

will be used, such as logistic regression model or Cox 

regression model. Sometimes algorithms of machine 

learning are used to build models and most of these models 

are non-parametric. Because there are no parameters like 

regression coefficients, the clinical interpretation of such 

nonparametric models is difficult. Then fit the model and 
estimate the parameters of the model. It is necessary to 

determine the presentation form of the prediction model in 

advance. Currently, there are four forms commonly used in 

prediction models:

(I) Formula. Use mathematical formulas directly as 
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the prediction model tool.

(II) Nomogram. The regression coefficients of the 

regression model are transformed into scores 

through appropriate mathematical transformations 

and plotted as a nomogram as a predictive model 

tool.

(III) Web calculator. The nature is also to convert the 

regression coefficients of the regression model into 

Figure 1 The flow chart of construction and evaluation of clinical prediction models.
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scores by appropriate mathematical operations, and 

to make it into a website for online use.

(IV) Scoring system. The regression coefficients of 

the regression model are transformed into a 

quantifiable scoring system through appropriate 

mathematical operations.

The first form is mainly for linear regression model, 

which is a deterministic regression. The latter forms 

are based on parametric or semi-parametric models, the 

statistical nature of which is the visual representation of 

the model parameters. The researchers can make choices 

based on actual conditions. After the model is built, how to 

evaluate the pros and cons of the model? The evaluation 

and verification of the model are of higher statistical analysis 
technology. For example, the discrimination, calibration, 

clinical effectiveness and other indicators of the prediction 

models are evaluated to determine the performance of the 

models.

Validation of clinical prediction models

The effect of the prediction model is prone to change as the 

scenario and the population change. Therefore, a complete 

study of prediction model should include validation of the 

model. The content of the validation includes the internal 

validity and external validity of the model. Internal validity 

reflects the reproducibility of the model, which can be 

validated through cross-validation and Bootstrap with 

the data of the study itself. External validity reflects the 

generalizability of the model and needs to be validated with 

data sets not from the study itself, which are temporally and 

geographically independent, or completely independent.

Internal and external validation of the model are 

necessary steps to assess the stability and applicability of the 

model. The data sets for internal validation and external 

validation should be heterogeneous, but not to a certain 

extent. Generally, data from the original institution are used 

as training set to build the model and a part of the internal 

data are randomly selected to perform internal validation. 

Data from other institutions are selected as the external 

verification data set. Of course, it is best to do external data 
set validation. I will introduce several methods to verify 

internal validity.

(I) Split-half method. Randomly divide the existing 

data into two parts, one for building the model 

and the other for validating the model. The data 

is divided into two parts by the semi-division 

method for “internal verification”. Since only half 
of the data is used to build the model, the model is 

relatively unstable. Studies with small sample sizes 

are not suitable for this method.

(II) Cross-validation method. This method is a further 

evolution of the split-half method. The half-fold 

cross-validation and the ten-fold cross-validation 

are commonly used. The half-fold cross-validation 

method is to divide the original data into two parts, 

one for establishing and the other for validating the 

model. Then exchange the rolls of the two parts 

and mutually verifying each other. The ten-fold 

cross-validation method is to divide the data into 

ten parts, and to uses nine parts for establishing the 

model, and the other part for verifying the model. 

By establishing and verifying the model ten times 

in this way, a relatively stable can be constructed.

(III) Bootstrap method. The conventional Bootstrap 

internal validity analysis method is to randomly 

sample a certain number of returnable cases in the 

original data set to build a model, and then use 

the original data set to verify the model. By doing 

random sampling, establishment and validation 

for 500–1,000 times, 500–1,000 models can be 
obtained, and the parameter distributions of the 

model can be summarized. Therefore, the final 

parameter values of the model can be determined. 

Bootstrap method is a fast-developing method 

in recent years. This method develops in the 

background of computer numeration increase. It is 

proved that models acquired through this method 

have higher stability than through the previous 

two methods. It can be speculated that Bootstrap 

method will be increasingly applied internal 

validity analysis of the prediction models. Of 

course, if conditions are met, we should do external 

validation of prediction models as much as possible 

to improve the external applicability of the models. 

Assessment of clinical effectiveness of clinical prediction 

models

The ultimate goal of the clinical prediction models is 

whether the clinical prediction model changes the behaviors 

of doctors/patients, improves patients’ outcomes or cost 

effect, which is the clinical effect study of the clinical 

prediction models. From the methodological point of view, 

generally the training set and the validation set are divided 

according to the new prediction model. For example, 

for predicting dichotomous outcome, we can assess the 

clinical effectiveness by assessing the sensitivity and 
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specificity of the model. For predicting survival outcomes, 
we generally evaluate whether patients can be classified 

into good or poor prognosis according to the prediction 

model. For instance, the score of each subject is calculated 

by Nomogram, and the patients are classified into good 

prognosis group and poor prognosis group according to a 

certain cutoff value, then a Kaplan-Meier survival curve is 
drawn. Decision Curve Analysis is also a commonly used 

method for predicting clinical effectiveness of models. From 

the perspective of the final purpose of the prediction model 
construction and study design, the best clinical effectiveness 

assessment is to design randomized controlled trials, and 

usually cluster randomized controlled trials are used to 

assess whether the application of prediction models can 

improve patient outcomes and reduce medical costs.

Update of clinical prediction models

Even with well-validated clinical prediction models, the 

model performance is degraded over time due to changes 

of disease risk factors, unmeasured risk factors, treatment 

measures, and treatment background, which is named the 

calibration drift. Therefore, clinical prediction models need 

to evolve and update dynamically. For example, the frequent 

update of the most commonly used malignant tumor TNM 

staging system is also because of these reasons.

Current researches of clinical prediction model can be 

roughly divided into three categories from the perspective 

of clinicians

(I) Prediction models are constructed with traditional 
clinical features, pathological features, physical 

examination results, laboratory test results, etc. 

The predictive variables in this type of models are 

more convenient for clinical acquisition and are the 

construction of these models is more feasible.

(II) With the maturity of radiomics research methods, 

more and more researchers are aware that certain 

manifestations or parameters of imaging represent a 

specific biological characteristic. Using the massive 

imaging parameters of color Doppler ultrasound, 

CT, MR or PET combined with clinical features 
to construct prediction models can often further 

improve the accuracy of the prediction models. The 

modeling of this type of method is based on screening 

the features of radiomics. The pre-workload of this 

type is much larger than the first method, and close 

cooperation between clinical department and imaging 

department is needed.

(III) With wide use of high-throughput biotechnology 

such as genomics and proteomics, clinical researchers 

are attempting to explore featured biomarkers for 

constructing prediction models from these vast 

amounts of biological information. Such prediction 

models are a good entry point for the transformation 

of basic medicine into clinical medicine, but such 

researches require strong financial support as various 
omics tests of the clinical specimens need to be 

done. However, the input and output of scientific 

research are directly proportional. As the saying goes, 

“Reluctant children can’t entrap wolves.” Although 

there is nobody willing to entrap the wolf with a child, 

the reason is the same. Once the researches willing to 

put money in omics analysis are well transformed into 

clinic, generally the researches can yield articles with 

high impact factors. In addition, biological samples 

must be obtained, otherwise there is foundation to 

launch such researches.

The necessary conditions to conduct clinical prediction 

model from the perspective of clinicians

(I) Build a follow-up database of a single disease 

and collect patient information as completely as 

possible, including but not limited to the following: 

demographic characteristics, past history, family 

history, personal history; disease-related information 

such as important physical and laboratory findings 

before treatment, disease severity, clinical stage, 

pathological stage, histological grade; treatment 

information: such as surgical methods, radiotherapy 

and chemotherapy regimens, dose and intensity; 

patients’ outcomes: for cancer patients, consistent 

follow-ups are required to obtain their outcomes, 

which is an extremely difficult and complex task. Other 
information: If there is, such as genetic information. 

Database construction is a core competency.

(II) From the previous published articles of prediction 

models, most of them are based on retrospective 

datasets, and a fraction of them are based on 

prospective datasets. Such researches are easier to 

carry out compared with RCT, and they belong to 

areas of real-world study that we are now proposing. 

Real-world study and RCT should be two same pearls 

on the crown of clinical study and complement each 

other. In the past, we overemphasized the importance 



Zhou et al. Clinical prediction models with R 

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(23):796 | http://dx.doi.org/10.21037/atm.2019.08.63

Page 8 of 96

of RCT and ignored the great value of real-world 

data. RCT data have the highest quality without 

doubt, but the data have been screened strictly, 

therefore the extrapolation of the evidence is limited. 

Real-world data come from our daily clinical practice, 

which reflects the efficacy of clinical interventions 

more comprehensively, and the evidence has better 

external applicability. However, the biggest problems 

of real-world study are that the data quality varies 

wildly and there are too many confounding factors 

that is difficult to identify. Therefore, it is necessary 

to use more complicated statistical methods to find 

the truth from the complicated confounding factors. 

It is not easy to sift sand for gold, and solid statistical 

foundation is like a sifter for gold. Here we need to 

understand that confounding factors exist objectively, 

because the occurrence of any clinical outcome is not 

the result from a single factor. There are two levels of 

correction for confounding factors. One is correction 

at the experimental design stage, which is the top-level 

correction, such as equalizing confounding factors 

between groups by randomization and enough sample 

size. This is also the reason why RCT is popular: as 

long as the sample size is enough and randomization is 

correct, the problem of confounding factors is solved 

once and for all. The second is after-effect correction 

through statistical methods, which is obviously not 

as thorough as the RCT correction, but the second 

situation is closer to the real situation of our clinical 

practice.

(III) Sample size. Because there are many confounding 

factors in real-world research, a certain sample size 

is necessary to achieve sufficient statistical efficacy to 
discern the influence of confounding factors on the 

outcome. A simple and feasible principle for screening 

variables by multivariate analysis is that if one variable 

is included in multivariate analysis, there should be 

20 samples of the endpoint, which is called “1:20 

principle” (13,14).

(IV) Clinical research insight. Construction of clinical 

prediction model is to solve clinical problems. The 

ability to discover valuable clinical problems is an 

insight that is cultivated through widely reading and 

clinical practice.

Issues currently faced in the development of prediction model 

(I) Low clinical conversion rate. The main reason is that 

the clinical application of the prediction model needs 

to be balanced between the accuracy and the simplicity 

of the model. Imagine if there is a model that is as 

easy to use as TNM staging, but more accurate than 

TNM staging, what choices would you make?

(II) Most of  the cl inical  predict ion models  were 

constructed and validated based on retrospective 

datasets and validation is rarely performed in the 

prospective data. Therefore, the stability of the results 

predicted by the models was comparatively poor.

(III) Validation of most clinical prediction models is based 

on internal data. Most articles have only one dataset. 

Even if there are two datasets, one to construct and 

the other to validate, but the two datasets often come 

from the same research center. If the validation of 

the prediction model can be further extended to 

dataset of another research center, the application 

value of the model will be greatly expanded. This 

work is extremely difficult and requires multi-center 
cooperation. Moreover, most of the domestic centers 

do not have a complete database for validation, 

which comes back to the topic “database importance” 

discussed earlier.

Brief summary

The original intention of the clinical prediction model is 

to predict the status and prognosis of diseases with a small 

number of easily collected, low-cost predictors. Therefore, 

most prediction models are short and refined. This is 

logical and rational in an era when information technology 

is underdeveloped and data collection, storage and analysis 

are costly. However, with the development of economy and 

the advancement of technology, costs of data collection 

and storage have been greatly reduced and technology of 

data analysis is improving. Therefore, clinical prediction 

model should also break through the inherent concept, with 

application of larger amounts of data (big data) and more 

complex models as well as algorithms (machine learning and 

artificial intelligence) to serve doctors, patients, and medical 
decision makers with more accurate results.

In addition, from the perspective of a clinical doctor 

conducting clinical researches, the following four principles 

should be grasped when conducting researches of clinical 

prediction models:

(I) Building a better clinical prediction model is also 

an inherent requirement of precise medicine;

(II) How to  ge t  h igh  qua l i t y  da ta?  Database 
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construction is the core competitiveness, while 

prediction model is only a technical method;

(III) We need to raise awareness that RCT is as 

important as real-world study. Both are ways to 

provide reliable clinical evidence;

(IV) Validation of the models requires internal and 

external cooperation, so we should strengthen 

the internal cooperation of scientific research and 
improve the awareness of multi-center scientific 

research cooperation.

Variable screening method in multivariate 

regression analysis

Background

Linear regression, Logistic regression and Cox proportional 

hazards regression model are very widely used multivariate 

regression analysis methods. We have introduced details 

about the principle of computing, application of associated 

software and result interpreting of these three in our book 

Intelligent Statistics (15). However, we talked little about 
independent variable screening methods, which have 

induced confusion during data analysis process and article 

writing for practitioners. This episode will focus more on 

this part. 

Practitioners will turn to statisticians when they are 
confronted with problems during independent variable 

screening, statisticians will suggest the application of 

automatic screening in software, such as Logistic regression 

and Cox regression in IBM SPSS, which have suggested 
seven methods for variable screening as follow (16,17):

(I) Conditional parameter estimation likelihood ratio 

test (Forward: Condition);

(II) Likelihood Ratio Test of Maximum Partial 
Likelihood Estimation (Forward LR);

(III) Wald chi-square test (Forward: Wald);

(IV) Conditional parameter estimation likelihood ratio 

test (Backward: Condition);

(V) Likelihood Ratio Test of Maximum Partial 
Likelihood Estimation (Backward: LR);

(VI) Wald chi-square test (Backward: Wald);

(VII) Enter method (all variable included, default 

method).

Actually, in clinical trial report, many authors will adopt 

one of these screening methods. I am going to talk about: 

they will perform univariate regression analysis of every 

variable one by one firstly; those with P value less than 0.1 

will be included in the regression formula (here P value 
could be less than 0.05 or 0.2, but in common condition, 
P value can range between 0.05–0.2). This method is very 
controversial. For practitioners, how to choose a better 

method is really an optional test. To be honest, there is no 

standard answer. But we still have some rules for better 

variable screening:

(I) When the sample size is larger enough, statistical 

test power is enough, you can choose one from 

those six screening methods we mentioned 

before. Hereby we introduce a method which can 

help you evaluate the test efficiency quickly: 20 

samples (events) are available for each variable. 

For example, in Cox regression test, if we include 

10 variables associated with prognosis, at least 200 

patients should be recruited to evaluate endpoint 

events, such as death (200 dead patients should be 

included instead of 200 patients in total). Because 

those samples without endpoint event won’t be 

considered to be test effective samples (13,14). 

(II) When the sample size is not qualified for the first 
condition or statistical power is not enough for 

some other reasons, widely used screening method 

in most clinical report should be applied. You can 
perform univariate regression analysis of every 

variable one by one firstly; those with P value less 
than 0.2 will be included in the regression formula. 

As we mentioned before, this method is quite 

controversial during its wide application. 

(III) Even the second screening method will  be 

challenged during practice. Sometimes we find 

some variables significantly associated with 

prognosis may be excluded for its disqualification 

in already set-up screening methods. For example, 

in a prostate cancer prognosis study, the author find 
Gleason score is not significantly associated with 

prognosis in the screening model, while Gleason 

score is a confirmed factor for prostate cancer 

prognosis in previous study. What should we do 

now? In our opinion, we should include those 

variables significantly associated with prognosis 

in our analysis though they may be disqualified 

in statistical screening method for professional 

perspective and clinical reasons. 

To sum up, the author recommends the third variable 

screening method. The univariate analysis results and clinical 

reasons, sample size and statistical power should be considered 

at the same time. We will explain it in detail below.
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Disputes and consensus

The discussion about variable screening has been going on 

for a long time. Statistician consider it with very professional 

perspective, however clinical doctors will not always stick 

to these suggestions. It is very hard to distinguish the right 

and the wrong for actual problem during clinical study, 

such as small simple size; limited knowledge to confirm 

the exact factors for the outcome. However, we still have 

some standards for reference during screening. During the 

review about good quality clinical studies published on top 

magazines, 5 conditions will be considered during variable 
screening (18):

(I) Clinical perspective. This is the most basic 

consideration for variable screening. Medical 

statistical analysis can be meaningless if it is just 

statistical analysis. Based on professional view, 

confirmed factors significantly associated with 

outcome, such as Gleason score in prostate cancer, 

should be included in regression model. We do not 

need to consider its statistical disqualification in 

variable screening. 

(II) S c r e e n i n g  b a s e d  o n  u n i v a r i a t e  a n a l y s i s . 

Independent variable included in multivariate 

analysis based on the results of the univariate 

analysis. Variables with significant P value should 
be included in multivariate regression. If P<0.1, we 
think it is “significant”. Sometimes P<0.2 or P<0.05 
will be considered “significant”. P value can range 
according to sample size. Big sample size will be 

with small P value. Small sample size will be with 
relatively big P value. This screening method is 
quite common in already published articles, even 

in top magazines. Though this method has been 

questioned by statisticians, it is still being used for 

no method because no more precise and scientific 
option available now. Even statisticians could not 

find better replacement. Before we find better 

option to replace this one, it is better to have one 

than to have none. 

(III) The variables would be chosen based on the 

influence of the confounding factor “Z” on the test 
factor or the exposure factor “X”. To be specific, 

we will observe if “X” will affect dependent variable 

“Y” when “Z” change or not. First run the basic 
model that only includes “X”, record the regression 

coefficient β1, and then add “Z” to the model 

to see how much the β1 changes. It is generally 

considered that the β1 change exceeds 10%, and 

the variable needs to be adjusted, otherwise it is not 

needed. This method is different from the second 

one because of quantification of confounding factor 
effect. This is not perfect because the effect “Z” 

and “X” exert on “Y” could be affected by other 
confounding factors. This thought may lead to 

logical confusion. Complicated methodological 

problem will be left for further exploration by the 

smart ones. In our opinion, this is acceptable option 

for variable screening, especially for those programs 

with very specific targets. We can confirm the effect 
of “X” on independent “Y”. This effect is real and 
what we do can regulate these confounding factors. 

(IV) Choosing right number of variables that will 

eventually be included in the model. is very 

important. This is a realistic problem. If the sample 

size is large enough and the statistical performance 

is sufficient, we can use the variable screening 

method provided by the statistical software to 

automatically filter the variables, and we can filter 
out the variables that are suitable for independent 

impact results in statistical. “Ideal is full, the reality 

is very skinny”. Sometimes we will consider a lot 

of variables, while the sample size is pretty small. 

We have to make compromise between statistical 

efficiency and variable screening. Compromise can 
bear better results (13,14). 

(V) Above we listed four commonly used variable 

screening methods. Many other variable screening 

methods, such as some methods based on model 

parameters: determination coefficient R2, AIC, 

likelihood logarithm, C-Statistics, etc. can be 

an option also. The fact that too many variable 

screening methods is a good evidence to support a 

view that there is no best available during practice. 

This article aims to help us find the right screening 
method instead of confirming the best one or worst 
one. Choosing the fittest one according to actual 

condition is the goal of this article. 

The methods for recruiting different types of variables

Continuous variable 

For continuous variable, there is a good protocol for 

reference. If the relationship between variable and the 

outcome is linear, you can include the continuous variable 

in the regression formula. If not, you can transform it into 
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dichotomous variable or ordinal categorical variable, then 

put them into the regression formula. We have already 

changed former continuous variable into categorical 

variable by this way. We do this transformation because 

the variable may be not linear to the outcome. Some other 

relationship instead of linear one may present.

Continuous variable transformation summary

When continuous variable is included in regression 

model, the original variable, as far as possible, should 

be included in this model and actual needs should be 

considered also. The variable can be transformed based 

on some rules. Two-category grouping, aliquot grouping, 

equidistant grouping, and clinical cut-off value grouping 

are present for better professional explanation. By 

optimal truncation point analysis, we convert continuous 

variables into categorical variables and introduce them 

into the regression model as dummy variables. In 

regression model, the continuous variable can be present 

in different ways. We will give specific examples as 

follow. No matter which way it will present, the general 

principle is that this change is better for professional 

interpretation and understanding (19-21).

Normal transformation

For continuous variables which are in normal distribution, 

this is not a problem. However, when we confronted with 

data which is not fit normal distribution, we can make 

transformation based on some function, then these data 

will be normalized. And it will fit the regression model. 

Original data can be normalized by different function, such 

as Square Root method, LnX method, Log10X method 

and (1/X) etc., according to its own character. If you have 

normalized the original data, you should interpret the 

variable after normal transformation instead of the original 

ones in the regression model or you can reckon the effect of 

the original independent variable exerting on the original 

dependent variable according to the function used in the 

transformation. 

For example, the authors have done normality test 

in the article they published in JACC, 2016 (21). The 

original expression is as follows: Normality of continuous 

variables was assessed by the Kolmogorov-Smirnov 
test. The method of normality test includes using the 

parameters of the data distribution (the skewness value 

and the kurtosis value) and using the data distribution 

graph (histogram, P-P diagram, Q-Q diagram). Or 
some nonparametric test methods (Shapiro-Wilk test, 

Kolmogorov-Smirnov test) will be applied to help us to 

evaluate the normality of data. In their research, variables 

such as troponin I, NT-proBNP, or corin is fit abnormal 
distribution. So, the author describes baseline characters 

of these recruited objects by median (quartile - third 

quartile). For example, the median of Troponin I is  

4.5 (1.8–12.6) ng/mL. Then multivariable linear regression 
is performed to analyze corin. The original expression is 

as follows: multiple linear regression analysis was applied 

to determine factors influencing corin levels. Levels of 

troponin I, NT-proBNP, and corin were normalized by 
Log10 transformation. Variables like troponin I, NT-

proBNP, corin have been normalized by function Log10.

After that, they have been included into multivariable linear 

regression. Then, the author performed Cox regression. 

Though there is no specific requirement for Cox regression, 
Log10 function was used to normalize troponin I, NT-

proBNP and corin. All these three variables have been 
included in multivariable linear regression model for 

consistency with original ones.

Transformation for each change of fixed increment
If continuous variable is introduced directly into the 

model in its original form, the regression parameter is 

interpreted as the effect of the change in the dependent 

variable caused by each unit change. However, sometimes 

the effect of this change may be weak. Therefore, we can 

transform the continuous independent variables into a 

categorical variable by fixed interval, in an equidistant 

grouping, and then introduce them into the model for 

analysis. This grouping is good for better understanding 

and application for patients. For example, we include 

patients whose age range between 31 to 80 years old. We 

can divide it into groups of 10–40, 41–50, 51–60, 61–70, 
71–80 according to10 years age interval. Then five already 
set dummy variables will be included into the model for 

analysis. However, if the variable range a lot, grouping 

according to the methods we mentioned before will lead 

to too many groups and too many dummy variables, which 

will be quite redundant during analysis. It will be very 

hard for clinical interpretation too. In the opposite, some 

data with a small range and cannot be grouping again, it 

cannot be transformed into categorical variable also. Then, 

what should we do when we are confronted with these two 

situations?

Here, we can refer to an article published in JACC, 

2016 (19). We find in the model, the author used a lot of 

“per”, such as per 5% change, per 0.1 U, per 100 mL/min 
etc. This is transformation of continuous variables in fixed 
increments per change, which has been present in “per + 
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interval + unit”. We will illustrate 2 examples in this article. 

The mean of oxygen uptake efficiency slope is 1,655 U and 
5–95% population will change from 846 to 2,800 U. It is 
really a big range. If the original data is put into formula, 

per 1 U change will lead to very week change of HR, which 

is meaningless in clinical practice. If it is transformed 

into categorical variables, many groups will appear. So, 

the author includes per 100 U change into the model and 

finds that the mortality risk will decrease 9% (HR =0.91, 

95% CI: 0.89–0.93) when oxygen uptake efficiency slope 
increases in per 100 U. Another example is variable Peak 
RER. The median is 1.08 U and 5–95% population will 
change from 0.91–1.27 U. It is really a small range. If the 
original data is put into formula, per 1 U change will lead 

to very big change of HR. In clinical practice, patients with 

a change of 1 U are quite rare and this outcome will be 

of limited practicality. It will be very hard for categorical 

variable transformation too for its small range. So, the 

author includes per 0.1U change into the model and finds 
that the mortality risk will decrease 6% (HR =0.94, 95% CI: 
0.86–1.04) when Peak RER increases per 0.1 U. However, 
it is not statistically significant. 

Then, how can we do this transformation? If we want 

to change the factor from each1 unit to 100 units, it will 

be 100 times larger. We only need to divide the original 

variable by 100 and then to include into the model. 

Similarly, if we want to change the factor from 1 unit to 0.1 

unit, the change is reduced by 10 times. It is only necessary 

to multiply the original variable by 10 and include it into 

the regression model.

Transformation of each standard deviation

In clinical study, we get another transformation method: 

independent variable change at per SD increase. Let us see 

an article published in JACC in 2016 (20). Age and systolic 

pressure are included in the model as per SD increase. The 

age increase at per SD, the risk of atherosclerotic heart 

disease (ASCVD) increases by 70% (HR =1.70, 95% CI: 
1.32–2.19). Systolic blood pressure (SBP) increased at per 
SD, the risk of ASCVD increases by 25% (HR =1.25, 95% 
CI: 1.05–1.49). Here the author has put continuous variable 
into the model with the form of per SD increase. Assuming 

that the variables are fit to normal distribution, the area 

within the mean ±1 SD interval is 68.27%, while the mean 

value is ±1.96, the area within the SD interval is 95%. If the 
mean value is ±2.58, the area within the SD interval is 99%. 
We can tell that if the data range within 4 SD, about 95% 
samples will be covered. Therefore, new variables, especially 

for those rare ones which are still unclear in clinical 

interpretation, we can put per SD into the model. This can 

guide the patient to see that he or she is within the range of 

several standard deviations of the population distribution 

level according to his or her actual measurement results, 

and then to assess how much the corresponding risk will 

change.

It is very simple to do this kind of transformation. We 

can do it by these two ways:

(I) Before constructing the regression model, the 

original continuous variables should be normalized, 

and the normalized independent variables 

are brought into the regression model. The 

regression coefficient obtained is the influence 

of the dependent variable on each dependent 

SD. (Attention: Only independent variables are 

normalized here).

(II) If the original variables are not normalized, the 

original variables can be directly brought into the 

model, and the Unstandardized Coefficients are 

obtained, and then the standard deviation of the 

independent variables is calculated by multiplying 

the standard deviation of the independent 

variables, which is also called Standardized 

Coefficients. This is the effect of the dependent 

variable for each additional SD of the independent 

variable.

Rank variable

Rank variable is very common. It is a kind of ordered 

multi-category variable. Generally, multiple data may 

present in the same variable and these data are rank 

correlated with each other. For example, the grade of 

hypertension (0= normal, 1= high normal, 2= Grade 

1, 3= Grade 2, 4= Grade 3), the level of urine protein 

(0=−, 1=±, 2=+, 3=++, 4=+++, 5=++++), the effect of drug 
(invalid, improvement, cure), they are all rank variable. 

It is different from non-ordered multi-category variable. 

Ordered multi-category variable presents monotonic 

increasing or decreasing. When ordered multi-category 

variable are in Logistic regression model, these variables 

are not suggested to be brought in directly as continuous 

variables unless per one-unit change can lead to the same 

risk ratio change in the outcome. However, mostly it will 

not change so ideally. So, we suggest to treat ordered 

multi-category variable as dummy variables, and you can 

compare each level with another. When the outcome is 

not linear related, the optimal scale regression should be 

used to explore the effect inflection point. 
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Non-ordered & multi-categorical variable

Non-ordered & multi-categorical variable is very 
common variable style. Usually, there are several possible 

values in a multi-categorical variable, while there is 

no hierarchical relationship between each other. For 

example, race (1= white, 2= black, 3= yellow, 4= others), 

method of drug administration (1= oral, 2= hypodermic, 

3= intravenous, 4= others), they are all non-ordered 

multi-category variables. When non-ordered multi-

category variable are in Logistic or Cox regression 

model, we need to set dummy variable before we brought 

them in the model. We will introduce the dummy 

variable setting methods in the follow. 

Dummy variable setting methods

(I) Indicator: this method is used to specify the reference 

level of the categorical variable. The parameter 

calculated here is referred to the last or first level of 
the variable. It is depending on whether you choose 

the first or last in the following Reference Category.
(II) Simple: this method can calculate the ratio of each 

level of the categorical variable compared to the 

reference level.

(III) Difference: this method can compare the categorical 

variable with the mean of all levels. It is totally the 

opposite of Helmert. So, it is also called Reversed 

Helmert. For example, mean of level 2 can be 

compared with the mean of level 1; the mean of 

level 3 can be compared with that of level 1 and 

level 2 respectively and so forth. If the coefficient 

becomes small at a certain level and is not statistically 

significant, the effect of the categorical variable on 

the risk ratio is reached its plateau. This option is 

generally used for ordered-categorical variables, such 

as smoking doses. Assuming that the researchers 

analyze them as independent non-ordered multi- 

category variable, it will be meaningless. 

(IV) Helmert: we will compare the level of categorical 

variable with the mean of the following levels. If 

the coefficient of a certain level increases and is 

statistically significant, it indicates that the categorical 
variable has an impact on the risk rate from this level. 

It can also be used in ordered-categorical variables. 

(V) Repeated: the levels of the categorical variables are 

compared with the levels adjacent to them, except for 

the first level, where the “previous level” is used as the 
reference level.

Brief summary

We have already summarized the screening methods and 

variables transformation methods. The absolutely perfect 

way is not valid in really world. But we can still choose the 

right way. Comparing with choose one method in haste, 

we need more scientific solutions. There is one way for 

reference: you can construct multiple models (mode1, 

model 2, model 3…) based on previous published clinical 

trials, especially those with high impact score and get the 

objective outcome of each model. It actually is sensitivity 

analysis. Different models will be constructed based on 

different variables. Some variables, which may be closely 

related to the true world, will lead to relatively stable 

outcome even in different models. This is also a way to 

reach the goal. We will not judge it here. We want to find 
out the most stable factor for the outcome from results. 

During the construction of predictive model, we will 

have specific consideration except for variables screening in 
all these possible variables. For example, TNM staging for 

malignant tumors are widely used for its easily application 

in clinical practice instead of its prediction value of in 

prognosis. Actually, TNM staging prediction value is just 

so-so. Here we have to talk about another question: How 

can we assess the accuracy and simplicity of the model? 

More variable may lead to more accurate prediction of 

a model while it will be much more difficult for clinical 

application. Sometimes a comprise should be made. 

Method of building nomogram based on Logistic 

regression model with R

Background

The need for prediction models in clinical practice is 

much more than predicting disease occurrence or patient 

prognosis. As explained in Section 1, many times we 

may make a completely different clinical decision if we 

can predict the patient’s disease state in advance. For 

example, for patients with liver cancer, if we can predict 

whether there is microvascular infiltration in advance, it 

may help surgeons to choose between standard resection 

and extended resection, which are completely different. 

Preoperative neoadjuvant radiotherapy and chemotherapy 
is the standard treatment for T1-4N+ middle and low rectal 

cancer. However, it is found during clinical practice that the 

status of lymph nodes estimated according to the imaging 

examinations before surgery is not accurate enough, and 
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the proportion of false positive or false negative is high. Is it 

possible to predict the patient’s lymph node status accurately 

based on known characteristics before radiotherapy and 

chemotherapy? If we can build such a prediction model, 

then we can make clinical decisions more accurately and 

avoid improper decision-making caused by misjudgment. 

More and more people are becoming aware of the 

importance of this problem. At present, researchers have 

made vast efforts to build prediction models or improve 

existing prediction tools. The construction of Nomogram is 

one of the most popular research directions.

When do you choose Logistic regression to build a 

prediction model? This is related to the clinical problems and 

the clinical outcomes set up. If the outcomes are dichotomous 

data, unordered categorical data or ranked data, we can 

choose Logistic regression to construct the model. Generally 

unordered Logistic regression and ranked Logistic 

regression are applied in unordered multi-categorical or 

ranked data outcomes, but the results are difficult to explain. 
Thus, we generally convert unordered multi-classification 

or ranked data outcomes into dichotomous outcomes 

and use dichotomous Logistic regression to construct 

the model. Outcomes such as “whether liver cancer has 

microvascular infiltration” and “recurrence of lymph node 
metastasis before rectal cancer” mentioned above belong to 

dichotomous outcomes. Dichotomous Logistic regression 

can be used for constructing, evaluating and validating the 

prediction model (15).
The screening principles for model predictors are 

consistent with the principles described in section 2. In 

addition, we need to consider two points: on the one hand, 

the sample size and the number of independent variables 

included in the model should be weighed; on the other 

hand, we should also weigh the accuracy of the model and 

the convenience to use the model, to finally determine the 
number of independent variables entering the prediction 

model (13,14,17). 

In this section, we will use two specific cases to 

introduce the complete process of constructing a Logistic 

regression prediction model with R language and drawing 

a Nomogram. For complex statistical principles, we choose 

to avoid as much as possible, and we would focus on the R 

implementation process of this method.

We can summarize the process of constructing and 

verifying clinical prediction models into the following eight 

steps (22):

(I) Identify clinical issues and determine scientific 

hypotheses;

(II) Determine research strategies of prediction models 

according to previous literatures;

(III) Determine the predictors of the predictive model;

(IV) Determine the outcome variables of the prediction 

model;

(V) Construct the prediction model and calculate 

model predictors;

(VI) Assessment of model discrimination ability;

(VII) Assessment of model calibration;

(VIII) Assessment of clinical effectiveness of the model.

Research process of prediction models construction can be 

referred to Figure 2.

[Case 1] analysis

[Case 1] 

Hosmer and Lemeshow studied the influencing factors of 

low birth weight infants in 1989. The outcome variable is 

whether to give birth to low birth weight infants (Variable 

name: “low”; Dichotomous variable; 1= low birth weight, 

which is infant birth weight <2,500 g; 0= not low birth 
weight). The possible influencing factors (independent 

variables) include: maternal pre-pregnancy weight (lwt, 

unit: pound); maternal age (age, unit: year); whether the 

Figure 2 Research process and technical routes of three prediction models.
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mother smokes during pregnancy (smoke, 0= no, 1= yes); 

number of preterm births before pregnancy (ptl, unit: time); 

high blood pressure (ht, 0= no, 1= yes); uterus stress to the 

contraction caused by stimulation, oxytocin, etc. (ui, 0= 

no, 1= yes); visits to community doctors in the first three 

months of pregnancy (ftv, unit: time); race (race, 1= white, 

2= black, 3= other).

[Case 1] interpretation

In this case, the dependent variable is dichotomous (whether 

or not a low birth weight infant is delivered). The purpose 

of the study is to investigate the independent influencing 

factors of low birth weight infants, which is consistent with 

the application conditions of binary Logistic regression. As 

there is only one data set in this case, we can use this data 

set as the training set to model, and then use Bootstrap 

resampling method to perform internal model validation 

in the same data set. It should be noted here that we can 

also randomly divide the data set into a training set and an 

internal validation set according to a 7:3 ratio, but we did 

not do so considering the sample size. We will demonstrate 

the prediction model construction of low birth weight 

infants and the rendering of Nomogram with R language 

below. The data were collected and named “Lweight.sav”, 

which is saved in the current working path of R language. 

The data and code can be downloaded from the attachments 

in this Section for readers to practice. The specific analysis 
and calculation steps are as follows:

(I) Screen the independent influencing factors 

affecting low birth weight infants and construct a 

Logistic regression model;

(II) Visualize the Logistic regression model and draw a 

Nomogram;

(III) Calculate the discrimination degree (C-Statistics) 

of the Logistic model;

(IV) Perform internal validation with resampling 
method and draw the Calibration curve.

[Case 1] R codes and results interpretation

Load the “foreign” package for importing external data in 

.sav format (IBM SPSS style data format). Load the rms 
package to build the Logistic regression model and to plot 

the nomogram (23):

library(foreign)

library(rms)

Import the external data in .sav format and name it 

“mydata”. Then set the data to the structure of data frame, 

and display the first 6 lines of the data frame.

mydata<-read.spss(“Lowweight.sav”)

mydata<-as.data.frame(mydata)

head(mydata)

##    id          low            age lwt  race     smoke          ptl   ht        ui   ftv bwt

## 1 85 normal weight  19 182 black   no smoking   0 no pih  yes  0 2523

## 2 86 normal weight  33 155 other   no smoking   0 no pih   no   3 2551

## 3 87 normal weight  20 105 white   smoking        0 no pih    no   1 2557

## 4 88 normal weight  21 108 white   smoking        0 no pih    yes 2 2594

## 5 89 normal weight  18 107 white   smoking        0 no pih    yes 0 2600

## 6 91 normal weight  21 124 other   no smoking   0 no pih    no   0 2622

Data preprocessing: set the outcome variable as a 

dichotomous variable, define “low birth weight” as “1”, and 
set the unordered categorical variable “race” as a dummy 

variable.

mydata$low <- ifelse(mydata$low ==“low weight”,1,0)

mydata$race1 <- ifelse(mydata$race ==“white”,1,0)

mydata$race2 <- ifelse(mydata$race ==“black”,1,0) 

mydata$race3 <- ifelse(mydata$race ==“other”,1,0) 

Load the data frame “mydata” into the current working 

environment and “package” the data using function 

datadist().

attach(mydata)

dd<-datadist(mydata)

options(datadist=‘dd’)

Fit the Logistic regression model using function lrm() 

and present the results of the model fitting and model 

parameters. Note: The parameter C of Rank Discrim 

Indexes. in the model can be directly read. This is the 

C-statistics of model “fit1”. According to the calculation 

results, the C-Statistics is 0.738 in this example. The 

meaning and calculation method of C-Statistic will be 

further explained in the following sections.

fit1<-lrm(low ~ age+ftv+ht+lwt+ptl+smoke+ui+race1+race2, 

          data = mydata, x = T, y = T) 

fit1 

## Logistic Regression Model

##  

##  lrm(formula = low ~ age + ftv + ht + lwt + ptl + smoke + ui +

##      race1 + race2, data = mydata, x = T, y = T)

##  

##                       Model Likelihood     Discrimination    Rank Discrim.    

##                          Ratio Test           Indexes           Indexes       

##  Obs           189    LR chi2     31.12    R2       0.213    C       0.738    

##   0            130    d.f.            9     g        1.122    Dxy     0.476    

##   1             59    Pr(> chi2) 0.0003    gr       3.070    gamma   0.477    

##  max |deriv| 7e-05                         gp       0.207    tau-a   0.206    

##                                             Brier    0.181                     

##  

##                Coef    S.E.   Wald Z Pr(>|Z|)

##  Intercept      1.1427 1.0873  1.05  0.2933  

##  age           -0.0255 0.0366 -0.69  0.4871  

##  ftv            0.0321 0.1708  0.19  0.8509  



Zhou et al. Clinical prediction models with R 

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(23):796 | http://dx.doi.org/10.21037/atm.2019.08.63

Page 16 of 96

##  ht=pih         1.7631 0.6894  2.56  0.0105  

##  lwt           -0.0137 0.0068 -2.02  0.0431  

##  ptl            0.5517 0.3446  1.60  0.1094  

##  smoke=smoking  0.9275 0.3986  2.33  0.0200  

##  ui=yes         0.6488 0.4676  1.39  0.1653  

##  race1         -0.9082 0.4367 -2.08  0.0375  

##  race2          0.3293 0.5339  0.62  0.5374  

## 

Use function nomogram() to construct the Nomogram 

object “nom1” and print the Nomogram. The result is 

shown in Figure 3.

nom1 <- nomogram(fit1, fun = plogis,fun.at = c(.001, .01, .05,

                 seq(.1,.9, by = .1), .95, .99, .999), 

                 lp = F, funlabel = “Low weight rate”)   

plot(nom1)  

Use the function calibrate() to construct the calibration 

curve object “cal1” and print the calibration curve. The 

result is shown in Figure 4.

cal1 <- calibrate(fit1, method = ‘boot’, B = 100)  

plot(cal1,xlim = c(0,1.0),ylim = c(0,1.0)) 

##  

## n=189   Mean absolute error=0.037   Mean squared error=0.00173 

## 0.9 Quantile of absolute error=0.054

From the calculation results of Logistic regression model 

fit1 above and Figure 3, it is obvious that the contribution 

of some predictors to the model are negligible, such as 

the variable “ftv”. There are also some predictors that 

may not be suitable for entering the prediction model as 

dummy variable, such as “race”, and the clinical operation is 

cumbersome. We can consider conversing the un-ordered 

categorical variables into dichotomous variables properly 

and involve them into the regression model. The adjusted 

codes are as follows:

First of all, according to the actual situation, we convert 

the unordered categorical variable “race” into a binominal 

variable. The standard of conversion is mainly based on 

professional knowledge. We classify “white” as one category 

and “black and other” as another.

mydata$race <- as.factor(ifelse(mydata$race==“white”, “white”, “black 

and other”)) 

Use function datadist() to “package  the current data set.

dd<-datadist(mydata) 

options(datadist =‘dd’)

Figure 4 Calibration curve based on model “fit1”.

Figure 3 Nomogram based on model “fit1”.
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Exclude the variable “ftv  that contributes less to the 

result from the regression model, then reconstruct model 

“fit2” and display the model parameters. It can be seen that 
C-Statistics =0.732.

fit2<-lrm(low ~ ht+lwt+ptl+smoke+race,  

          data=mydata, x = T, y = T)  

fit2

## Logistic Regression Model 

##   

##  lrm(formula = low ~ ht + lwt + ptl + smoke + race, data = mydata,  

##      x = T, y = T) 

##   

##                        Model Likelihood     Discrimination    Rank Discrim.     

##                           Ratio Test           Indexes           Indexes        

##  Obs           189    LR chi2      28.19    R2       0.195    C       0.732     

##   0            130    d.f.             5     g        1.037    Dxy     0.465     

##   1             59    Pr(> chi2) <0.0001    gr       2.820    gamma   0.467     

##  max |deriv| 1e-05                          gp       0.194    tau-a   0.201     

##                                             Brier    0.184                      

##   

##                Coef    S.E.   Wald Z Pr(>|Z|) 

##  Intercept      0.7743 0.8303  0.93  0.3511   

##  ht=pih         1.6754 0.6863  2.44  0.0146   

##  lwt           -0.0137 0.0064 -2.14  0.0322   

##  ptl            0.6006 0.3342  1.80  0.0723   

##  smoke=smoking  0.9919 0.3869  2.56  0.0104   

##  race=white    -1.0487 0.3842 -2.73  0.0063   

## 

Use the function nomogram() to construct Nomogram 

object “nom2”, and print the Nomogram. The result is 

shown in Figure 5.

nom2 <- nomogram(fit2, fun = plogis,fun.at = c(.001, .01, .05,  

                 seq(.1,.9, by=.1), .95, .99, .999), 

                 lp = F, funlabel = “Low weight rate”) 

plot(nom2)

Nomogram interpretation: It is assumed that a pregnant 

woman has the following characteristics: pregnancy-induced 

hypertension, weight of 100 pounds, two premature births, 

smoking, and black. Then we can calculate the score of each 

feature of the pregnant woman according to the value of 

each variable: pregnancy-induced hypertension (68 points) 

+ weight 100 pounds (88 points) + two premature births 

(48 points) + smoking (40 points) + black (42 points) =286 

points. The probability of occurrence of low birth weight 

infants with a total score of 286 is greater than 80% (22,24). 

Note that the portion exceeding 80% in this example is not 

displayed on the Nomogram. Readers can try to adjust the 

parameter settings to display all the prediction probabilities 

with the range of 0–1.
Use function calibrate() to construct the calibration curve 

object “cal2” and print the calibration curve. The result is 

shown in Figure 6 below.

cal2 <- calibrate(fit2, method =‘boot’, B = 100) 

plot(cal2,xlim = c(0,1.0),ylim = c(0,1.0))

##  

## n=189   Mean absolute error=0.021   Mean squared error=0.00077 

## 0.9 Quantile of absolute error=0.036

Figure 5 Nomogram based on model “fit2”.
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Interpretation of calibration curve: In fact, the calibration 

curve is a scatter plot of the probability of actual occurrence 

versus prediction. Actually, the calibration curve visualizes 

the results of Hosmer-Lemeshow fit goodness test, so in 

addition to the calibration curve, we should also check the 

results of Hosmer-Lemeshow fit goodness test. The closer 
to Y = X the prediction rate and the actual occurrence rate 
are, with p value of Hosmer-Lemeshow goodness-of-fit test 
greater than 0.05, the better the model is calibrated (24). In 
this case, the Calibration curve almost coincides with the  

Y = X line, indicating that the model is well calibrated. 

[Case 2] analysis

[Case 2]

Survival in patients with advanced lung cancer from the 

North Central Cancer Treatment Group. Performance 
scores rate how well the patient can perform usual daily 

activities. Total 10 variates:

(I) inst: Institution code; 

(II) time: Survival time in days; 

(III) status: censoring status 1=censored, 2=dead; 

(IV) age: Age in years; 

(V) sex: Male=1 Female=2; 

(VI) ph.ecog: ECOG performance score (0=good 

5=dead); 
(VII) ph.karno: Karnofsky performance score (bad=0-

good=100) rated by physician; 

(VIII) pat.karno: Karnofsky performance score as rated 
by patient; 

(IX) meal.cal: Calories consumed at meals; 

(X) wt.loss: Weight loss in last six months.

The case data set is actually survival data. In order to be 

consistent with the theme of this Section, we only consider 

the binominal attribute of the outcome (status 1 = censored, 

2 = dead). Again, we select the Logistic regression model 

to construct and visualize the model, draw Nomogram, 

calculate C-Statistics, and plot the calibration curve.

[Case 2] R codes and its interpretation

Load survival package, rms package and other auxiliary 

packages.

library(survival) 

library(rms)

Demonstrate with the “lung” data set in the survival 

package. We can enumerate all the data sets in the survival 

package by using the following command.

data(package = “survival”)

Read the “lung” data set and display the first 6 lines.

data(lung) 

head(lung)

##   inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss

## 1    3  306      2  74   1       1       90       100     1175      NA 

## 2    3  455      2  68   1       0       90        90     1225      15 

## 3    3 1010      1  56   1       0       90        90       NA      15 

## 4    5  210      2  57   1       1       90        60     1150      11 

## 5    1  883      2  60   1       0      100        90       NA       0 

## 6   12 1022      1  74   1       1       50        80      513       0

You can use the following command to display the 
variable descriptions in the lung dataset.

help(lung)

Variable tags can be added to dataset variables for 

subsequent explanation. 

lung$sex <- factor(lung$sex, 

                   levels = c(1,2), 

                   labels = c(“male”, “female”))

According to the requirements of rms package to build 

the regression model and to draw Nomogram, we need 

to “package“ the data in advance, which is the key step to 

draw Nomogram, Use the command “?datadist” to view its 

detailed help documentation.

dd=datadist(lung) 

options(datadist=“dd”) 

Using “status” as the dependent variable, “age” and “sex” 

as the independent variables, the Logisitc regression model 

“fit” was constructed, and the model parameters were 

shown. It can be seen that C-Statistics =0.666. 

Figure 6 Calibration curve based on model “fit2”.
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fit <- lrm(status~ age+sex, data = lung, x=T,y=T)  

fit

## Logistic Regression Model 

##   

##  lrm(formula = status ~ age + sex, data = lung, x = T, y = T) 

##   

##                       Model Likelihood     Discrimination    Rank Discrim.     

##                          Ratio Test           Indexes           Indexes        

##  Obs           228    LR chi2     16.85    R2       0.103    C       0.666     

##   1             63    d.f.            2     g        0.708    Dxy     0.331     

##   2            165    Pr(> chi2) 0.0002    gr       2.030    gamma   0.336     

##  max |deriv| 2e-09                         gp       0.138    tau-a   0.133     

##                                            Brier    0.185                      

##   

##             Coef    S.E.   Wald Z Pr(>|Z|) 

##  Intercept  -0.5333 1.0726 -0.50  0.6190   

##  age         0.0319 0.0170  1.87  0.0609   

##  sex=female -1.0484 0.3084 -3.40  0.0007   

## 

Use function nomogram() to plot Nomogram of the risk 

estimate for the Logisitc regression model “fit”, as shown in 
Figure 7.

nom <- nomogram(fit, fun= function(x)1/(1+exp(-x)),# fun=plogis 

                lp = F, funlabel = “Risk”) 

plot(nom)

The graphic interpretation is the same as before.

Use the calibrate() function to construct the object of 

calibration curve “cal” and print the calibration curve. The 

result is shown in Figure 8.

cal <- calibrate(fit, method = ‘boot’, B = 100) 

plot(cal,xlim = c(0,1.0),ylim = c (0,1.0))

##  

## n=228   Mean absolute error=0.014   Mean squared error=0.00034 

## 0.9 Quantile of absolute error=0.032

The graphic interpretation is the same as before.

Brief summary

In summary, this section introduces the construction 

of Logistic regression prediction model and drawing of 

Nomogram. It should be noted that to assess the practical 

Figure 7 Nomogram based on model “fit”.

Figure 8 Calibration curve based on model “fit”.
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value of a prediction model, its operability should be 

considered as well as the accuracy of its prediction. In 

addition to the internal validation, external validation is 

sometimes necessary. In this case, as the external validation 

data is not obtained, the external validation process is not 

demonstrated, and validation is only performed in the 

original data set with Bootstrap method.

Method of building nomogram based on Cox 

regression model with R

Background

Human beings are always crazy about “fortune-telling”. 

Whether it is “fortune-telling” in Chinese culture or 

“astrology” in Western culture, it all shows people’s 

enthusiasm for this. In this section, we will discuss another 

scientific “fortune-telling”. It is a model which will assess 

the prognosis of patients. As an oncologist, you will be 

confronted with questions like “how long will I survive” from 

patients suffering cancer during clinical practice. It is really 

a gut-wrenching question. Mostly, we can tell a median 

survival time based on the staging of corresponding disease. 

Actually, clinical staging is the basis for our predication for 

these patients or in other word it is “predicting model”. 

We answer this question by median survival time according 

to its clinical stage. It could bring new questions because 

it may not be so accurate to predict the survival time of 

specific individual by median time of a group of people. No 
can tell whether this specific individual will enjoy better or 
worse prognosis (15,17).

Is there any possibility we can calculate the survival of 

every patient by a more accurate and scientific method? 

The answer is yes. We can firstly construct a mathematical 
model by Cox proportional hazard model, and then 

visualize parameter associated with the patient’s survival 

by Nomogram. This paragraph can relatively accurately 

calculate the survival probability of each patient. Nomogram 

in essence is the visualization of regression model. It sets 

the scoring criteria according to the regression coefficients 
of all the independent variables, and then gives each scoring 

value of each independent variable, so that for each patient, 

a total score can be calculated. A transfer between the 

occurrence probabilities and the outcome is calculated to 

by function and the probability of each patient’s outcome 

can be obtained. For example, we have 40-year-old male 

pancreatic cancer patient who have went through operation. 

The clinical stage is IV. The tumor locates in the head 

of pancreas and intraoperative radiotherapy is applied. 

Peritoneal metastasis is present. We can calculate the 
total score according to all this available information by a 

mathematical model: 40-year-old can be scored 10 points; 

gender of male can be scored 4 points and so on… Finally, 

the total score can be obtained. Different score will be with 

different survival probability in 3 months, 6 months and 

1 year. Complicated Cox regression formula now is visual 

graph. Practitioners can calculate the survival probability of 
each patient conveniently and relatively accurate “fortune-

telling” can be present to each patient. In the previous 

episode, we talked about Logistic regression Nomogram. 

Cox regression Nomogram is quite similar with the Logistic 

Nomogram in interpretation (15,17).
Like the previous episode, the first question is when 

should we choose Cox regression? It is actually about 

the method choosing in multiple variable analysis. If the 

outcome we are observing is survival, or we call it “Time 

to event” survival outcome, we can choose Cox regression 

model. We have already introduced how to screen variables 

in the 2nd section. We should also pay attention to the 

balance between the numbers of variables you are going 

to bring in the prediction model and the convenience, 

practicality of the model. We will show two examples of 

Nomogram construction with R. Detailed performance of 

R application will be present here instead of principles of 

statistics behind. 

[Example 1] analysis

[Example 1]
Here we will use the data in [Example 1] to introduce the 

construction of survival prediction model and corresponding 

Nomogram. Original data have been simplified for better 

understanding and practice. The clinical data of 1,215 
invasive breast cancer patients is downloaded from TGCA 

(https://genome-cancer.ucsc.edu/). We have simplified 

the original data by steps in Table 1. The definition and 

assignment of variables is present in Table 2. We will try 

to construct survival prediction model and corresponding 

Nomogram of this cohort. The readers can download 

original data and R code in the attachment file of this 

episode for better practice.

[Example 1] analysis
This cohort is about the construction of prognosis 

predication model. Steps are as follow: 

(I) Cox regression will  be used and screening 

https://genome-cancer.ucsc.edu/
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Table 1 Survival data of 1,215 breast cancer patients

No. Months Status Age ER PgR
Margin_

status

Pathologic_

stage

HER2_

Status

Menopause_

status

Surgery_

method

Histological_

type

1 130.9 0 55 1 1 0 / / 1 2 2

2 133.5 0 50 1 1 0 2 / 2 1 1

3 43.4 0 62 1 1 0 2 / 2 2 1

4 40.7 0 52 1 1 / 1 / / 3 1

5 11.6 0 50 1 1 0 3 / 2 2 2

6 / / / / / / / / / / /

7 / / / / / / / / / / /

8 10.1 0 52 1 0 / 2 / / / 3

9 8.6 0 70 1 0 0 1 0 2 1 3

10 14.6 0 59 1 1 1 2 0 / 1 1

11 44.0 0 56 1 1 0 1 0 1 2 3

12 48.8 0 54 1 1 0 2 0 1 2 1

13 14.5 0 61 1 1 0 2 0 2 1 3

14 47.9 0 39 0 1 0 2 0 1 1 1

15 21.2 0 52 1 1 0 2 0 / 1 1

…

…

1,211 29.4 0 77 1 1 0 1 / 2 1 2

1,212 15.6 0 46 1 1 0 3 / 2 2 2

1,213 16.3 0 68 1 1 0 2 / 2 3 2

1,214 109.6 0 61 1 1 1 3 / 2 4 2

1,215 108.5 0 46 1 1 0 1 / 1 1 2

independent prognostic factors based on training 

sets and predictive models can be built firstly. The 
data sets used for modeling are generally referred 

to as training set or internal data set. You can refer 
to already published Intelligent Statistics and Crazy 

Statistics (15,17) for the details about data entry, 
univariable Cox regression and multivariable Cox 

regression. Finally, we get three independent 

variables for prognosis: age, PgR, Pathologic_stage. 
(II) Building Nomogram based on these three variables 

(these 3 have been treated as independent variable 

in this Cox model) 

(III) Assessing the discrimination efficiency of these 

models. C-Index will be calculated. 

(IV) Validation of this model can be performed by 

external data set. If external data set is not available, 

bootstrap resampling methods based on internal 

data set and Calibration Plot will be recommended 
for validation (22,24).

Building of Cox regression model-based Nomogram, 

C-Index calculation, Bootstrap resampling methods and 

Calibration Plot are emphasized here. All processing can be 
done by R (R software downloading: https://www.r-project.

org/). All data processed will be save as “BreastCancer.sav” 

and put under the R current running directory. The results 

will show in Figures 9 and 10. 

[Example 1] R codes and its interpretation
Load the rms package and the necessary helper packages.

library(foreign) 

library(rms)

https://www.r-project.org/
https://www.r-project.org/
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Table 2 Variable definition, assignment and description

Variable name Variable annotation Variable assignment and description

No. Number /

Months Survival time Continuous variables (month)

Status Outcome 1= dead, 0= censored

Age Age Continuous variables (year)

ER Estrogen receptor status 1= positive, 0= negative

PgR Progesterone receptor status 1= positive, 0= negative

Margin_status Surgical margin status 1= positive, 0= negative

Pathologic_stage Histopathologic stage 1= stage I, 2= stage II, 3= stage III, 4= stage IV

HER2_status HER2 status 1= positive, 0= negative

Menopause_status Menstrual status 1= premenopause, 2= postmenopause

Surgery_method Surgery methods 1= lumpectomy

2= modified radical mastectomy

3= simple mastectomy

4= other method

Histological_type Histological type 1= infiltrating ductal carcinoma

2= infiltrating lobular carcinoma

3= other

Figure 9 Nomogram of Cox regression model.
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Data preparation, loading external data in “.sav” style 

format.

breast<-read.spss(“BreastCancer.sav”) 

Convert the data set “breast” to data frame format.

breast<-as.data.frame(breast) 

breast<-na.omit(breast)

Display the first 6 rows of data in the breast data frame.
head(breast)

##    No    Months Status Age       ER      PgR Margin_status 

## 9   9  8.633333 Censor  70 Positive Negative      Nagative 

## 11 11 44.033333 Censor  56 Positive Positive      Nagative 

## 12 12 48.766667 Censor  54 Positive Positive      Nagative 

## 13 13 14.466667 Censor  61 Positive Positive      Nagative 

## 14 14 47.900000 Censor  39 Negative Positive      Nagative 

## 19 19 39.866667 Censor  50 Positive Positive      Nagative 

##    Pathologic_stage HER2_Status Menopause_status 

## 9           Stage I    Negative   Post menopause 

## 11          Stage I    Negative    Pre menopause 

## 12         Stage II    Negative    Pre menopause 

## 13         Stage II    Negative   Post menopause 

## 14         Stage II    Negative    Pre menopause 

## 19         Stage II    Positive   Post menopause 

##                 Surgery_method             Histological_type 

## 9                   Lumpectomy                         Other 

## 11 Modified Radical Mastectomy                         Other 

## 12 Modified Radical Mastectomy Infiltrating Ductal Carcinoma 

## 13                  Lumpectomy                         Other 

## 14                  Lumpectomy Infiltrating Ductal Carcinoma 

## 19                  Lumpectomy Infiltrating Ductal Carcinoma

Define the endpoint event: define the ending value 

“Dead” as the endpoint event “dead” .

breast$Status<-ifelse(breast$Status==“Dead”,1,0)

Set the reference levels of polytomous variable.
breast$Pathologic_stage<- relevel(breast$Pathologic_stage, ref = ‘Stage I’)

Build Cox regression formula by function cph() in rms 

package. 

coxm <-cph(Surv(Months,Status==1) ~ Age+Pathologic_stage+PgR, 

           x = T,y = T, data = breast, surv = T)

Build survival function object and define them as surv1, 
surv2, surv3.

surv<- Survival(coxm) 

surv1<- function(x)surv(1*12,lp=x) # defined time.inc,1 year OS 

surv2<- function(x)surv(1*36,lp=x) # defined time.inc,3 year OS 

surv3<- function(x)surv(1*60,lp=x) # defined time.inc,5 year OS

Data integrating by function datadist() (This is 

compulsory processing in rms package during the 

construction of regression model). 
dd<-datadist(breast)  

options(datadist = ‘dd’) 

Build Nomogram: “maxscale” means the highest point, 

which will be set from 100 or 10 points; “un.at” means 

survival scale setting; “xfrac” means the distance between 

data axis set and left label, which can regulate parameter 

value to observe the change of Nomogram. The meaning 

of other parameter can be found in the help menu of 

nomgram() function. 

nom<-nomogram(coxm,fun = list(surv1,surv2,surv3),lp = F, 

              funlabel = c(“1-Yeas OS”, ‘3-Year OS’,’5-YearOS’),maxscale = 100,  

              fun.at = c(‘0.95’,’0.85’,’0.80’,’0.70’,’0.6’,’0.5’,’0.4’,’0.3’,’0.2’,’0.1’)) 

plot((nom),xfrac = .3)

Nomogram interpretation: point in Figure 9 is a selected 

scoring standard or scale. For each independent variable, 

a straight line perpendicular to the Points axis (through 
a ruler) is made at that point, and the intersection point 

represents the score under the value of the independent 

variable. For example, Age at 25 means 0 point; CEA at 
90 means 100 points. The corresponding points of these 

independent variables of each patient can be calculated 

in total. We can get total points, which will locate to the 

survival axis with a perpendicular line. This will indicate the 

survival rate of this patient (3- or 5-year OS).
Calculation of C-Index.

f<-coxph(Surv(Months,Status==1) ~ Age+Pathologic_stage+PgR, data = 

breast) 

sum.surv<-summary(f) 

c_index<-sum.surv$concordance 

c_index

##          C      se(C)  

## 0.77878820 0.05734042

The meaning of C-Index in R code is similar to that 

of ROC. It will range from 0–1. The closer it gets to 1, 
the greater predicting value of this Cox regression model. 

Generally speaking, if C-Index equals 0.7, the model is with 

Figure 10 Calibration curve of Cox model.
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very good predicting value. In this example, C-Index equals 

0.7503 and se(C-Index) equals 0.02992. All results above are 
the direct output of the software (23).

Calculation complement of C-index.
library(Hmisc) 

S<-Surv(breast$Months,breast$Status==1) 

rcorrcens(S~predict(coxm),outx = TRUE)

##  

## Somers’ Rank Correlation for Censored Data    Response variable:S 

##  

##                  C    Dxy  aDxy   SD    Z P   n 

## predict(coxm) 0.22 -0.559 0.559 0.09 6.21 0 549

Standard curve will be built. u should be in accord with 

the f defined in time.inc in the previous regression model. 
If ime.inc is 60 in f model, u should be 60.m will be in line 

with sample size. Standard curve will divide all sample into 

3 or 4 groups (in the chart it will present as 3 or 4 points).

m means sample size of each group. So, m*3 equals or 

approximately equals the total sample size. 

cal<- calibrate(coxm, cmethod = ‘KM’, method = ‘boot’, u = 60, m = 100, 

B = 100)

Print and modify the graphic parameters of the standard 
curve. The modified calibration curve is shown in Figure 10.

plot(cal,lwd=2,lty=1,errbar.

col=c(rgb(0,118,192,maxColorValue=255)), 

     xlim=c(0.6,1),ylim=c(0.6,1), 

     xlab=“Nomogram-Predicted Probability of 5-Year OS”, 

     ylab=“Actual 5-Year OS(proportion)”,  

     col=c(rgb(192,98,83,maxColorValue=255))) 

lines(cal[,c(“mean.predicted”,”KM”)],type=“b”,lwd=2, 

      col=c(rgb(192,98,83,maxColorValue=255)), pch=16) 

abline(0,1,lty=3,lwd=2,col=c(rgb(0,118,192,maxColorValue=255)))

Interpretation of modified standard curve: we will 

validate the predicting efficiency of this Nomogram model 
based on bootstrap resampling method in internal data 

set. Lateral axis shows the predicated survival rate of each 

patient while the vertical axis shows the actual survival 

rate of each patient. It is ideal if the red line in the picture 

exactly coincides with the blue dotted line. 

[Example 2] analysis

[Example 2]
Survival in patients with advanced lung cancer from the 

North Central Cancer Treatment Group. Performance 
scores rate how well the patient can perform usual daily 

activities. Total 10 variates:

(I) inst: institution code;

(II) Time: survival time in days;

(III) Status: censoring status 1 = censored, 2 = dead;

(IV) Age: age in years;

(V) Sex: male =1, female =2;

(VI) ph.ecog: ECOG performance score (0= good 5= 
dead);

(VII) ph.karno: Karnofsky performance score (bad =0 to 
good =100) rated by physician;

(VIII) pat.karno: Karnofsky performance score as rated 
by patient;

(IX) meal.cal: calories consumed at meals;

(X) wt.loss: weight loss in last six months.

[Example 2] interpretation
This cohort is about survival. Here, time to event 

attribute (status 1 = censored, 2 = dead) associated with 

outcome will be considered. Cox regression model 

will be built and visualization will be achieved through 

Nomogram. C-Index will be calculated and calibration 

curve will be drawn using R.

[Example 2] R codes and its interpretation
Loading survival package, rms package and other helper 

packages.

library(survival) 

library(rms)

Demonstration with the lung data set in the survival 

package, we can use the following command to enumerate 

all the data sets in the survival package.

data(package = “survival”)

Read the lung data set and display the first 6 lines of the 
lung data set.

data(lung) 

head(lung)

##   inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss 

## 1    3  306      2  74   1       1       90       100     1175      NA 

## 2    3  455      2  68   1       0       90        90     1225      15 

## 3    3 1010      1  56   1       0       90        90       NA      15 

## 4    5  210      2  57   1       1       90        60     1150      11 

## 5    1  883      2  60   1       0      100        90       NA       0 

## 6   12 1022      1  74   1       1       50        80      513       0

You can further use the following command to display 
the variable descriptions in the lung dataset.

help(lung)

## starting httpd help server ... done

Variable tags can be added to dataset variables for 

subsequent explanation.

lung$sex <- factor(lung$sex, 

                   levels = c(1,2), 

                   labels = c(“male”, “female”))

“Packaging” data before the building of regression model 
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and Nomogram by rms package. This is very important step 

for Nomogram building. Commend “?datadist” can enable 

you see the detailed helper  document of this function. 

dd=datadist(lung) 

options(datadist=“dd”) 

Cox regression fit will be built based on dependent 

variable time, status and independent variable age, sex. 

Show the parameter of this model. Dxy =0.206. C-Index 

=0.206/2+0.5 =0.603.
fit <- cph(Surv(time,status) ~ age + sex, data = lung, x = T,y = T, surv = T) 

fit

## Cox Proportional Hazards Model 

##   

##  cph(formula = Surv(time, status) ~ age + sex, data = lung, x = T,  

##      y = T, surv = T) 

##   

##                      Model Tests       Discrimination     

##                                           Indexes         

##  Obs       228    LR chi2     14.12    R2       0.060     

##  Events    165    d.f.            2    Dxy      0.206     

##  Center 0.8618    Pr(> chi2) 0.0009    g        0.356     

##                   Score chi2  13.72    gr       1.428     

##                   Pr(> chi2) 0.0010                       

##   

##             Coef    S.E.   Wald Z Pr(>|Z|) 

##  age         0.0170 0.0092  1.85  0.0646   

##  sex=female -0.5131 0.1675 -3.06  0.0022   

## 

Median survival time calculating, 
med <- Quantile(fit)

Build the survival function object surv.
surv <- Survival(fit)

Build Nomogram of median survival based on Cox 

regression by commends as follow. As show in Figure 11.

nom <- nomogram(fit, fun = function(x) med(lp = x), 

                funlabel = “Median Survival Time”) 

plot(nom)

The interpretation of this Nomogram can be referred to 
that of Example 1. 

Next, Nomogram of survival rate will be built based on 
Cox regression. The unit for the survival time of lung data 
set is “day”. So, we will set the survival object (surv1, surv2) 
based on survival function firstly.

surv<- Survival(fit) 

surv1<- function(x)surv(365,lp = x) # defined time.inc,1 year survival probability 

surv2<- function(x)surv(730,lp = x) # defined time.inc,2 year survival probability

Or you can build survival Nomogram of Cox regression 

directly by commends as follow. As show in Figure 12.

nom <- nomogram(fit, fun = list(surv1, surv2), 

                funlabel = c(“1-year Survival Probability”, 

                           “2-year Survival Probability”)) 

plot(nom, xfrac=.6)

The interpretation of this Nomogram can be referred to 

that of Example 1.

C-Index can be calculated by commends as follow. This 

will give objective assessment of this model.

rcorrcens(Surv(time,status) ~ predict(fit), data = lung)

##  

## Somers’ Rank Correlation for Censored Data    Response variable:Sur-

v(time, status) 

##  

##                  C    Dxy  aDxy    SD    Z     P   n 

## predict(fit) 0.397 -0.206 0.206 0.051 4.03 1e-04 228

The parameter C here is 0.397 (C=0.397). It is actually 

the complement of C-Index. So, we know C-Index is 0.603 

(C-Index = 1 − 0.397 =0.603), which is totally exactly the 
same as we calculated before.

We can modify the curve by commends as follow 

(Figure 13). Firstly, calibrate() function is used  to build 

the object cal. Then we print the graph, and you can use 

the graph parameters to beautify the calibration curve. 

Commend “?calibrate” can help you see more details about 

the parameters.

cal <- calibrate(fit, cmethod=‘KM’, method=“boot”,  

                 u = 365, m = 50, B = 100)

plot(cal) 

plot(cal,lwd=2,lty=1, 

     errbar.col=c(rgb(0,118,192,maxColorValue=255)), 

     xlim=c(0.1,1),ylim=c(0.1,1), 

     xlab=“Nomogram-Predicted Probability of 1-Year”, 

     ylab=“Actual Probability of 1-Year”, 

     col=c(rgb(192,98,83,maxColorValue=255)))

The interpretation of this graph can be referred to that 

of Example 1.

Brief summary

This episode has introduced the build of survival prediction 

model and Nomogram. A good model should be in 

convenient application and with accurate predicting 

efficiency. External validation is as important as internal 

validation in accuracy assessment. In our examples, external 

validation is not present for better external data set is 

not available. Many articles about Nomogram of clinical 

prediction have been published. It is better in “fortune-

telling” than that of TNM staging. However, practitioners 

are still used to TNM staging system in “fortune-telling”. 

Maybe, TNM staging is much more convenient. From this 

perspective, less variables should be included during the 

building of Nomogram to ensure much more convenience 

in clinical practice. That will lead to another question: 
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Figure 11 Nomogram based on median survival time of Cox regression.

Figure 12 Nomogram based on survival probality of Cox regression model.
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which one should be put in priority, the accuracy or the 

practicality? It really depends on purpose of this research.

Calculation C-Statistics of Logistic regression 

model with R

Background

In the previous two sections, we mentioned the R building 

Logistic regression model and the Cox regression model, 

and briefly introduced the C-Statistics and C-index 

calculation methods of the model, but did not focus 

on it. In this section, we will detail the C-Statistics for 

calculating Logistic regression models using R. In fact, 

the receiver operating characteristic curve (ROC) of the 

Logistic regression model was based on the predicted 

probability. The area under the ROC curve (AUC) is equal 

to C-Statistics, so the IBM SPSS software can also calculate 
C-Statistics, which is not repeated here (15,17).

When we build a regression model through the training 

set, how do we scientifically evaluate the accuracy of a 

regression model prediction? For example, there are two 

fortune tellers each with a stall on a street corner. Miss 

Wang wishes to get her marriage fortunes told by one 

of these fortune tellers. Who should she ask? Mr. Zhang 

or Mr. Li? A simple choosing method would be to go 

with whomever is more accurate. However, this can only 

be known by past customers’ word of mouth. Clinical 

prediction models are similar to this. The most fundamental 

requirement is to ensure that the predictions are accurate. 

So how do you evaluate if a prediction model is accurate? In 

general, the merits of a prediction model can be evaluated 

using the following three aspects (22-24).

Discrimination index
It refers to the predictive ability of the regression model 

to distinguish between diseased/no disease, effective/

ineffective, and dead/alive outcomes. For example, there 

are 100 people, 50 are diagnosed to have the disease, and 
50 do not have the disease; we used the prediction method 
to predict that 45 are sick and 55 are not. Then the number 
of the 45 people that overlap with the 50 people who are 
really sick directly determines the accuracy of your model’s 

predictive ability, which we call “accuracy”. It is usually 

measured by ROC curve and C-Statistics (the AUC in 

the Logistic regression model is equal to C-Statistics). Of 

course, Net Reclassification Index (NRI) and integrated 

discrimination improvement (IDI) are parts of the other 

metrics. We will explain these further in the following 

sections (25-27).
For each individual, we do not want to misdiagnosis or 

failure to diagnosis. Therefore, for the Logistic regression 

prediction model, the ROC curve is often drawn as a 

diagnostic test to judge the degree of discrimination. The 

difference is that the indicator we use to plot the ROC 

curve is no longer a clinical test result, but the predicted 

probability of the Logistic regression model. Judging 

whether the event occurs based on the magnitude of the 

predicted probability, we will get a series of sensitivity and 

specificity for plotting the ROC curve, which will help us to 
understand whether the constructed predictive model can 

accurately predict the occurrence of the event.

Consistency and calibration

It refers to the consistency of the probability of actual 

occurrence and the probability of prediction. It seems a 

bit puzzling that we still cite the above example. The 100 

people we predicted do not mean that we really use the 

model to predict whether a person has the disease or not. 

The model only gives us the probability of people being 

sick, based on the probability being greater than a certain 

cutoff value (e.g., 0.5) to determine if the person has the 
disease or not. For example, there are 100 people, we will 

finally get 100 probabilities through the model which range 
from 0 to 1. We ranked the 100 probabilities in order from 

small to large, and then divided them into 10 groups with 

10 people in each group. The actual probability is actually 

the proportion of diseases in these 10 people, the predicted 

probability is the average of the 10 ratios predicted by 

each group, and then compare the two numbers, one as 

the abscissa and one as the ordinate. A calibration Plot 
is obtained, and the 95% range of the plot can also be 

Figure 13 Calibration curve based on Cox regression model.
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calculated. In the logistic regression model, sometimes 

the consistency can also be measured by the Hosmer-

Lemeshow goodness-of-fit test. The calibration curve is a 
scatter plot of the actual incidence and predicted incidence. 

Statistically, the calibration curve is a visualized result of the 

Hosmer-Lemeshow goodness of fit test (28-30).
It is worth noting that a well-differentiated model may 

have a poor calibration. For example, it can determine 

that the risk of a person’s disease is five times that of 

another person. It determines that the risk of the two 

people is 5% and 1%, respectively. In fact, the risk of 
the two is 50% and 10%, respectively. The model is 
also quite outrageous, which is a bad calibration. The 

calibration of the model can be tested with Hosmer-

Lemeshow. If the results are statistically significant, there 

is a difference between the predicted and observed values. 

Discrimination and calibration are important evaluations 

for a model, but many newly developed models are not fully 

evaluated. A systematic review of cardiovascular system 

risk prediction models found that only 63% of the models 

reported Discrimination, and even fewer models reported 

Calibration, at 36%.

R-squared (R2)

The Coefficient of determination, also commonly known 

as “R-squared”, is used as a guideline to measure the 

accuracy of the model, which is a combination of metrics 

discrimination and consistency. The model determines 

the coefficient R2 to be more comprehensive, but slightly  

rough (31,32).

Below we will explain the method of calculating 

C-statistics in R language in a classic case of Logistic 

regression. As with the previous Sections, the focus is on the 

process of using R language calculation instead of complex 

statistical principles.

Case analysis

[Case 1]

Hosmer and Lemeshow studied the influencing factors of 

low birth weight in infants in 1989. The outcome variable 

was whether or not to deliver low birth weight infants 

(variable name “low”, dichotomous variable, 1= low birth 

weight, which  birth weight <2,500 g; 0= non-low birth 
weight), consideration influencing factors (independent 

variable) may include: maternal pre-pregnancy weight 

(lwt, unit: pounds); maternal age (age, unit: year);maternal 

smoking during pregnancy (smoke, 0 = not sucked, 1 = 

smoking); pre-pregnancy premature births (Ptl, unit: 
times); whether the birth mother has high blood pressure 

(ht, 0= not suffering, 1= sick); uterus stress on contraction, 

oxytocin and other stimuli (ui, 0= no, 1= yes); the number 

of community physician visits in the first three months 

of pregnancy (ftv, unit: times); race (race, 1= white, 2= 

black, 3= other ethnic groups). We sorted out the data 

in this example and named it “Lowweight.sav”, which is 

stored in the current working path. For the convenience 

of the reader, the data and code can be downloaded in the 

attachment to this Section.

[Case 1] analysis

The dependent variable is a binary outcome variable 

(whether low birth weight or not) in this case. The purpose 

of the study was to investigate the independent influencing 
factors of low birth weight infants, which is consistent with 

the application conditions of binary Logistic regression. We 

construct a Logistic regression equation with “age + ftv + ht 

+ lwt + ptl + smoke + ui + race” as the independent variable 

and “low” as the dependent variable. Based on this Logistic 

regression model, we have three methods to calculate its 

C-Statistics:

(I) Method 1. Use the lrm() function in the rms 

package to construct a logistic regression model 

and directly read the model “Rank Discrim. 

Indexes” Parameter C, which is C-Statistics.
(II) Method 2. Construct a logistic regression model, 

predict() function to calculate the model prediction 

probability, then use the ROCR package to 

draw the ROC curve according to the predicted 

probability, and calculate the area under the curve 

(AUC), which is C-Statistics. Note: This method is 

consistent with the calculation method in SPSS.
(III) Method 3.  Construct a logist ic regression 

model, predict() function to calculate the model 

prediction probability, and directly calculate the 

area under the ROC curve AUC by using the 

somers2 function in the Hmisc package. Note: 

This method is consistent with the calculation 

method in SPSS.

R codes of calculation process

Load the foreign package and the rms package.

library(foreign)  

library(rms)

Import external data in .sav format and convert the data 
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into a data frame structure while presenting the first 6 rows 
of the data frame.

mydata<- read.spss(“Lowweight.sav”)  

mydata<- as.data.frame(mydata)   

head(mydata) 

##   id           low age lwt  race      smoke ptl     ht  ui ftv  bwt 

## 1 85 normal weight  19 182 black no smoking   0 no pih yes   0 2523 

## 2 86 normal weight  33 155 other no smoking   0 no pih  no   3 2551 

## 3 87 normal weight  20 105 white    smoking   0 no pih  no   1 2557 

## 4 88 normal weight  21 108 white    smoking   0 no pih yes   2 2594 

## 5 89 normal weight  18 107 white    smoking   0 no pih yes   0 2600 

## 6 91 normal weight  21 124 other no smoking   0 no pih  no   0 2622

Set the ending variable to two categories, define “low 

weight” as “1”, and set the unordered multi-class variable 

“race” to a dummy variable.

mydata$low <- ifelse(mydata$low ==“low weight”,1,0)  

mydata$race1 <- ifelse(mydata$race ==“white”,1,0) 

mydata$race2 <- ifelse(mydata$race ==“black”,1,0) 

mydata$race3 <- ifelse(mydata$race ==“other”,1,0) 

Load the data into the current working environment and 

“package” the data using the datadist() function.

dd<-datadist(mydata) 

options(datadist=‘dd’) 

The logistic regression model was fitted using the lrm() 
function in the rms package.

(I) Method 1. Directly read the Rank Discrim. parameter 

C in the model parameters, ie C-Statistics = 0.738.

fit1<-lrm(low~ age+ftv+ht+lwt+ptl+smoke+ui+race1+race2, 

          data = mydata,x = T,y = T)

fit1 

## Logistic Regression Model 

##   

##  lrm(formula = low ~ age + ftv + ht + lwt + ptl + smoke + ui +  

##      race1 + race2, data = mydata, x = T, y = T) 

##   

##                       Model Likelihood     Discrimination    Rank Discrim.     

##                          Ratio Test           Indexes           Indexes        

##  Obs           189    LR chi2     31.12    R2       0.213    C       0.738     

##   0            130    d.f.            9     g        1.122    Dxy     0.476     

##   1             59    Pr(> chi2) 0.0003    gr       3.070    gamma   0.477     

##  max |deriv| 7e-05                         gp       0.207    tau-a   0.206     

##                                            Brier    0.181                      

##   

##                Coef    S.E.   Wald Z Pr(>|Z|) 

##  Intercept      1.1427 1.0873  1.05  0.2933   

##  age           -0.0255 0.0366 -0.69  0.4871   

##  ftv            0.0321 0.1708  0.19  0.8509   

##  ht=pih         1.7631 0.6894  2.56  0.0105   

##  lwt           -0.0137 0.0068 -2.02  0.0431   

##  ptl            0.5517 0.3446  1.60  0.1094   

##  smoke=smoking  0.9275 0.3986  2.33  0.0200   

##  ui=yes         0.6488 0.4676  1.39  0.1653   

##  race1         -0.9082 0.4367 -2.08  0.0375   

##  race2          0.3293 0.5339  0.62  0.5374   

## 

(II) Method 2. Calculate the AUC using the ROCR 

package, the code is as follows:

First, calculate the prediction probability of constructing 

the logistic regression model.

mydata$predvalue <- predict(fit1) 

Load the ROCR package.
library(ROCR) 

Use the prediction() function to build the object “pred”, 

and the performance() function to build the object perf to 

plot the ROC curve.

pred <- prediction(mydata$predvalue, mydata$low)  

perf<- performance(pred,”tpr”,”fpr”)

Draw the ROC curve as shown in Figure 14 below.

plot(perf) 

abline(0,1, col = 3, lty = 2)

Calculating the area under the ROC curve (AUC) is 

C-statistics =0.7382008, which is consistent with the above 

calculation results.

auc <- performance(pred,”auc”) 

auc

## An object of class “performance” 

## Slot “x.name”: 

## [1] “None” 

##  

## Slot “y.name”: 

## [1] “Area under the ROC curve” 

##  

## Slot “alpha.name”: 

## [1] “none” 

##  

## Slot “x.values”: 

## list() 

##  

## Slot “y.values”: 

## [[1]] 

## [1] 0.7382008 

##  

##  

## Slot “alpha.values”: 

## list()

(III) Method 3. Hmisc package somers2 () function 

calculation, we can see that AUC = 0.7382, 

consistent with the above calculation results.

library(Hmisc) 

somers2(mydata$predvalue, mydata$low)

##           C         Dxy           n     Missing  

##   0.7382008   0.4764016 189.0000000   0.0000000

Brief summary

In fact, no matter which method we use, the standard error 

of C-Statistics is not directly given, so the calculation of 
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the confidence interval is very troublesome, which is not 

as convenient as SPSS software. If you want to report the 
C-Statistics confidence interval for various practical needs, 
you can consider using SPSS software for ROC analysis. 
SPSS software can directly give the standard error and 
confidence interval of AUC. Readers can try it themselves. 
If you want to compare the area under the ROC curve 

of two models, AUC or C-Statistics, you can refer to the 

following formula:

1 2

2 2

1 2+

AUC AUC
Z

SE SE

−
=  [1]

You can check the Z distribution table according to the Z 
value to get the P value.

So far, the demonstration of the three methods of 

calculating C-Statistics in Logistic regression in this section 

has completed.

Calculation C-Index of Cox regression model 

with R

Background

In the past decade, there has been an increase in the number 

of articles in the clinical research that have a predictive 

model for construction and validation. What is the 

predictive model? In short, the predictive model predicts 

clinically unknown outcomes by known parameters, and the 

model itself is a mathematical formula. That is, by using 

the so-called model with the known parameters to calculate 

the probability of an unknown outcome, which is called 

prediction.

The statistical nature of the clinical prediction model is 

regression modeling analysis. The essence of regression is to 

find the mathematical relationship between the dependent 

variable Y and multiple independent variables X. There are 
three types of regression modeling that are most commonly 

used in clinical research: multiple linear regression, Logistic 

regression, and Cox regression. When we construct a 

regression model through variable selection in the training 

set, how do we scientifically evaluate the accuracy of a 

regression model prediction? As the example given in the 

previous section, there are two fortune tellers each with 

a stall on a street corner. Miss Wang wishes to get her 

marriage fortunes told by one of these fortune tellers. Who 

should she ask? Mr. Zhang or Mr. Li? A simple choosing 

method would be to go with whomever is more accurate. 

However, this can only be known by past customers’ 

word of mouth. Clinical prediction models are similar to 

this. The most fundamental requirement is to ensure that 

the predictions are accurate. So how do you evaluate if a 

prediction model is accurate? In general, the merits of a 

prediction model can be evaluated using the following three 

aspects (15,17).

Discrimination ability

It refers to the predictive ability of the regression model 

to distinguish between diseased/no disease, effective/

ineffective, and dead/alive outcomes. For example, there 

are 100 people, 50 are diagnosed to have the disease, and 
50 do not have the disease; we used the prediction method 
to predict that 45 are sick and 55 are not. Then the number 
of the 45 people that overlap with the 50 people who are 
really sick directly determines the accuracy of your model’s 

predictive ability, which we call “accuracy”. It is usually 

measured by ROC curve and C-Statistics (AUC in the 

Logistic regression model is equal to C-Statistics). Of 

course, NRI and IDI are parts of the other metrics. We will 

explain these further in the following sections (25-27).
C-Index is a general indicator, especially for the 

evaluation of the discriminative ability of the Cox regression 

model (33,34). The C-Index has a range between 0.5 to 1.0. 
C-Index =0.5 is completely inconsistent, indicating that the 
model has no predictive effect; C-Index =1.0 is completely 

consistent, indicating that the model prediction results 

are completely consistent with the actual. It is generally 

considered that the C-Index is lower accuracy between 0.50 
and 0.70, moderate accuracy between 0.71 and 0.80, higher 

accuracy above 0.80, and extremely high accuracy above 0.9. 

C-Index (the full name Concordance Index) is also often 

written as Harrell’s C-Index, Concordance C, C-statistic, 

etc., which mainly used to reflect the discriminative ability 
of predictive models, first proposed by Harrell, professor of 

Figure 14 ROC curve.

1.0

0.8

0.6

0.4

0.2

0.0

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0           0.2           0.4            0.6            0.8          1.0

False positive rate



Annals of Translational Medicine, Vol 7, No 23 December 2019 Page 31 of 96

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(23):796 | http://dx.doi.org/10.21037/atm.2019.08.63

biostatistics at Vanderbilt University in 1996, to see if the 

model can make accurate predictions.

The definition of C-Index is very simple, C-Index = 

concordant pairs/useable pairs. Imagine pairing all the 

subjects randomly, N subjects will produce N*(N-1)/2 

pairs. If the sample size N is large, the calculation is huge 

and must be done with computer software. We first find 

the concordant pairs as molecules. What is the concordant 

pair? Taking the survival analysis Cox regression analysis 

as an example, if the actual survival time is longer, the 

predicted survival probability is larger, or the survival time 

with shorter survival time is smaller, that is, the prediction 

result is consistent with the actual result, on the contrary, it 

is inconsistent. Then we find useable pairs in so many pairs 
as the denominator. What is a useable pair? In the case of 

Survival Analysis Cox Regression Analysis, for example, 

at least one of the two pairs of useable pairs required to 

have a target endpoint event. That is to say, if the paired 

two people do not have an end point event throughout 

the observation period, they are not included in the 

denominator. In addition, there are two other situations 

that need to be excluded:

(I) If one of the paired two people has an end point 

event and the other person loss of follow-up, this 

situation cannot compare the survival time of the 

two, these parried should be excluded;

(II) The two pairs of people who died at the same time 

should also be excluded. After finding a useable 

pair as the denominator, how do we determine the 

molecule?

What is the relationship between C-Index and AUC? 

We have said that C-Index is an indicator that can be used 

to evaluate the distinguish ability of various models. For the 

binary logistic regression model, C-Index can be simplified 
as: the probability of predicting the disease of a patient 

with a disease is greater than the probability of predicting 

the disease. It has been shown that the C-Index for the 

binary logistic regression is equivalent to AUC. AUC 

mainly reflects the predictive ability of the binary logistic 

regression model, but C-Index can evaluate the accuracy of 

various model prediction results. It can be easily understood 

that C-Index is an extension of AUC, and AUC is a special 

case of C-Index.

Consistency and calibration

It refers to the congruency of the probability of actual 

occurrence and the probability of prediction. It seems a 

bit puzzling that we still cite the above example. The 100 

people we predicted do not mean that we really use the 

model to predict whether a person has the disease or not. 

The model only gives us the probability of people being 

sick, based on the probability being greater than a certain 

cutoff value (e.g., 0.5) to determine if the person has the 
disease or not. For example, there are 100 people, we will 

finally get 100 probabilities through the model which range 
from 0 to 1. We ranked the 100 probabilities in order from 

small to large, and then divided them into 10 groups with 

10 people in each group. The actual probability is actually 

the proportion of diseases in these 10 people, the predicted 

probability is the average of the 10 ratios predicted by each 

group, and then compare the two numbers, one as the 

abscissa and one as the ordinate. A Balance Plot is obtained, 
and the 95% range of the plot can also be calculated. In 
the logistic regression model, sometimes the consistency 

can also be measured by the Hosmer-Lemeshow goodness-

of-fit test. The calibration curve is a scatter plot of the 

actual incidence and predicted incidence. Statistically, 

the calibration curve is a visualized result of the Hosmer-

Lemeshow goodness of fit test (28,29,35).
It is worth noting that a well-differentiated model may 

have a poor calibration. For example, it can determine 

that the risk of a person’s disease is five times that of 

another person. It determines that the risk of the two 

people is 5% and 1%, respectively. In fact, the risk of 
the two is 50% and 10%, respectively. The model is 
also quite outrageous, which is a bad calibration. The 

calibration of the model can be tested with Hosmer-

Lemeshow. If the results are statistically significant, there 

is a difference between the predicted and observed values. 

Discrimination and calibration are important evaluations 

for a model, but many newly developed models are not fully 

evaluated. A systematic review of cardiovascular system 

risk prediction models found that only 63% of the models 

reported Discrimination, and even fewer models reported 

Calibration, at 36%.

R-squared (R2)

The Coefficient of determination, also commonly known 

as “R-squared”, is used as a guideline to measure the 

accuracy of the model, which is a combination of metrics 

discrimination and consistency. The model determines the 

coefficient R2 to be more comprehensive, but slightly rough.

Calculation methods of C-Index

In many clinical articles, it  is often seen that the 
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discriminating ability of the description method in the 

statistical method is measured by C-Statistics or C-Index. 

Below we use the R language to demonstrate the calculation 

method of C-Index in this Cox regression. The C-Statistics 

calculation for Logistic regression has been introduced in 

Section 5. As with the previous Sections, the focus of this 
article is on the R language calculation process. We try to 

avoid the complex statistical principles.

Strictly speaking, C-Index includes the following types. 

We only introduce the first one that is more commonly 

used in clinical practice.

(I) Harrell’s C; 

(II) C-statistic by Begg et al. (survAUC::BeggC); 

(III) C-statistic by Uno et al.  (survC1::Inf.Cval; 

survAUC::UnoC); 

(IV) Gonen and Heller Concordance Index forCox 

m o d e l s  ( s u r v A U C : : G H C I ,  C P E : : p h c p e , 
clinfun::coxphCPE).

There are two common calculation methods for C-index 

in the Cox regression model:

(I) Method 1: output directly from the function coxph() 

of the survival package, the version of R needs to 

be higher than 2.15. You need to install the survival 
package in advance to see that this method outputs 

C-Index (corresponding to model parameter C). 

The standard error is also output, and the 95% 
confidence interval can be obtained by adding or 

subtracting 1.96*se from C. This method is also 

applicable to many indicators combined (22-24).

(II) Method 2: using the cph() function and the validate() 

function in the rms package, both un-adjusted and 

bias adjusted C-Index are available (23).

R code and its interpretation

Simulate a set of survival data and set it to the data frame 

structure, age and bp are the independent variables, os 

and death are the survival ending, the data frame is named 

“sample.data“, and the first 6 lines of the data frame are 

displayed:

age <- rnorm(200,50,5)

bp <- rnorm(200,120,10)

d.time <- rexp(200)

cens <- runif(200,.5,2)

death <- d.time <= cens

os <- pmin(d.time, cens)

sample.data <- data.frame(age =age,bp = bp,os = os,death = death)

head(sample.data)

##        age       bp        os death

## 1 51.48918 122.6809 1.7626881 FALSE

## 2 53.41727 138.3601 0.6110944 FALSE

## 3 46.42942 104.4238 0.2602561  TRUE

## 4 48.07264 127.1035 0.1138379  TRUE

## 5 53.56849 130.9504 0.3202129  TRUE

## 6 53.94391 135.3093 1.2506595 FALSE

(I) Method 1. survival package, load the survival 

package, coxph () function to fit the cox regression 
model, summary () function to display the model 

results and assign to the object sum.surv, the model 

parameter concordance is displayed, it is C-Index. 

This example C-Index =0.5416, se(C) =0.02704

library(survival)   

fit <- coxph(Surv(os, death) ~ age + bp,data = sample.data)  

sum.surv<- summary(fit)  

c_index <- sum.surv$concordance  

c_index

##          C      se(C)  

## 0.54156912 0.02704007

(II) Method 2. rms package, build a Cox regression 

model, read the model parameter Dxy, Dxy*0.5+0.5 
is C-Index. Note: the seed is set here using the set.

seed() function in order to repeat the final result 

because the adjusted result of the validate function 

is random.

library(rms)

## Loading required package: Hmisc

## Loading required package: lattice

## Loading required package: Formula

## Loading required package: ggplot2

## Loading required package: SparseM

set.seed(123)  

dd<- datadist(sample.data) 

options(datadist=‘dd’) 

fit.cph <- cph(Surv(os, death)~ age + bp, data = sample.data,  

               x = TRUE, y = TRUE, surv = TRUE) 

fit.cph

## Cox Proportional Hazards Model 

##   

##  cph(formula = Surv(os, death) ~ age + bp, data = sample.data,  

##      x = TRUE, y = TRUE, surv = TRUE) 

##   

##                       Model Tests       Discrimination     

##                                            Indexes         

##  Obs        200    LR chi2      4.97    R2       0.025     

##  Events     137    d.f.            2    Dxy      0.083     

##  Center -1.3246    Pr(> chi2) 0.0833    g        0.218     

##                    Score chi2   4.95    gr       1.243     

##                    Pr(> chi2) 0.0842                       

##   

##      Coef    S.E.   Wald Z Pr(>|Z|) 

##  age  0.0169 0.0178  0.95  0.3416   

##  bp  -0.0180 0.0089 -2.01  0.0444   

## 
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Calculate the adjusted C-Index and the un-adjusted 

C-Index, and the result is as follows.

v <- validate(fit.cph, dxy = TRUE, B = 1000) 

Dxy = v[rownames(v)==“Dxy”, colnames(v)==“index.corrected”] 

orig_Dxy = v[rownames(v)==“Dxy”, colnames(v)==“index.orig”] 

bias_corrected_c_index  <- abs(Dxy)/2+0.5 

orig_c_index <- abs(orig_Dxy)/2+0.5  

bias_corrected_c_index

## [1] 0.5276304

orig_c_index

## [1] 0.5415691

Un-adjusted C-Index =0.5416, adjusted C-Index =0.5276.

Brief summary 

C-Index is one of the most important parameters in the 

evaluation of Cox regression model. It reflects the pros and 
cons of the model prediction effect and is an important 

parameter to measure the discrimination of the model. 

However, this parameter cannot be calculated in IBM SPSS. 
This Section has described two methods of R language 

calculation and grasping one of them would be sufficient. 

The author recommends the first one, because it reports 

C-Index and its standard error at the same time and can 

thus conveniently calculate the confidence interval of 

C-Index.

Calculation method of NRI with R

Background

NRI was originally used to quantitatively evaluate the 

improvement in classification performance of the new 

marker over the original marker. Since NRI is capable of 

evaluating the precision of a diagnostic test, NRI could also 

be used to evaluate the performance of a predictive model 

because statistically diagnostic test and predictive model 

are the same. Based on published clinical trials, NRI has 

been widely used to compare the accuracy of two predictive 

models. We have discussed the methods to compare the 

accuracy and discrimination of two predictive models such 

as C-Statistics and AUC. However, both methods have 

several limitations.

(I) C-Statistic/AUC lacks sensitivity. When evaluating 

the improvement of predictive performance of a 

predictive model after incorporating a new marker, 

the improvement of C-Statistic/AUC is always 

small, therefore the new marker sometimes fails to 

significantly improve C-Statistic/AUC. 
(II) The meaning of C-Statistic/AUC is hard to 

understand and properly explain in clinical use.

NRI overcomes these two limitations.

Calculation method of NRI

We use a dichotomous diagnostic marker as an example 

to explain the principle of NRI calculation and then 

quantitatively compare predictive performance of 

different models. Calculation of NRI could be done by 

using customized function in R or by using formula. 

Comparison of performance of predictive models requires 

statistical software. In short, the original marker would 

classify study objects into patients and non-patients 

while the new marker would reclassify study objects into 

patients and non-patients. When comparing results of 

classification and reclassification, some objects may be 

mistakenly classified by original marker but corrected by 
new marker and vice versa. Therefore, classification of 

study objects changes when using different markers. We 

use the change to calculate NRI (26,27,36). It may look 

confusing, but calculation below could help readers to 

understand the concept. 

First, we classify study objectives into diseases group 

and healthy group using gold standard test. Two matched 

fourfold tables are generated from the classification results 
using original and new markers within two groups, as shown 

below in Tables 3 and 4.

We mainly focus on study objects who are reclassified. 

As shown in Tables 3 and 4, in disease group (N1 in total), 

c1 objects are correctly classified by new marker and 

mistakenly classified by original marker, b2 objects are 

correctly classified by original marker and mistakenly 

classified by new marker. So, comparing to original model, 
improved proportion of correct classification in new 

model is (c1 − b1)/N1. Similarly, in healthy group (N2 in 
total), b2 objects are correctly classified by new marker 

and mistakenly classified by original marker, c2 objects 

are correctly classified by original marker and mistakenly 

classified by new marker. improved proportion of correct 

classification in new model is (b2 − c2)/N2. At last, 
combining two groups together, NRI = (c1 − b1)/N1 + (b2 
− c2)/N2, which is often refer to as absolute NRI. 

If NRI > 0, it means positive improvement, which 

indicates that new marker has better predictive value 

comparing to original marker; If NRI <0, it means negative 
improvement, which indicates that new marker has worse 
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predictive value comparing to original marker; If NRI 

=0, it means no improvement. We could calculate z-score 

to determine whether the difference between new model 

and original model reaches a significant level. Z-score 

obeys standard normal distribution. Formula for Z-score 

calculation is listed below. P value could be calculated from 
Z-score.

1 1 2 2

2 2

1 2

NRI
Z

b c b c

N N

=
+ +

+  [2]

The example described above is a dichotomous 

diagnostic marker. In predictive model studies, situation is 

more complicated. But the principle is the same. Making 

diagnosis solely based on a dichotomous diagnostic 

marker seems to be too “crude”, researchers may be more 

concerned with the risk of having disease in the future 

instead of the present status of having or not having a 

disease. And predictive model could offer the probability of 

developing a disease or other outcome. For example, study 

objects could be classified into low-risk group, intermediate-
risk group and high-risk group based on predicted risk 

probability. If outcome variable is multiple categorical 

variable, ROC analysis is not appropriate because outcome 

variable of ROC analysis is often dichotomous. If outcome 

variable is multiple categorical variable, ROC may present 

to be spherical surface, which is hard to draw. Even if 

ROC was drawing, it is also hard to compare AUC of two 

predictive model directly, which makes it complicated 

to explain its clinical significance. However, NRI could 

easily solve these problems. So how does NRI solve these 

problems?

Take the paper about the methodology of NRI 

calculation published on Stat Med for example (26). Based 

on the famous Framingham Heart Study, researchers 

assessed the improvement of new model which incorporate 

high density lipoprotein-C (HDL-C) with classic model 

in the prediction of 10-year risk of coronary heart disease 

(CHD). Researchers compare the AUC of the new model 

and classic model. Results showed that AUC of two models 

were 0.774 and 0.762, respectively. AUC only increased 

0.012 after incorporating HDL-C and failed to reach a 

significant level (P=0.092), which indicated that new model 
had no significant improvement as shown in Figure 1 in the 
paper (26). Researchers further classified study objects into 
low-risk group (<6%), intermediate-risk group (6–20%) 
and high-risk group (>20%) as shown in Table 2 (26). 

Researchers also calculated NRI (NRI =12.1%), z-score 

(z-score =3.616) and P value (P<0.001), which indicated 
that incorporating new marker improved the predictive 

performance and the proportion of correct classification 

increased 12.1%. 

The Principle of NRI has been fully discussed above. 
Here we discuss how to calculate NRI using R software. 

There are three circumstances:

(I) To calculate how much predictive performance of a 

new marker improves comparing to original marker 

could use formula listed above or use R code in 

reference material to calculate NRI;

(II) To calculate NRI of two predictive models 

constructed by Logistic regression;

(III) To calculate NIR of two predictive models 

constructed by Cox regression.

The calculation method using R is listed below (Table 5) 

(27,37-39). We mainly demonstrate how to calculate NRI 

using “nricens” package, which is highly recommended.

Case analysis

The calculation of NRI of two markers

[Case 1]

Researchers wanted to assess the predictive value of two 

diagnostic tests for diabetes. They used three methods 

(gold standard test, diagnostic test1 and diagnostic test2) 

to evaluate the disease status of 100 patients. The data 

used here is documented in appendix “diagnosisdata.

csv”. Disease status predicted by gold standard test and 

Table 3 Reclassification in disease group

Disease group (N1)
New marker

Positive Negative

Original marker

Positive a1 b1

Negative c1 d1

Table 4 Reclassification in healthy group

Healthy group (N2)
New marker

Positive Negative

Original marker

Positive a2 b2

Negative c2 d2
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assessing diagnostic test were listed, of which “gold” 

represented results of gold standard test (1= disease, 

0= healthy); “t1” represented results of diagnostic test1 

(1= positive, 0= negative); “t2” represented results of 

diagnostic test2 (1= positive, 0= negative). Readers could 

use formulas listed above. Here we use our own R codes 

to calculate NRI of two diagnostic tests. We have sorted 

the data, renamed it as “diagnosisdata.csv” and stored in 

current working directory. To make it easier for readers 

to practice, data and codes are available for download in 

appendix of this article.

R codes and its interpretation

Because there is no function available for direct calculation 

of NRI, we need to define function named NRIcalculate() 
function based on the definition we describe above. R 

Codes are presented below:

NRIcalculate=function(m1=“dia1”,m2=“dia2”,gold=“gold”){

  datanri=datanri[complete.cases(datanri),]

  for (i in 1:length(names(datanri))){

    if (names(datanri)[i]==m1)nm1=as.numeric(i)

    if (names(datanri)[i]==m2)nm2=as.numeric(i)

    if(names(datanri)[i]==gold)ngold=as.numeric(i)

  }

  if(names(table(datanri[,nm1]))[1]!=“0” ||

     names(table(datanri[,nm1]))[2]!=“1”)stop(“index test 1 value not 

0or 1”)

  if(names(table(datanri[,nm2]))[1]!=“0” ||

     names(table(datanri[,nm2]))[2]!=“1”)stop(“index test 2 value not 

0or 1”)

  if(names(table(datanri[,ngold]))[1]!=“0” ||

     names(table(datanri[,ngold]))[2]!=“1”)stop(“reference standard 

value not 0 or 1”)

  datanri1=datanri[datanri[,ngold]==1,]

  table1=table(datanri1[,nm1],datanri1[,nm2])

  datanri2=datanri[datanri[,ngold]==0,]

  table2=table(datanri2[,nm1],datanri2[,nm2])

  p1=as.numeric(table1[2,1]/table(datanri[,ngold])[2])

  p2=as.numeric(table1[1,2]/table(datanri[,ngold])[2])

  p3=as.numeric(table2[2,1]/table(datanri[,ngold])[1])

  p4=as.numeric(table2[1,2]/table(datanri[,ngold])[1])

  NRI=round(p1-p2-p3+p4,3)

  z=NRI/sqr t((p1+p2)/table(datanr i[ ,ngold])[2]+(p3+p4)/

table(datanri[,ngold])[1])

  z=round(as.numeric(z),3)

  pvalue=round((1-pnorm(abs(z)))*2,3)

  if(pvalue<0.001)pvalue=“<0.001”

  result=paste(“NRI=“,NRI,”,z=“,z,”,p=“,pvalue,sep= ““)

  return(result)

}

Copy case data set to current working directory, load case 

data and set data format as data frame. Codes are presented 

below:

library(foreign) 

dignosisdata <- read.csv(“dignosisdata.csv”) 

datanri=as.data.frame(dignosisdata) 

Using NRI calculation function NRIcalculate() to 

calculate NRI. Codes are presented as below:

NRIcalculate(m1=“t1”,m2=“t2”,gold=“gold”)

## [1] “NRI=0.566, z=4.618, P=<0.001”

m1 is variable name of diagnostic test1, m2 is variable 

name of diagnostic test2 and gold is gold standard test. NRI 

is 0.566, NRI of diagnostic test1 is significantly higher than 
diagnostic test2.

NRI calculation of dichotomous outcome

[Case 2]

This data is from the Mayo Clinic trial in primary 

biliary cirrhosis (PBC) of the liver conducted between 
1974 and 1984. A total of 424 PBC patients, referred to 
Mayo Clinic during that ten-year interval, met eligibility 

criteria for the randomized placebo-controlled trial of 

the drug D-penicillamine. The first 312 cases in the 

data set participated in the randomized trial and contain 

largely complete data. The additional 112 cases did not 

participate in the clinical trial, but consented to have basic 

measurements recorded and to be followed for survival. Six 

of those cases were lost to follow-up shortly after diagnosis, 

Table 5 Packages in R for the calculation of NRI

R package Download
Categorical variable 

outcome
Survival data

The calculation of 

categorical NRI 

The calculation of 

continuous NRI

Hmisc CRAN improveProb() function Not available Not available Not available

nricens CRAN nribin() function nricens() function Available Available

PredictABEL CRAN reclassification() 

function 

Not available Available Available

survNRI github survNRI() function Available Not available Not available

NRI, Net Reclassification Index.
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so the data here are on an additional 106 cases as well as the 

312 randomized participants.

We use data from the first 312 patients to predict survival 
status at the time point of 2,000 days. It should be noted 

that the original data is a survival data. Here we define a 

dichotomous outcome (alive or dead), regardless of survival 

time. First load the dataset, as shown in Table 6. “Status” is 

the outcome variable, “0” means censored, “1” means liver 

transplant, “2” means dead. But outcome of our study is 

dichotomous, therefore it requires data conversion. As for 

“time” variable, some samples failed to reach 2,000 days, 

which showed that these patients died or censored before 

2,000 days. Here we deleted data which failed to reach 2,000 

days. The detailed description of other variables is available 

using “?pbc”.

A nearly identical data set found in appendix D of 

Fleming and Harrington; this version has fewer missing 

values.

R codes and its interpretation

Firstly, we load “nricens” package and the dataset, then 

extract first 312 observations.
library(nricens)

## Loading required package: survival

dat= pbc[1:312,] 

dat$sex= ifelse(dat$sex==‘f’, 1, 0)

We delete the data of which follow-up time is shorter 

than 2,000 days. “[]” stands for filter, “|” stands for “or”, “&” 
stands for “and”. So, data with “time” >2,000 and data with 

“time” <2,000 but “status” is “dead” are selected. Do not 
miss the last “,”. “,” means selecting all rows which fits the 
filter.

dat= dat[ dat$time >2,000 | (dat$time <2,000 & dat$status == 2),]

Define the endpoint: 1 stands for time <2000 and status = 
2 (dead), 0 stands for others.

event= ifelse(dat$time <2,000 & dat$status == 2, 1, 0)

Build a matrix out of a subset of dat containing age, bili 

and albumin.
z.std= as.matrix(subset(dat, select = c(age, bili, albumin)))

Build a matrix out of a subset of dat containing age, bili, 

albumin and protime.

z.new= as.matrix(subset(dat, select = c(age, bili, albumin, protime)))

Construct two logistic regression model: mstd and 

mnew. Model “mnew” has one more variable “protime”. 

Calculation using “nricens” package requires x = TRUE, 

which means that output contains the matrix.
mstd= glm(event ~ ., binomial(logit), data.frame(event, z.std), x=TRUE) 

mnew= glm(event ~ ., binomial(logit), data.frame(event, z.new), x=TRUE)

Calculating the predicted risk of two models.

p.std= mstd$fitted.values 

p.new= mnew$fitted.values

Logistic models are fitted.
There are many ways to calculate NRI. Readers could 

choose any one. The first method is recommended. 
(I) Calculation of risk category NRI using (‘mdl.std’, 

‘mdl.new’).

Table 6 Data structure and data description

Variable names Description

Age: In years

Albumin: Serum albumin (g/dL)

alk.phos: Alkaline phosphatase (U/liter)

Ascites: Presence of ascites

ast: Aspartate aminotransferase, once called 

SGOT (U/mL)

bili: Serum bilirunbin (mg/dL)

chol: Serum cholesterol (mg/dL)

copper: Urine copper (μg/day)

Edema: 0 no edema, 0.5 untreated or successfully 

treated, 1 edema despite diuretic therapy

hepato: Presence of hepatomegaly or enlarged 

liver

ID: Case number

Platelet: Platelet count

protime: Standardised blood clotting time

Sex: M/F

Spiders: Blood vessel malformations in the skin

Stage: Histologic stage of disease (needs biopsy)

Status: Status at endpoint, 0/1/2 for censored, 

transplant, dead

Time: Number of days between registration and 

the earlier of death, transplantion, or study 

analysis in July, 1986

trt: 1/2/NA for D-penicillamine, placebo, not 

randomized

trig: Triglycerides (mg/dL)
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nribin(mdl.std= mstd, mdl.new = mnew, cut = c(0.2, 0.4), 

       niter = 100, updown = ‘category’)

##  

## UP and DOWN calculation:

##   #of total, case, and control subjects at t0:  232 88 144

##  

##   Reclassification Table for all subjects:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2    110     3      0 

##   < 0.4      3    30      0 

##   >= 0.4     0     2     84

##  

##   Reclassification Table for case:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2      7     0      0 

##   < 0.4      0     8      0 

##   >= 0.4     0     2     71

##  

##   Reclassification Table for control:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2    103     3      0 

##   < 0.4      3    22      0 

##   >= 0.4     0     0     13

##  

## NRI estimation:

## Point estimates:

##                  Estimate 

## NRI           -0.02272727 

## NRI+          -0.02272727 

## NRI-           0.00000000 

## Pr(Up|Case)    0.00000000 

## Pr(Down|Case)  0.02272727 

## Pr(Down|Ctrl)  0.02083333 

## Pr(Up|Ctrl)    0.02083333

##  

## Now in bootstrap..

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred 

 

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

##  

## Point & Interval estimates:

##                  Estimate  Std.Error       Lower      Upper 

## NRI           -0.02272727 0.03093492 -0.04211382 0.08275862 

## NRI+          -0.02272727 0.02163173 -0.05376344 0.04950495 

## NRI-           0.00000000 0.02853621 -0.03571429 0.08333333 

## Pr(Up|Case)    0.00000000 0.01963109  0.00000000 0.06930693 

## Pr(Down|Case)  0.02272727 0.01939570  0.00000000 0.07142857 

## Pr(Down|Ctrl)  0.02083333 0.03822346  0.00000000 0.14503817 

## Pr(Up|Ctrl)    0.02083333 0.02285539  0.00000000 0.09160305

(II) Calculation of risk difference NRI using (‘event’, 

‘z.std’, ‘z.new’).

nribin(event= event, z.std = z.std, z.new = z.new, cut = c(0.2, 0.4), 

       niter = 100, updown = ‘category’)

##  

## STANDARD prediction model:

##                Estimate Std. Error    z value     Pr(>|z|) 

## (Intercept)  0.98927136 2.20809035  0.4480212 6.541379e-01 

## age          0.07128234 0.01988079  3.5854876 3.364490e-04 

## bili         0.61686651 0.10992947  5.6114755 2.006087e-08 

## albumin     -1.95859156 0.53031693 -3.6932473 2.214085e-04

##  

## NEW prediction model:

##                Estimate Std. Error    z value     Pr(>|z|) 

## (Intercept) -1.16682234 2.92204889 -0.3993165 6.896600e-01 

## age          0.06659224 0.02032242  3.2767864 1.049958e-03 

## bili         0.59995139 0.11022521  5.4429600 5.240243e-08 

## albumin     -1.88620553 0.53144647 -3.5491919 3.864153e-04 

## protime      0.20127560 0.18388726  1.0945598 2.737095e-01

##  

## UP and DOWN calculation:

##   #of total, case, and control subjects at t0:  232 88 144

##  

##   Reclassification Table for all subjects:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2    110     3      0 

##   < 0.4      3    30      0 

##   >= 0.4     0     2     84

##  

##   Reclassification Table for case:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2      7     0      0 

##   < 0.4      0     8      0 

##   >= 0.4     0     2     71

##  

##   Reclassification Table for control:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2    103     3      0 

##   < 0.4      3    22      0 

##   >= 0.4     0     0     13

##  

## NRI estimation:

## Point estimates:

##                  Estimate 

## NRI           -0.02272727 

## NRI+          -0.02272727 

## NRI-           0.00000000 

## Pr(Up|Case)    0.00000000 

## Pr(Down|Case)  0.02272727 

## Pr(Down|Ctrl)  0.02083333 

## Pr(Up|Ctrl)    0.02083333

##  

## Now in bootstrap……

##  

## Point & Interval estimates:

##                  Estimate  Std.Error       Lower      Upper 

## NRI           -0.02272727 0.03630980 -0.05063291 0.11288105 

## NRI+          -0.02272727 0.02303343 -0.05063291 0.03448276 

## NRI-           0.00000000 0.03004483 -0.02684564 0.07746479 

## Pr(Up|Case)    0.00000000 0.01763929  0.00000000 0.04878049 

## Pr(Down|Case)  0.02272727 0.02334453  0.00000000 0.08860759 

## Pr(Down|Ctrl)  0.02083333 0.03459169  0.00000000 0.12676056 

## Pr(Up|Ctrl)    0.02083333 0.01853583  0.00000000 0.05970149
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(III) Calculation of risk difference NRI using (‘event’, 

‘z.std’, ‘z.new’).

nribin(event= event, z.std = z.std, z.new = z.new, cut = c(0.2, 0.4), 

       niter = 100, updown = ‘category’)

##  

## STANDARD prediction model:

##                Estimate Std. Error    z value     Pr(>|z|) 

## (Intercept)  0.98927136 2.20809035  0.4480212 6.541379e-01 

## age          0.07128234 0.01988079  3.5854876 3.364490e-04 

## bili         0.61686651 0.10992947  5.6114755 2.006087e-08 

## albumin     -1.95859156 0.53031693 -3.6932473 2.214085e-04

##  

## NEW prediction model:

##                Estimate Std. Error    z value     Pr(>|z|) 

## (Intercept) -1.16682234 2.92204889 -0.3993165 6.896600e-01 

## age          0.06659224 0.02032242  3.2767864 1.049958e-03 

## bili         0.59995139 0.11022521  5.4429600 5.240243e-08 

## albumin     -1.88620553 0.53144647 -3.5491919 3.864153e-04 

## protime      0.20127560 0.18388726  1.0945598 2.737095e-01

##  

## UP and DOWN calculation:

##   #of total, case, and control subjects at t0:  232 88 144

##  

##   Reclassification Table for all subjects:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2    110     3      0 

##   < 0.4      3    30      0 

##   >= 0.4     0     2     84

##  

##   Reclassification Table for case:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2      7     0      0 

##   < 0.4      0     8      0 

##   >= 0.4     0     2     71

##  

##   Reclassification Table for control:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2    103     3      0 

##   < 0.4      3    22      0 

##   >= 0.4     0     0     13

##  

## NRI estimation:

## Point estimates:

##                  Estimate 

## NRI           -0.02272727 

## NRI+          -0.02272727 

## NRI-           0.00000000 

## Pr(Up|Case)    0.00000000 

## Pr(Down|Case)  0.02272727 

## Pr(Down|Ctrl)  0.02083333 

## Pr(Up|Ctrl)    0.02083333

##  

## Now in bootstrap……

##  

## Point & Interval estimates:

##                  Estimate  Std.Error       Lower      Upper 

## NRI           -0.02272727 0.03630980 -0.05063291 0.11288105 

## NRI+          -0.02272727 0.02303343 -0.05063291 0.03448276 

## NRI-           0.00000000 0.03004483 -0.02684564 0.07746479 

## Pr(Up|Case)    0.00000000 0.01763929  0.00000000 0.04878049 

## Pr(Down|Case)  0.02272727 0.02334453  0.00000000 0.08860759 

## Pr(Down|Ctrl)  0.02083333 0.03459169  0.00000000 0.12676056 

## Pr(Up|Ctrl)    0.02083333 0.01853583  0.00000000 0.05970149

(IV) Calculation of risk difference NRI using (‘mdl.std’, 

‘mdl.new’), updown = ‘diff’.

nribin(mdl.std= mstd, mdl.new = mnew, cut = 0.02, niter = 0, 

       updown = ‘diff’)

##  

## UP and DOWN calculation:

##   #of total, case, and control subjects at t0:  232 88 144

##   #of subjects with ‘p.new - p.std > cut’ for all, case, control: 34 17 17

##   #of subjects with ‘p.std - p.new < cut’ for all, case, control: 36 13 23

##  

## NRI estimation:

## Point estimates:

##                 Estimate 

## NRI           0.08712121 

## NRI+          0.04545455 

## NRI-          0.04166667 

## Pr(Up|Case)   0.19318182 

## Pr(Down|Case) 0.14772727 

## Pr(Down|Ctrl) 0.15972222 

## Pr(Up|Ctrl)   0.11805556

(V) Calculation of risk difference NRI using (‘event’, 

‘z.std’, ‘z.new’), updown = ‘diff’.

nribin(event= event, z.std = z.std, z.new = z.new, cut = 0.02,

       niter = 100, updown = ‘diff’)

##

## STANDARD prediction model:

##                Estimate Std. Error    z value     Pr(>|z|)

## (Intercept)  0.98927136 2.20809035  0.4480212 6.541379e-01

## age          0.07128234 0.01988079  3.5854876 3.364490e-04

## bili         0.61686651 0.10992947  5.6114755 2.006087e-08

## albumin     -1.95859156 0.53031693 -3.6932473 2.214085e-04

##

## NEW prediction model:

##                Estimate Std. Error    z value     Pr(>|z|)

## (Intercept) -1.16682234 2.92204889 -0.3993165 6.896600e-01

## age          0.06659224 0.02032242  3.2767864 1.049958e-03

## bili         0.59995139 0.11022521  5.4429600 5.240243e-08

## albumin     -1.88620553 0.53144647 -3.5491919 3.864153e-04

## protime      0.20127560 0.18388726  1.0945598 2.737095e-01

##

## UP and DOWN calculation:

##   #of total, case, and control subjects at t0:  232 88 144

##   #of subjects with ‘p.new - p.std > cut’ for all, case, control: 34 17 17

##   #of subjects with ‘p.std - p.new < cut’ for all, case, control: 36 13 23

##

## NRI estimation:

## Point estimates:

##                 Estimate

## NRI           0.08712121

## NRI+          0.04545455

## NRI-          0.04166667

## Pr(Up|Case)   0.19318182

## Pr(Down|Case) 0.14772727

## Pr(Down|Ctrl) 0.15972222
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## Pr(Up|Ctrl)   0.11805556

##

## Now in bootstrap..

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

##

## Point & Interval estimates:

##                 Estimate  Std.Error       Lower     Upper

## NRI           0.08712121 0.09606989 -0.02530364 0.3338028

## NRI+          0.04545455 0.04172751 -0.02941176 0.1279070

## NRI-          0.04166667 0.07033087 -0.02898551 0.2214765

## Pr(Up|Case)   0.19318182 0.09990415  0.00000000 0.3797468

## Pr(Down|Case) 0.14772727 0.07988383  0.00000000 0.2650602

## Pr(Down|Ctrl) 0.15972222 0.12260050  0.00000000 0.4140127

## Pr(Up|Ctrl)   0.11805556 0.06328156  0.00000000 0.2420382

(VI) Calculation of risk difference NRI using (‘event’, 

‘p.std’, ‘p.new’), updown = ‘diff’.

nribin(event= event, p.std = p.std, p.new = p.new, cut = 0.02, 

       niter = 100, updown = ‘diff’)

##  

## UP and DOWN calculation:

##   #of total, case, and control subjects at t0:  232 88 144

##   #of subjects with ‘p.new - p.std > cut’ for all, case, control: 34 17 17

##   #of subjects with ‘p.std - p.new < cut’ for all, case, control: 36 13 23

##  

## NRI estimation:

## Point estimates:

##                 Estimate 

## NRI           0.08712121 

## NRI+          0.04545455 

## NRI-          0.04166667 

## Pr(Up|Case)   0.19318182 

## Pr(Down|Case) 0.14772727 

## Pr(Down|Ctrl) 0.15972222 

## Pr(Up|Ctrl)   0.11805556

##  

## Now in bootstrap……

##  

## Point & Interval estimates:

##                 Estimate  Std.Error       Lower     Upper 

## NRI           0.08712121 0.07622661 -0.06506300 0.2364524 

## NRI+          0.04545455 0.06076779 -0.08602151 0.1666667 

## NRI-          0.04166667 0.04317476 -0.04444444 0.1205674 

## Pr(Up|Case)   0.19318182 0.03999520  0.11688312 0.2674419 

## Pr(Down|Case) 0.14772727 0.03670913  0.07142857 0.2278481 

## Pr(Down|Ctrl) 0.15972222 0.03103384  0.09615385 0.2237762 

## Pr(Up|Ctrl)   0.11805556 0.02604235  0.07407407 0.1703704

R code interpretation: the comparison of the predictive 

performance of two models. “cut” represents the cut-off 

value of predicted risk. Here we define two cut-off value, 

which stratifies the risk into three groups: low risk (0–20%), 
intermediate risk (20–40%) and high risk (40–100%). We 
convert the continuous variable to a categorical variable 

based on cut-off value of actual risk. “updown” is defined as 
how the predicted risk of one sample changes. “category” 

is categorical variable defined as low, intermediate and high 
risk. “diff” is a continuous value. When selected, “cut” is 

defined as one value, for example 0.02, which means that the 
difference of predicted risk between new and original model 

predicted risk more than 0.02 is defined as reclassification. 
“niter” is the number of iterations, namely number of 

resampling in bootstrap. The calculation of the standard 

error of NRI requires resampling method. If “niter” =0, 

standard error of NRI would not be calculated. Generally, 

set “niter” =1,000. If “niter” is too large, it takes a longer 

computing time and faster computing speed. However, the 

larger the “niter” is, the higher accuracy is. Significant level 
α is 0.05. 

Results are listed as below:

(I) Tables of all outcomes, positive outcomes and 

negative outcomes. In a predictive model, case 

means that outcome takes place, control means that 

outcome fails to take place.

##   Reclassification Table for all subjects:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2    110     3      0 

##   < 0.4      3    30      0 

##   >= 0.4     0     2     84

##  

##   Reclassification Table for case:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2      7     0      0 

##   < 0.4      0     8      0 

##   >= 0.4     0     2     71

##  

##   Reclassification Table for control:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2    103     3      0 

##   < 0.4      3    22      0 

##   >= 0.4     0     0     13

(II) Point estimation, standard error and confidence 
interval of NRI. Comparing to the original model, 

the proportion of correct reclassification improves 
−2.2727%. Incorporating a new variable reduces 
the predictive accuracy, the new model is worse 

than original model.
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##                  Estimate  Std.Error       Lower      Upper 

## NRI           -0.02272727 0.03093492 -0.04211382 0.08275862 

## NRI+          -0.02272727 0.02163173 -0.05376344 0.04950495 

## NRI-           0.00000000 0.02853621 -0.03571429 0.08333333 

## Pr(Up|Case)    0.00000000 0.01963109  0.00000000 0.06930693 

## Pr(Down|Case)  0.02272727 0.01939570  0.00000000 0.07142857 

## Pr(Down|Ctrl)  0.02083333 0.03822346  0.00000000 0.14503817 

## Pr(Up|Ctrl)    0.02083333 0.02285539  0.00000000 0.09160305

Outcome of survival data

[Case 3]

We use the same data with Case 2. The difference between 

NRI of survival data and NRI of categorical data is that 

the former needs to construct a cox regression model. So, 

we need to construct two cox models and calculate NRI of 

these two models.

R codes and its interpretation

Firstly, we load necessary packages and data.

Here consider pbc dataset in survival package as an 

example.

library(nricens) 

dat= pbc[1:312,] 

dat$sex= ifelse(dat$sex==‘f’, 1, 0)

predciting the event of ‘death’.

time= dat$time 

event= ifelse(dat$status==2, 1, 0)

standard prediction model: age, bilirubin, and albumin.

z.std= as.matrix(subset(dat, select = c(age, bili, albumin)))

new prediction model: age, bilirubin, albumin, and 

protime.

z.new= as.matrix(subset(dat, select = c(age, bili, albumin, protime)))

Using coxph() to construct cox regression model: mnew 

and mstd

mstd= coxph(Surv(time,event) ~ ., data.frame(time,event,z.std), x=TRUE) 

mnew= coxph(Surv(time,event) ~ ., data.frame(time,event,z.new), x=TRUE)

predicted risk at t0=2,000, predicted risk at the tome 

point of 2,000 days

p.std= get.risk.coxph(mstd, t0=2000) 

p.new= get.risk.coxph(mnew, t0=2000)

There are many ways to calculate risk categorical 

NRI. Readers could choose any one. The first method is 

recommended. 

(I) By the KM estimator using (‘mdl.std’, ‘mdl.new’).

nricens(mdl.std= mstd, mdl.new = mnew, t0 = 2000, cut = c(0.2, 0.4),

        niter = 100, updown = ‘category’)

##

## UP and DOWN calculation:

##   #of total, case, and control subjects at t0:  312 88 144

##

##   Reclassification Table for all subjects:

##         New

## Standard < 0.2 < 0.4 >= 0.4

##   < 0.2    139     7      1

##   < 0.4     17    72      6

##   >= 0.4     0     5     65

##

##   Reclassification Table for case:

##         New

## Standard < 0.2 < 0.4 >= 0.4

##   < 0.2      9     2      0

##   < 0.4      1    21      4

##   >= 0.4     0     0     51

##

##   Reclassification Table for control:

##         New

## Standard < 0.2 < 0.4 >= 0.4

##   < 0.2     92     4      1

##   < 0.4      9    29      2

##   >= 0.4     0     3      4

##

## NRI estimation by KM estimator:

##

## Point estimates:

##                 Estimate

## NRI           0.11028068

## NRI+          0.05123381

## NRI-          0.05904686

## Pr(Up|Case)   0.06348538

## Pr(Down|Case) 0.01225156

## Pr(Down|Ctrl) 0.09583016

## Pr(Up|Ctrl)   0.03678329

##

## Now in bootstrap……

##

## Point & Interval estimates:

##                 Estimate       Lower      Upper

## NRI           0.11028068 -0.05865007 0.20446631

## NRI+          0.05123381 -0.09480483 0.14708696

## NRI-          0.05904686 -0.01180288 0.11261994

## Pr(Up|Case)   0.06348538  0.01113699 0.16595888

## Pr(Down|Case) 0.01225156  0.00000000 0.15653476

## Pr(Down|Ctrl) 0.09583016  0.02631760 0.16468399

## Pr(Up|Ctrl)   0.03678329  0.01316053 0.08912133
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(II) By the KM estimator using (‘time’, ‘event’, ‘z.std’, 
‘z.new’).

nricens(time= time, event = event, z.std = z.std, z.new = z.new, 

        t0 = 2000, cut = c(0.2, 0.4), niter = 100, updown = ‘category’)

##  

## STANDARD prediction model (Cox model):

##                coef exp(coef)    se(coef)         z     Pr(>|z|) 

## age      0.03726683 1.0379699 0.009048925  4.118371 3.815600e-05 

## bili     0.13531179 1.1448937 0.013711323  9.868617 5.694436e-23 

## albumin -1.44611854 0.2354825 0.221997986 -6.514107 7.312356e-11

##  

## NEW prediction model (Cox model):

##                coef exp(coef)    se(coef)         z     Pr(>|z|) 

## age      0.03362675 1.0341985 0.009214173  3.649460 2.627925e-04 

## bili     0.12517886 1.1333511 0.014406820  8.688861 3.660902e-18 

## albumin -1.39395237 0.2480928 0.217046959 -6.422354 1.341831e-10 

## protime  0.28602917 1.3311313 0.070536400  4.055058 5.012193e-05

##  

## UP and DOWN calculation:

##   #of total, case, and control subjects at t0:  312 88 144

##  

##   Reclassification Table for all subjects:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2    139     7      1 

##   < 0.4     17    72      6 

##   >= 0.4     0     5     65

##  

##   Reclassification Table for case:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2      9     2      0 

##   < 0.4      1    21      4 

##   >= 0.4     0     0     51

##  

##   Reclassification Table for control:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2     92     4      1 

##   < 0.4      9    29      2 

##   >= 0.4     0     3      4

##  

## NRI estimation by KM estimator:

##  

## Point estimates:

##                 Estimate 

## NRI           0.11028068 

## NRI+          0.05123381 

## NRI-          0.05904686 

## Pr(Up|Case)   0.06348538 

## Pr(Down|Case) 0.01225156 

## Pr(Down|Ctrl) 0.09583016 

## Pr(Up|Ctrl)   0.03678329

##  

## Now in bootstrap……

##  

## Point & Interval estimates:

##                 Estimate       Lower      Upper 

## NRI           0.11028068 -0.03560702 0.20881092 

## NRI+          0.05123381 -0.08359649 0.11206601 

## NRI-          0.05904686 -0.01795177 0.13023171 

## Pr(Up|Case)   0.06348538  0.01955126 0.17904180 

## Pr(Down|Case) 0.01225156  0.00000000 0.19505939 

## Pr(Down|Ctrl) 0.09583016  0.02681223 0.20450527 

## Pr(Up|Ctrl)   0.03678329  0.01779895 0.09818359

(III) By the KM estimator using (‘time’,‘event’,‘p.std’,‘p.
new’).

nricens(time= time, event = event, p.std = p.std, p.new = p.new, 

        t0 = 2000, cut = c(0.2, 0.4), niter = 100, updown = ‘category’)

##  

## UP and DOWN calculation:

##   #of total, case, and control subjects at t0:  312 88 144

##  

##   Reclassification Table for all subjects:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2    139     7      1 

##   < 0.4     17    72      6 

##   >= 0.4     0     5     65

##  

##   Reclassification Table for case:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2      9     2      0 

##   < 0.4      1    21      4 

##   >= 0.4     0     0     51

##  

##   Reclassification Table for control:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2     92     4      1 

##   < 0.4      9    29      2 

##   >= 0.4     0     3      4

##  

## NRI estimation by KM estimator:

##  

## Point estimates:

##                 Estimate 

## NRI           0.11028068 

## NRI+          0.05123381 

## NRI-          0.05904686 

## Pr(Up|Case)   0.06348538 

## Pr(Down|Case) 0.01225156 

## Pr(Down|Ctrl) 0.09583016 

## Pr(Up|Ctrl)   0.03678329

##  

## Now in bootstrap……

##  

## Point & Interval estimates:

##                 Estimate        Lower      Upper 

## NRI           0.11028068  0.045766814 0.17347974 

## NRI+          0.05123381 -0.001867747 0.10493820 

## NRI-          0.05904686  0.013007633 0.10168702 

## Pr(Up|Case)   0.06348538  0.021802922 0.11136896 

## Pr(Down|Case) 0.01225156  0.000000000 0.03783913 

## Pr(Down|Ctrl) 0.09583016  0.056016704 0.13446013 

## Pr(Up|Ctrl)   0.03678329  0.018781733 0.05795319

(IV) Calculation of risk difference NRI by the KM 
estimator, updown = ‘diff’.
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nricens(mdl.std= mstd, mdl.new = mnew, t0 = 2000, updown = ‘diff’, 

        cut = 0.05, niter = 100)

##  

## UP and DOWN calculation:

##   #of total, case, and control subjects at t0:  312 88 144

##   #of subjects with ‘p.new - p.std > cut’ for all, case, control: 34 21 11

##   #of subjects with ‘p.std - p.new < cut’ for all, case, control: 40 12 8

##  

## NRI estimation by KM estimator:

##  

## Point estimates:

##                 Estimate 

## NRI           0.10070960 

## NRI+          0.05097223 

## NRI-          0.04973737 

## Pr(Up|Case)   0.22431499 

## Pr(Down|Case) 0.17334277 

## Pr(Down|Ctrl) 0.10859064 

## Pr(Up|Ctrl)   0.05885327

##  

## Now in bootstrap……

##  

## Point & Interval estimates:

##                 Estimate       Lower     Upper 

## NRI           0.10070960 -0.05948241 0.3051724 

## NRI+          0.05097223 -0.06240698 0.1771789 

## NRI-          0.04973737 -0.02707081 0.2263106 

## Pr(Up|Case)   0.22431499  0.06642735 0.3380647 

## Pr(Down|Case) 0.17334277  0.00000000 0.2792304 

## Pr(Down|Ctrl) 0.10859064  0.01470473 0.3250865 

## Pr(Up|Ctrl)   0.05885327  0.02707081 0.1276894

(V) Calculation of risk difference NRI by the IPW 
estimator, updown = ‘diff’.

nricens(mdl.std= mstd, mdl.new = mnew, t0 = 2000, updown = ‘diff’,

        cut = 0.05, point.method = ‘ipw’, niter= 100)

##

## UP and DOWN calculation:

##   #of total, case, and control subjects at t0:  312 88 144

##   #of subjects with ‘p.new - p.std > cut’ for all, case, control: 34 21 11

##   #of subjects with ‘p.std - p.new < cut’ for all, case, control: 40 12 8

##

## NRI estimation by IPW estimator:

##

## Point estimates:

##                  Estimate

## NRI            0.06361038

## NRI+           0.08444371

## NRI-          -0.02083333

## Pr(Up|Case)    0.22905909

## Pr(Down|Case)  0.14461537

## Pr(Down|Ctrl)  0.05555556

## Pr(Up|Ctrl)    0.07638889

##

## Now in bootstrap……

##

## Point & Interval estimates:

##                  Estimate       Lower     Upper

## NRI            0.06361038 -0.04977671 0.3115166

## NRI+           0.08444371 -0.01895903 0.2349312

## NRI-          -0.02083333 -0.06164384 0.1323529

## Pr(Up|Case)    0.22905909  0.09065899 0.3639325

## Pr(Down|Case)  0.14461537  0.01041488 0.2470408

## Pr(Down|Ctrl)  0.05555556  0.00000000 0.2695035

## Pr(Up|Ctrl)    0.07638889  0.03546099 0.1621622

The interpretation of R codes is the same with the NRI 

of dichotomous outcome mentioned above. 

Results are presented as below.

(I) Tables of all outcomes, positive outcomes and 

negative outcomes. In a predictive model, case 

means outcome takes place, control means that 

outcome fails to take place.

##   Reclassification Table for all subjects:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2    139     7      1 

##   < 0.4     17    72      6 

##   >= 0.4     0     5     65

##  

##   Reclassification Table for case:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2      9     2      0 

##   < 0.4      1    21      4 

##   >= 0.4     0     0     51

##  

##   Reclassification Table for control:

##         New 

## Standard < 0.2 < 0.4 >= 0.4 

##   < 0.2     92     4      1 

##   < 0.4      9    29      2 

##   >= 0.4     0     3      4

(II) Point estimation, standard error and confidence 
interval of NRI. Comparing to the original model, 

the proportion of correct reclassification improves 
11.028%. Incorporating a new variable improves 

the predictive accuracy, the new model is better 

than original model.

##                 Estimate       Lower      Upper 

## NRI           0.11028068 -0.05865007 0.20446631 

## NRI+          0.05123381 -0.09480483 0.14708696 

## NRI-          0.05904686 -0.01180288 0.11261994 

## Pr(Up|Case)   0.06348538  0.01113699 0.16595888 

## Pr(Down|Case) 0.01225156  0.00000000 0.15653476 

## Pr(Down|Ctrl) 0.09583016  0.02631760 0.16468399 

## Pr(Up|Ctrl)   0.03678329  0.01316053 0.08912133
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Brief summary

It is necessary to have a correct understanding of NRI. 

NRI and C-statistics evaluate the discrimination of models. 

Improvement of C-statistics sometimes is limited but NRI 

could significantly improves, which means that predictive 

performance of the new model improves significantly 

comparing to the original model. It should be noted that 

there is a little difference between R codes for dichotomous 

data and survival data. In this Section, we discuss the 

calculation of NRI. In the next Section, we will introduce 

the calculation theory and definition of another index, IDI.

Calculation method of IDI with R

Background

In the previous section about the principle and calculation 

methods of NRI, we compare AUC (also known as 

C-statistics) with NRI. NRI has two advantages:

(I) NRI is more sensitive than C-statistics/AUC 

derived from ROC (26);

(II) NRI is easier to understand in clinical practice 

when a cut-off value is given, for example, a cut-

off value of a diagnostic marker or cut-off values to 

stratify low risk, intermediate risk and high risk (27).

However, NRI has its disadvantages: NRI only considers 

performance improvement at one time point and fail to 

evaluate the overall improvement of a predictive model. 

Therefore, we could use another index: IDI (Integrated 

Discrimination Index) (40,41).

Some readers may ask: is AUC/C-statistics able 

to evaluate the overall improvement of a predictive 

model? To answer this question, we must go back to the 

limitation of AUC/C-statistics. If we must compare IDI 

with AUC/C-statistics, IDI is more sensitive and easier 

to understand in clinical practice. It should be noted that 

we could calculate AUC/C-statistics of one predictive 

model, but we could not calculate NRI or IDI of one 

predictive model. IDI and NRI are calculated from the 

comparison of two models. One model does not have IDI 

or NRI.

We don’t know whether the last paragraph makes 

sense to readers. But when we are dealing with difficult 

problems, we could put them aside and forget about 

the advantages and disadvantages of AUC/C-statistics, 

NRI and IDI. What we should remember is that when 

comparing diagnostic power of two markers or comparing 

two predictive models, we could use not only AUC/

C-statistics but also NRI and IDI, which could give a 

comprehensive perspective on how much the predictive 

performance improves.

Calculation principle of IDI

The formula of IDI reflects the difference between the 

predictive probability of two models (26,36). Therefore, 

IDI is calculated based on the predictive probability of each 

study object using given predictive models. The formula is:

IDI = (Pnew,events–Pold,events) – (Pnew,non-events – Pold,non-events)

Pnew,events, Pold,events are the average value of the predictive 

probability of each study object in disease group using 

the new model and the original model. Pnew,events-Pold,events 

represents the improvement of predictive probability. For 

disease group, the higher the probability of disease is, the 

more accurate the predictive model is. Therefore, the larger 

difference means that the new model is better.

Pnew,non-events, Pold,non-events means the average value of the 

predictive probability of each study object in healthy group 

using the new model and the original model. Pnew,non-events − 
Pold,non-events represents the reduction of predictive probability. 

For healthy group, the smaller the probability of disease is, 

the more accurate the predictive model is. Therefore, the 

smaller difference means that the new model is better.

At last, IDI is calculated by doing subtraction. In general, 

larger IDI means better predictive performance of the new 

model. Like NRI, If IDI >0, it means positive improvement, 

which indicates that new model has better predictive value 

comparing to original marker; If IDI <0, it means negative 
improvement, which indicates that new model has worse 

predictive value comparing to original marker; If IDI = 

0, it means no improvement. We could calculate z-score 

to determine whether the difference between new model 

and original model reaches a significant level. Z-score 

approximately obeys standard normal distribution. Formula 

for Z-score calculation is listed below.

2 2( ) ( )
events noevents

IDI
Z

SE SE

=
+  [3]

SEevents is the standard error of (Pnew,events − Pold,events). First, 

calculate predictive probability of each patient using new 

and original model in disease group and its difference. Then 

calculate standard error of the difference. SEnon-events is the 

standard error of (Pnew,non-events − Pold,non-events). First, calculate 

predictive probability of each patient using new and original 

model in healthy group and its difference. Then calculate 

standard error of the difference.
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Case study

Calculation of IDI

[Case 1]

Researchers want to evaluate the predictive value of two 

diagnostic markers for diabetes. Three diagnostic methods 

(gold standard test, diagnostic marker 1 and diagnostic 

marker2) are applied to 100 study objects. Data used in this 

case is available in appendix “diagnosisdata.csv”. Disease 

status predicted by gold standard test, diagnostic test1 and 

diagnostic test2 were listed, of which “gold” represented 

results of gold standard test (1= disease, 0= healthy); “t1” 

represented results of diagnostic test1 (1= positive, 0= 

negative); “t2” represented results of diagnostic test2 (1= 

positive, 0= negative). Readers could use formulas listed 

above. Here we use our own R codes to calculate IDI of two 

diagnostic tests. We have organized our data, renamed as 

“diagnosisdata.csv” and stored in current working directory. 

To make it easier for readers to practice, data and codes are 

available for download in appendix.

R codes and its interpretation

Because there is no function available for calculation of 

IDI, we need to define function named “IDIcalculate()” 

function based on the definition we describe above. Codes 
are presented below:

IDIcalculate=function(m1=“dia1”,m2=“dia2”,gold=“gold”){ 

  dataidi= dataidi [complete.cases(dataidi),] 

  for (i in 1:length(names(dataidi))){ 

    if(names(dataidi)[i]==m1)nm1=as.numeric(i) 

    if(names(dataidi)[i]==m2)nm2=as.numeric(i) 

    if(names(dataidi)[i]==gold)ngold=as.numeric(i) 

  } 

  if(names(table(dataidi[,ngold]))[1]!=“0” || 

     names(table(dataidi[,ngold]))[2]!=“1”) 

     stop(“reference standard value not 0 or 1”) 

  logit1=glm(dataidi[,ngold]~dataidi[,nm1], 

  family=binomial(link=‘logit’),data=dataidi) 

  dataidi$pre1=logit1$fitted.values 

  logit2=glm(dataidi[,ngold]~dataidi[,nm2], 

  family=binomial(link=‘logit’),data=dataidi) 

  dataidi$pre2=logit2$fitted.values 

  dataidi$predif=dataidi$pre1-dataidi$pre2 

  dataidi1=dataidi[dataidi[,ngold]==1,] 

  dataidi2=dataidi[dataidi[,ngold]==0,] 

  p1=mean(dataidi1$pre1) 

  p2=mean(dataidi1$pre2) 

  p3=mean(dataidi2$pre1) 

  p4=mean(dataidi2$pre2) 

  IDI=round(p1-p2-p3+p4,3) 

  z=IDI/sqrt(sd(dataidi1$predif)/length(dataidi1$predif)+ 

  sd(dataidi2$predif)/length(dataidi2$predif)) 

  z=round(as.numeric(z),3) 

  pvalue=round((1-pnorm(abs(z)))*2,3) 

  if(pvalue<0.001)pvalue=“<0.001” 

  result=paste(“IDI=“,IDI,”,z=“,z,”,p=“,pvalue,sep= ““) 

  return(result) 

}

Load case data to current working directory, load case 

data and set data format as data frame. Codes are presented 

below:

library(foreign) 

dignosisdata <- read.csv(“dignosisdata.csv”) 

dataidi=as.data.frame(dignosisdata) 

Using IDI calculation function IDIcalculate() to calculate 

IDI. Codes are presented below:

IDIcalculate(m1=“t1”,m2=“t2”,gold=“gold”)

## [1] “IDI=0.599,z=5.803,p=<0.001”

m1 is variable name of diagnostic test1, m2 is variable 

name of diagnostic test2 and gold is gold standard test. IDI 

is 0.599, IDI of diagnostic test1 is significantly higher than 
diagnostic test2.

IDI calculation of dichotomous outcome

[Case2]

Data used here is a dataset from mayo clinic which could 

be imported from “survival” package. Data contains clinical 

data and PBC status of 418 patients of which first 312 
patients participated in randomized trial and other were 

from cohort studies. We use data from the first 312 patients 
to predict survival status. “Status” is the outcome variable, 

“0” means censored, “1” means liver transplant, “2” means 

dead. But outcome of our study is dichotomous, therefore 

it requires data conversion. We construct a logistic model 

based on patients’ survival status. The detailed description 

of other variables is available using “?pbc”. R packages for 

IDI calculation were shown in Table 7.

R codes and its interpretation

Here consider pbc dataset in survival package as an example.

First, we load “survival” package and the dataset, then 

extract first 312 observations.
library(survival) 

dat=pbc[1:312,] 

dat$sex=ifelse(dat$sex==‘f’,1,0)

subjects censored before 2000 days are excluded.

dat=dat[dat$time>2000|(dat$time<2000&dat$status==2),]

predciting the event of ‘death’ before 2000 days.

event=ifelse(dat$time<2000&dat$status==2,1,0)

standard prediction model: age, bilirubin, and albumin.

z.std=as.matrix(subset(dat,select=c(age,bili,albumin)))

new prediction model: age, bilirubin, albumin, and 

protime.

z.new=as.matrix(subset(dat,select=c(age,bili,albumin,protime)))

glm() fit (logistic model)
mstd=glm(event~.,binomial(logit),data.frame(event,z.std),x=TRUE) 

mnew=glm(event~.,binomial(logit),data.frame(event,z.new),x=TRUE)
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Using PredictABEL package.
library(PredictABEL)

## Loading required package: Hmisc

## Loading required package: lattice

## Loading required package: Formula

## Loading required package: ggplot2

## Loading required package: ROCR

## Loading required package: gplots

## Loading required package: epitools

## Loading required package: PBSmodelling

##  

## ----------------------------------------------------------- 

## PBS Modelling 2.68.6 -- Copyright (C) 2005-2019 Fisheries and 

Oceans Canada 

##  

## A complete user guide ‘PBSmodelling-UG.pdf’ is located at  

## C:/Users/zzr/Documents/R/win-library/3.5/PBSmodelling/doc/PB-

Smodelling-UG.pdf 

##  

## Packaged on 2017-12-19 

## Pacific Biological Station, Nanaimo 

##  

## All available PBS packages can be found at 

## https://github.com/pbs-software 

## -----------------------------------------------------------

pstd<-mstd$fitted.values 

pnew<-mnew$fitted.values

use cbind() to add pre-defined variable “event” to data 

and rename as “dat_new”.
dat_new=cbind(dat,event)

Calculate NRI and IDI. IDI is irrelevant to cut-off 

value. cOutcome is the column index for outcome variable. 

Furthermore, predrisk1, predrisk2 are the original and new 

model, respectively.

reclassification(data=dat_new,cOutcome=21,

                 predrisk1=pstd,predrisk2=pnew,

                 cutoff=c(0,0.2,0.4,1))

##  _________________________________________

##  

##      Reclassification table    

##  _________________________________________

##

##  Outcome: absent

##   

##              Updated Model

## Initial Model [0,0.2) [0.2,0.4) [0.4,1]  % reclassified

##     [0,0.2)       103         3       0               3

##     [0.2,0.4)       3        22       0              12

##     [0.4,1]         0         0      13               0

##

##  

##  Outcome: present

##   

##              Updated Model

## Initial Model [0,0.2) [0.2,0.4) [0.4,1]  % reclassified

##     [0,0.2)         7         0       0               0

##     [0.2,0.4)       0         8       0               0

##     [0.4,1]         0         2      71               3

##

##  

##  Combined Data

##   

##              Updated Model

## Initial Model [0,0.2) [0.2,0.4) [0.4,1]  % reclassified

##     [0,0.2)       110         3       0               3

##     [0.2,0.4)       3        30       0               9

##     [0.4,1]         0         2      84               2

##  _________________________________________

##
##  NRI(Categorical) [95% CI]: −0.0227 [ -0.0683 to 0.0229]; P value: 

0.32884
##  NRI(Continuous) [95% CI]: 0.0391 [−0.2238 to 0.3021]; P value: 

0.77048
##  IDI [95% CI]: 0.0044 [−0.0037 to 0.0126]; P value: 0.28396

IDI is 0.0044, indicating that new model improves 0.44% 

comparing to original model.

IDI of survival outcome data

[Case 3]

Data used here is the same data with case 2. The data is 

from mayo clinic which could be imported from “survival” 

package. Data contains clinical data and PBC status of 
418 patients of which first 312 patients participated in 

randomized trial and other were from cohort studies. We 

use data from the first 312 patients to predict survival status. 
“Status” is the outcome variable, “0” means censored, “1” 

means liver transplant, “2” means dead. But outcome of our 

study is dichotomous, therefore it requires data conversion. 

We construct a logistic model based on patients’ survival 

status. The detailed description of other variables is 

available using “?pbc”.

R codes and its interpretation

Here consider pbc dataset in survival package as an example.

Table 7 R packages for IDI calculation (37)

R packages Download Categorical outcome Survival outcome

PredictABEL CRAN reclassification() function Not available

survIDINRI CRAN Not available IDI.INF() function

IDI, integrated discrimination improvement.
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First, we load “survival” package and the dataset, then 

extract first 312 observations.

library(survival) 

dat=pbc[1:312,] 

dat$time=as.numeric(dat$time)

Define survival outcome. Define “dead” as endpoint.

dat$status=ifelse(dat$status==2,1, 0)

Define survival outcome. Define “dead” as endpoint.
dat$status=ifelse(dat$status==2,1, 0)

Define time point.
t0=365*5

Construct a basic matrix containing regression model 

variables.
indata0 = as.matrix(subset(dat,select=c(time,status,age,bili,albumin)))

Construct a new matrix adding one new regression 

model variable.
indata1 = as.matrix(subset(dat,select=c(time,status,age,bili,albumin,protime)))

Variable matrix in basic regression models
covs0<-as.matrix(indata0[,c(-1,-2)])

Variable matrix in the new regression models.
covs1<-as.matrix(indata1[,c(-1,-2)])

dat[,2:3] is the survival outcome. The second column and 

third column are the survival time and status, respectively. 

covs0,covs1 are the original and new variable matrix, 

respectively. t0 is the time point. npert is the number of 

iteration. Calculation result of IDI is listed below:
library(survIDINRI)

## Loading required package: survC1

x<-IDI.INF(dat[,2:3],covs0, covs1, t0, npert=100) 

IDI.INF.OUT(x)

##     Est.  Lower Upper p-value 

## M1 0.025 -0.001 0.055   0.079 

## M2 0.226 -0.057 0.401   0.079 

## M3 0.012 -0.002 0.036   0.079

IDI is 0.025, indicating that predictive performance 
of new model improves 2.5% comparing to the original 

model.

Furthermore, the result is illustrated as (Figure 15):
IDI.INF.GRAPH(x)

Brief summary

We introduce AUC, NRI, IDI and DCA in evaluating and 

comparing predictive performance of two models in a series 

of articles. These indices reflect the predictive performance 
from different angles. Here we do a summary of the three 

indices.

(I) AUC/C-statistic derived from ROC analysis 

is the classic method and the foundation of 

discrimination evaluation. Although NRI and IDI 

were recently developed and highly recommended, 

AUC/C-statistic still is the basic method to 

evaluate predictive performance improvement 

of two models. Of course, we recommend that 

C-Statistics/AUC, NRI and IDI should all be 

calculated. It would be perfect if DCA analysis is 

also available. But Done is better than perfect.

(II) If the outcome variable is a multiple categorical 

variable, for example, low risk, intermediate risk 

and high risk, NRI and IDI are better. AUC/

C-statistic is more complicated and harder to 

explain which we have discussed before.

(III) The calculation of NRI is related to the cut-

off point. If the cut-off point is too high or the 

number of cut-off point is too low, NRI could be 

underestimated and failed to reach a significant 

level. If the cut-off point is too low or the 

number of cut-off point is too large, NRI could 

be overestimated in clinical practice. Therefore, 

setting the cut-off value is important for NRI 

calculation. It is necessary to set the correct cut-off 

point based on clinical need. If the cut-off point is 

too hard to determine, IDI and AUC are better. If 

cut-off value could be determined, NRI is better.

(IV) Using DCA in clinical utility analysis is the icing on the 

cake. DCA is not the only method to do clinical utility 

analysis which we will discuss in the next Section.

In addition, we need to consider a question which could 

be easily neglected. After adding a new marker, the new 

model is more complicated than the original model. Is the 

complicated model acceptable? Is the new marker accessible? 

Is the new marker convenient? Everything has its pros and 

cons. Researchers need make a decision between model 

improvement and the cost of adding a new marker.

Figure 15 The comparison of two models.
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Decision Curve Analysis for Binary Outcome with R

Background

In the previous sections we have explored the C-Statistics 

(i.e., AUC, the area under the ROC curve) that evaluates 

the discrimination of a predictive model. But is it good 

enough? The answer is: no best, only better. For example, 

predicting whether a patient is ill by a continuous index 

has a certain probability of false positive and false negative 

regardless of which value is selected as the cutoff value. 

Since neither of these situations can be avoided, we will start 

from the original motivation of constructing the predictive 

model and try to find a model that predicts the greatest net 
benefit. but how do we can calculate the net benefit of this 
forecast? 

In 2006, Andrew Vickers  et al. who working for 

Memorial Sloan-Kettering Cancer Center invented a new 
calculation method called Decision Curve Analysis (DCA) 

(42-44). Compared with the ROC analysis that was born 

during the Second World War, DCA is obviously still 

“innocent“, but “green out of blue, and better than blue“, 

many top medical journal, such as Ann Intern Med, JAMA, 

BMJ, J Clin Oncol and others have encouraged to use DCA 

decision curve analysis method (45). Then how to draw an 
attractive Decision Curve Analysis?

Statisticians always firstly think of using R to implement 

new algorithms. In fact, this is true. The DCA algorithm 

based on R language was firstly announced, followed by SAA 

and Stata-based DCA algorithms. Kerr et al. also created a R 

packagepackage called DecisionCurve for the implementation 

of the decision curve method which cannot be downloaded in 

the CRAN official website. All the functions of the original 

DecisionCurve package have been integrated into the rmda 

package. So, when you need to draw the decision curve, you 

just have to install the rmda package in R (46). The tutorial 

on how to install the DecisionCurve package in the new 

version of R software on the Internet is not appropriate (47). 

 The correct way is to install the rmda package directly. Below 

we will focus on the method of drawing DCA curves, and do 

not explain too much complicated statistical principles.

Case study

Dichotomous Outcome

[Case 1]

The data is a subset of the famous Framingham Heart 

Study data set from the NHLBI (National Heart, Lung, 

and Blood Institute), containing 4,699 samples and 10 

variables. The independent variables include sex (sex), SBP, 
diastolic blood pressure (DBP), serum cholesterol (SCL), 
age (age), body mass index (BMI), etc., and the dependent 

variable is CHD-related death event (chdfate). In this case, 

the dependent variable was a two-category variable with a 

death of 1 and no death of 0 during the follow-up period. 

The data structure is shown in Table 8. We sorted out and 

named it ‘Framingham.csv’ which is stored in the current 

Table 8 A subset of the Framingham Heart Study dataset (only the top 10 observations are listed)

ID Sex SBP (mmHg) DBP (mmHg) SCL (mmol/L) Chdfate Follow up (days) Age (years) BMI (kg/m
2
) Month

1 1 106 68 239 0 7,345 60 22.9 1

2 1 118 78 252 1 1,765 46 22 1

3 2 135 85 284 0 11,545 49 30.6 1

4 2 154 92 196 0 11,688 52 36.1 1

5 1 162 102 275 0 6,039 55 29.3 1

6 2 136 66 313 0 9,436 62 25.4 1

7 1 140 95 245 0 11,688 50 29.5 1

8 1 112 68 210 0 11,688 37 25.2 1

9 2 168 96 190 0 11,688 47 27.2 1

10 2 114 78 245 1 5,302 45 28.6 1

…

ID, serial number; SBP, systolic blood pressure; DBP, diastolic blood pressure; SCL, serum cholesterol; BMI, body mass index.
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working path of the R software. For the convenience of the 

reader, data and code readers can be downloaded from the 

attachments in this section.

[Case 1] Interpretation

We will use the [Case 1] dataset CHD-related death event 

(chdfate) to establish two logistic regression models for the 

outcome variable to demonstrate the DCA curve method. 

One is a simple logistic regression model (simple) with 

SCL as a predictor, outcome for CHD-related deaths 

(outcome); the other is a multivariate logistic regression 

model (complex), in which gender, age, BMI, SCL, SBP 
were predictors, and DBP, and CHD-related death events 
were outcomes (outcome).

R codes and its interpretation

Load the rmda package (you need to install it in advance) 

and then load the data.

install.packages(“rmda”) 

library(rmda)

Data<-read.csv(‘Framingham.csv’,sep = ‘,’)

DCA model construction. We firstly build a simple 

model using the decision_curve() function, named  simple.
simple<- decision_curve(chdfate~scl,data = Data,  

                        family = binomial(link =‘logit’), 

                        thresholds= seq(0,1, by = 0.01), 

                        confidence.intervals = 0.95, 

                        study.design = ‘case-control’, 

                        population.prevalence = 0.3)

## Calculating net benefit curves for case-control data. All calculations 

are done conditional on the outcome prevalence provided.

R Code interpretation: In the decision_curve() function, 
family=binomial(link=‘logit’) uses Logistic regression to fit 
the model. The threshold sets the threshold of the abscissa 

threshold probability, which is generally 0–1; but if there 
is a specific situation, everyone agrees that the threshold 

probability is above a certain value, such as 40%, then 

intervention must be taken, then the study after 0.4 doesn’t 

make sense, it can be set to 0–0.4. By is the calculation of a 
data point every other distance. “study.design” can set the 

type of research, whether it is “cohort” or “case-control”. 

When the research type is “case-control“, the “population.

prevalance” parameter should also be added, because in the 

case-control study the prevalence rate cannot be calculated 

and needs to be provided in advance. 

Then we use the decision_curve() function to construct 
a complex logistic regression model and name it complex. 

The syntax and simple model construction are basically the 

same, it only add the independent variable SBP + DBP + 
age + BMI + sex on the basis of the original simple model.

complex<-decision_curve(chdfate~scl+sbp+dbp+age+bmi+sex, 

                        data = Data,family = binomial(link =‘logit’),  

                        thresholds = seq(0,1, by = 0.01), 

                        confidence.intervals= 0.95, 

                        study.design = ‘case-control’, 

                        population.prevalence = 0.3)

## Calculating net benefit curves for case-control data. All calculations 

are done conditional on the outcome prevalence provided.

## Note:  The data provided is used to both fit a prediction model and 

to estimate the respective decision curve. This may cause bias in deci-

sion curve estimates leading to over-confidence in model performance.

We combine the fitted simple and complex models into a 
single model and name it List.

List<- list(simple,complex)

We use the plot_decision_curve() function to plot the 
DCA curve, as shown in Figure 16 below.

plot_decision_curve(List, 

                    curve.names=c(‘simple’,’complex’), 

                    cost.benefit.axis =FALSE,col= c(‘red’,’blue’), 

                    confidence.intervals=FALSE, 

                    standardize = FALSE)

## Note: When multiple decision curves are plotted, decision curves for 

‘All’ are calculated using the prevalence from the first DecisionCurve 

object in the list provided.

Code interpretation: The object of the plot_decision_
curve() function is the List defined earlier. If you only draw 
one curve, you can directly replace the List with simple 

or complex. Curve.names is the name of each curve on 

the legend when the plot is drawn. The order of writing 

is the same as when the List is synthesized above. “cost.

benefit.axis” is an additional axis of abscissa, loss-to-return 
ratio, the default value is TRUE. When you don’t need it 

remember to set to FALSE. col sets the colors. “confidence.
intervals” sets whether to plot the confidence interval of 

the curve, and the standardize set whether corrects the net 

benefit rate (NB) by using prevalence rate .The DCA curve 
is shown in Figure 16 below. 

Curve interpretation: It can be seen that the net benefit 
rate of the complex model is higher than the simple model 

with the threshold in the range of 0.1–0.5.
You can view the data points on the complex model 

curve by the command shown below, where NB can also be 

changed to sNB, indicating a standardized prevalence. 

summary(complex,measure = ‘NB’)

##

## Net Benefit (95% Confidence Intervals):
## ----------------------------------------------------------------------------------------

---------------
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##    risk      cost:benefit       percent               All           chdfate ~ scl + sbp 

+ dbp +   None
##  threshold      ratio          high risk                                  age + bmi + sex              
## ----------- -------------- ------------------ -------------------- ----------------------

------- ------
##      0           0:1              100                 0.3                       0.3                0   

##                                (100, 100)          (0.3, 0.3)               (0.3, 0.3)                 

##

##    0.01          1:99             100                0.293                     0.293               0   

##                                (100, 100)        (0.293, 0.293)           (0.293, 0.293)               

##

##    0.02          1:49             100                0.286                     0.286               0   

##                                (100, 100)        (0.286, 0.286)           (0.286, 0.286)               

##

##    0.03          3:97             100                0.278                     0.278               0   

##                                (100, 100)        (0.278, 0.278)           (0.278, 0.278)               

##

##    0.04          1:24             100                0.271                     0.271               0   

##                                (100, 100)        (0.271, 0.271)           (0.271, 0.271)               

##

##    0.05          1:19             100                0.263                     0.263               0   

##                              (99.934, 100)       (0.263, 0.263)           (0.263, 0.263)               

##

##    0.06          3:47            99.978              0.255                     0.255               0   

##                               (99.54, 100)       (0.255, 0.255)           (0.255, 0.256)               

##

##    0.07          7:93            99.693              0.247                     0.248               0   

##                              (98.642, 100)       (0.247, 0.247)           (0.247, 0.248)               

##

##    0.08          2:23            98.949              0.239                     0.24                0   

##                             (97.445, 99.825)     (0.239, 0.239)           (0.239, 0.241)               

##

##    0.09          9:91            97.86               0.231                     0.232               0   

##                             (95.326, 99.255)     (0.231, 0.231)           (0.231, 0.233)               

##

##     0.1          1:9             96.157              0.222                     0.224               0   

##                             (92.945, 98.363)     (0.222, 0.222)           (0.222, 0.225)               

##

##    0.11         11:89            93.614              0.213                    0.215             0   

##                             (90.461, 96.858)     (0.213, 0.213)           (0.213, 0.217)               

##

##    0.12          3:22            91.313              0.205                     0.207             0   

##                             (87.96, 94.751)      (0.205, 0.205)           (0.204, 0.209)               

##

##    0.13         13:87            88.988              0.195                    0.199              0   

##                             (85.309, 92.537)     (0.195, 0.195)           (0.195, 0.202)               

##

##    0.14          7:43            86.193              0.186                     0.19                0   

##                             (82.712, 90.106)     (0.186, 0.186)           (0.187, 0.195)               

##

##    0.15          3:17            83.689              0.176                     0.183               0   

##                             (80.382, 87.386)     (0.176, 0.176)           (0.178, 0.188)               

##

##    0.16          4:21            81.212              0.167                     0.177               0   

##                             (77.951, 84.785)     (0.167, 0.167)           (0.171, 0.181)               

##

##    0.17         17:83            78.835              0.157                    0.168              0   

##                             (75.652, 82.146)     (0.157, 0.157)           (0.163, 0.174)               

##

##    0.18          9:41            76.293              0.146                     0.162               0   

##                             (73.477, 79.47)      (0.146, 0.146)           (0.156, 0.167)               

##

##    0.19         19:81            74.008              0.136                    0.153              0   

##                             (71.329, 76.836)     (0.136, 0.136)            (0.148, 0.16)               

##

##     0.2          1:4             71.688              0.125                     0.147               0   

##                             (69.236, 74.339)     (0.125, 0.125)            (0.14, 0.153)               

##

##    0.21         21:79            69.788              0.114                     0.14                0   

##                             (67.08, 72.032)      (0.114, 0.114)           (0.133, 0.146)               

##

##    0.22         11:39            67.306              0.103                    0.132              0   

##                             (64.864, 69.575)     (0.103, 0.103)            (0.125, 0.14)               

##

##    0.23         23:77            64.688              0.091                    0.127              0   

##                             (62.591, 66.991)     (0.091, 0.091)           (0.119, 0.134)               

##

##    0.24          6:19            62.144              0.079                     0.12                0   

##                             (60.342, 64.518)     (0.079, 0.079)           (0.112, 0.127)               

##

##    0.25          1:3             59.955              0.067                     0.112               0   

##                             (57.98, 61.787)      (0.067, 0.067)           (0.105, 0.121)               

##

##    0.26         13:37            57.347              0.054                    0.106              0   

##                             (55.559, 59.03)      (0.054, 0.054)           (0.097, 0.114)               

##

##    0.27         27:73            54.863              0.041                    0.101              0   

##                             (53.238, 56.423)     (0.041, 0.041)            (0.091, 0.11)               

##

##    0.28          7:18            52.376              0.028                     0.094               0   

##                             (50.897, 53.582)     (0.028, 0.028)           (0.085, 0.104)               

##

##    0.29         29:71            49.858              0.014                    0.089              0   

##                             (48.583, 50.975)     (0.014, 0.014)            (0.08, 0.099)               

##

##     0.3          3:7             47.593                0                       0.085               0   

##                             (46.159, 48.495)         (0, 0)               (0.074, 0.094)               

##

##    0.31         31:69            45.269              -0.014                   0.081              0   

##                             (43.803, 45.921)    (-0.014, -0.014)          (0.069, 0.089)               

##

##    0.32          8:17            42.553              -0.029                    0.074               0   

##                             (41.151, 43.664)    (-0.029, -0.029)          (0.064, 0.084)               

##
##    0.33         33:67            40.116              -0.045                    0.067               

0   
##                             (38.415, 41.213)    (-0.045, -0.045)          (0.058, 0.079)               

##

##    0.34         17:33            37.606              -0.061                   0.063              0   

##                             (35.906, 38.807)    (-0.061, -0.061)          (0.052, 0.074)               

##

##    0.35          7:13            35.265              -0.077                    0.061               0   

##                             (33.534, 36.323)    (-0.077, -0.077)           (0.047, 0.07)               

##

##    0.36          9:16            32.631              -0.094                    0.052               0   

##                             (31.053, 33.978)    (-0.094, -0.094)          (0.042, 0.064)               

##

##    0.37         37:63            30.369              -0.111                   0.047              0   

##                             (28.804, 31.907)    (-0.111, -0.111)          (0.037, 0.059)               

##

##    0.38         19:31            28.493              -0.129                   0.042              0   

##                             (26.305, 29.854)    (-0.129, -0.129)          (0.033, 0.053)               

Figure 16 DCA curve.
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##

##    0.39         39:61            26.291              -0.148                   0.039              0   

##                             (23.833, 27.888)    (-0.148, -0.148)           (0.029, 0.05)               

##

##     0.4          2:3             23.955              -0.167                    0.033               0   

##                             (21.694, 26.108)    (-0.167, -0.167)          (0.025, 0.046)               

##

##    0.41         41:59            21.882              -0.186                   0.032              0   

##                             (19.315, 24.116)    (-0.186, -0.186)          (0.022, 0.042)               

##

##    0.42         21:29            19.857              -0.207                   0.029              0   

##                             (17.633, 22.252)    (-0.207, -0.207)          (0.019, 0.039)               

##

##    0.43         43:57            18.012              -0.228                   0.024              0   

##                             (15.693, 20.393)    (-0.228, -0.228)          (0.016, 0.035)               

##

##    0.44         11:14            16.516              -0.25                     0.023               0   

##                             (13.87, 18.639)      (-0.25, -0.25)           (0.014, 0.033)               

##

##    0.45          9:11            14.627              -0.273                    0.02                0   

##                             (12.272, 17.113)    (-0.273, -0.273)           (0.011, 0.03)               

##

##    0.46         23:27            13.231              -0.296                   0.017              0   

##                             (10.941, 15.746)    (-0.296, -0.296)          (0.008, 0.027)               

##

##    0.47         47:53            11.773              -0.321                   0.013              0   

##                             (9.638, 14.269)     (-0.321, -0.321)          (0.006, 0.026)               

##

##    0.48         12:13            10.539              -0.346                   0.012              0   

##                             (8.543, 12.927)     (-0.346, -0.346)          (0.004, 0.023)               

##

##    0.49         49:51            9.527               -0.373                    0.008               0   

##                             (7.619, 11.888)     (-0.373, -0.373)          (0.002, 0.022)               

##

##     0.5          1:1             8.659                -0.4                     0.007               0   

##                             (6.723, 10.626)       (-0.4, -0.4)            (0.001, 0.019)               

##

##    0.51         51:49             7.72               -0.429                    0.007               0   

##                              (5.948, 9.702)     (-0.429, -0.429)          (-0.001, 0.016)              

##

##    0.52         13:12            6.913               -0.458                    0.007               0   

##                              (5.233, 8.775)     (-0.458, -0.458)          (-0.001, 0.015)              

##

##    0.53         53:47             6.26               -0.489                    0.005               0   

##                              (4.586, 8.03)      (-0.489, -0.489)          (-0.002, 0.013)              

##

##    0.54         27:23            5.457               -0.522                    0.004               0   

##                              (3.973, 7.172)     (-0.522, -0.522)          (-0.003, 0.012)              

##

##    0.55          11:9            4.796               -0.556                    0.005               0   

##                              (3.426, 6.514)     (-0.556, -0.556)          (-0.004, 0.011)              

##

##    0.56         14:11            4.207               -0.591                    0.004               0   

##                              (2.879, 5.758)     (-0.591, -0.591)          (-0.004, 0.01)               

##

##    0.57         57:43             3.85               -0.628                    0.002               0   

##                              (2.372, 5.279)     (-0.628, -0.628)          (-0.005, 0.009)              

##

##    0.58         29:21            3.348               -0.667                      0                 0   

##                              (2.005, 4.736)     (-0.667, -0.667)          (-0.005, 0.008)              

##

##    0.59         59:41            2.759               -0.707                   -0.001               0   

##                              (1.578, 4.318)     (-0.707, -0.707)          (-0.005, 0.007)              

##

##     0.6          3:2             2.272               -0.75                       0                 0   

##                              (1.303, 3.831)      (-0.75, -0.75)           (-0.006, 0.006)              

##

##    0.61         61:39            1.829               -0.795                      0                 0   

##                              (1.07, 3.445)      (-0.795, -0.795)          (-0.006, 0.005)              

##

##    0.62         31:19            1.619               -0.842                   -0.001               0   

##                              (0.817, 3.005)     (-0.842, -0.842)          (-0.005, 0.005)              

##

##    0.63         63:37            1.241               -0.892                   -0.001               0   

##                              (0.668, 2.544)     (-0.892, -0.892)          (-0.006, 0.004)              

##

##    0.64          16:9             1.05               -0.944                      0                 0   

##                              (0.525, 2.202)     (-0.944, -0.944)          (-0.005, 0.004)              

##

##    0.65          13:7            0.924                 -1                     -0.001               0   

##                              (0.415, 1.813)         (-1, -1)              (-0.005, 0.004)              

##

##    0.66         33:17            0.775               -1.059                      0                 0   

##                              (0.316, 1.515)     (-1.059, -1.059)          (-0.004, 0.004)              

##

##    0.67         67:33            0.566               -1.121                      0                 0   

##                              (0.253, 1.277)     (-1.121, -1.121)          (-0.004, 0.003)              

##

##    0.68          17:8             0.44               -1.188                      0                 0   

##                              (0.23, 1.085)      (-1.188, -1.188)          (-0.004, 0.003)              

##

##    0.69         69:31            0.399               -1.258                   -0.001               0   

##                              (0.167, 0.905)     (-1.258, -1.258)          (-0.004, 0.002)              

##

##     0.7          7:3             0.358               -1.333                   -0.002               0   

##                              (0.126, 0.734)     (-1.333, -1.333)          (-0.004, 0.002)              

##

##    0.71         71:29            0.295               -1.414                   -0.002               0   

##                              (0.085, 0.605)     (-1.414, -1.414)          (-0.004, 0.002)              

##

##    0.72          18:7            0.211                -1.5                    -0.001               0   

##                              (0.064, 0.56)        (-1.5, -1.5)            (-0.004, 0.002)              

##

##    0.73         73:27            0.168               -1.593                   -0.001               0   

##                              (0.061, 0.474)     (-1.593, -1.593)          (-0.003, 0.002)              

##

##    0.74         37:13            0.146               -1.692                      0                 0   

##                              (0.041, 0.401)     (-1.692, -1.692)          (-0.004, 0.002)              

##

##    0.75          3:1             0.146                -1.8                       0                 0   

##                              (0.041, 0.329)       (-1.8, -1.8)            (-0.003, 0.002)              

##

##    0.76          19:6            0.105               -1.917                   -0.001               0   

##                              (0.02, 0.292)      (-1.917, -1.917)          (-0.003, 0.001)              

##

##    0.77         77:23            0.105               -2.043                   -0.001               0   

##                              (0.02, 0.246)      (-2.043, -2.043)          (-0.003, 0.001)              

##

##    0.78         39:11            0.083               -2.182                      0                 0   

##                              (0.02, 0.212)      (-2.182, -2.182)          (-0.003, 0.001)              

##

##    0.79         79:21            0.083               -2.333                      0                 0   

##                                (0, 0.206)       (-2.333, -2.333)          (-0.002, 0.001)              

##

##     0.8          4:1             0.061                -2.5                     0.001               0   

##                                (0, 0.168)         (-2.5, -2.5)            (-0.002, 0.001)              

##

##    0.81         81:19            0.061               -2.684                    0.001               0   

##                                (0, 0.164)       (-2.684, -2.684)          (-0.002, 0.001)              

##

##    0.82          41:9            0.061               -2.889                    0.001               0   

##                                (0, 0.143)       (-2.889, -2.889)          (-0.002, 0.001)              

##

##    0.83         83:17            0.061               -3.118                    0.001               0   

##                                (0, 0.143)       (-3.118, -3.118)          (-0.001, 0.001)              

##

##    0.84          21:4            0.061               -3.375                    0.001               0   

##                                (0, 0.123)       (-3.375, -3.375)          (-0.001, 0.001)              

##

##    0.85          17:3            0.041               -3.667                      0                 0   

##                                (0, 0.123)       (-3.667, -3.667)            (0, 0.001)                 

##

##    0.86          43:7            0.041                 -4                        0                 0   

##                                (0, 0.123)           (-4, -4)                (0, 0.001)                 

##

##    0.87         87:13              0                 -4.385                      0                 0   
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##                                (0, 0.123)       (-4.385, -4.385)            (0, 0.001)                 

##

##    0.88          22:3              0                 -4.833                      0                 0   

##                                (0, 0.102)       (-4.833, -4.833)            (0, 0.001)                 

##

##    0.89         89:11              0                 -5.364                      0                 0   

##                                (0, 0.082)       (-5.364, -5.364)            (0, 0.001)                 

##

##     0.9          9:1               0                   -6                        0                 0   

##                                (0, 0.061)           (-6, -6)                (0, 0.001)                 

##

##    0.91          91:9              0                 -6.778                      0                 0   

##                                (0, 0.041)       (-6.778, -6.778)              (0, 0)                   

##

##    0.92          23:2              0                 -7.75                       0                 0   

##                                  (0, 0)          (-7.75, -7.75)               (0, 0)                   

##

##    0.93          93:7              0                   -9                        0                 0   

##                                  (0, 0)             (-9, -9)                  (0, 0)                   

##

##    0.94          47:3              0                -10.667                      0                 0   

##                                  (0, 0)        (-10.667, -10.667)             (0, 0)                   

##

##    0.95          19:1              0                  -13                        0                 0   

##                                  (0, 0)            (-13, -13)                 (0, 0)                   

##

##    0.96          24:1              0                 -16.5                       0                 0   

##                                  (0, 0)          (-16.5, -16.5)               (0, 0)                   

##

##    0.97          97:3              0                -22.333                      0                 0   

##                                  (0, 0)        (-22.333, -22.333)             (0, 0)                   

##

##    0.98          49:1              0                  -34                        0                 0   

##                                  (0, 0)            (-34, -34)                 (0, 0)                   

##

##    0.99          99:1              0                  -69                        0                 0   

##                                  (0, 0)            (-69, -69)                 (0, 0)                   

##

##      1          Inf:1              0                   NA                       NA                 NA  

##                                  (0, 0)             (NA, NA)                 (NA, NA)                  
## ----------------------------------------------------------------------------------------

---------------
summary(complex,measure = ‘sNB’)

The result has been omitted.

Draw a clinical impact curve.

We use the plot_clinical_impact() function to plot the 
clinical impact curve of the simple model. Use the simple 

model to predict the risk stratification of 1,000 people, 

display the “loss: benefit” axis, assign 8 scales, display the 

confidence interval, and get the result shown in Figure 17.

plot_clinical_impact(simple, population.size = 1000, 

                     cost.benefit.axis = T, 

                     n.cost.benefits = 8, 

                     col = c(‘red’,’blue’), 

                     confidence.intervals = T, 

                     ylim = c(0,1000), 

                     legend.position =“topright”)

We continue to use the plot_clinical_impact() function 
to plot the clinical impact curve of the complex model. 

Use the complex model to predict the risk stratification of 
1,000 people, display the “loss: benefit” axis, assign 8 scales, 
display the confidence interval, as shown in Figure 18.

plot_clinical_impact(complex, population.size = 1000, 

                     cost.benefit.axis = T,  

                     n.cost.benefits = 8,col = c(‘red’,’blue’), 

                     confidence.intervals = T, 

                     ylim = c(0,1000), 

                     legend.position =“topright”)

Curve interpretation: the red curve (number of high risk) 

indicates the number of people classified as positive (high 

risk) by the simple model (Figure 17) or the complex model 

(Figure 18) at each threshold probability; the blue curve 

[(number high) risk with outcome] is the number of true 

Figure 17 Clinical impact curve of simple model.

Figure 18 Clinical impact curve of complex model.
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positives for each threshold probability.

Survival outcome data

[Case 2]

The Melanoma data frame has data on 205 patients in 
Denmark with malignant melanoma. This data frame 

contains the following columns:

(I) Time: survival time in days, possibly censored;

(II) Status: 1 died from melanoma, 2 alive, 3 dead from 

other causes;

(III) Sex: 1= male, 0= female;

(IV) Age: age in years;

(V) Year of operation;
(VI) Thickness: tumour thickness in mm;

(VII) Ulcer: 1 = presence, 0 = absence.

R codes and its interpretation 

In this case, the outcome is survival data, CRAN does not 

currently have a corresponding package about DCA analysis 

of the survival data. We can take a custom function or use 

a function that has been written by other researchers. The 

stdca.R file in the attached file is the source code of the 

function that other researchers have written (48), which you 

can use directly. We firstly load the source code for stdca.R, 
the reader can download it in the attachment to this article.

source(“stdca.R”)

Load the MASS package and call the Melanoma data set.

library(MASS) 

data.set <- Melanoma

Define the survival outcome.
data.set$diedcancer = ifelse(data.set$status==1, 1, 0)

Use the stdca() function defined in the previous step to 
perform Decision Curve Analysis.

stdca() function usage:

stdca(data=data.set, outcome=“diedcancer”, ttoutcome=“time”, 

timepoint=545, predictors=“thickness”, probability=“FALSE”, 
xstop=.25, intervention=“TRUE”)

stdca(data=data.set, outcome=“diedcancer”, ttoutcome=“time”, 
timepoint=545, predictors=“thickness”, probability=FALSE, xstop=.25)
## Loading required package: survival
## [1] “thickness converted to a probability with Cox regression. Due 
to linearity and proportional hazards assumption, miscalibration may 
occur.”
## $N

## [1] 205

##

## $predictors

##   predictor harm.applied probability

## 1 thickness            0       FALSE

##

## $interventions.avoided.per

## [1] 100

##

## $net.benefit

##    threshold           all none     thickness

## 1       0.01  4.043816e-02    0  0.0404381573

## 2       0.02  3.064671e-02    0  0.0306467100

## 3       0.03  2.065338e-02    0  0.0235375096

## 4       0.04  1.045185e-02    0  0.0350104433

## 5       0.05  3.555344e-05    0  0.0341713892

## 6       0.06 -1.060237e-02     0  0.0170264274

## 7       0.07 -2.146906e-02    0  0.0076078405

## 8       0.08 -3.257198e-02    0  0.0074231177

## 9       0.09 -4.391893e-02    0  0.0034843206

## 10      0.10 -5.551803e-02    0  0.0048780488

## 11      0.11 -6.737778e-02    0  0.0055357632

## 12      0.12 -7.950707e-02    0  0.0050997783

## 13      0.13 -9.191520e-02    0  0.0053826745

## 14      0.14 -1.046119e-01    0  0.0049914918

## 15      0.15 -1.176073e-01    0  0.0045911047

## 16      0.16 -1.309122e-01    0  0.0041811847

## 17      0.17 -1.445376e-01    0  0.0037613870

## 18      0.18 -1.584954e-01    0 -0.0015466984

## 19      0.19 -1.727978e-01    0  0.0003011141

## 20      0.20 -1.874578e-01    0 -0.0036585366

## 21      0.21 -2.024889e-01    0 -0.0038900895

## 22      0.22 -2.179054e-01    0 -0.0041275797

## 23      0.23 -2.337224e-01    0 -0.0029141590

## 24      0.24 -2.499556e-01    0 -0.0030808729

## 25      0.25 -2.666216e-01    0 -0.0032520325

##

## $interventions.avoided

##    threshold thickness

## 1       0.01  0.000000

## 2       0.02  0.000000

## 3       0.03  9.325362

## 4       0.04 58.940624

## 5       0.05 64.858088

## 6       0.06 43.285110

## 7       0.07 38.630737

## 8       0.08 45.994366

## 9       0.09 47.929951

## 10      0.10 54.356468

## 11      0.11 58.993685

## 12      0.12 62.045024

## 13      0.13 65.114732

## 14      0.14 67.327791

## 15      0.15 69.245776

## 16      0.16 70.924012

## 17      0.17 72.404809

## 18      0.18 71.498851

## 19      0.19 73.794804

## 20      0.20 73.519697

## 21      0.21 74.710978

## 22      0.22 75.793960

## 23      0.23 77.270575

## 24      0.24 78.176984

## 25      0.25 79.010880

The DCA curve interpretation principle of survival data 

is similar to the DCA curve of the binary data (Figure 19).

Brief summary

The Decision Curve Analysis method is currently used 

to predict the clinical utility evaluation. The processing 

method for the two-category outcome is relatively mature, 

but the processing of the survival data outcome is a bit 

tricky, and further improvement and update of the method 
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is needed. However, readers should understand the truth: 

DCA analysis is not the only way to assess the clinical 

utility of predictive models, nor is it a perfect one (49). 

In fact, the method we use most often is mentioned in 

the first section. For predicting the outcome of the two 

classifications, we should see if the prediction model has 

a better sensitivity and specificity; for predicting survival 
outcomes, we generally see whether patients can be 

classified into good prognosis and poor prognosis based 

on predictive models, such as calculating the score of each 

subject by Nomogram, and treating the patient according 

to a cutoff value, and divided into a good prognosis and 

poor prognosis, and then draw Kaplan-Meier survival 
curve.

Decision curve analysis (DCA) for survival 

outcomes with R

Background

The DCA of survival outcome data are summarized in this 

Section. In the previous Section, we introduced using rmda 

package to perform DCA for binary outcome, but there is 

no information about the survival function of DCA in the 

rmda package and though in CRAN currently no package 

available for process of survival outcome data of DCA. Here 

we introduce how to perform DCA analysis of survival 

outcome data based on the source code provided on the 

MSKCC website (48). We authors are just a knowledge 
porter. The copyright of the R source code in this paper 

belongs to the original author. We only own the original 

copyright of the text annotation and result interpretation 

part of the code.

Case analysis

DCA analysis of multivariate Cox regression
[Case 1]

Read in the data file “dca.txt” under the current working path.
data.set <- read.table(“dca.txt”, header=TRUE, sep=“\t”) 

attach(data.set) 

str(data.set)

## ‘data.frame’:    750 obs. of  10 variables: 

##  $ patientid       : int  1 2 3 4 5 6 7 8 9 10 ... 

##  $ cancer          : int  0 0 0 0 0 0 0 1 0 0 ... 

##  $ dead            : int  0 0 0 0 0 0 1 0 0 0 ... 

##  $ ttcancer        : num  3.009 0.249 1.59 3.457 3.329 ... 

##  $ risk_group    : Factor w/3 levels “high”, ”intermediate”,..: 3 1 3 3 3 2 2 2 3 2 ... 

##  $ casecontrol     : int  0 0 0 1 0 1 0 1 0 1 ... 

##  $ age             : num  64 78.5 64.1 58.5 64 ... 

##  $ famhistory      : int  0 0 0 0 0 0 0 0 0 0 ... 

##  $ marker          : num  0.7763 0.2671 0.1696 0.024 0.0709 ... 

##  $ cancerpredmarker: num  0.0372 0.57891 0.02155 0.00391 0.01879 ...

This is a dataframe of survival data, include 750 
observations, 10 variables:

$ patientid: number.

$ cancer: whether cancer occurs, binary variable, 1= 

cancer, 0= non-cancer. dependent variable.

$ dead: dead or not, binary variable,1= dead, 0= alive.

$ ttcancer: the time from follow-up to the occurrence of 

cancer, continuous variable, time variable.

$ risk_group: risk factor, the factor variable, ordinal 
variable, 3= “high”, 2= “intermediate”, 1= “low”.

$ casecontrol: grouping variable, binary variable, 1= 

“case”, 0= “control” .

$ age: Age, continuous variable.

$ famhistory: family history, 0= no, 1= yes 

$ marker: a biomarker level, a continuous variable.

$ cancerpredmarker: tumor biomarker level, continuous 

variables.

[Case 1] R codes and its interpretation

The source() function is used to load the source code 

downloaded from the MSKCC website ,  which is 
downloaded in advance and saved to the current working 

path.

source(“stdca.R”)

Subsequently, we can directly use the stdca() function of 

DCA analysis of survival data defined by this function.
Usage of stdca() function are as follows:

stdca(data, outcome, predictors, timepoint, xstart =0.01, 

xstop =0.99, xby =0.01, ymin =-0.05, probability = NULL, 
harm = NULL, graph = TRUE, intervention = FALSE, 

interventionper =100, smooth = FALSE, loess.span =0.10, 

cmprsk = FALSE).

Figure 19 DCA of survival outcome data.
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Notes of stdca() function parameters are as follows:

Data: a data frame containing the variables in the model. 

Outcome: the outcome, response variable. Must be a 

variable contained within the data frame specified in data=. 
Predictors: the predictor variables. Must be a variable 

contained within the data frame specified in data=. 
timepoint: specifies the time point at which the decision 

curve analysis is performed. 

Probability: specifies whether or not each of the 
independent variables are probabilities. The default is 

TRUE. 

xstart: starting value for x-axis (threshold probability) 

between 0 and 1. The default is 0.01. 

xstop: stopping value for x-axis (threshold probability) 

between 0 and 1. The default is 0.99. 

xby: increment for threshold probability. The default is 

0.01. 

ymin: minimum bound for graph. The default is –0.05. 
Harm: specifies the harm(s) associated with the 

independent variable(s). The default is none. 

Graph: specifies whether or not to display graph of net 
benefits. The default is TRUE. 

Intervention: plot net reduction in interventions. 

interventionper: number of net reduction in interventions 

per interger. The default is 100. 

Smooth: specifies whether or not to smooth net benefit 
curve. The default is FALSE. 

loess.span: specifies the degree of smoothing. The default 
is 0.10. 

cmprsk: if evaluating outcome in presence of a competing 

risk. The default is FALSE.

For the statistical analysis of the above cases, we first 

need to define a survival function object, which contains 

the outcome of the study and the time when the outcome 

occurred, namely the “cancer” and “ttcancer” variables of 

the dataframe in this case.
library(survival)

##  

## Attaching package: ‘survival’

## The following object is masked from ‘data.set’: 

##  

##     cancer

Srv = Surv(data.set$ttcancer, data.set$cancer)

Next, we need to build the Cox regression model named 

coxmod using the coxph() function in the survival package. 

The code is as follows:

coxmod <- coxph(Srv ~ age + famhistory + marker, data=data.set)

The coxmod survival function was used to calculate the 

complement of the incidence of cancer at 1.5 years, i.e., the 

incidence of no cancer, as shown below: 

data.set$pr_failure18 <- c(1 - (summary(survfit(coxmod,  

                         newdata=data.set), times=1.5)$surv))

This step is necessary, according to the mentioned above 

stdca() function parameters regulation about “predictors”, 

can only pass in a variable here, obviously using model 

prediction probability as a new variable is introduced to 

reflect the entire model predictive power here. If only pass 
in a predictor, the factors that represent only a factor for 

outcome prediction ability, rather than the entire model 

prediction ability.

Use the stdca() function for DCA analysis of survival 

outcome data. DCA curve of “coxmod” is shown in Figure 20 

below.

stdca(data=data.set, outcome=“cancer”, ttoutcome=“ttcancer”, 

timepoint=1.5, predictors=“pr_failure18”, xstop=0.5, smooth=TRUE)

## $N

## [1] 750

##

## $predictors

##      predictor harm.applied probability

## 1 pr_failure18            0        TRUE

##

## $interventions.avoided.per

## [1] 100

##

## $net.benefit

##    threshold           all none pr_failure18 pr_failure18_sm

## 1       0.01  0.2122351058    0   0.21181105      0.21174613

## 2       0.02  0.2041966885    0   0.20361189      0.20385712

## 3       0.03  0.1959925306    0   0.20030295      0.20030295

## 4       0.04  0.1876174528    0   0.19999857      0.19999857

## 5       0.05  0.1790660576    0   0.18877249      0.18877249

## 6       0.06  0.1703327178    0   0.18397250      0.18397250

## 7       0.07  0.1614115642    0   0.18451216      0.18451216

## 8       0.08  0.1522964725    0   0.17599183      0.17599183

## 9       0.09  0.1429810491    0   0.17050884      0.17050884

## 10      0.10  0.1334586163    0   0.16958715      0.16958715

## 11      0.11  0.1237221963    0   0.16366952      0.16366952

## 12      0.12  0.1137644940    0   0.16432269      0.16432269

## 13      0.13  0.1035778790    0   0.16149156      0.16149156

## 14      0.14  0.0931543659    0   0.15465439      0.15465439

## 15      0.15  0.0824855938    0   0.14784631      0.14784631

## 16      0.16  0.0715628032    0   0.14257246      0.14257246

## 17      0.17  0.0603768129    0   0.14110378      0.14110378

## 18      0.18  0.0489179935    0   0.13798791      0.13798791

## 19      0.19  0.0371762404    0   0.13763724      0.13763724

## 20      0.20  0.0251409434    0   0.12895335      0.12895335

## 21      0.21  0.0128009553    0   0.12448413      0.12448413

## 22      0.22  0.0001445573    0   0.12833148      0.12833148

## 23      0.23 -0.0128405783    0   0.12638034      0.12638034

## 24      0.24 -0.0261674280    0   0.12723684      0.12723684

## 25      0.25 -0.0398496604    0   0.12215471      0.12215471

## 26      0.26 -0.0539016828    0   0.11416302      0.11416302

## 27      0.27 -0.0683386922    0   0.10999741      0.10999741

## 28      0.28 -0.0831767296    0   0.10939791      0.10939791

## 29      0.29 -0.0984327399    0   0.10822856      0.10822856

## 30      0.30 -0.1141246361    0   0.10585886      0.10585886

## 31      0.31 -0.1302713700    0   0.10300367      0.10300367

## 32      0.32 -0.1468930078    0   0.10181986      0.10181986

## 33      0.33 -0.1640108139    0   0.10224584      0.10224584

## 34      0.34 -0.1816473414    0   0.10113914      0.10113914



Annals of Translational Medicine, Vol 7, No 23 December 2019 Page 55 of 96

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(23):796 | http://dx.doi.org/10.21037/atm.2019.08.63

## 35      0.35 -0.1998265312    0   0.09905699      0.09905699

## 36      0.36 -0.2185738208    0   0.09633101      0.09633101

## 37      0.37 -0.2379162624    0   0.09534742      0.09534742

## 38      0.38 -0.2578826537    0   0.09187725      0.09187725

## 39      0.39 -0.2785036808    0   0.08964716      0.08964716

## 40      0.40 -0.2998120755    0   0.09002751      0.09002751

## 41      0.41 -0.3218427887    0   0.08197475      0.08197475

## 42      0.42 -0.3446331816    0   0.08169947      0.08169947

## 43      0.43 -0.3682232374    0   0.08143814      0.08143814

## 44      0.44 -0.3926557952    0   0.07927021      0.07927021

## 45      0.45 -0.4179768096    0   0.08356079      0.08356079

## 46      0.46 -0.4442356395    0   0.07803458      0.07803458

## 47      0.47 -0.4714853685    0   0.07986688      0.07986688

## 48      0.48 -0.4997831640    0   0.07858227      0.07858227

## 49      0.49 -0.5291906771    0   0.07768162      0.07751346

## 50      0.50 -0.5597744906    0   0.07587186      0.07591062

##

## $interventions.avoided

##    threshold pr_failure18 pr_failure18_sm

## 1       0.01    -4.198140      -4.7660406

## 2       0.02    -2.865499      -0.7203969

## 3       0.03    13.937020      13.9370196

## 4       0.04    29.714687      29.7146874

## 5       0.05    18.442215      18.4422153

## 6       0.06    21.368990      21.3689903

## 7       0.07    30.690796      30.6907960

## 8       0.08    27.249660      27.2496595

## 9       0.09    27.833653      27.8336527

## 10      0.10    32.515680      32.5156803

## 11      0.11    32.321013      32.3210130

## 12      0.12    37.076008      37.0760083

## 13      0.13    38.757620      38.7576205

## 14      0.14    37.778585      37.7785849

## 15      0.15    37.037739      37.0377387

## 16      0.16    37.280070      37.2800702

## 17      0.17    39.413756      39.4137560

## 18      0.18    40.576297      40.5762971

## 19      0.19    42.828111      42.8281111

## 20      0.20    41.524962      41.5249619

## 21      0.21    42.014147      42.0141471

## 22      0.22    45.448092      45.4480917

## 23      0.23    46.608741      46.6087406

## 24      0.24    48.578018      48.5780178

## 25      0.25    48.601310      48.6013099

## 26      0.26    47.833800      47.8337999

## 27      0.27    48.216799      48.2167988

## 28      0.28    49.519193      49.5191931

## 29      0.29    50.596386      50.5963863

## 30      0.30    51.329482      51.3294816

## 31      0.31    51.922508      51.9225082

## 32      0.32    52.851484      52.8514842

## 33      0.33    54.058169      54.0581691

## 34      0.34    54.893846      54.8938461

## 35      0.35    55.506940      55.5069400

## 36      0.36    55.983082      55.9830819

## 37      0.37    56.744897      56.7448975

## 38      0.38    57.066090      57.0660899

## 39      0.39    57.582567      57.5825669

## 40      0.40    58.475938      58.4759382

## 41      0.41    58.110328      58.1103281

## 42      0.42    58.874509      58.8745086

## 43      0.43    59.606275      59.6062750

## 44      0.44    60.063309      60.0633094

## 45      0.45    61.299040      61.2990397

## 46      0.46    61.309982      61.3099824

## 47      0.47    62.173764      62.1737642

## 48      0.48    62.656255      62.6562552

## 49      0.49    63.164259      63.1469446

## 50      0.50    63.564635      63.5686257

data = data.set, specified data set; outcome =“cancer”, 

to define dichotomous outcome; ttoutcome = “ttcancer”, 

specified time variable; timepoint =1.5; define time point 
=1.5 years; predictors =“pr_failure18”, the prediction 
probability calculated according to the Cox regression 

model is passed in, and here it needs to be specified that 

the probability is passed in here; probability = TRUE, this 

is also the default setting, only If you use a single factor for 

prediction, set to FALSE.

Now let’s construct two Cox regression models:

coxmod1 <- coxph(Srv ~ age + famhistory + marker, data=data.set) 

coxmod2 <- coxph(Srv ~ age + famhistory + marker + risk_group, 

data=data.set)

According to the survival function, the complement 

number of cancer incidence at 1.5 years, namely the 
incidence without cancer, was calculated for the two models 

respectively, with the code as follows: 

data.set$pr_failure19 <- c(1 - (summary(survfit(coxmod1, 

                           newdata=data.set), times=1.5)$surv)) 

data.set$pr_failure20 <- c(1 - (summary(survfit(coxmod2, 

                           newdata=data.set), times=1.5)$surv))

The stdca() function is used for DCA analysis of the two 

Cox regression models. DCA curves of “coxmod1” and 

“coxmod1” based on Cox regression model was shown in 

Figure 21 below.

stdca(data=data.set, outcome=“cancer”, ttoutcome=“ttcancer”, 

timepoint=1.5, predictors=c(“pr_failure19”,”pr_failure20”), xstop=0.5, 

smooth=TRUE)

## $N

## [1] 750

##

Figure 20 DCA curve of “coxmod” based on Cox regression 
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## $predictors

##      predictor harm.applied probability

## 1 pr_failure19            0        TRUE

## 2 pr_failure20            0        TRUE

##

## $interventions.avoided.per

## [1] 100

##

## $net.benefit

##    threshold           all none pr_failure19 pr_failure20 pr_failure19_sm

## 1       0.01  0.2122351058    0   0.21181105   0.21195459      0.21174613

## 2       0.02  0.2041966885    0   0.20361189   0.20592854      0.20385712

## 3       0.03  0.1959925306    0   0.20030295   0.20082319      0.20030295

## 4       0.04  0.1876174528    0   0.19999857   0.19793636      0.19999857

## 5       0.05  0.1790660576    0   0.18877249   0.18850393      0.18877249

## 6       0.06  0.1703327178    0   0.18397250   0.18758263      0.18397250

## 7       0.07  0.1614115642    0   0.18451216   0.17871488      0.18451216

## 8       0.08  0.1522964725    0   0.17599183   0.17549498      0.17599183

## 9       0.09  0.1429810491    0   0.17050884   0.17292665      0.17050884

## 10     0.10  0.1334586163    0   0.16958715   0.17172714      0.16958715

## 11     0.11  0.1237221963    0   0.16366952   0.16413986      0.16366952

## 12     0.12  0.1137644940    0   0.16432269   0.16115961      0.16432269

## 13     0.13  0.1035778790    0   0.16149156   0.15997205      0.16149156

## 14     0.14  0.0931543659    0   0.15465439   0.15102760      0.15465439

## 15     0.15  0.0824855938    0   0.14784631   0.14680192      0.14784631

## 16     0.16  0.0715628032    0   0.14257246   0.14533848      0.14257246

## 17     0.17  0.0603768129    0   0.14110378   0.14377813      0.14110378

## 18     0.18  0.0489179935    0   0.13798791   0.14260467      0.13798791

## 19     0.19  0.0371762404    0   0.13763724   0.13073905      0.13763724

## 20     0.20  0.0251409434    0   0.12895335   0.13033339      0.12895335

## 21     0.21  0.0128009553    0   0.12448413   0.13224742      0.12448413

## 22     0.22  0.0001445573    0   0.12833148   0.13027540      0.12833148

## 23     0.23 -0.0128405783    0   0.12638034   0.12984114      0.12638034

## 24     0.24 -0.0261674280    0   0.12723684   0.12158006      0.12723684

## 25     0.25 -0.0398496604    0   0.12215471   0.11550497      0.12215471

## 26     0.26 -0.0539016828    0   0.11416302   0.11224497      0.11416302

## 27     0.27 -0.0683386922    0   0.10999741   0.11336879      0.10999741

## 28     0.28 -0.0831767296    0   0.10939791   0.11138142      0.10939791

## 29     0.29 -0.0984327399    0   0.10822856   0.11042784      0.10822856

## 30     0.30 -0.1141246361    0   0.10585886   0.10713217      0.10585886

## 31     0.31 -0.1302713700    0   0.10300367   0.10922587      0.10300367

## 32     0.32 -0.1468930078    0   0.10181986   0.10710860      0.10181986

## 33     0.33 -0.1640108139    0   0.10224584   0.10514071      0.10224584

## 34     0.34 -0.1816473414    0   0.10113914   0.10168529      0.10113914

## 35     0.35 -0.1998265312    0   0.09905699   0.10084803      0.09905699

## 36     0.36 -0.2185738208    0   0.09633101   0.09572434      0.09633101

## 37     0.37 -0.2379162624    0   0.09534742   0.09287710      0.09534742

## 38     0.38 -0.2578826537    0   0.09187725   0.09547575      0.09187725

## 39     0.39 -0.2785036808    0   0.08964716   0.08909328      0.08964716

## 40     0.40 -0.2998120755    0   0.09002751   0.08873631      0.09002751

## 41     0.41 -0.3218427887    0   0.08197475   0.08693879      0.08197475

## 42     0.42 -0.3446331816    0   0.08169947   0.08850919      0.08169947

## 43     0.43 -0.3682232374    0   0.08143814   0.08923527      0.08143814

## 44     0.44 -0.3926557952    0   0.07927021   0.08132415      0.07927021

## 45     0.45 -0.4179768096    0   0.08356079   0.07934853      0.08356079

## 46     0.46 -0.4442356395    0   0.07803458   0.07668500      0.07803458

## 47     0.47 -0.4714853685    0   0.07986688   0.07507451      0.07986688

## 48     0.48 -0.4997831640    0   0.07858227   0.07639787      0.07858227

## 49     0.49 -0.5291906771    0   0.07768162   0.07665976      0.07751346

## 50     0.50 -0.5597744906    0   0.07587186   0.08208139      0.07591062

##    pr_failure20_sm

## 1       0.21199928

## 2       0.20575976

## 3       0.20082319

## 4       0.19793636

## 5       0.18850393

## 6       0.18758263

## 7       0.17871488

## 8       0.17549498

## 9       0.17292665

## 10      0.17172714

## 11      0.16413986

## 12      0.16115961

## 13      0.15997205

## 14      0.15102760

## 15      0.14680192

## 16      0.14533848

## 17      0.14377813

## 18      0.14260467

## 19      0.13073905

## 20      0.13033339

## 21      0.13224742

## 22      0.13027540

## 23      0.12984114

## 24      0.12158006

## 25      0.11550497

## 26      0.11224497

## 27      0.11336879

## 28      0.11138142

## 29      0.11042784

## 30      0.10713217

## 31      0.10922587

## 32      0.10710860

## 33      0.10514071

## 34      0.10168529

## 35      0.10084803

## 36      0.09572434

## 37      0.09287710

## 38      0.09547575

## 39      0.08909328

## 40      0.08873631

## 41      0.08693879

## 42      0.08850919

## 43      0.08923527

## 44      0.08132415

## 45      0.07934853

## 46      0.07668500

## 47      0.07507451

## 48      0.07639787

## 49      0.07746882

## 50      0.08189491

##

## $interventions.avoided

##    threshold pr_failure19 pr_failure20 pr_failure19_sm pr_failure20_sm

## 1       0.01    -4.198140    -2.777062      -4.7660406       -2.565550

## 2       0.02    -2.865499     8.486095      -0.7203969        7.687163

## 3       0.03    13.937020    15.619119      13.9370196       15.619119

## 4       0.04    29.714687    24.765386      29.7146874       24.765386

## 5       0.05    18.442215    17.931950      18.4422153       17.931950

## 6       0.06    21.368990    27.024866      21.3689903       27.024866

## 7       0.07    30.690796    22.988695      30.6907960       22.988695

## 8       0.08    27.249660    26.678283      27.2496595       26.678283

## 9       0.09    27.833653    30.278333      27.8336527       30.278333

## 10     0.10    32.515680    34.441667      32.5156803       34.441667

## 11     0.11    32.321013    32.701568      32.3210130       32.701568

## 12     0.12    37.076008    34.756418      37.0760083       34.756418

## 13     0.13    38.757620    37.740714      38.7576205       37.740714

## 14     0.14    37.778585    35.550699      37.7785849       35.550699

## 15     0.15    37.037739    36.445916      37.0377387       36.445916

## 16     0.16    37.280070    38.732229      37.2800702       38.732229

## 17     0.17    39.413756    40.719466      39.4137560       40.719466

## 18     0.18    40.576297    42.679487      40.5762971       42.679487

## 19     0.19    42.828111    39.887305      42.8281111       39.887305

## 20     0.20    41.524962    42.076980      41.5249619       42.076980

## 21     0.21    42.014147    44.934621      42.0141471       44.934621

## 22     0.22    45.448092    46.137300      45.4480917       46.137300

## 23     0.23    46.608741    47.767357      46.6087406       47.767357

## 24     0.24    48.578018    46.786704      48.5780178       46.786704
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## 25    0.25    48.601310    46.606390      48.6013099       46.606390

## 26    0.26    47.833800    47.287894      47.8337999       47.287894

## 27     0.27    48.216799    49.128319      48.2167988       49.128319

## 28     0.28    49.519193    50.029238      49.5191931       50.029238

## 29     0.29    50.596386    51.134831      50.5963863       51.134831

## 30     0.30    51.329482    51.626588      51.3294816       51.626588

## 31     0.31    51.922508    53.307450      51.9225082       53.307450

## 32     0.32    52.851484    53.975342      52.8514842       53.975342

## 33     0.33    54.058169    54.645916      54.0581691       54.645916

## 34     0.34    54.893846    54.999864      54.8938461       54.999864

## 35     0.35    55.506940    55.839561      55.5069400       55.839561

## 36     0.36    55.983082    55.875228      55.9830819       55.875228

## 37     0.37    56.744897    56.324276      56.7448975       56.324276

## 38     0.38    57.066090    57.653214      57.0660899       57.653214

## 39     0.39    57.582567    57.495935      57.5825669       57.495935

## 40     0.40    58.475938    58.282258      58.4759382       58.282258

## 41     0.41    58.110328    58.824666      58.1103281       58.824666

## 42     0.42    58.874509    59.814900      58.8745086       59.814900

## 43     0.43    59.606275    60.639848      59.6062750       60.639848

## 44     0.44    60.063309    60.324720      60.0633094       60.324720

## 45     0.45    61.299040    60.784209      61.2990397       60.784209

## 46     0.46    61.309982    61.151553      61.3099824       61.151553

## 47     0.47    62.173764    61.633348      62.1737642       61.633348

## 48     0.48    62.656255    62.419612      62.6562552       62.419612

## 49     0.49    63.164259    63.057903      63.1469446       63.140791

## 50     0.50    63.564635    64.185588      63.5686257       64.166483

Univariate Cox regression and DCA analysis
[Case 2]

We use the built-in dataset in the MASS package.

This is the dataframe structure with 7 variables and 205 
observations in total: 

$ Time: time variable, continuous variables. 

$ Status: outcome variables, 1= death from melanoma, 2= 

alive, and 3= death from other causes.

$ Sex: sex variable, 1= male, 0= female, binary variable.

$ Age: age, continuous variable.

$ Year: time point of surgery, continuous variable.
$ Thickness: tumor thickness, unit: mm, continuous 

variable.

$ Ulcer: whether the tumor has ulcer or not, 1 represents 

the presence of ulcer, 0 represents the absence of ulcer, the 

dichotomous variable.

R codes and its interpretation

The stdca() function is used for DCA analysis of the 

univariate Cox regression analysis. DCA curves of a single 

predictor “thickness” based on Cox regression model was 

shown in Figures 22 and 23.

source(“stdca.R”) 

library(MASS) 

data.set <- Melanoma 

data.set$diedcancer = ifelse(data.set$status==1, 1, 0) 

##Decision Curve Analysis 

stdca(data=data.set, outcome=“diedcancer”, ttoutcome=“time”, 

timepoint=545, 

      predictors=“thickness”, probability=FALSE, xstop=.25)

## [1] “thickness converted to a probability with Cox regression. Due 

to linearity and proportional hazards assumption, miscalibration may 

occur.”

Figure 21 DCA curves of “coxmod1” and “coxmod1” based on 

two Cox regression models.

Figure 22 DCA curve of a single predictor “thickness” based on 

univariate Cox regression model.

Figure 23 DCA curve of a single predictor “thickness” based on 

univariate Cox regression model. Y axis represent net reduction in 
interventions per 100 persons.
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## $N

## [1] 205

##

## $predictors

##   predictor harm.applied probability

## 1 thickness            0       FALSE

##

## $interventions.avoided.per

## [1] 100

##

## $net.benefit

##    threshold           all none     thickness

## 1       0.01  4.043816e-02    0  0.0404381573

## 2       0.02  3.064671e-02    0  0.0306467100

## 3       0.03  2.065338e-02    0  0.0235375096

## 4       0.04  1.045185e-02    0  0.0350104433

## 5       0.05  3.555344e-05    0  0.0341713892

## 6       0.06 -1.060237e-02    0  0.0170264274

## 7       0.07 -2.146906e-02    0  0.0076078405

## 8       0.08 -3.257198e-02    0  0.0074231177

## 9       0.09 -4.391893e-02    0  0.0034843206

## 10      0.10 -5.551803e-02    0  0.0048780488

## 11      0.11 -6.737778e-02    0  0.0055357632

## 12      0.12 -7.950707e-02    0  0.0050997783

## 13      0.13 -9.191520e-02    0  0.0053826745

## 14      0.14 -1.046119e-01    0  0.0049914918

## 15      0.15 -1.176073e-01    0  0.0045911047

## 16      0.16 -1.309122e-01    0  0.0041811847

## 17      0.17 -1.445376e-01    0  0.0037613870

## 18      0.18 -1.584954e-01    0 -0.0015466984

## 19      0.19 -1.727978e-01    0  0.0003011141

## 20      0.20 -1.874578e-01    0 -0.0036585366

## 21      0.21 -2.024889e-01    0 -0.0038900895

## 22      0.22 -2.179054e-01    0 -0.0041275797

## 23      0.23 -2.337224e-01    0 -0.0029141590

## 24      0.24 -2.499556e-01    0 -0.0030808729

## 25      0.25 -2.666216e-01    0 -0.0032520325

##

## $interventions.avoided

##    threshold thickness

## 1       0.01  0.000000

## 2       0.02  0.000000

## 3       0.03  9.325362

## 4       0.04 58.940624

## 5       0.05 64.858088

## 6       0.06 43.285110

## 7       0.07 38.630737

## 8       0.08 45.994366

## 9       0.09 47.929951

## 10      0.10 54.356468

## 11      0.11 58.993685

## 12      0.12 62.045024

## 13      0.13 65.114732

## 14      0.14 67.327791

## 15      0.15 69.245776

## 16      0.16 70.924012

## 17      0.17 72.404809

## 18      0.18 71.498851

## 19      0.19 73.794804

## 20      0.20 73.519697

## 21      0.21 74.710978

## 22      0.22 75.793960

## 23      0.23 77.270575

## 24      0.24 78.176984

## 25      0.25 79.010880
stdca(data=data.set, outcome=“diedcancer”, ttoutcome=“time”, 

timepoint=545,
      predictors=“thickness”, probability=“FALSE”, xstop=.25, 

      intervention=“TRUE”)

## Warning: ‘newdata’ had 1 row but variables found have 205 rows
## [1] “thickness converted to a probability with Cox regression. Due 

to linearity and proportional hazards assumption, miscalibration may 

occur.”

## $N

## [1] 205

##

## $predictors

##   predictor harm.applied probability

## 1 thickness            0       FALSE

##

## $interventions.avoided.per

## [1] 100

##

## $net.benefit

##    threshold           all none     thickness

## 1       0.01  4.043816e-02    0  0.0404381573

## 2       0.02  3.064671e-02    0  0.0306467100

## 3       0.03  2.065338e-02    0  0.0235375096

## 4       0.04  1.045185e-02    0  0.0350104433

## 5       0.05  3.555344e-05    0  0.0341713892

## 6       0.06 -1.060237e-02    0  0.0170264274

## 7       0.07 -2.146906e-02    0  0.0076078405

## 8       0.08 -3.257198e-02    0  0.0074231177

## 9       0.09 -4.391893e-02    0  0.0034843206

## 10      0.10 -5.551803e-02    0  0.0048780488

## 11      0.11 -6.737778e-02    0  0.0055357632

## 12      0.12 -7.950707e-02    0  0.0050997783

## 13      0.13 -9.191520e-02    0  0.0053826745

## 14      0.14 -1.046119e-01    0  0.0049914918

## 15      0.15 -1.176073e-01    0  0.0045911047

## 16      0.16 -1.309122e-01    0  0.0041811847

## 17      0.17 -1.445376e-01    0  0.0037613870

## 18      0.18 -1.584954e-01    0 -0.0015466984

## 19      0.19 -1.727978e-01    0  0.0003011141

## 20      0.20 -1.874578e-01    0 -0.0036585366

## 21      0.21 -2.024889e-01    0 -0.0038900895

## 22      0.22 -2.179054e-01    0 -0.0041275797

## 23      0.23 -2.337224e-01    0 -0.0029141590

## 24      0.24 -2.499556e-01    0 -0.0030808729

## 25      0.25 -2.666216e-01    0 -0.0032520325

##

## $interventions.avoided

##    threshold thickness

## 1       0.01  0.000000

## 2       0.02  0.000000

## 3       0.03  9.325362

## 4       0.04 58.940624

## 5       0.05 64.858088

## 6       0.06 43.285110

## 7       0.07 38.630737

## 8       0.08 45.994366

## 9       0.09 47.929951

## 10      0.10 54.356468

## 11      0.11 58.993685

## 12      0.12 62.045024

## 13      0.13 65.114732

## 14      0.14 67.327791

## 15      0.15 69.245776

## 16      0.16 70.924012

## 17      0.17 72.404809

## 18      0.18 71.498851

## 19      0.19 73.794804

## 20      0.20 73.519697

## 21      0.21 74.710978

## 22      0.22 75.793960

## 23      0.23 77.270575

## 24      0.24 78.176984

## 25      0.25 79.010880
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Note that we use a single variable to predict the outcome, 

so probability = FALSE, and other parameter settings are 

basically the same as Case 1.

External validation of Logistic regression model 

with R

Background

Logistic regression can be used to establish a clinical 

prediction model for dichotomous outcome variables, 

and can also be used to predict binary clinical events, 

such as effective/ineffective, occurrence/non-occurrence, 

recurrence/non-recurrence and so on. There is the 

difference between good and bad of the prediction 

models. Not only can the good one accurately predicts 

the probability of endpoint events, which means a good 

Calibration, but also distinguish the objects with different 

probabilities of endpoint events in the data set, which 

means a good discrimination. And it can also find out 

the possible influence of certain factors on the endpoint 

event, including the independent risk factors or protective 

factors. Therefore, how to judge and verify the model is 

particularly important. As for the evaluation indexes of 

the model, we have mentioned before. This paper mainly 

introduces the external validation of Logistic regression 

model. 

Out time validation can be adopted for model validation. 

For example, we can use the 2005–2010 samples for 
modeling, and then use the 2010–2015 samples for 
model validation. In this way, it can evaluate whether the 

prediction of the model is still accurate over time. Across 

modeling techniques can also be adopted. In other words, 

for a certain data set, to select the best model in testing 

data, not only can the logical regression be adopted, but 

also the discriminant analysis, decision tree, support vector 

machine (SVM) and other methods. Regardless of what 

kind of methods we use, external validation of the model 

with a data set different to the one used in modeling is an 

important part of the process.

When modeling, the samples which are extracted from 

the sample data set for modeling are called training set. 

When validating the completed model, the samples which 

are reserved from the sample data set for internal validation 

are called testing set. A model that performs well in a single 

data set does not necessarily perform satisfactorily in other 

data sets, so external validation of the model in a new data 

set, which is called validation set, is required.

Calibration evaluation

The following hoslem.test () in the ResourceSelection 

package is used to perform the Hosmer-Lemeshow 

goodness of fit test, which is usually used to evaluate the 

calibration degree of the Logistic model (50). We should 
load the R package we need at first:

install.packages(“ResourceSelection”) 

library(ResourceSelection)

Logistic regression model construction

To establish the Logistic regression model, we simulate 

a data set, namely training set, for modeling, in which all 

samples of the data set are used for modeling. And we can 

also extract parts of samples for modeling while use the 

rest of it, namely testing set, for internal validation of this 

model.

set.seed(123) 

n <- 100 

x <- rnorm(n) 

xb <- x 

pr <- exp(xb)/(1+exp(xb))# generate a probability from 0 to 1 by 

logistic regression 

y <- 1*(runif(n) < pr)# According to the probability “pr” to determine 

whether a single patient event occurred, the greater the pr, the greater the 

probability of y=1, and the greater the probability of the endpoint event of 

the sample 

intern.data <- data.frame(x=x,y=y) 

mod <- glm(y~x,intern.data,family=binomial)# Generate the model “mod”

Carry the Hosmer-Lemeshow test out on the model, and 

divide the data into a certain number of groups “g”. The 

meaning of parameter “g” here has been explained when 

explaining the concept of calibration degree in the previous 

Section. If we predict the probability of the outcome of 100 

people, it does not mean that we actually use the model to 

predict the result of disease/no disease. The model only gives us 

the probability of disease. And we diagnose disease/no disease 

according to the probability which is greater than a certain 

cut-off value, such as 0.5. If there are 100 people in data set, 
we finally got 100 probabilities from the model, namely 100 
numbers between 0 and 1.0. We rank these numbers from 

smallest to largest and then divide them into 10 groups of 10 

people. So, the actual probability is the percentage of those 

10 people who get sick. The predicted probability is the 

average of these 10 proportions of each set of predictions. 

Compare these two numbers, take one as the abscissa and 

the other one as the ordinate, and we can get the Calibration 

Plot. So, the 95% confidence interval we can calculate. In 
Logistic regression model, calibration can also be measured 

by Hosmer-Lemeshow goodness of fit test.
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hl <- hoslem.test(mod$y, fitted(mod), g=10)

hl

##  

##  Hosmer and Lemeshow goodness of fit (GOF) test 

##  

## data:  mod$y, fitted(mod) 

## X-squared = 6.4551, df = 8, P value =0.5964

The first parameter is whether the target event actually 
occurred in the function hoslem.test(). The second 

parameter is the event occurrence probability predicted 

by the variable x. The third parameter is the grouping 

parameter g. Then, calculate the goodness of fit statistics in 
the Hosmer-Lemeshow test. If the model is well fitted, the 
statistic should follow the Chi-square distribution with g-2 

degrees of freedom. If the P value of the hypothesis test is 
less than test level α, it indicates that the model does not fit 
well. Then, output the results of the Hosmer-Lemeshow 

test.

P value is 0.5964, It cannot be considered that the model 
does not fit well yet.

cbind(hl$observed,hl$expected)

##               y0 y1    yhat0    yhat1 

## [0.111,0.298]  7  3 7.692708 2.307292 

## (0.298,0.396]  8  2 6.491825 3.508175 

## (0.396,0.454]  5  5 5.764301 4.235699 

## (0.454,0.494]  6  4 5.243437 4.756563 

## (0.494,0.564]  7  3 4.739571 5.260429 

## (0.564,0.624]  4  6 4.077834 5.922166 

## (0.624,0.669]  2  8 3.532070 6.467930 

## (0.669,0.744]  2  8 2.910314 7.089686 

## (0.744,0.809]  1  9 2.213029 7.786971 

## (0.809,0.914]  2  8 1.334912 8.665088

Generate Hosmer-Lemeshow contingency table. Among 

them, y0 is the number of events that didn’t occur; y1 is 

the number of events that occurred; yhat0 represents the 

probability of events that will not happen predicted by the 

model; yhat1 represents the probability of events that will 

happen predicted by the model.

Validation in external data set
Simulate the generated external data set in the same way, 

and conduct external validation on the model:

set.seed(123)

n.e <- 150#.e represent external

x.e <- rnorm(n.e)# The independent variable x

xb.e <- x.e
pr.e <- exp(xb.e)/(1+exp(xb.e))#pr.e is the probability of event that 

occurred simulated by logistic regression.
y.e <- 1*(runif(n.e) < pr.e)# y represents the actual occurrence of the 

event, 0 is no occurrence and 1 is occurrence.
exter.data <- data.frame(x=x.e,y=y.e)

# The simulated external data set
# The probability of  the event occurrence of external data predict by the 

model generated from internal data
pr.e <- predict(mod,exter.data,type = c(“response”))
#The probability of the new data set predicted by the established model 

mod
#The first parameter is the model object GLM,

#The second parameter is the data set to validate

hl.e <- hoslem.test(y.e,pr.e, g=10)

hl.e

##

##  Hosmer and Lemeshow goodness of fit (GOF) test

##

## data:  y.e, pr.e

## X-squared =10.313, df =8, P value =0.2437

P=0.2437>0.05. So, it cannot be considered that the 
model fitting is poor, suggesting that the model performs 

well in the new data set. If P<0.05, the model is poorly 
fitted.

Hosmer-Lemeshow test

The calculation principle of Hosmer-Lemeshow test 

statistics is as follows: calculate the prediction probability 

of the model, and divide the data into ten groups according 

to the prediction probability from largest to smallest, which 

refers to the parameter g in the above function.

pihat <- mod$fitted 

pihatcat <- cut(pihat, breaks=c(0,quantile(pihat, 

probs=seq(0.1,0.9,0.1)),1), labels=FALSE)

Then calculate the Hosmer-Lemeshow test statistics.

meanprobs <- array(0, dim=c(10,2)) 

#Create a 10 rows, 2 columns matrix to save the average probabilities of 

events occurred and not occurred 

expevents <- array(0, dim=c(10,2)) 

#Create a 10 rows, 2 columns matrix to save the number of occurrence 

and the number of nonoccurrence calculated by the probability values 

obsevents <- array(0, dim=c(10,2)) 

#Create a 10 rows, 2 columns matrix to save the number of events that 

actually occurred and the number that did not occur 

for (i in 1:10) { 

    meanprobs[i,1] <- mean(pihat[pihatcat==i])# Calculate the average 

probability of each set of events 

    expevents[i,1] <- sum(pihatcat==i)*meanprobs[i,1]# Number of 

predicted events = number of samples in the group * average probability 

    obsevents[i,1] <- sum(y[pihatcat==i])# Actual number of events 

# Use the same method to calculate the number of predicted events that 

did not occur and the number of actual events that did not occur 

    meanprobs[i,2] <- mean(1-pihat[pihatcat==i]) 

    expevents[i,2] <- sum(pihatcat==i)*meanprobs[i,2] 

    obsevents[i,2] <- sum(1-y[pihatcat==i]) 

}

Calculate the Hosmer-Lemeshow test statistics. It 

has been proved that if the model fits well, the statistic 
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should obey the chi-square distribution of g-2 degree 

of freedom. The invalid hypothesis is that Hosmer-

Lemeshow test statistic obeys chi-square distribution 

with g-2 degree of freedom. The alternative hypothesis 

is that Hosmer-Lemeshow test statistic does not obey 

the chi-square distribution of g-2 degree of freedom. 

Significance level =0.05.
hosmerlemeshow <- sum((obsevents-expevents)^2 / expevents) 

hosmerlemeshow

## [1] 6.455077

The calculated statistics are consistent with the calculated 

results of the above functions.

Calibration plot

Use the calibration curves (Figure 24) to evaluate the model 

visually. We use plotCalibration() function in PredictABEL 
package to draw the calibration plots (51).

install.packages(“PredictABEL”)

library(PredictABEL)

## Warning: package ‘Hmisc’ was built under R version 3.5.2

#Use the plotCalibration to draw the calibration curve

#Parameter description: data is the data set to be verified

#cOutcome  specifies which column the outcome variable is in

#predRisk is the probability of occurrence predicted by the model. It can 

be calculated through predict() function

#groups is groups number

#rangeaxis is the range of axes。

#Draw the calibration plot in the external data now

plotCalibration(data=exter.data, 

                cOutcome=2, 

                predRisk=pr.e, 

                groups=10, 

                rangeaxis=c(0,1))

## $Table_HLtest

##               total meanpred meanobs predicted observed

## [0.111,0.259)    15    0.199   0.333      2.99        5

## [0.259,0.372)    15    0.306   0.333      4.59        5

## [0.372,0.426)    15    0.393   0.333      5.90        5

## [0.426,0.477)    15    0.449   0.267      6.73        4

## [0.477,0.536)    15    0.499   0.400      7.49        6

## [0.536,0.593)    15    0.562   0.467      8.44        7

## [0.593,0.655)    15    0.624   0.533      9.36        8

## [0.655,0.725)    15    0.685   0.733     10.28       11

## [0.725,0.808)    15    0.764   0.600     11.46        9

## [0.808,0.914]    15    0.866   0.733     12.99       11

##

## $Chi_square

## [1] 10.329

##

## $df

## [1] 8

##

## $p_value

## [1] 0.2427

The horizontal axis of the calibration plot is the 

predicted risk rate, and the vertical axis is the actual risk 

rate. Each point represents a group, and its basic idea is 

consistent with the Hosmer-Lemeshow test.

It is not enough to just evaluate the calibration of the 

model. Assuming a short-term mortality rate is 0.1% after 

a particular surgery, there is now a poor model that predicts 

a mortality rate is 0.1% for all patients regardless of their 

health status, smoking status, diabetes status, and only one 

patient died in 1,000 patients after surgery. Although the 

model prediction is consistent with the facts (both short-

term mortality rate is 0.1%), which means the model is in 

high fit degree. But the model does not differentiate the 

patient with a high risk of death and the patients with low 

risk of dying, which means the discrimination of the model 

is not enough. That’s why we need to evaluate the model 

discrimination that to differentiate the patient with a high 

risk of death and the patients with low risk of dying. We 

need the further external validation of the model.

Discrimination evaluation

ROC curve

Use the Logistic regression model fitted above to draw the 
ROC curve by pROC package (52) (Figure 25).

Figure 24 Calibration plot.
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#Extract the probability values predicted by the model 

pr <- predict(mod,type=c(“response”)) 

install.packages(“pROC”) 

library(pROC)

## Type ‘citation(“pROC”)’ for a citation.

##  

## Attaching package: ‘pROC’

## The following objects are masked from ‘package:stats’: 

##  

##     cov, smooth, var

## Use the function roc, the left side of the equation is the actual event 

occurrence, and the right side is the event occurrence rate predicted by 

the model 

roccurve <- roc(y ~ pr)

# Draw the ROC curve 

plot.roc(roccurve,xlim = c(1,0),ylim=c(0,1))

# Get the AUC value of the ROC curve 

auc(roccurve)

## Area under the curve: 0.7455

In intern. data, the AUC value of the model is 0.7455.
ROC curve in external dataset
Then, verify the model’s discrimination in the external 

dataset and draw ROC curve (Figure 26).

pr.e <- predict(mod,newdata = exter.data, type=c(“response”)) 

roccurve <- roc(y.e ~ pr.e) 

# Draw the ROC curve 

plot.roc(roccurve)

# Get the AUC value of the ROC curve 

auc(roccurve)

## Area under the curve: 0.6723

The model was verified in the external data set, 

AUC =0.6723, indicating that the model has a good 

discrimination in the validation of the external data set.

Summary and discussion

We summarize the methods of external verification for 

Logistic regression model above, including calibration 

evaluation and discrimination evaluation. A good prediction 

model, should have the characteristics of robust enough, no 

matter for the training set, internal validation set or external 

validation set, has better discrimination and calibration. A 

good performance in the training set does not necessarily 

mean a good performance in the validation set. In addition, 

a good discrimination does not necessarily mean a good 

calibration, and vice versa.

The evaluation of Cox regression model based 

on pec package with R

Background

According to the logistic regression equation, the rate 

of outcome occurrence could be predicted based on the 

patient’s independent variables. In Cox regression, many 

scholars may be confused about how to use the established 

Cox model of survival outcome data to predict the survival 

probability of an individual patient. The function of cph() in 

rms package, the function of coxph() in survival package and 

the function of survfit() in survival package were synthesized 
by the function of predictSurvProb() in the R language 
pec package, which could calculate the individual patient’s 

survival probability (53).
The useage of predictSurvProb() in the R pec package is 

predictSurvProb (object, newdata, times,…). 
Among these, the object is a well-fitted model by the 

function of survival::coxph() or the function of rms::cph(). 

The newdata is a dataset of data.frame style. The rows 

represent observations and the columns represent the 

variables to be used in the prediction model. The time is a 

Figure 25 ROC curve.

Figure 26 ROC curve in validation set.
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vector that contains the points to be predicted.

Case analysis

We used the clinical data of 232 patients with renal clear 

cell carcinoma downloaded from TCGA database (https://

portal.gdc.cancer.gov/) for practical operation. There were 

8 variables in the dataset. Among the eight variables, death 

was the outcome variable (dependent variable), OS was the 

length of survival time. In addition, age, gender, TNM, 

SSIGN and Fuhrman were the independent variables.

R code and its interpretation

The pec package and other necessary auxiliary package 

should be loaded firstly. Then, the data of Case_in_TCGA.
csv will be identified. The codes of R language were shown 
as follows.

library(dplyr) 

library(rms)

library(survival) 

library(pec)

data <- read.csv(“Case_in_TCGA.csv”)

Two hundred and thirty two patients were randomly 

divided into training set and validation set, in which data.1 

was the training set and data.2 was the validation set.

set.seed(1450) 

x <- nrow(data) %>% runif() 

data <- transform(data,sample=order(x)) %>% arrange(sample) 

data.1 <- data[1:(nrow(data)/2),] 

data.2 <- data[((nrow(data)/2)+1):nrow(data),]

Then, the Cox regression model was fitted with 116 

cases of training set data.1.

cox1 <- cph(Surv(os,death)~age+gender+tnm+fuhrman+ssign, 

data=data.1, surv=TRUE) 

cox2 <- cph(Surv(os,death)~tnm+ssign, data=data.1, surv=TRUE)

The survival time points of the predicted survival rate 

need to be set. In this case, the survival probability rate of 

each patient in validation set at the first, third and fifth year 
would be predicted according to the model built by the 

training set.

t <- c(1,3,5)

survprob <- predictSurvProb(cox1,newdata=data.2,times=t)

head(survprob)

##             1         3         5

## 117 0.9128363 0.7447740 0.6346714

## 118 0.8907077 0.6879995 0.5615877

## 119 0.9077517 0.7314529 0.6172421

## 120 0.9121396 0.7429388 0.6322600

## 121 0.8366330 0.5619540 0.4109773

## 122 0.8577605 0.6091122 0.4653860

The excellence of this package is that it can calculate the 

survival probability rate of each patient in the validation 

set based on the prediction model built by the training set. 

Moreover, it can also calculate the C-index in the validation 

set. C-index, namely Concordance Index, is mainly used 

to reflect the differentiation ability and accuracy of the 

prediction model. The definition of C-Index is as simple 

as the number of consistent pairs/ the number of useful 

pairs. There will be N*(N-1)/2 pairs if N subjects were 

randomly paired. However, if the sample size is very large, 

the calculation work cannot be completed without the 

assistant of computer software. First, we should find out 

the consistent pair number as the numerator. While, what 

is a consistent pair number? Taking Cox regression analysis 

for survival data as an example, if the actual survival length 

is long and the predicted survival rate is also high, or the 

predicted survival rate is low when the actual survival length 

is short, we could make the conclusion that the predicted 

result is consistent with the actual result. Otherwise, it is 

inconsistent. Then, the useful number of pairs should be 

found out for denominator. What is a useful pair number? 

Taking Cox regression analysis as an example, the so-

called useful pair number requires that at least one of the 

two paired individuals have a target endpoint. That is to 

say, if the paired patients did not show an endpoint event 

during all the observation period, it cannot be included in 

the denominator. In addition, there are two other situations 

that need to be excluded: 

(I) If one of the paired object reach to an endpoint, 

while the other one cannot reach to an endpoint 

due to the loss of follow-up;

(II) The pair died at the same time. 

Now the denominator had been identified, how to get 

the numerator?

In fact, the function of cindex() in pec package can 

calculate the C-index of the prediction model. Meanwhile, 

it can evaluate the discrimination of different regression 

modeling strategies for the same data via cross validation. 

C-Index could be verified by the model discrimination in 
data.2.

c_index  <- cindex(list(“Cox(5 variables)”=cox1, “Cox(2 variables)”=cox2), 

                        formula=Surv(os,death)~age+gender+tnm+fuhrman+ssign, 

                        data=data.2, 

                        eval.times=seq(1,5,0.1)) 

plot(c_index,xlim = c(0,5))
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The figure above (Figure 27) showed that model Cox (2 

variables) is better than Cox (5 variables) in terms of the 
discriminability of the regression model. However, this 

result has not been cross-verified and may be unstable. 

Therefore, we can further compare the discriminability 

of the two regression models with the method of cross-

validation.

The model discrimination was verified in data.2, and the 
cross-validation was performed using bootstrap re-sampling 

method.

c_index  <- cindex(list(“Cox(5 variables)”=cox1, “Cox(2 

variables)”=cox2), 

                        formula=Surv(os,death)~fuhrman+ssign, 

                        data=data, 

                        eval.times=seq(1,5,0.1), 

                        splitMethod=“bootcv”, 

                        B=1000)

## Warning: executing %dopar% sequentially: no parallel backend registered

## 100

## 200

## 300

## 400

## 500

## 600

## 700

## 800

## 900

## 1000

plot(c_index,xlim = c(0,5))

The f igure above (Figure  28 )  showed that  the 

discriminability of the two Cox regression models is similar. 

However, the model with only two variables is obviously 

more convenient than the model with five variables. 

Therefore, the simpler the model, the better to perform.

The pec package can not only calculate the survival 

rate of each object and C-index in the validation set, but a 

Calibration plot can be drawn in the validation set, which 

cannot be completed by rms package. Calibration refers 

to the consistency between the actual rate of the outcome 

and the predicted rate. For example, when we need to 

predict the disease prevalence in 100 subjects, the models 

cannot directly calculate the rate of disease/no disease. In 

fact, the model just provides us the probable prevalence 

of this disease, and we need to judge the rate of illness/

no illness based on the probability greater than a certain 

cut-off value (such as 0.5). Then, 100 numbers between 0 
and 1 could be obtained via the model. Then we divided 

these 100 objects into ten groups. The actual probability is 

the percentage of those ten objects who suffered from the 

disease. The probability of prediction is the average of the 

ten proportions in all of the ten groups. Then we compared 

the predicted probability and actual probability, one as 

the abscissa and the other one as the ordinate. Finally, 

Calibration Plot could be obtained. Meanwhile, the 95% 
confidence interval of Calibration Plot could be calculated.

We used the calPlot() function in pec package to 
demonstrate the performance of  Calibration Plot in the 
validation set (Figure 29).

calPlot(list(“Cox(5 variables)”=cox1,”Cox(2 variables)”=cox2), 

        time=3,# Set the time point you want to observe 

        data=data.2)

Similarly, we can use bootstrap method to re-sample  

232 cases, and perform cross-validation for the model  

(Figure 30).

calPlot(list(“Cox(5 variables)”=cox1,”Cox(2 variables)”=cox2), 

        time=3,# Set the time point you want to observe 

        data=data, 

        splitMethod = “BootCv”, 

        B=1000)

Brief summary

Above we summarize the Cox regression model method 

for external validation, including the discrimination index 

Figure 27 The discrimination index of Cox (2 variables) compared 

with Cox (5 variables) without cross-validation. Figure 28 The discriminability of Cox (2 variables) compared with 

Cox (5 variables) with cross-validation.
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and calibration evaluation. For the outcome in the Cox 

regression model include the time, so the calculation 

method is slightly different from Logistic regression. 

However, whether the Cox regression model or Logistic 

regression model, as a good prediction model, should have 

the characteristics of robust enough, no matter for the 

training set, internal validation set or external validation 

set, has better discrimination and calibration. A good 

performance in the training set does not necessarily mean a 

good performance in the validation set. In addition, a good 

discrimination does not necessarily mean a good calibration, 

and vice versa.

Fine-Gray test and competing risk model with R

Background

When observing whether an event occurs or not, if 

the event is obstructed by other events, there may be 

multiple outcome events in the so-called competitive risk 

research, and some outcomes will prevent the occurrence 

of interested events or affect the probability of their 

occurrence. All outcome events form a competitive 

relationship and are mutually competitive risk event.

For example, some researchers collected in this city in 

2007 diagnosed with mild cognitive impairment (MCI) of 

518 cases of elderly patients with clinical data, including 
basic demographic characteristics, lifestyle, physical 

examination, and merge disease information, etc., and 

complete six follow-up survey in 2010–2013, the main 
outcome is whether Alzheimer’s disease (AD) occurs. 

During the follow-up period, a total of 78 cases of AD 

occurred, including 28 cases of relocation, 31 cases of 

withdrawal and 25 cases of death. What are the factors that 
affect the transition of MCI to AD? 

In this case, if  the MCI patient dies of cancer, 

cardiovascular disease, car accident and other causes during 

the observation period without AD, he cannot contribute 

to the onset of AD, that is, the end of death “competes” 

with the occurrence of AD. According to traditional 

survival analysis method, the death of the individual occurs 

before the AD, lost to the individual, and not the AD 

individuals, are considered to be censored data, may lead 

to bias (54) For the elderly population with high mortality 
rate, when there are competitive risk events, the traditional 

survival analysis methods (Kaplan-Meier method, Log-
rank test, Cox proportional hazard regression model) will 

overestimate the risk of the diseases of interest, thus leading 

to competitive risk bias. Some studies have found that about 

46% of the literatures may have such bias (54).
In this case, the competitive risk model is appropriate. 

The so-called competing risk model is an analytical method 

to process multiple potential outcome of survival data. 

As early as 1999, Fine and Gray proposed the partially 

distributed semi-parametric proportional hazard model, and 

the commonly used endpoint index is cumulative incidence 

function (CIF) (55,56). In this case, death before AD can be 
taken as a competitive risk event of AD, and the competitive 

risk model is adopted for statistical analysis. Univariate 

analysis of competitive risk is often used to estimate the 

incidence of end-point events of interest, and multivariate 

analysis is often used to explore prognostic factors and 

effect sizes.

Case analysis

[Case 1]

This case data was downloaded from http://www.stat.

unipg.it/luca/R/. Researchers plan to investigate the 

curative effect of bone marrow transplantation compared 

blood transplantation for the treatment of leukemia, 

Figure 29 The Calibration Plot performed by pec package.

Figure 30 The Calibration Plot performed by pec package with 
cross-validation.
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endpoint event defined as “recurrence”. Some patients after 
transplantation, unfortunately because of adverse reactions 

to the death, that the transplant related death cannot be 

observed in patients with the end of the “recurrence”. In 

other words, “transplant-related death” and “recurrence” 

are competitive risk events. Therefore, competitive risk 

model is adopted for statistical analysis (57,58).
Firstly, import the data file ‘bmtcrr.csv’ from the current 

working path.

library(foreign) 

bmt <-read.csv(‘bmtcrr.csv’) 

str(bmt)

## ‘data.frame’:    177 obs. of  7 variables: 

##  $ Sex   : Factor w/ 2 levels “F”,”M”: 2 1 2 1 1 2 2 1 2 1 ... 

##  $ D     : Factor w/ 2 levels “ALL”,”AML”: 1 2 1 1 1 1 1 1 1 1 ... 

##  $ Phase : Factor w/ 4 levels “CR1”,”CR2”,”CR3”,..: 4 2 3 2 2 4 1 1 1 4 ... 

##  $ Age   : int  48 23 7 26 36 17 7 17 26 8 ... 

##  $ Status: int  2 1 0 2 2 2 0 2 0 1 ... 

##  $ Source: Factor w/ 2 levels “BM+PB”,”PB”: 1 1 1 1 1 1 1 1 1 1 ... 

##  $ ftime : num  0.67 9.5 131.77 24.03 1.47 ...

This is a data of dataframe structure with 7 variables and 

a total of 177 observations. 

$ Sex: sex variable, factor variable, 2 levels: “F”, “M”.

$ D: disease type, factor variable, 2 levels “ALL 

(acute lymphocytic leukemia)”, “AML (acute myelocytic 

leukemia)”.

$ Phase: phase of disease, factor variables, 4 levels: “CR1”, 
“CR2”, “CR3”, “ Relapse”.

$ Age: age variable, continuous variable. 

$ Status: outcome variables, 0= censored, 1= recurrence, 

2= competitive risk events.

$ Source: type of intervention, factor variables, 2 

levels: “BM + PB (bone marrow transplantation + blood 
transplantation)”, “PB (blood transplantation)”.

$ ftime: time variable, continuous variable.

The package “cmprsk” of the competitive risk model was 

loaded, the data box “bmt” was loaded, and the outcome 

was defined as the factor variable. 
library(cmprsk)

## Loading required package: survival

bmt$D <- as.factor(bmt$D) 

attach(bmt)

Fine-Gray test (univariate variable analysis)

Similar to the Log-rank test comparing survival outcome 

data of the two groups, univariate analysis can also be 

carried out considering competitive risk events. Next, 

we can use the cuminc() function to carry out univariate 

variable Fine-Gray test.

fit1 <- cuminc(ftime,Status,D) 

fit1

## Tests: 

##        stat         pv df 

## 1 2.8623325 0.09067592  1 

## 2 0.4481279 0.50322531  1 

## Estimates and Variances: 

## $est 

##              20        40        60        80       100       120 

## ALL 1 0.3713851 0.3875571 0.3875571 0.3875571 0.3875571 0.3875571 

## AML 1 0.2414530 0.2663827 0.2810390 0.2810390 0.2810390        NA 

## ALL 2 0.3698630 0.3860350 0.3860350 0.3860350 0.3860350 0.3860350 

## AML 2 0.4439103 0.4551473 0.4551473 0.4551473 0.4551473        NA 

##  

## $var 

##                20          40          60          80         100 

## ALL 1 0.003307032 0.003405375 0.003405375 0.003405375 

0.003405375 

## AML 1 0.001801156 0.001995487 0.002130835 0.002130835 

0.002130835 

## ALL 2 0.003268852 0.003373130 0.003373130 0.003373130 

0.003373130 

## AML 2 0.002430406 0.002460425 0.002460425 0.002460425 

0.002460425 

##               120 

## ALL 1 0.003405375 

## AML 1          NA 

## ALL 2 0.003373130 

## AML 2          NA

Interpretation of results: “1” represents the defined 

endpoint and “2” represents competitive risk events. 

Statistics in the first row =2.8623325, P value =0.09067592, 
indicating that after controlling competitive risk events (i.e., 

statistics calculated in the second row and P value), there 
was no statistical difference in cumulative recurrence risk of 

“ALL” and “AML” P=0.09067592.
$est: represents the estimated cumulative recurrence rate 

and cumulative competitive risk event rate of “ALL” and 

“AML” groups at each time point (the defined endpoint 

and competitive risk events distinguished by “1” and “2” 

respectively, consistent with the results in line 1 and line 2 

above).

$var: represents the variances of the estimated cumulative 

recurrence rate and the cumulative competitive risk event 

rate for the “ALL” and “AML” groups at each time point 

(the defined endpoint and competitive risk events identified 
by “1” and “2” respectively, consistent with the results in 

line 1 and line 2 above).

Below, we draw the survival curve of cumulative 

recurrence rate and cumulative competitive risk event 

incidence rate to intuitively represent the above digitized 

results (Figure 31). 
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plot(fit1,xlab = ‘Month’, ylab = ‘CIF’,lwd=2,lty=1, 

     col = c(‘red’,’blue’,’black’,’forestgreen’))

Figure interpretation: the vertical axis represents the 

CIF, and the horizontal axis is the time. We looked at 

the red curve corresponding to ALL1 and the blue curve 

corresponding to AML1 (1 represents the defined endpoint 
and 2 represents competitive risk events). From the figure, 
it can be concluded that the recurrence risk of ALL group 

was higher than that of AML group, but it did not reach 

statistical significance, P=0.09067592. Similarly, if we look 
at the black curve corresponding to ALL2 below the grass 

green curve corresponding to AML2, we can conclude that 

the incidence of competitive risk events in ALL group is 

lower than that in AML group, which also fails to reach 

statistical significance, P=0.50322531. As can be seen 
from the curve, the curves were “entangled” in the first 20 
months, so no statistically significant results were obtained. 
Simply put, this figure can be summarized in one sentence: 
after controlling competitive risk events, there is no 

statistical difference in cumulative recurrence risk of “ALL” 

and “AML”, P=0.09067592.

Competitive risk model (multivariate analysis)

The following is a multivariate analysis of survival data 

considering competitive risk events. In the cmprsk package, 

the crr() function is convenient for multifactor analysis. The 

function is used as follows:

crr(ftime, fstatus, cov1, cov2, tf, cengroup, failcode 

=1, cencode =0, subset, na.action = na.omit, gtol =1e-06, 

maxiter =10, init, variance = TRUE)

You can refer to the crr() function help documentation 
for detailed explanation of each parameter. It should be 

noted here that the function must specify the time variable 

and the outcome variable, and then pass in the covariate 

matrix or dataframe. Firstly, the covariates entering the 

model are defined and positioned as dataframe. 
cov <- data.frame(age = bmt$Age, 

               sex_F = ifelse(bmt$Sex==‘F’,1,0), 

               dis_AML = ifelse(bmt$D==‘AML’,1,0), 

               phase_cr1 = ifelse(bmt$Phase==‘CR1’,1,0), 

               phase_cr2 = ifelse(bmt$Phase==‘CR2’,1,0), 

               phase_cr3 = ifelse(bmt$Phase==‘CR3’,1,0), 

               source_PB = ifelse(bmt$Source==‘PB’,1,0)) ## Set dummy variables

cov

Construct a multivariate competitive risk model. In here, 

failcode =1 and cencode =0 need to be specified, respectively 
representing: endpoint event assignment “1” and censored 

assignment “0”, and other competitive risk events are 

assigned a default value “2”.

fit2 <- crr(bmt$ftime, bmt$Status, cov, failcode=1, cencode=0) 

summary(fit2)

## Competing Risks Regression 

##  

## Call: 

## crr(ftime = bmt$ftime, fstatus = bmt$Status, cov1 = cov, failcode = 1,  

##     cencode = 0) 

##  

##              coef exp(coef) se(coef)      z p-value 

## age       -0.0185     0.982   0.0119 -1.554  0.1200 

## sex_F     -0.0352     0.965   0.2900 -0.122  0.9000 

## dis_AML   -0.4723     0.624   0.3054 -1.547  0.1200 

## phase_cr1 -1.1018     0.332   0.3764 -2.927  0.0034 

## phase_cr2 -1.0200     0.361   0.3558 -2.867  0.0041 

## phase_cr3 -0.7314     0.481   0.5766 -1.268  0.2000 

## source_PB  0.9211     2.512   0.5530  1.666  0.0960 

##  

##           exp(coef) exp(-coef)  2.5% 97.5% 

## age           0.982      1.019 0.959 1.005 

## sex_F         0.965      1.036 0.547 1.704 

## dis_AML       0.624      1.604 0.343 1.134 

## phase_cr1     0.332      3.009 0.159 0.695 

## phase_cr2     0.361      2.773 0.180 0.724 

## phase_cr3     0.481      2.078 0.155 1.490 

## source_PB     2.512      0.398 0.850 7.426 

##  

## Num. cases = 177 

## Pseudo Log-likelihood = -267  

## Pseudo likelihood ratio test = 24.4  on 7 df,

Interpretation of results: after controlling for competitive 

risk distribution events, phase variable, that is, the stage of 

disease, is an independent risk factor for patient recurrence. 

The patients in the “Relapse ” stage are taken as the 

reference, the accumulated recurrence rate of patients in 

the CR1, CR2 and CR3 stages compared with those in 

the “Relapse” stage, Hazard Ratio and 95% CI were 0.332 
(0.159, 0.695), 0.361 (0.180, 0.724), and 0.481 (0.155, 
1.490), respectively, corresponding P values were 0.0034, 
0.0041, and 0.2000, respectively.

Figure 31 The survival curve of cumulative recurrence rate and 

cumulative competitive risk event incidence rate.
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Brief summary

This Section introduces in detail the Fine-Gray test and 

competitive risk model of cmprsk programmed package 

using R. The author thinks that readers in the process of 

concrete application should pay attention to two points: 

Firstly,  the use of selective Fine-Gray test and 

competition risk model, if the endpoint has competing risk 

events, and are likely to affect the conclusion, that using this 

model is suitable, this model is not necessarily better than 

the Cox model, these two models should complement each 

other; 

Secondly, competitive risk events are also limited in 

the consideration of competitive risk model. Currently, 

only the binary end point of Cox model is extended to 

triple classification, namely, outcome events, censored 

and competitive risk events. Even so, it is difficult to 

interpret the results. Therefore, readers should evaluate and 

experiment more fully when choosing statistical methods.

Nomogram of competing risk model with R

Background

The cmprsk package of the competitive risk model is loaded 

in R, and the univariate analysis and multivariate analysis 

considering the survival data of competitive risk events can 

be carried out by using the cuminc() function and crr () 

function. We have described the implementation method 

based on R language in detail in the previous Section, which 

is not shown here.

So how do you visualize the competitive risk model? 

How do I draw a nomogram of competitive risk model?

Here we demonstrate how to draw a nomogram based 

on R.

Case analysis

[Case 1]

This case data was downloaded from http://www.stat.

unipg.it/luca/R/. Researchers plan to investigate the 

curative effect of bone marrow transplantation compared 

blood transplantation for the treatment of leukemia, 

endpoint event defined as “recurrence”. Some patients after 
transplantation, unfortunately because of adverse reactions 

to the death, that the transplant related death cannot be 

observed in patients with the end of the “recurrence”. In 

other words, “transplant-related death” and “recurrence” 

are competitive risk events. Therefore, competitive risk 

model is adopted for statistical analysis (57,58).

R codes and its interpretation

Firstly, import the data file ‘bmtcrr.csv’ from the current 

working path.

library(foreign) 

bmt <-read.csv(‘bmtcrr.csv’) 

str(bmt)

## ‘data.frame’:    177 obs. of  7 variables: 

##  $ Sex   : Factor w/ 2 levels “F”,”M”: 2 1 2 1 1 2 2 1 2 1 ... 

##  $ D     : Factor w/ 2 levels “ALL”,”AML”: 1 2 1 1 1 1 1 1 1 1 ... 

##  $ Phase : Factor w/ 4 levels “CR1”,”CR2”,”CR3”,..: 4 2 3 2 2 4 1 1 1 4 ... 

##  $ Age   : int  48 23 7 26 36 17 7 17 26 8 ... 

##  $ Status: int  2 1 0 2 2 2 0 2 0 1 ... 

##  $ Source: Factor w/ 2 levels “BM+PB”,”PB”: 1 1 1 1 1 1 1 1 1 1 ... 

##  $ ftime : num  0.67 9.5 131.77 24.03 1.47 ...

This is a data of dataframe structure with 7 variables and 

a total of 177 observations. 

$ Sex: sex variable, factor variable, 2 levels: “F”, “M”.

$ D: disease type, factor variable, 2 levels “ALL 

(acute lymphocytic leukemia)”, “AML(acute myelocytic 

leukemia)”.

$ Phase: phase of disease, factor variables, 4 levels: “CR1”, 
“CR2”, “CR3”, “Relapse”.

$ Age: age variable, continuous variable. 

$ Status: outcome variables, 0= censored, 1= recurrence, 

2= competitive risk events.

$ Source: type of intervention, factor variables, 2 

levels: “BM + PB (bone marrow transplantation + blood 
transplantation)”, “PB (blood transplantation)”.

$ ftime: time variable, continuous variable.

Firstly, the variables in the dataset bmt are further 

processed.

bmt$id<-1:nrow(bmt)# Sort the data set by rows and generate ordinal id 

bmt$age <- bmt$Age 

bmt$sex <- as.factor(ifelse(bmt$Sex==‘F’,1,0)) 

bmt$D <- as.factor(ifelse(bmt$D==‘AML’,1,0)) 

bmt$phase_cr <- as.factor(ifelse(bmt$Phase==‘Relapse’,1,0)) 

bmt$source = as.factor(ifelse(bmt$Source==‘PB’,1,0))

View the data structure and present the first six rows of 
data. It can be seen that we have re-assigned the covariables 

in the data set and binarized the multi-classification 

variables. Note that dummy variables are not set here for 

multi-classification variables. The main reason is that if 

dummy variables appear in the nomogram, interpretation of 

the results will be confusing. Therefore, dummy variables 

should be avoided in the nomogram.



Annals of Translational Medicine, Vol 7, No 23 December 2019 Page 69 of 96

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(23):796 | http://dx.doi.org/10.21037/atm.2019.08.63

str(bmt)

## ‘data.frame’:    177 obs. of  12 variables: 

##  $ Sex     : Factor w/ 2 levels “F”,”M”: 2 1 2 1 1 2 2 1 2 1 ... 

##  $ D       : Factor w/ 2 levels “0”,”1”: 1 2 1 1 1 1 1 1 1 1 ... 

##  $ Phase   : Factor w/ 4 levels “CR1”,”CR2”,”CR3”,..: 4 2 3 2 2 4 1 1 1 4 ... 

##  $ Age     : int  48 23 7 26 36 17 7 17 26 8 ... 

##  $ Status  : int  2 1 0 2 2 2 0 2 0 1 ... 

##  $ Source  : Factor w/ 2 levels “BM+PB”,”PB”: 1 1 1 1 1 1 1 1 1 1 ... 

##  $ ftime   : num  0.67 9.5 131.77 24.03 1.47 ... 

##  $ id      : int  1 2 3 4 5 6 7 8 9 10 ... 

##  $ age     : int  48 23 7 26 36 17 7 17 26 8 ... 

##  $ sex     : Factor w/ 2 levels “0”,”1”: 1 2 1 2 2 1 1 2 1 2 ... 

##  $ phase_cr: Factor w/ 2 levels “0”,”1”: 2 1 1 1 1 2 1 1 1 2 ... 

##  $ source  : Factor w/ 2 levels “0”,”1”: 1 1 1 1 1 1 1 1 1 1 ...

head(bmt)

##   Sex D   Phase Age Status Source  ftime id age sex phase_cr source 

## 1   M 0 Relapse  48      2  BM+PB   0.67  1  48   0        1      0 

## 2   F 1     CR2  23      1  BM+PB   9.50  2  23   1        0      0 

## 3   M 0     CR3   7      0  BM+PB 131.77  3   7   0        0      0 

## 4   F 0     CR2  26      2  BM+PB  24.03  4  26   1        0      0 

## 5   F 0     CR2  36      2  BM+PB   1.47  5  36   1        0      0 

## 6   M 0 Relapse  17      2  BM+PB   2.23  6  17   0        1      0

The regplot() function in the regplot package can draw 

more aesthetic nomogram. However, it currently only 

accepts regression objects returned by the coxph(), lm(), and 

glm () functions. Therefore, in order to draw the nomogram 

of the competition risk model, we need to weight the 

original data set to create a new data set for the competition 

risk model analysis (59,60). The main feature of the crprep() 
function in the mstate package is to create this weighted 

data set, as shown in the R code below. We can then use 

the coxph() function to fit the competitive risk model of the 
weighted dataset and pass it to the regplot() function to plot 

the nomogram. For specific weighting principles, readers 

may refer to the literature published by Geskus et al. (60), 

which is not shown here.

Next, we create the weighted dataset for the original 

data set bmt and name it df.w. Where, the parameter trans 

= specifies the endpoint event and competitive risk event 

that need to be weighted; cens = designated censored; id = 

the id of the incoming data set bmt; keep = covariables to be 

retained in the weighted dataset.

library(mstate)

## Loading required package: survival

df.w <- crprep(“ftime”, “Status”, 

               data=bmt, trans=c(1,2), 

               cens=0, id=“id”, 

               keep=c(“age”,”sex”,”D”,”phase_cr”,”source”)) 

df.w$T<- df.w$Tstop - df.w$Tstart

The above code has created a weighted dataset df.w on 

which we can then use the coxph() function for competitive 

risk analysis.

m.crr<- coxph(Surv(T,status==1)~age+sex+D+phase_cr+source, 

             data=df.w, 

             weight=weight.cens, 

             subset=failcode==1) 

summary(m.crr)

## Call: 

## coxph(formula = Surv(T, status == 1) ~ age + sex + D + phase_cr +  

##     source, data = df.w, weights = weight.cens, subset = failcode ==  

##     1) 

##  

##   n= 686, number of events= 56  

##  

##               coef exp(coef) se(coef)      z Pr(>|z|)     

## age       -0.02174   0.97850  0.01172 -1.854  0.06376 .   

## sex1      -0.10551   0.89987  0.27981 -0.377  0.70612     

## D1        -0.53163   0.58764  0.29917 -1.777  0.07556 .   

## phase_cr1  1.06140   2.89040  0.27870  3.808  0.00014 *** 

## source1    1.06564   2.90269  0.53453  1.994  0.04620 *   

## --- 

## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

##  

##           exp(coef) exp(-coef) lower .95 upper .95 

## age          0.9785     1.0220    0.9563     1.001 

## sex1         0.8999     1.1113    0.5200     1.557 

## D1           0.5876     1.7017    0.3269     1.056 

## phase_cr1    2.8904     0.3460    1.6739     4.991 

## source1      2.9027     0.3445    1.0181     8.275 

##  

## Concordance= 0.737  (se = 0.037 ) 

## Likelihood ratio test= 28.33  on 5 df,   p=3e-05 

## Wald test            = 28.54  on 5 df,   p=3e-05 

## Score (logrank) test = 30.49  on 5 df,   p=1e-05

Next, we can plot the nomogram using the regplot() 

function. In the nomogram, the values of covariates 

of patients with id=31 in the data set are mapped to 

corresponding scores, and the total scores are calculated, 

and the cumulative recurrence probability at 36 and  

60 months is calculated respectively, which is the cumulative 

recurrence probability with considering competitive 

risk events. The calculated results are: 0.196 and 0.213, 

respectively (Figure 32).

library(regplot)

regplot(m.crr,observation=df.w[df.w$id==31&df.w$failcode==1,],

        failtime = c(36, 60), prfail = T, droplines=T)

## Replicate weights assumed

## Click on graphic expected.  To quit click Esc or press Esc

## $points.tables

## $points.tables[[1]]

##         source Points

## source2      1    100

## source1      0     38

## 

## $points.tables[[2]]
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##           phase_cr Points

## phase_cr1        0     38

## phase_cr2        1    100

## 

## $points.tables[[3]]

##    D Points

## D2 1      8

## D1 0     38

## 

## $points.tables[[4]]

##      sex Points

## sex1   0     38

## sex2   1     32

## 

## $points.tables[[5]]

##   age Points

## 1   0     78

## 2  10     65

## 3  20     53

## 4  30     40

## 5  40     28

## 6  50     15

## 7  60      3

## 8  70    -10

## 

## $points.tables[[6]]

##   Total Points Pr( T < 36 )

## 1          100       0.0232

## 2          150       0.0543

## 3          200       0.1243

## 4          250       0.2705

## 5          300       0.5276

## 6          350       0.8318

## 7          400       0.9856

In order to facilitate the comparison, Cox regression 

model can be further constructed in the original data set 

bmt, and the values of covariates of patients with id =31 

can be calculated to the corresponding scores, and the total 

scores can be calculated, and the cumulative recurrence 

probability of patients with id =31 at 36 and 60 months can 

be calculated, respectively. The calculated results are: 0.205 
and 0.217 respectively (Figure 33).

library(survival)

m.cph<-coxph(Surv(ftime,Status==1)~age+sex+D+phase_cr+source,

             data=bmt)

summary(m.cph)

## Call:

## coxph(formula = Surv(ftime, Status == 1) ~ age + sex + D + phase_

cr + 

##     source, data = bmt)

## 

##   n= 177, number of events= 56 

## 

##                coef exp(coef)  se(coef)      z Pr(>|z|)    

## age       -0.007766  0.992264  0.011952 -0.650   0.5158    

## sex1       0.371888  1.450470  0.283306  1.313   0.1893    

## D1        -0.643592  0.525402  0.295888 -2.175   0.0296 *  

## phase_cr1  1.373882  3.950657  0.290598  4.728 2.27e-06 ***

## source1    0.315122  1.370427  0.552842  0.570   0.5687    

## ---

## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

## 

##           exp(coef) exp(-coef) lower .95 upper .95

## age          0.9923     1.0078    0.9693    1.0158

## sex1         1.4505     0.6894    0.8324    2.5273

## D1           0.5254     1.9033    0.2942    0.9383

## phase_cr1    3.9507     0.2531    2.2352    6.9828

## source1      1.3704     0.7297    0.4637    4.0498

## 

## Concordance= 0.726  (se = 0.036 )

## Likelihood ratio test= 30.74  on 5 df,   p=1e-05

## Wald test            = 29.99  on 5 df,   p=1e-05

## Score (logrank) test = 33.48  on 5 df,   p=3e-06

regplot(m.cph,observation=bmt[bmt$id==31,],

        failtime = c(36,60), prfail = TRUE,droplines=T)

## Click on graphic expected.  To quit click Esc or press Esc

## $points.tables

## $points.tables[[1]]

##         source Points

## source2      1     48

## source1      0     32

## 

## $points.tables[[2]]

##           phase_cr Points

## phase_cr1        0     32

## phase_cr2        1    100

## 

## $points.tables[[3]]

##    D Points

## D2 1      0

## D1 0     32

## 

## $points.tables[[4]]

##      sex Points

## sex1   0     32

## sex2   1     50

## 

## $points.tables[[5]]

##   age Points

## 1   0     44

## 2  20     36

## 3  40     28

## 4  60     21

## 5  80     13

## 

## $points.tables[[6]]

##    Total Points Pr( ftime < 36 )

## 1           100           0.0894
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## 2           120           0.1308

## 3           140           0.1892

## 4           160           0.2695

## 5           180           0.3751

## 6           200           0.5053

## 7           220           0.6514

## 8           240           0.7935

## 9           260           0.9057

## 10          280           0.9708

## 11          300           0.9950

It can be seen that the cumulative recurrence risk calculated 

by the competition risk model and Cox proportional hazard 

model is slightly different, and the cumulative recurrence 

risk calculated by the competition risk model for patient 

No. 31 is slightly lower. The endpoint event we defined 

occurred in patient No. 31, that is, the patient relapsed after 

transplantation. The results calculated according to the 

competition risk and Cox proportional hazard model showed 

little difference. When a patient is truncated or a competitive 

risk event occurs, the settlement results of the two models are 

significantly different, so readers can try by themselves.

Brief summary

This paper describes in detail the use mstate and regplot 

R packages to plot the nomogram of competition risk 

model. In fact, this is a flexible method, namely, first, the 

original data set is weighted, then the Cox regression model 

is used to build the competitive risk model based on the 

weighted data set, and then the nomogram is drawn. This 

paper does not introduce the further evaluation of the 

competitive risk model. The riskRegression package in R 

can further evaluate the prediction model built based on the 

competitive risk analysis, such as calculating C-index and 

drawing calibration curve.

Figure 32 Nomogram predicting cumulative recurrence risk at 36 and 60 months using the competitive risk model. Nomogram estimates 

that patient no. 31 has a cumulative risk of recurrence of 0.196 and 0.213 at 36 and 60 months, respectively. *, P<0.05; ***, P<0.001.
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Outlier recognition and missing data handling 

with R

Background

In Section 1, we describe the sources of data for clinical 

predictive model construction. Whether it is prospective 

data collection or retrospective data collection, it is common 

to have outliers or missing values in the data set. Outliers 

and missing values are often a tricky issue for statisticians 

and can lead to errors if not handled properly. Outliers 

may cause our results to deviate from the real results, and 

the loss of information caused by missing values may lead 

to modeling failure. Therefore, it is important to correctly 

identify outliers and properly handle missing values before 

performing data analysis. The content discussed in this 

Section should be carried out before modeling. We can’t just 

put this thing in the end or think it doesn’t matter because 

our article is the last Section in this series of articles.

Outliers

What is an outlier? In a word, the value of a variable 

beyond human common sense and non-conformity is an 

outlier. For example, we collected fasting blood glucose 

from a group of patients, one of whom had a fasting blood 

glucose of more than 50 mmol/L, which is obviously an 
abnormal value. For another example, we investigated the 

prevalence of hypertension in the elderly over 60 years 

old in Xuhui District, Shanghai. If there is a subject with a 

SBP exceeding 1,400 mmHg, this is obviously an abnormal 
value. It is likely to be a recording error, and the true SBP 
is more May be 140.0 mmHg. Sometimes outliers are a 

relative concept that is related to the context in which our 

clinical research data is collected. For example, if our study 

is for children under the age of 10, then children of this age 

group are unlikely to be graduate students, and their height 

is unlikely to exceed 170 cm, the weight is unlikely to 

exceed 100 kg. There is also a situation in which abnormal 

values may be generated. When the sample we sampling is 

not good, for example, 1,000 people are extracted from Area 

A and 100 people are extracted from Area B. 100 people 

from Area B are likely to become a collection alone. The 

value of this set is abnormally higher or abnormally lower 

than that of Area A. This situation corresponds to clinical 

Figure 33 Nomogram predicting cumulative risk of recurrence at 36 and 60 months using Cox proportional hazard model. According to 

Nomogram’s estimate, the cumulative risk of recurrence in patient no. 31 at 36 and 60 months is 0.205 and 0.217, respectively. *, P<0.05; ***, 
P<0.001.
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studies. When we study the efficacy of an intervention, 

if only some patients have a significant effect, this part of 

the data is “outliers” compared to other patients with less 

obvious effects. “, but these outliers are exactly what we care 

about the most. Therefore, for the judgment of abnormal 

values, it is necessary to contact the actual situation, and it 

is not arbitrary, so as to avoid serious mistakes. When we 

are not sure about the data, the best solution is to check the 

original data record.

Below I will introduce several commonly used functions 

to identify outliers in the dataset. Suppose we have collected 

the height of 1,000 subjects. First, we can use the boxplot() 

function to draw a box plot to describe the data. Further 

use of the range() function to help us find the maximum and 
minimum values of these values. 

First, we simulated 1,000 subjects with a height of 100–
250 cm. Use range() to see the range of SBP in this group 
of patients.

set.seed(123) 

height <- sample(100:250,1000,replace = TRUE) 

boxplot(height)

range(height)

## [1] 100 250

Use the min() and max() functions to return the 

minimum and maximum values of an object.

min(height)

## [1] 100

max(height)

## [1] 250

If there are missing values in the data, you must adjust 

the parameter settings, na.rm = TRUE, otherwise the 

results may not be calculated.

height <- c(sample(100:250,998,replace = TRUE),NA,NA) 

boxplot(height)

range(height,na.rm = TRUE)

## [1] 100 250

We can use mean() and median() functions to calculate 

the mean and median, respectively, and use na.rm = TRUE 

for missing values.

mean(height,na.rm = TRUE)

## [1] 174.7244

median(height,na.rm = TRUE)

## [1] 175

We can also use the sd(), quantile() or fivenum() functions 
to calculate the standard deviation and quartile.

sd(height,na.rm = TRUE)

## [1] 43.19566

quantile(height,na.rm = TRUE)

##     0%    25%    50%    75%   100% 

## 100.00 137.25 175.00 212.00 250.00

fivenum(height)

## [1] 100 137 175 212 250

Note that the na.rm parameter in fiveum() defaults 

to TRUE, but the sd() and quantile() functions require 

us to set na.rm=TRUE, otherwise the result will not be 

calculated.

The above method can help us identify maxima or 

minima, but sometimes the extremum does not appear as a 

single independent, but in clusters, then the above method 

of identifying outliers is not enough. We generally define 

the outliers of the data according to the mean and standard 

deviation of the variables, or the median and quartiles (Tukey 

method) in the actual research background. For example, we 

can set the greater or less than the mean. The ±3 standard 

deviations are all outliers. Of course, we can also make 

an outlier judgment on a certain value of the categorical 

variable. For example, the gender value is 1= male, 2= 

female. If there is an assignment value of 3, then outliers. 

Here we introduce a custom function (61). This function 

judges the outliers according to the quartile Tukey method, 

which can effectively avoid the influence of extreme values 
on the mean and standard deviation. The function is as 

follows:

outlierKD <- function(dt, var) {

  var_name <- eval(substitute(var),eval(dt))

  tot <- sum(!is.na(var_name)) 

  na1 <- sum(is.na(var_name))

  m1 <- mean(var_name, na.rm = T)

  par(mfrow=c(2, 2), oma=c(0,0,3,0))

  boxplot(var_name, main=“With outliers”)

  hist(var_name, main=“With outliers”, xlab=NA, ylab=NA)

  outlier <- boxplot.stats(var_name)$out # Outlier is defined here based 

on the out value of the box diagram as an outlier

  mo <- mean(outlier)

  var_name <- ifelse(var_name %in% outlier, NA, var_name)

  boxplot(var_name, main=“Without outliers”)

  hist(var_name, main=“Without outliers”, xlab=NA, ylab=NA)

  title(“Outlier Check”, outer=TRUE)

  na2 <- sum(is.na(var_name))

  cat(“Outliers identified:”, na2 - na1, “\n”)

  cat(“Proportion (%) of outliers:”, round((na2 - na1) / tot*100, 1), “\n”)

  cat(“Mean of the outliers:”, round(mo, 2), “\n”)

  m2 <- mean(var_name, na.rm = T)

  cat(“Mean without removing outliers:”, round(m1, 2), “\n”)

  cat(“Mean if we remove outliers:”, round(m2, 2), “\n”)

  response <- readline(prompt=“Do you want to remove outliers 

                       and to replace with NA? [yes/no]: “)

  if(response == “y” | response == “yes”){

    dt[as.character(substitute(var))] <- invisible(var_name)
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    assign(as.character(as.list(match.call())$dt), dt, envir = 

.GlobalEnv)

    cat(“Outliers successfully removed”, “\n”)

    return(invisible(dt))

  } else{

    cat(“Nothing changed”, “\n”)

    return(invisible(var_name))

  }

}

The custom function has only two parameters, the 

first parameter is the name of the data set, and the second 
parameter is the variable name; the reader can run the code 

directly, as long as the data set and the name of the variable 

are properly replaced. Here we are based on the out value 

of the box plot as an outlier, we can also re-set the definition 
of outlier according to the expertise, such as greater than 

or less than the mean ± 3 standard deviation. At the end of 

the function, a user-entered code is also set. The user can 

determine whether to eliminate the outliers recognized by 

the function in the dataset by typing “yes” or “no”.

Below we simulate a set of data to verify the functionality 

of this custom outlier recognition function.

set.seed(123) 

df <- data.frame(height = c(sample(100:250, 1000, replace = TRUE), 

NA, 380, 20)) 

outlierKD(df, height)

## Outliers identified: 2  

## Proportion (%) of outliers: 0.2  

## Mean of the outliers: 200  

## Mean without removing outliers: 174.63  

## Mean if we remove outliers: 174.58  

## Do you want to remove outliers  

##                        and to replace with NA? [yes/no]:  

## Nothing changed

# The author typed “yes”, so the outliers 380 and 20 in the original data 

were rejected.。

Missing value recognition

Data loss is common in clinical studies. For example, 

when collecting data, the nurse may forget to record the 

amount of urine at a certain point in time due to busy work; 

when the researcher wants to study the effect of lactic acid 

changes on mortality, the patient may only monitor the 

blood lactate value at a certain point in time. Other reasons 

for the lack of data include coding errors, equipment 

failures, and non-response of respondents in the survey 

study (15). In statistical packages, some functions, such as 
Logistic Regression, may automatically delete missing data. 

If there are only a small number of incomplete observations, 

then this processing will not be much of a problem. 

However, when there are a large number of observations 

that contain missing values, the default row deletion in these 

functions can result in a large loss of information. In this 

case, the analyst should carefully look at the mechanisms 

that may result from data loss and find an appropriate way 
to handle it.

How to deal with missing values is a headache for clinical 

statisticians, so I decided to use a Section to discuss this 

thorny topic. Whether the data is missing or missing degree 

directly affects the quality of the data, and the quality of the 

data ultimately affects our research results. If the processing 

of missing data is not appropriate, it is likely to cause the 

entire statistical analysis to fail. This section describes how 

to handle missing data in R-project and introduces some 

basic skills for dealing with missing data.

In the R-project, “NA” is represented as a missing 

value. When an Excel table with empty cells is imported 

into the R console, these empty cells will be replaced 

by NA. This is different from STATA replacing “empty 

cells” with “.”The same missing value symbol is used for 

numeric variables and character variables in R.R provides 

some functions to handle missing values. To determine if 

a vector contains missing values, you can use the is.na() 

function. “is.na()” function is the most common method 

used to determine if an element is an NA type. It returns 

an object of the same length as the incoming parameter 

and all data is a logical value (FALSE or TRUE). Suppose 

we have 6 patients, but only 4 values are recorded, and 2 

are missing.

x <- c(1.8,2.3,NA,4.1,NA,5.7) 

is.na(x)

## [1] FALSE FALSE  TRUE FALSE  TRUE FALSE

The is.na() return vector has a length of 6, and the third 

and fifth digits have a value of TRUE, indicating that the 
patient is missing the value.

Use the which() function to find the location of the NA. 
Someone might use a logic check (such as x==NA) to detect 

missing data. This method cannot return TRUE because 

the missing values are not comparable, you must use the 

missing value function. The value returned by the “==“ 

operator is NA. By using the which() function, you can find 
out which element’s vector contains NA. In this example the 

which() function returns 3 and 5, indicating that the third 
and fifth patients’ x values are missing.

which(is.na(x))

## [1] 3 5

Using the sum() function to calculate the number of NAs 

in the vector
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sum(is.na(x))

## [1] 2

We can remove missing values in x.

x[!is.na(x)]

## [1] 1.8 2.3 4.1 5.7

Here we use the “!” in the logical operator, which is 

the “non” operation. The code means to find out all the 

elements of the vector x those are not missing values. When 

there is an NA in a vector, whether it is adding, subtracting, 

multiplying, dividing, or averaging, and finding the standard 
deviation, the return is all NA. Because by default, R will 

calculate the NA as one of the elements, that leads to no 

solution, such as

sum(x)

## [1] NA

mean(x)

## [1] NA

In this case, we need to use the na.rm parameter in these 

calculation functions to change it from the default FALSE 

to TRUE.

mean(x,na.rm = TRUE)

## [1] 3.475

sum(x,na.rm = TRUE)

## [1] 13.9

The above R codes all deal with the missing in the 

vectors. But, in practice, what we encounter more is to deal 

with the missing in a data frame. Next, we will simulate a 

data frame with missing values. Be careful that the third 

patient had a sex-value deletion and the fourth patient had a 

x-value deletion.

id<-c(1,2,3,4,5,6) 

sex<-c(“m”,”f”,NA,”f”,”m”,”f”) 

x<-c(0.7,3.4,4.1,NA,6.7,5.3) 

df<-data.frame(id,sex,x) 

df

##   id  sex   x 

## 1  1    m 0.7 

## 2  2    f 3.4 

## 3  3 <NA> 4.1 

## 4  4    f  NA 

## 5  5    m 6.7 

## 6  6    f 5.3

Now, we can calculate the proportion of missing values 

in the df data box, also the mean, standard deviation and so 

on after removing the missing values. Lots of functions can 

do it. Here we recommend the describe() function in the 

psych package, which is more convenient for giving a series 

of statistical descriptive indicators’ values.

install.packages(“psych”) 

library(psych)

## Warning: package ‘psych’ was built under R version 3.5.3

describe(df)

##      vars n mean   sd median trimmed  mad min max range  skew kurtosis 

## id      1 6 3.50 1.87    3.5    3.50 2.22 1.0 6.0     5  0.00    -1.80 

## sex*    2 5 1.40 0.55    1.0    1.40 0.00 1.0 2.0     1  0.29    -2.25 

## x       3 5 4.04 2.25    4.1    4.04 1.78 0.7 6.7     6 -0.29    -1.61 

##        se 

## id   0.76 

## sex* 0.24 

## x    1.01

The describe() function returned the basic statistic of 

the dataset. “n” represents the number of non-missing 

observations in the variable. “mean”, “sd” and “median” 

represent the mean, standard deviation, and median after 

removing the NA. “trimmed” represents the recalculated 

mean after removing 10% of the data from the beginning 

and the end of the data, which aims to remove the 

influence of extreme values; “mad”, “min”, “max”, and 

“range” represent the mode, minimum, maximum, and 

range respectively; “skew”, “kurtosis”, and “se” represent 

skewness, kurtosis, and standard error respectively. The first 
two indicators are aimed to measure whether the data is 

fitted with a normal distribution.
Although some default settings in the regression model 

can effectively ignore missing data, it is also necessary to 

create a new data frame that excludes missing data. We 

only need to use na.omit() in the dataset of the data frame 

structure, then it returns a new data frame with the missing 

values removed.

df_omit<-na.omit(df) 

df_omit

##   id sex   x 

## 1  1   m 0.7 

## 2  2   f 3.4 

## 5  5   m 6.7 

## 6  6   f 5.3

The above na.omit() returns a new data frame with 

missing values removed. It can be seen that the third and 

fourth patients with missing data were removed from the 

variables.

Missing value visualization

The visualization of missing values can help us visualize the 

missing values in the dataset more intuitively, which will 

help us to interpolate the missing value later. In this section, 
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the author will mainly introduce the use of VIM packages 

to the reader. The demo dataset for this section is the built-

in dataset “airquality” of the R language.

data(“airquality”) 

str(airquality)

## ‘data.frame’:    153 obs. of  6 variables: 

##  $ Ozone  : int  41 36 12 18 NA 28 23 19 8 NA ... 

##  $ Solar.R: int  190 118 149 313 NA NA 299 99 19 194 ... 

##  $ Wind   : num  7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ... 

##  $ Temp   : int  67 72 74 62 56 66 65 59 61 69 ... 

##  $ Month  : int  5 5 5 5 5 5 5 5 5 5 ... 

##  $ Day    : int  1 2 3 4 5 6 7 8 9 10 ...

The airquality dataset contains 153 observations and 6 
variables. From the above results we can see that there are 

missing values in this dataset. Before visualizing, explore the 

missing data pattern using the md.pattern() function in the 

mice package first.

install.packages(“mice”) 

library(mice)

## Loading required package: lattice

##  

## Attaching package: ‘mice’

## The following objects are masked from ‘package:base’: 

##  

##     cbind, rbind

md.pattern(airquality)

##     Wind Temp Month Day Solar.R Ozone    

## 111    1    1     1   1       1     1  0 

## 35     1    1     1   1       1     0  1 

## 5      1    1     1   1       0     1  1 

## 2      1    1     1   1       0     0  2 

##        0    0     0   0       7    37 44

In the output table body, “1” represents a non-missing 

value, and “0” represents a missing value. The first column 
shows the number of unique missing data patterns. In our 

example, 111 observations don’t contain missing data, 35 
observations have only missing data in the Ozone variable, 

5 observations have only Solar. R missing, and so on. The 
rightmost column shows the number of missing variables 

in a particular missing mode. For example, if there is no 

missing value in the first line, it is displayed as “0”. The last 
line counts the number of missing values for each variable. 

For example, the Wind variable has no missing values and 

displays “0”, as well as the Ozone variable has 37 missing 

values. In the study, some variables with more missing 

values may be eliminated. Then, the form can provide 

useful reference information.

Below we call the VIM package to visualize the missing 

values. Studying missing data patterns is necessary for 

choosing a suitable interpolation method to estimate 

missing values. Therefore, the visualization tool should 

be performed before the interpolation operation, and 

usually a diagnosis should be made to determine whether 

the interpolation value is reasonable after the missing data 

interpolation. The functions that can be used to visualize 

missing data are as follows: aggr(), matrixplot(), scattMiss() 

and marginplot().

install.packages(‘VIM’) 

library(VIM)

## Loading required package: colorspace

## Loading required package: grid

## Loading required package: data.table

## VIM is ready to use.  

##  Since version 4.0.0 the GUI is in its own package VIMGUI. 

##  

##           Please use the package to use the new (and old) GUI.

## Suggestions and bug-reports can be submitted at: https://github.com/

alexkowa/VIM/issues

##  

## Attaching package: ‘VIM’

## The following object is masked from ‘package:datasets’: 

##  

##     sleep

aggr_plot <- aggr(airquality, col=c(‘red’,’blue’), numbers=TRUE, 

sortVars=TRUE, labels=names(airquality), cex.axis=.7, gap=3, 

ylab=c(“Histogram of missing data”,”Pattern”))

##  

##  Variables sorted by number of missings:  

##  Variable      Count 

##     Ozone 0.24183007 

##   Solar.R 0.04575163 

##      Wind 0.00000000 

##      Temp 0.00000000 

##     Month 0.00000000 

##       Day 0.00000000

The aggr() function helps us visualize the missing values. 

The left graph is a missing value proportional histogram. 

It can be seen from the graph that Ozone and Solar.R 

have missing values, with the Ozone’s missing value ratio 

more than 20%. The right graph reflects the pattern of 

missing values, red indicates no deletion, and blue indicates 

deletion. As it can be seen from the figure, only Ozone is 
missing 22.9%, Solar.R alone is 3.3%, and both are missing 

1.3%. While the observations with complete data account 

for 72.5%.
In addition, the marginplot() function can help us 

visualize the distribution of missing values.

marginplot(airquality[1:2])

In the below graph (Figures 34 and 35), the open lake 

blue circle indicates the non-missing value, the solid point 

of red indicates the missing value, and the dark purple point 
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indicates that both variables are all missing. The red box 

plot on the left side of the figure shows the distribution of 
Solar.R in the case of Ozone missing values, and the blue 

box plot shows the distribution of Sloar.R after removing 

the missing values of Ozone. The box plot on the bottom 

side of the graph is just the opposite, reflecting the 

distribution of Ozone in the absence and non-absence of 

Solar.R.

Imputation of missing values

Interpolation of missing values is a more complicated 

problem. First, readers must consider whether it is necessary 

to interpolate the missing values. The premise of an 

imputable data set is that data deletion is a random deletion. 

In addition, we have to consider some actual situations. For 

example, there is only 5% of your data missing. Because 
the ratio is very small, you can directly remove it from the 

original data; But if there is 20% of the data missing, we 

will lose a lot of information after they are all eliminated. 

Therefore, we should try to interpolate the missing values 

at this time. If you have 50% missing values in your original 
data, obviously, how powerful method can make up for 

this “congenital defect.” “At this time, we must find the 

reason from the source of data collection. However, in the 

real world, it is often difficult to collect the missing data 

repeatedly. Therefore, the question that the readers need 

to consider is: What method could be used to interpolate 

the missing value in the case that the missing data is not 

available? What method can you use to restore the original 

appearance of the missing value in the greatest extent?

There are many types of data missing, which are 

summarized in the following three cases (15,17):
(I) Missing completely at random (MCAR): deletion 

formation is not related to other variables (including 

observed and unobserved values), and there is no 

systematic reason. 

(II) Missing at random (MAR): missing is related 

to other variables and is not related to its own 

unmeasured value. 

(III) Not missing at random (NMAR): exclude MCAR 

and MAR.

There are various interpolation methods for missing 

values. Simple interpolation method, such as filling 

the mean or median directly and slightly complicated 

interpolation method, such as regression interpolation. 

However, no matter which method is used, it is difficult 

to measure the quality of the imputation, because in the 

real world, we can’t get the missing value, so we can’t 

verify the correctness of the interpolation. However, in the 

computer, we can evaluate different interpolation methods 

by simulation, and this evaluation is effective later.

In this section, the author will introduce several missing 

value interpolation methods to the reader for reference.

To better show how to interpolate data, we simulated 200 

observations in the first time. The data frame contains three 
variables: sex, mean arterial pressure (MAP), and lactic 
acid (lac). In order to enable the reader to get the same 

results as this article, we set the seed value for each random 

simulation. Here we use the mean of each variable to fill in 
the missing values.

set.seed(123)

sex<-rbinom(200, 1, 0.45)

sex[sex==1]<-”male”

sex[sex==0]<-”female”

set.seed(123)

sex.miss.tag<-rbinom(200, 1, 0.3)#MCAR

sex.miss<-ifelse(sex.miss.tag==1,NA,sex)

Figure 34 Visualization of missing values (1).

Figure 35 Visualization of missing values (2).
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set.seed(123)

map<-round(abs(rnorm(200, mean = 70, sd = 30)))

map<-ifelse(map<=40,map+30,map) 

set.seed(123)

lac<- rnorm(200, mean = 5, sd = 0.7) -map*0.04

lac<-abs(round(lac,1))

set.seed(123)

lac.miss.tag<-rbinom(200, 1, 0.3)

lac.miss<-ifelse(lac.miss.tag==1,NA,lac)

data<-data.frame(sex.miss,map,lac.miss)

In these data, the lactic acid content is assumed to be 

related to the MAP. The blood lactate value reflects the 
perfusion of the tissue, which is associated with MAP. We 
hypothesized that the relationship between MAP and lactic 
acid is negatively correlated. To increase randomness, we 

use the rnorm() function to generate the intercept. We 

assume that the absence of gender variables is consistent 

with MCAR. 

The following steps can use the summary() function to 

observe the data set and calculate its standard deviation.

summary(lac.miss)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA’s  

##   0.600   1.700   2.100   2.015   2.300   2.700      55

sd(lac.miss,na.rm=TRUE)

## [1] 0.4012707

In the above output, we found that there are 55 missing 
values for lactic acid, the average value is 2.015, and the 
standard deviation is 0.4012707.

Using the mean, mode, or median to estimate missing 

values is a quick and easy way. The initialise() function in 

the VIM package in the R software does the job. However, 

it is mainly used internally in some functions, and it has no 

advantage over other methods of doing a single insertion. 

For example, we want to insert a missing value into a 

continuous variable with an average value. The following 

R code returns a lac.mean variable containing the complete 

data information, and the missing value in lac.miss is 

replaced by the average of the other values. The round() 

function is used to keep the result one decimal place.

lac.mean<-round(ifelse(is.na(lac.miss),mean(lac.miss,na.

rm=TRUE),lac.miss),1)

Next, we use a visual method to check the distribution of 

the missing value after replacing it with the average.

library(car)

## Loading required package: carData

## 

## Attaching package: ‘car’

## The following object is masked from ‘package:psych’:

## 

##     logit

scatterplot(lac.mean ~ map | lac.miss.tag, lwd=2, 

                       main=“Scatter Plot of lac vs. map by # missingness”,

                       xlab=“Mean Aterial Pressure (mmHg)”,

                       ylab=“Lactate (mmol/l)”, 

                       legend.plot=TRUE, smoother=FALSE,

                       id.method=“identify”,

                       boxplots=“xy” 

            )

Unsurprisingly, all values inserted were 2.1 mmol/L of 

lactic acid (Figure 36), so the mean and standard deviation of 

the new sample were biased compared to the actual sample. 

The insertion of the mode and the median can also be 

inserted in the same way, which can be left to the readers. 

Although these rough methods provide convenience for 

missing value interpolation, this method underestimates 

the variance value (less than the actual value), ignores the 

relationship between the variables, and finally causes some 
statistical values (such as the mean standard deviation) to 

be generated. Therefore, these rough estimates can only 

be used to deal with a small amount of data missing and 

cannot be widely used. Therefore, we need to further 

master the handling of complex problems. Next, I will 

use the BostonHousing dataset in the mlbench package 

to demonstrate the various common filling methods for 

missing values.

install.packages(‘mlbench’) 

library(mlbench)

## Warning: package ‘mlbench’ was built under R version 3.5.2

data(“BostonHousing”)  

head(BostonHousing)

##      crim zn indus chas   nox    rm  age    dis rad tax ptratio      b 

## 1 0.00632 18  2.31    0 0.538 6.575 65.2 4.0900   1 296    15.3 396.90 

## 2 0.02731  0  7.07    0 0.469 6.421 78.9 4.9671   2 242    17.8 396.90 

## 3 0.02729  0  7.07    0 0.469 7.185 61.1 4.9671   2 242    17.8 392.83 

## 4 0.03237  0  2.18    0 0.458 6.998 45.8 6.0622   3 222    18.7 394.63 

## 5 0.06905  0  2.18    0 0.458 7.147 54.2 6.0622   3 222    18.7 396.90 

## 6 0.02985  0  2.18    0 0.458 6.430 58.7 6.0622   3 222    18.7 394.12 

##   lstat medv 

## 1  4.98 24.0 

## 2  9.14 21.6 

## 3  4.03 34.7 

## 4  2.94 33.4 

## 5  5.33 36.2 

## 6  5.21 28.7

The BostonHousing dataset contains 506 observations 
and 14 variables that reflect the basic situation of Boston 

city dwellers, including crime rates in each town and the 

number of non-retail businesses. Since the BostonHousing 

dataset itself has no missing values, we randomly generate 

some missing values.
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original_data <- BostonHousing 

set.seed(123) 

BostonHousing[sample(1:nrow(BostonHousing), 80), “rad”] <- NA 

BostonHousing[sample(1:nrow(BostonHousing), 80), “ptratio”] <- NA

Here we set 80 missing values for rad and ptratio. The 

former is a factor variable and the latter is a numerical 

variable. Next, we call the mice package md.pattern() 

function to observe the missing mode, and we have decided 

how to further process the missing values.

install.packages(‘mice’) 

library(mice) 

md.pattern(BostonHousing)

##     crim zn indus chas nox rm age dis tax b lstat medv rad ptratio     

## 362    1  1     1    1   1  1   1   1   1 1     1    1   1       1   0 

## 64     1  1     1    1   1  1   1   1   1 1     1    1   1       0   1 

## 64     1  1     1    1   1  1   1   1   1 1     1    1   0       1   1 

## 16     1  1     1    1   1  1   1   1   1 1     1    1   0       0   2 

##        0  0     0    0   0  0   0   0   0 0     0    0  80      80 160

The md.pattern() function is used to view missing value 

patterns in the dataset. According to the above results, 

0 indicates a deletion and 1 indicates no deletion. It can 

be seen that there are 80 missing values in each of “rad” 

and “ptratio”. There were 365 observations that were not 
missing, 61 observations were missing rad variables, 61 

observations were missing ptratio, and 19 observations were 

missing.

Similarly, we interpolate missing values in a simple way. 

First, we need to download and load the Hmisc package 

beforehand. We can use the impute() function in this 

package to perform automatic interpolation of missing 

values.

install.packages(‘Hmisc’) 

library(Hmisc)

## Loading required package: survival

## Loading required package: Formula

## Loading required package: ggplot2

##  

## Attaching package: ‘ggplot2’

## The following objects are masked from ‘package:psych’: 

##  

##     %+%, alpha

##  

## Attaching package: ‘Hmisc’

## The following object is masked from ‘package:psych’: 

##  

##     describe

## The following objects are masked from ‘package:base’: 

##  

##     format.pval, units

im_mean <- impute(BostonHousing$ptratio, mean)  #Interpolate mean 

im_median <- impute(BostonHousing$ptratio, median)  #Interpolate 

median  

im_spe <-impute(BostonHousing$ptratio, 20)  #Interpolate specified 

value 

head(im_mean)

##         1         2         3         4         5         6  

##  15.30000  17.80000  17.80000  18.70000 18.46033*  18.70000

In the above code, the author uses three simple methods 

to interpolate the missing values. The number in the 

upper right corner with an asterisk indicates that the data 

is imputed, instead of the original data. Obviously, this 

method is only applicable to continuous data, rather than 

classified data.
Then we focus  on the  advanced interpolat ion 

methods for missing values in the mice package. Mice 

are Multivariate Imputation by Chained Equations. The 

mice package provides a variety of advanced missing value 

processing methods. It uses an unusual method for two-step 

interpolation: first use the mice() function to modelling, 

then use the complete() function to generate the complete 

data. mice(df) returns multiple complete copies of df, each 

of which interpolates different values for missing data. The 

complete() function returns one (default) or more of these 

data sets. The following demonstrates how to interpolate 

the two variables rad and ptratio using this method:

set.seed(123)

miceMod <- mice(BostonHousing[, !names(BostonHousing) %in% 

“medv”], method=“rf”)

## 

##  iter imp variable

##   1   1  rad  ptratio

##   1   2  rad  ptratio

Figure 36 Distribution of missing values with averages.
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##   1   3  rad  ptratio

##   1   4  rad  ptratio

##   1   5  rad  ptratio

##   2   1  rad  ptratio

##   2   2  rad  ptratio

##   2   3  rad  ptratio

##   2   4  rad  ptratio

##   2   5  rad  ptratio

##   3   1  rad  ptratio

##   3   2  rad  ptratio

##   3   3  rad  ptratio

##   3   4  rad  ptratio

##   3   5  rad  ptratio

##   4   1  rad  ptratio

##   4   2  rad  ptratio

##   4   3  rad  ptratio

##   4   4  rad  ptratio

##   4   5  rad  ptratio

##   5   1  rad  ptratio

##   5   2  rad  ptratio

##   5   3  rad  ptratio

##   5   4  rad  ptratio

##   5   5  rad  ptratio

#Mice interpolation based on random forest model, you need to install the 

‘randomForest’ package in advance.

miceoutput <- complete(miceMod) # Generate complete data

anyNA(miceoutput)

## [1] FALSE

The algorithm of random forest can be used here. 

You can skip it here. This is a common machine learning 
algorithm, which is not covered in this book. We are just 

here to show you how to use advanced statistical methods 

to interpolate missing values. As for the choice of random 

forest algorithm here, or a simple linear regression 

algorithm, although the principle is different, but the goal 

is the same. The miceoutput is the imputed data set. The 

anyNA() function indicates that there is no missing value in 

this data set, while the missing value has been interpolated. 

Since we have the original unmissed data set, we can use 

it to make the missing. The calculation of the value of the 

interpolation precision.

actuals <- original_data$rad[is.na(BostonHousing$rad)] 

predicteds <- miceoutput[is.na(BostonHousing$rad), “rad”] 

mean(actuals != predicteds)

## [1] 0.125

Readers can see that the error rate of interpolation is 

12.5%, which means that most of the missing values are 
interpolated correctly, which is obviously much more 

accurate than purely using the mean interpolation. It 

should be emphasized that the regression method takes 

into account the dependence between the data, but the 

estimation of the variation of the default value is not 

accurate, and the degree of variation can be adjusted by 

increasing the random error of the regression model (15,17).
In addition to the mice package, the VIM package 

described earlier can also interpolate missing values and 

provide advanced methods such as hotdeck, K-nearest 
neighbor, linear regression, and more. More content readers 

can explore on their own.

Brief summary

This Section systematically introduces the method of outlier 

identification and introduces a function for custom outlier 
recognition, but this function is only used for continuous 

variable outlier recognition. This Section introduces 

several methods for filling the missing values. It is simple to 
interpolate with mean, median, and specific values. While 
you can also apply complex ways to fill missing values, such 
as linear regression and random forest methods. No matter 

which method is used for interpolation, there is a certain 

risk, and readers need to be cautious when using it. In 

addition, missing value recognition and imputation should 

be individualized, and it is difficult to have a method that is 
universal.

Ridge regression and LASSO regression with R

Background

As the dimensions and depth of data continue to be 

complex, variable selecting becomes more and more 

difficult. In Section 1, we mentioned that from the 

perspective of clinicians, there are three types of current 

clinical predictive model researches.

(I) Using traditional clinical features, pathological 

features,  physical  examination results  and 

laboratory test results to construct clinical 

predictive models. Because the predictive variables 

are easily acquired in clinical practice, so this type 

of model is more feasible than the other two types.

(II) With the development of imaging omics research 

methods, more and more researchers are aware that 

some manifestations or parameters of imaging can 

represent specific biological characteristics. Using 
these massive imaging parameters, no matter color 

Doppler ultrasound, CT, MR, or PET parameters, 
combined with clinical features to construct clinical 

predictive models can often further improve the 

accuracy of the predictive model. This type of 
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model needs to be based on screening imaging 

omics, so the pre-workload is much larger than the 

first type, and the imaging omics parameters are 

more abundant than the clinical features (62).

(III) With the widespread using of high-throughput 

biotechnology such as genomics and proteomics, 

clinical researchers are attempting to mine 

biomarkers characteristics from these vast 

amounts of biological information to construct 

clinical predictive models. This type of predictive 

model is a good entry point for basic medicine to 

clinical medicine (63).

Because there are too many features related to “omics” 

in the second and third types of model, the variable 

selecting is very difficult. It is very difficult to use the 

traditional variable selecting methods described in Section 2.  

So, is there a better solution? The answer is YES. The 
regularization method described in this Section is one 

of the solutions. Regularization can limit the regression 

coefficient and even reduces it to zero. Now, there are many 
algorithms or algorithms combinations that can be used to 

implement regularization. In this Section, we will focus on 

ridge regression and LASSO regression.

Introduction of regularization

The general linear model is Y=β0+β1X1+…+βnXn+e, the best 

fit attempts to minimize the residual sum of squares (RSS). 
RSS is the sum of the squares of the difference between the 

actual numbers minus the estimated numbers, which can 

be expressed as e1
2+e2

2+…+en
2. We can add a new parameter 

in the minimization process of RSS using regularization, 

called the contraction penalty term. This penalty term 

contains a λ and normalized results for the β coefficients 

and weights. Different regularization technologies have 

different methods for standardizing weights. In brief, we 

replaced RSS with RSS + λ (normalized coefficients) in the 
model. We choose λ, which is called the tuning parameter 

in model building. If λ=0, the model is equivalent to the 

least square method (OLS) because all the normalization 

items are offset (64).

What are the advantages of regularization? Firstly, the 

regularization method is very computationally efficient. If 

we use the regularization method, we only need to fit one 
model for each λ, so the efficiency will be greatly improved. 
Secondly, it is the deviation/variance trade-off problem. 

In a linear model, the relationship between dependent 

variables and predictor variables is close to linear, and the 

least squares estimate is almost unbiased, but may have 

a high variance, which means that small changes in the 

training set can lead to large changes in the least squares 

coefficient estimation results. Regularization can properly 

select appropriate λ to optimize the deviation/variance 

tradeoff, then to improve the fitness of the regression 

model. Finally, the regularization of the coefficients can 

also be used to solve the over-fitting problem caused by 

multicollinearity (64).

Introduction of ridge regression

We will briefly introduce what is ridge regression and 

what it can do and what is cannot do. In ridge regression, 

the norm term is the squares sum of all coefficients, 

called L2-Norm. In regression model, we try to minimize 

RSS+λ (sumβj
2). As λ increases, the regression coefficient β 

decreases, tending to 0 but never equal to 0. The advantage 

of ridge regression is that it can improve the prediction 

accuracy, but because it can’t make the coefficient of any 

variable being equal to zero, it is difficult to meet the 

requirements of reducing numbers of variable, so there will 

be some problems in the model interpretability. To solve 

this problem, we can use the LASSO regression mentioned 

below. 

In addition, ridge regression is more often used to deal 

with collinearity in linear regression. It is generally believed 

that collinearity will lead to over-fitting and the parameter 
estimates will being very large. Therefore, adding a penalty 

function to the objective function of the least squares 

to the regression coefficient β can solve this problem. 

The regularization thoughts are consistent, so the ridge 

regression can resolve the problem.

LASSO regression

Different from L2-norm in ridge regression, LASSO 

regression uses L1-Norm, which is the sum of the absolute 

values of all variable weights, that is, to minimize RSS+λ 
(sum|βj|). This contraction penalty can shrink the weight 

to zero, which is a distinct advantage over ridge regression 

because it greatly increases the interpretability of the 

model. 

If the LASSO regression is so well, do we need ridge 

regression? The answer is YES. When there is a high 
degree of collinearity or correlation, LASSO regression 

may delete some important predictive variables, which will 

lose the predictive power of the model. For example, if 
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both variable A and B should be including in the prediction 

model, LASSO regression may reduce the coefficient of one 
to zero (64). So, the ridge regression and LASSO regression 

should be complementary to each other. Choosing a 

suitable method to solve the problem is the key to statistical 

applications.

The currently published clinical prediction model 

articles using LASSO regression include two types, one is 

the screening of image omics features mentioned above, and 

the other is genomics screening. There are usually dozens 

to hundreds of group features. However, these features 

cannot all be included in the predictive model, because if we 

do this, the model will be very bloated, and many features 

may not be related to the outcome, so it is sensible to use 

LASSO regression to reduce features. Generally, the tens to 

hundreds of features are reduced to several or a dozen, and 

then the score is calculated for each patient according to the 

regression coefficient of the LASSO regression equation 

and the value of each feature. This score is then converted 

to a categorical variable based on the appropriate cutoff 

value and included in the regression model as a predictive 

feature (62,63).

Case analysis

In the following examples, we use the glmnet packages to 

select the appropriate variables and generate the appropriate 

models. The regularization technique used above is also 

applicable to classified outcomes, including binary and 

multinomial outcomes. We will introduce the sample data 

that can be used for Logistic regression. We can use the 

biopsy dataset of the breast cancer in the MASS package. 

In regression models with quantitative response variables, 

regularization is an important technique for handling high-

dimensional data sets. Because there is a linear part of the 

Logistic regression function, the L1 norm and the L2 norm 

regularization can be used in combination.

[Example 1] analysis
[Example 1]
The biopsy dataset in the MASS package is a dataset 

from the Wisconsin breast cancer patient. The aim is to 

determine whether the biopsy result is benign or malignant. 

The researchers used fine needle aspiration (FNA) 

techniques to collect samples and perform biopsies to 

determine the diagnosis (malignant or benign). Our task is 

to develop predictive models that are as accurate as possible 

to determine the nature of the tumor. The data set contains 

tissue samples of 699 patients and is stored in a data frame 

with 11 variables. This data frame contains the following 

columns:

ID: sample code number (not unique).

V1: clump thickness.

V2: uniformity of cell size.

V3: uniformity of cell shape.

V4: marginal adhesion.

V5: single epithelial cell size.
V6: bare nuclei (16 values are missing).

V7: bland chromatin.

V8: normal nucleoli.

V9: mitoses.

class: “benign” or “malignant”.

Data processing 

We first load the MASS package and prepare the breast 

cancer data:

library(glmnet)

library(MASS)  

biopsy$ID =NULL 

names(biopsy) =c(“thick”, “u.size”, “u.shape”, “adhsn”, 

“s.size”, “nucl”, “chrom”, “n.nuc”, “mit”, “class”) 

biopsy.v2 <-na.omit(biopsy) 

set.seed(123) #random number generator 

ind<-sample(2, nrow(biopsy.v2), replace =TRUE, prob =c(0.7, 0.3)) 

train <-biopsy.v2[ind==1, ] #the training data set 

test <-biopsy.v2[ind==2, ] #the test data set

Convert data to generate input matrices and labels:

x <-as.matrix(train[, 1:9]) 

y <-train[, 10]

Ridge regression modeling

We first build the model using ridge regression and store 

the results in an object ridge. Please note: the glmnet 
package standardizes the input value before lambda value 

is calculated. We need to specify the distribution of the 

response variable as “binomial” because it is a binary 

outcome; Also specify alpha = 0 to indicate ridge regression 

at this point. The R code is as follows:
ridge <- glmnet(x, y, family = “binomial”, alpha = 0)

This object contains all the information we need to 

evaluate the model. The first thing to do is use the print() 
function, which shows the value of the nonzero regression 

coefficient, explaining the percentage deviation or the 

corresponding lambda value. The default number of 

computations in the package is 100, but if the improvement 

in the percentage deviation by two lambda values isn’t 

significant, the algorithm will stop before 100 computations. 
In other words, the algorithm converges to the optimal 

solution. We listed all the lambda outcomes:
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print(ridge)

## 

## Call:  glmnet(x = x, y = y, family = “binomial”, alpha = 0) 

## 

##        Df       %Dev    Lambda

##   [1,]  9 -8.474e-16 395.10000

##   [2,]  9  4.716e-03 360.00000

##   [3,]  9  5.174e-03 328.00000

##   [4,]  9  5.675e-03 298.90000

##   [5,]  9  6.224e-03 272.30000

##   [6,]  9  6.826e-03 248.10000

##   [7,]  9  7.486e-03 226.10000

##   [8,]  9  8.209e-03 206.00000

##   [9,]  9  9.000e-03 187.70000

##  [10,]  9  9.868e-03 171.00000

##  [11,]  9  1.082e-02 155.80000

##  [12,]  9  1.186e-02 142.00000

##  [13,]  9  1.300e-02 129.40000

##  [14,]  9  1.424e-02 117.90000

##  [15,]  9  1.560e-02 107.40000

##  [16,]  9  1.709e-02  97.86000

##  [17,]  9  1.872e-02  89.17000

##  [18,]  9  2.050e-02  81.25000

##  [19,]  9  2.245e-02  74.03000

##  [20,]  9  2.457e-02  67.45000

##  [21,]  9  2.687e-02  61.46000

##  [22,]  9  2.939e-02  56.00000

##  [23,]  9  3.215e-02  51.02000

##  [24,]  9  3.515e-02  46.49000

##  [25,]  9  3.841e-02  42.36000

##  [26,]  9  4.196e-02  38.60000

##  [27,]  9  4.582e-02  35.17000

##  [28,]  9  5.001e-02  32.05000

##  [29,]  9  5.455e-02  29.20000

##  [30,]  9  5.947e-02  26.60000

##  [31,]  9  6.480e-02  24.24000

##  [32,]  9  7.056e-02  22.09000

##  [33,]  9  7.677e-02  20.13000

##  [34,]  9  8.347e-02  18.34000

##  [35,]  9  9.067e-02  16.71000

##  [36,]  9  9.840e-02  15.22000

##  [37,]  9  1.067e-01  13.87000

##  [38,]  9  1.156e-01  12.64000

##  [39,]  9  1.250e-01  11.52000

##  [40,]  9  1.351e-01  10.49000

##  [41,]  9  1.458e-01   9.56100

##  [42,]  9  1.571e-01   8.71200

##  [43,]  9  1.691e-01   7.93800

##  [44,]  9  1.816e-01   7.23300

##  [45,]  9  1.948e-01   6.59000

##  [46,]  9  2.086e-01   6.00500

##  [47,]  9  2.230e-01   5.47100

##  [48,]  9  2.380e-01   4.98500

##  [49,]  9  2.534e-01   4.54200

##  [50,]  9  2.694e-01   4.13900

##  [51,]  9  2.857e-01   3.77100

##  [52,]  9  3.025e-01   3.43600

##  [53,]  9  3.195e-01   3.13100

##  [54,]  9  3.369e-01   2.85300

##  [55,]  9  3.544e-01   2.59900

##  [56,]  9  3.721e-01   2.36800

##  [57,]  9  3.898e-01   2.15800

##  [58,]  9  4.076e-01   1.96600

##  [59,]  9  4.253e-01   1.79200

##  [60,]  9  4.429e-01   1.63200

##  [61,]  9  4.604e-01   1.48700

##  [62,]  9  4.777e-01   1.35500

##  [63,]  9  4.947e-01   1.23500

##  [64,]  9  5.114e-01   1.12500

##  [65,]  9  5.279e-01   1.02500

##  [66,]  9  5.439e-01   0.93410

##  [67,]  9  5.596e-01   0.85110

##  [68,]  9  5.749e-01   0.77550

##  [69,]  9  5.898e-01   0.70660

##  [70,]  9  6.042e-01   0.64390

##  [71,]  9  6.181e-01   0.58670

##  [72,]  9  6.316e-01   0.53450

##  [73,]  9  6.446e-01   0.48710

##  [74,]  9  6.572e-01   0.44380

##  [75,]  9  6.693e-01   0.40440

##  [76,]  9  6.809e-01   0.36840

##  [77,]  9  6.920e-01   0.33570

##  [78,]  9  7.027e-01   0.30590

##  [79,]  9  7.129e-01   0.27870

##  [80,]  9  7.226e-01   0.25400

##  [81,]  9  7.319e-01   0.23140

##  [82,]  9  7.408e-01   0.21080

##  [83,]  9  7.492e-01   0.19210

##  [84,]  9  7.572e-01   0.17500

##  [85,]  9  7.649e-01   0.15950

##  [86,]  9  7.721e-01   0.14530

##  [87,]  9  7.789e-01   0.13240

##  [88,]  9  7.854e-01   0.12060

##  [89,]  9  7.915e-01   0.10990

##  [90,]  9  7.973e-01   0.10020

##  [91,]  9  8.027e-01   0.09127

##  [92,]  9  8.079e-01   0.08316

##  [93,]  9  8.127e-01   0.07577

##  [94,]  9  8.172e-01   0.06904

##  [95,]  9  8.214e-01   0.06291

##  [96,]  9  8.254e-01   0.05732

##  [97,]  9  8.291e-01   0.05223

##  [98,]  9  8.326e-01   0.04759

##  [99,]  9  8.359e-01   0.04336

## [100,]  9  8.389e-01   0.03951

Taking the 100th row as an example, it can be seen that 

the non-zero regression coefficient, that is, the number of 
features contained in the model is 9. In ridge regression, 

this number is constant. You can also see the percentage of 
interpretation deviation was 0.8389, or the tuning factor 
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for this line is 0.03951. But for simplicity’s sake, we’ll set 
lambda equal to 0.05 for the test set.

So, let’s see graphically how the regression coefficient 

varies with lambda. Simply add the argument xvar = 

“lambda” to the plot() function.

plot(ridge, xvar = “lambda”, label = TRUE)

This graph shows that when lambda falls, the compression 

parameter decreases, but the absolute coefficient increases 

(Figure 37). To look at the coefficient for lambda at a 

particular value, use the predict() function. Now, let’s see 

what the coefficient is when lambda is 0.05. We specify the 
parameter s=0.05 and the parameter type = “coefficients”. 
The glmnet() function is configured to use lambda—specific 
value when fitting the model, rather than insert value from 
either side of the lambda-specific. The R code is as follows:

ridge.coef <- predict(ridge, s=0.05, type = “coefficients”) 

ridge.coef

## 10 x 1 sparse Matrix of class “dgCMatrix” 

##                      1 

## (Intercept) -5.4997937 

## thick        0.2116920 

## u.size       0.1284357 

## u.shape      0.1540309 

## adhsn        0.1301851 

## s.size       0.1665205 

## nucl         0.1874988 

## chrom        0.1821222 

## n.nuc        0.1378914 

## mit          0.1277047

It can be seen that a non-zero regression coefficient is 

obtained for all the features. Next, we verify on the test set 

that the features need to be transformed into matrix form, 

just as we did on the training set:

newx <- as.matrix(test[, 1:9])

The predict() function is then used to build an object 

named ridge.y, specifying the parameter type= “response” 

and lambda value of 0.05. The R code is the following:
ridge.y <- predict(ridge, newx = newx, type = “response”, s=0.05)

By calculating the error and AUC, we can see the 

performance of this model on the test set:

library(InformationValue)

##  

## Attaching package: ‘InformationValue’ 

##  

##     confusionMatrix, precision, sensitivity, specificity

actuals <- ifelse(test$class == “malignant”, 1, 0) 

misClassError(actuals, ridge.y )

## [1] 0.0191

plotROC(actuals, ridge.y)

This misclassification rate is only 0.0191, indicating that 
the model has a higher level of classification and prediction 
ability (Figure 38).

LASSO regression modeling

It is easy to run LASSO regression by changing one 

parameter of the ridge regression model. That is, in 

glmnet() function, alpha =0 in ridge regression is changed 

to alpha=1. Run the R code to see the output of the model 

and check all the fitting results:

lasso <- glmnet(x, y, family = “binomial”, alpha = 1)

print(lasso)

## 

## Call:  glmnet(x = x, y = y, family = “binomial”, alpha = 1) 

## 

##       Df       %Dev    Lambda

##  [1,]  0 -8.474e-16 0.3951000

##  [2,]  3  1.005e-01 0.3600000

##  [3,]  3  1.848e-01 0.3280000

##  [4,]  3  2.558e-01 0.2989000

Figure 37 The relationship between the coefficient and the 

Log(λ). Figure 38 The performance of this model on the test set.

0.20 

0.10

0.00

–2            0             2             4             6

9             9             9              9            9

Log lambda

C
o

e
ff

ic
ie

n
ts

1.00

0.75

0.50

0.25

0.00

S
e
n

s
it
iv

it
y
 (
T

P
R

)

ROC Curve

1-Specificity (FPR)

AUROC: 0.9974

0.00           0.25            0.50           0.75           1.00



Annals of Translational Medicine, Vol 7, No 23 December 2019 Page 85 of 96

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(23):796 | http://dx.doi.org/10.21037/atm.2019.08.63

##  [5,]  3  3.165e-01 0.2723000

##  [6,]  3  3.691e-01 0.2481000

##  [7,]  3  4.152e-01 0.2261000

##  [8,]  4  4.568e-01 0.2060000

##  [9,]  4  4.961e-01 0.1877000

## [10,]  5  5.317e-01 0.1710000

## [11,]  6  5.645e-01 0.1558000

## [12,]  6  5.940e-01 0.1420000

## [13,]  6  6.204e-01 0.1294000

## [14,]  6  6.442e-01 0.1179000

## [15,]  6  6.657e-01 0.1074000

## [16,]  7  6.852e-01 0.0978600

## [17,]  7  7.031e-01 0.0891700

## [18,]  7  7.194e-01 0.0812500

## [19,]  7  7.341e-01 0.0740300

## [20,]  7  7.474e-01 0.0674500

## [21,]  7  7.595e-01 0.0614600

## [22,]  7  7.705e-01 0.0560000

## [23,]  8  7.805e-01 0.0510200

## [24,]  8  7.897e-01 0.0464900

## [25,]  8  7.980e-01 0.0423600

## [26,]  8  8.055e-01 0.0386000

## [27,]  8  8.124e-01 0.0351700

## [28,]  8  8.186e-01 0.0320500

## [29,]  8  8.242e-01 0.0292000

## [30,]  8  8.292e-01 0.0266000

## [31,]  8  8.338e-01 0.0242400

## [32,]  8  8.380e-01 0.0220900

## [33,]  8  8.417e-01 0.0201300

## [34,]  8  8.450e-01 0.0183400

## [35,]  8  8.480e-01 0.0167100

## [36,]  8  8.507e-01 0.0152200

## [37,]  9  8.532e-01 0.0138700

## [38,]  9  8.555e-01 0.0126400

## [39,]  9  8.577e-01 0.0115200

## [40,]  9  8.596e-01 0.0104900

## [41,]  9  8.613e-01 0.0095610

## [42,]  9  8.628e-01 0.0087120

## [43,]  9  8.642e-01 0.0079380

## [44,]  9  8.654e-01 0.0072330

## [45,]  8  8.664e-01 0.0065900

## [46,]  8  8.673e-01 0.0060050

## [47,]  8  8.681e-01 0.0054710

## [48,]  8  8.688e-01 0.0049850

## [49,]  8  8.695e-01 0.0045420

## [50,]  8  8.700e-01 0.0041390

## [51,]  8  8.705e-01 0.0037710

## [52,]  8  8.709e-01 0.0034360

## [53,]  8  8.713e-01 0.0031310

## [54,]  8  8.716e-01 0.0028530

## [55,]  8  8.719e-01 0.0025990

## [56,]  8  8.721e-01 0.0023680

## [57,]  8  8.723e-01 0.0021580

## [58,]  8  8.725e-01 0.0019660

## [59,]  8  8.726e-01 0.0017920

## [60,]  8  8.728e-01 0.0016320

## [61,]  8  8.729e-01 0.0014870

## [62,]  8  8.730e-01 0.0013550

## [63,]  8  8.731e-01 0.0012350

## [64,]  8  8.731e-01 0.0011250

## [65,]  8  8.732e-01 0.0010250

## [66,]  8  8.732e-01 0.0009341

## [67,]  8  8.733e-01 0.0008511

## [68,]  8  8.733e-01 0.0007755

## [69,]  8  8.734e-01 0.0007066

## [70,]  8  8.734e-01 0.0006439

## [71,]  8  8.734e-01 0.0005867

## [72,]  8  8.734e-01 0.0005345

## [73,]  9  8.735e-01 0.0004871

## [74,]  9  8.735e-01 0.0004438

## [75,]  9  8.736e-01 0.0004044

## [76,]  9  8.736e-01 0.0003684

## [77,]  9  8.736e-01 0.0003357

## [78,]  9  8.737e-01 0.0003059

## [79,]  9  8.737e-01 0.0002787

## [80,]  9  8.737e-01 0.0002540

## [81,]  9  8.737e-01 0.0002314

## [82,]  9  8.737e-01 0.0002108

## [83,]  9  8.737e-01 0.0001921

## [84,]  9  8.737e-01 0.0001750

Notice that the model-building process stops after 84 

steps, because the explanatory bias doesn’t decrease with 

lambda. Notice also, the Df column varies with lambda. At 

first glance, all nine characteristics should be included in 

the model when lambda is 0.0001750. For the purpose of 
learning and practice, we first tested the model with fewer 
features, such as the seven features model. The result line 

below shows that the model changes from seven features to 

eight when lambda is 0.0560, 000. So, when we evaluate the 
model using the test set, we use this lambda value. 

As with ridge regression, the results can be plotted in the 

graph (Figure 39). R code is shown as follows:

plot(lasso, xvar = “lambda”, label = TRUE)

The same thing can be done for ridge regression to 

look at the coefficient value of the 7 characteristic model, 
which passes the established lambda value to the predict() 

function. The R code is the following:

lasso.coef <- predict(lasso, s = 0.056, type = “coefficients”)

lasso.coef

## 10 x 1 sparse Matrix of class “dgCMatrix”

##                       1

## (Intercept) -4.04233153

## thick        0.17983856

## u.size       0.12484046

## u.shape      0.12038690

## adhsn        .         
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## s.size       0.05802241

## nucl         0.24709063

## chrom        0.08831568

## n.nuc        0.07823788

## mit       

The LASSO algorithm returns the coefficient of the 

adhsn or mit variables to zero at 0.056. Here’s how the 
LASSO model looks on the test set:

lasso.y <- predict(lasso, newx = newx,  

                   type = “response”, s = 0.056) 

actuals <- ifelse(test$class == “malignant”, 1, 0) 

misClassError(actuals, lasso.y )

## [1] 0.0383

plotROC(actuals, lasso.y)

This misclassification rate is only 0.0383, indicating that 
the model has a higher level of classification and prediction 
ability (Figure 40).

Cross-validation

In the function cv.glmnet, set the value of family to 

binomial, set the value of measure to the area under the 

ROC curve (auc), and use 5 folds cross-validation:

set.seed(123) 

fitCV<-cv.glmnet(x, y, family =“binomial”, 

type.measure =“auc”, 

nfolds =5)

Drawing fitCV, we can see the relationship between 

AUC and λ (Figure 41):

plot(fitCV)

Adding only one feature can result in a significant 

improvement in AUC. Let’s look at the model coefficients 
at Log(λ)+a standard error:

fitCV$lambda.1se

## [1] 0.1293669

coef(fitCV, s =“lambda.1se”)

## 10 x 1 sparse Matrix of class “dgCMatrix” 

##                       1 

## (Intercept) -2.52374214 

## thick        0.07189973 

## u.size       0.11901349 

## u.shape      0.09179324 

## adhsn        .          

## s.size       .          

## nucl         0.17732550 

## chrom        0.02233980 

## n.nuc        0.02830596 

## mit  .

It can be seen that the four selected features are thickness, 

u.size, u.shape and nucl. As with the previous Section, we will 

look at the performance of this model on the test set by error 

and AUC (Figure 42):

library(InformationValue)

##  

## Attaching package: ‘InformationValue’

predCV<-predict(fitCV, newx =as.matrix(test[, 1:9]), 

s =“lambda.1se”,type =“response”) 

actuals <-ifelse(test$class== “malignant”, 1, 0) 

misClassError(actuals, predCV)

## [1] 0.0478

plotROC(actuals, predCV)

The results show that the effect of this model is basically 

the same as the previous logistic regression model. It seems 

that lambda.1se is not the optimal choice. Let’s see if the 

model selected with lambda.min can improve the sample 

prediction again:

predCV.min<-predict(fitCV, newx =as.matrix(test[, 1:9]), 

s =“lambda.min”, 

type =“response”) 

misClassError(actuals, predCV.min)

## [1] 0.0239

Figure 39 The relationship between the coefficient and the 

Log(λ).

Figure 40 The performance of this model on the test set.
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This misclassification rate is only 0.0239, indicating that 
the model has a higher level of classification and prediction 
ability.

[Example 2] analysis
[Example 2]
The example is a prostate cancer data. Although this data 

set is relatively small, only 97 observations and 9 variables, 

it is enough to make us master the regularization method to 

compare with the traditional methods. Stanford University 

Medical Center provided prostate-specific antigen (PSA) 
data for 97 patients who underwent radical prostatectomy. 

Our goal is to establish a predictive model to predict 

postoperative PSA levels using the data from clinical testing. 
PSA may be a more effective prognostic variable than other 
variables when predicting patients can or should be restored 

after surgery. After the operation, the doctor will check the 

patient’s PSA level at every time intervals and determine 

whether the patient is recovering through various formulas. 

Preoperative predictive models and postoperative data (not 
provided here) work together to improve the diagnosis and 

prognosis of prostate cancer. The data set collected from 97 

males is stored in a data box with 10 variables as follows:

(I) lcavol: logarithm of tumor volume;

(II) lweight: logarithm of prostate weight;

(III) age: patient age (years);

(IV) lbph: logarithm of benign prostatic hyperplasia 

(BPH), non-cancer prostatic hyperplasia;
(V) svi: whether the seminal vesicle is invaded, 

indicating whether the cancer cells have invaded 

the seminal vesicle through the prostate wall (1= 

yes, 0= no);

(VI) lcp: logarithm of the envelope penetration, 

indicating the extent to which cancer cells spread 

beyond the prostate capsule;

(VII) Gleason: patient’s Gleason score. It is given by a 

pathologist after biopsy, indicating the variation 

degree of cancer cells. The higher the score, the 

more dangerous of disease; 

(VIII) pgg45: the percentage of Gleason score is 4 or 5; 
(IX) lpsa: logarithmic value of PSA value, this is the 

result variable;

(X) Train: a logical vector (TRUE or FALSE to 

distinguish between the training data set and the 

test data set).

Data processing

This data set is included in the ElemStatLearn package of 

R. After loading the required packages and data frames, 

examining the possible connections between variables, as 

follows:

library(ElemStatLearn) #contains the data

library(glmnet) # allows ridge regression, LASSO and elastic net

## Loading required package: Matrix

## Loading required package: foreach

## Loaded glmnet 2.0-16

library(caret) #this will help identify the appropriate parameters

## Loading required package: lattice

## Loading required package: ggplot2

After loading the package, bring up the prostate dataset 

and look at the data structure as follows:

data(prostate)

str(prostate)

## ‘data.frame’:    97 obs. of  10 variables:

##  $ lcavol : num  -0.58 -0.994 -0.511 -1.204 0.751 ...

##  $ lweight: num  2.77 3.32 2.69 3.28 3.43 ...

##  $ age    : int  50 58 74 58 62 50 64 58 47 63 ...

Figure 41 Relationship between AUC and Log(λ).

Figure 42 The performance of this model on the test set.
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##  $ lbph   : num  -1.39 -1.39 -1.39 -1.39 -1.39 ...

##  $ svi    : int  0 0 0 0 0 0 0 0 0 0 ...

##  $ lcp    : num  -1.39 -1.39 -1.39 -1.39 -1.39 ...

##  $ gleason: int  6 6 7 6 6 6 6 6 6 6 ...

##  $ pgg45  : int  0 0 20 0 0 0 0 0 0 0 ...

##  $ lpsa   : num  -0.431 -0.163 -0.163 -0.163 0.372 ...

##  $ train  : logi  TRUE TRUETRUETRUETRUETRUE ...

Some problems need to be considered when examining 

the data structure. The first 10 observations of svi, lcp, 

Gleason, and pgg45 have the same number, with one 
exception: the third observation of Gleason. To ensure 

that these features are indeed feasible as input features, we 

convert the Gleason variable into a dichotomous variable, 

with 0 representing a score of 6, and 1 indicating a score 

of 7 or higher. Deleting variables might lose the predictive 

power of the model. Missing values can also cause 

problems in the glmnet package. We can easily encode the 

indicator variables in a single line of code. Use the ifelse() 

command to specify the column you want to convert in 

the data frame and then convert according to this rule: if 

the eigenvalue of the observation is ‘x’, encode it as ‘y’, 

otherwise encode it as ‘z’.

prostate$gleason<-ifelse(prostate$gleason==6, 0, 1) 

table(prostate$gleason)

##  

##  0  1  

## 35 62

Firstly, we establish a training data set and a test data 

set. Because there is already a variable in the observation 

indicating whether the observation belongs to the 

training set, we can use the subset() function to assign the 

observation with the train value TRUE to the training set, 

and the observation with the train value FALSE to the test 

set. It is also necessary to remove the train feature because 

we don’t want to use it as a predictive variable. As follows:

train <-subset(prostate, train ==TRUE)[, 1:9]

str(train)

## ‘data.frame’:    67 obs. of  9 variables:

##  $ lcavol : num  -0.58 -0.994 -0.511 -1.204 0.751 ...

##  $ lweight: num  2.77 3.32 2.69 3.28 3.43 ...

##  $ age    : int  50 58 74 58 62 50 58 65 63 63 ...

##  $ lbph   : num  -1.39 -1.39 -1.39 -1.39 -1.39 ...

##  $ svi    : int  0 0 0 0 0 0 0 0 0 0 ...

##  $ lcp    : num  -1.39 -1.39 -1.39 -1.39 -1.39 ...

##  $ gleason: num  0 0 1 0 0 0 0 0 0 1 ...

##  $ pgg45  : int  0 0 20 0 0 0 0 0 0 30 ...

##  $ lpsa   : num  -0.431 -0.163 -0.163 -0.163 0.372 ...

test =subset(prostate, train==FALSE)[,1:9]

str(test)

## ‘data.frame’:    30 obs. of  9 variables:

##  $ lcavol : num  0.737 -0.777 0.223 1.206 2.059 ...

##  $ lweight: num  3.47 3.54 3.24 3.44 3.5 ...

##  $ age    : int  64 47 63 57 60 69 68 67 65 54 ...

##  $ lbph   : num  0.615 -1.386 -1.386 -1.386 1.475 ...

##  $ svi    : int  0 0 0 0 0 0 0 0 0 0 ...

##  $ lcp    : num  -1.386 -1.386 -1.386 -0.431 1.348 ...

##  $ gleason: num  0 0 0 1 1 0 0 1 0 0 ...

##  $ pgg45  : int  0 0 0 5 20 0 0 20 0 0 ...

##  $ lpsa   : num  0.765 1.047 1.047 1.399 1.658 ...

Ridge regression model

In the ridge regression, the model includes all eight 

features, so the comparison between the ridge regression 

model and the optimal subset model is expected. We use 

the package glmnet. This package requires input variables 

to be stored in the matrix instead of in the data frame. The 

demand for ridge regression is glmnet (x = input matrix, y 

= response variable, family = distribution function, alpha 

=0). When alpha is 0, it means that ridge regression is 

performed; when alpha is 1, it means LASSO regression. It’s 

also easy to prepare the training set data for glmnet, use the 

as.matrix() function to process the input data, and create a 

vector as the response variable, as shown below:

x <-as.matrix(train[, 1:8]) 

y <-train[, 9]

Now we can use ridge regression. We save the result 

in an object and give the object an appropriate name, 

such as ridge. There is a very important point, please be 

sure to note: the glmnet package will first normalize the 

input before calculating the λ value and then calculate the 

non-normalized coefficients. So, we need to specify the 

distribution of the response variable as gaussian because it 

is continuous; also specify alpha =0 for the ridge regression. 

As follows:

ridge <-glmnet(x, y, family =“gaussian”, alpha =0)

This object contains all the information that we need 

to evaluate the model. First try the print() function, which 

will show the number of non-zero coefficients, explain the 
percentage of deviation and the corresponding λ value. 

The default number of calculations for the algorithm in the 

package is 100, but if the percentage increase between the 

two λ values is not significant, the algorithm will stop before 
100 calculations. That is, the algorithm converges to the 

optimal solution. All the λ results are listed below:

print(ridge)

## 

## Call:  glmnet(x = x, y = y, family = “gaussian”, alpha = 0) 
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## 

##        Df      %Dev    Lambda

##   [1,]  8 3.801e-36 878.90000

##   [2,]  8 5.591e-03 800.80000

##   [3,]  8 6.132e-03 729.70000

##   [4,]  8 6.725e-03 664.80000

##   [5,]  8 7.374e-03 605.80000

##   [6,]  8 8.086e-03 552.00000

##   [7,]  8 8.865e-03 502.90000

##   [8,]  8 9.718e-03 458.20000

##   [9,]  8 1.065e-02 417.50000

##  [10,]  8 1.168e-02 380.40000

##  [11,]  8 1.279e-02 346.60000

##  [12,]  8 1.402e-02 315.90000

##  [13,]  8 1.536e-02 287.80000

##  [14,]  8 1.682e-02 262.20000

##  [15,]  8 1.842e-02 238.90000

##  [16,]  8 2.017e-02 217.70000

##  [17,]  8 2.208e-02 198.40000

##  [18,]  8 2.417e-02 180.70000

##  [19,]  8 2.644e-02 164.70000

##  [20,]  8 2.892e-02 150.10000

##  [21,]  8 3.163e-02 136.70000

##  [22,]  8 3.457e-02 124.60000

##  [23,]  8 3.777e-02 113.50000

##  [24,]  8 4.126e-02 103.40000

##  [25,]  8 4.504e-02  94.24000

##  [26,]  8 4.915e-02  85.87000

##  [27,]  8 5.360e-02  78.24000

##  [28,]  8 5.842e-02  71.29000

##  [29,]  8 6.364e-02  64.96000

##  [30,]  8 6.928e-02  59.19000

##  [31,]  8 7.536e-02  53.93000

##  [32,]  8 8.191e-02  49.14000

##  [33,]  8 8.896e-02  44.77000

##  [34,]  8 9.652e-02  40.79000

##  [35,]  8 1.046e-01  37.17000

##  [36,]  8 1.133e-01  33.87000

##  [37,]  8 1.225e-01  30.86000

##  [38,]  8 1.324e-01  28.12000

##  [39,]  8 1.428e-01  25.62000

##  [40,]  8 1.539e-01  23.34000

##  [41,]  8 1.655e-01  21.27000

##  [42,]  8 1.778e-01  19.38000

##  [43,]  8 1.907e-01  17.66000

##  [44,]  8 2.041e-01  16.09000

##  [45,]  8 2.181e-01  14.66000

##  [46,]  8 2.327e-01  13.36000

##  [47,]  8 2.477e-01  12.17000

##  [48,]  8 2.631e-01  11.09000

##  [49,]  8 2.790e-01  10.10000

##  [50,]  8 2.951e-01   9.20700

##  [51,]  8 3.115e-01   8.38900

##  [52,]  8 3.281e-01   7.64400

##  [53,]  8 3.447e-01   6.96500

##  [54,]  8 3.614e-01   6.34600

##  [55,]  8 3.780e-01   5.78200

##  [56,]  8 3.945e-01   5.26900

##  [57,]  8 4.108e-01   4.80100

##  [58,]  8 4.268e-01   4.37400

##  [59,]  8 4.424e-01   3.98600

##  [60,]  8 4.576e-01   3.63200

##  [61,]  8 4.724e-01   3.30900

##  [62,]  8 4.866e-01   3.01500

##  [63,]  8 5.003e-01   2.74700

##  [64,]  8 5.134e-01   2.50300

##  [65,]  8 5.260e-01   2.28100

##  [66,]  8 5.380e-01   2.07800

##  [67,]  8 5.493e-01   1.89300

##  [68,]  8 5.601e-01   1.72500

##  [69,]  8 5.703e-01   1.57200

##  [70,]  8 5.800e-01   1.43200

##  [71,]  8 5.891e-01   1.30500

##  [72,]  8 5.976e-01   1.18900

##  [73,]  8 6.057e-01   1.08400

##  [74,]  8 6.133e-01   0.98730

##  [75,]  8 6.204e-01   0.89960

##  [76,]  8 6.270e-01   0.81960

##  [77,]  8 6.333e-01   0.74680

##  [78,]  8 6.391e-01   0.68050

##  [79,]  8 6.445e-01   0.62000

##  [80,]  8 6.496e-01   0.56500

##  [81,]  8 6.543e-01   0.51480

##  [82,]  8 6.587e-01   0.46900

##  [83,]  8 6.628e-01   0.42740

##  [84,]  8 6.666e-01   0.38940

##  [85,]  8 6.701e-01   0.35480

##  [86,]  8 6.733e-01   0.32330

##  [87,]  8 6.763e-01   0.29460

##  [88,]  8 6.790e-01   0.26840

##  [89,]  8 6.815e-01   0.24460

##  [90,]  8 6.838e-01   0.22280

##  [91,]  8 6.859e-01   0.20300

##  [92,]  8 6.877e-01   0.18500

##  [93,]  8 6.894e-01   0.16860

##  [94,]  8 6.909e-01   0.15360

##  [95,]  8 6.923e-01   0.13990

##  [96,]  8 6.935e-01   0.12750

##  [97,]  8 6.946e-01   0.11620

##  [98,]  8 6.955e-01   0.10590

##  [99,]  8 6.964e-01   0.09646

## [100,]  8 6.971e-01   0.08789

Take the line 100 as an example. It can be seen that 

the non-zero coefficient, that is, the number of variables 

included in the model is 8. Remember that in the ridge 

regression, this number is constant. It can also be seen that 

the interpretation deviation percentage is 0.6971, and the 

value of the tuning coefficient λ is 0.08789. Here we can 

decide which λ to use on the test set. This λ value should be 

0.08789, but we can try 0.10 on the test set for simplicity. 
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At this point, some charts are very useful. Let’s take a look 

at the default chart in the package. Set label = TRUE to 

annotate the curve as follows:

plot(ridge, label =TRUE)

In the default graph, the Y-axis is the regression 
coefficient and the X-axis is the L1 norm. The relationship 
between the coefficient and the L1 norm is shown in 

Figure 43. There is another X-axis above the graph, and 

the number on it represents the number of features in the 

model. We can also see how the coefficient changes with 

λ. Just adjust it slightly using the plot() function and the 

parameter xvar = “lambda”. Another option is to replace 

lamda with dev and see how the coefficient varies with the 
percentage of interpretation deviation.

plot(ridge, xvar =“lambda”, label =TRUE)

This graph shows that as λ decreases, the compression 

parameter decreases and the absolute value of coefficient 

increases (Figure 44). We can use the predict() function to 

see the coefficient values when λ is a specific value. If we 

want to know the value of coefficient when λ is 0.1, we can 

specify the parameter s=0.1 and specify the parameter type 

= “coefficients”, when using glmnet() to fit the model, we 

should use the specific λ value, rather than use values from 

both sides of λ. As follows:

ridge.coef<-predict(ridge, s=0.1, type =“coefficients”) 

ridge.coef

## 9 x 1 sparse Matrix of class “dgCMatrix” 

##                        1 

## (Intercept)  0.130475478 

## lcavol       0.457279371 

## lweight      0.645792042 

## age         -0.017356156 

## lbph         0.122497573 

## svi          0.636779442 

## lcp         -0.104712451 

## gleason      0.346022979 

## pgg45        0.004287179

It is important to note that the coefficients of the age, 

lcp, and pgg45 variables are very close to zero, but not yet 
zero. Don’t forget to look at the relationship between the 

deviation and the coefficient:

plot(ridge, xvar =“dev”, label =TRUE)

Compared with the previous two graphs, from this 

graph, we can see that as λ decreases, the coefficient and the 
fraction deviance explained will increase (Figure 45). If the λ 
value is 0, the shrink penalty will be ignored and the model 

will be equivalent to the OLS. In order to prove this on the 

test set, we need to convert the features as we did on the 

training set:

newx<-as.matrix(test[, 1:8])

Then we use the predict() function to create an object 

named ridge.y, specifying the parameter type=“response” 

and the λ value of 0.10. Draw a statistical graph representing 

the relationship between the predicted value and the actual 

value, as shown below:

ridge.y =predict(ridge, newx =newx, type =“response”, s=0.1) 

plot(ridge.y, test$lpsa, xlab =“Predicted”,  

ylab =“Actual”, main =“Ridge Regression”)

The graph below showing the relationship between 

predicted and actual values in the ridge regression (Figure 46). 

Similarly, there are two interesting outliers at the larger 

number of the PSA measurement. In practical situations, 

Figure 43 The relationship between the coefficient and the L1 

norm.

Figure 44 The relationship between the coefficient and the 

Log(λ).
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we suggest a more in-depth study of outliers to find out 

whether they are really different with other data or what we 

have missed. A comparison with the MSE benchmark may 

tell us something different. We can calculate the residual 

first, then calculate the average of the residual square:
ridge.resid<-ridge.y-test$lpsa 

mean(ridge.resid^2)

## [1] 0.4783559

MSE =0.4783559 in ridge regression. Then we test 
LASSO and see if we can reduce the error.

LASSO regression model

Now running LASSO is very simple, just need to change 

one parameter of the ridge regression model. That is, use 

glmnet() grammar to change alpha =0 to alpha =1 in the 

ridge regression. Run the code to see the output of the 

model and check all the fitting results:

lasso <-glmnet(x, y, family =“gaussian”, alpha =1)

print(lasso)

## 

## Call:  glmnet(x = x, y = y, family = “gaussian”, alpha = 1) 

## 

##       Df    %Dev   Lambda

##  [1,]  0 0.00000 0.878900

##  [2,]  1 0.09126 0.800800

##  [3,]  1 0.16700 0.729700

##  [4,]  1 0.22990 0.664800

##  [5,]  1 0.28220 0.605800

##  [6,]  1 0.32550 0.552000

##  [7,]  1 0.36150 0.502900

##  [8,]  1 0.39140 0.458200

##  [9,]  2 0.42810 0.417500

## [10,]  2 0.45980 0.380400

## [11,]  3 0.48770 0.346600

## [12,]  3 0.51310 0.315900

## [13,]  4 0.53490 0.287800

## [14,]  4 0.55570 0.262200

## [15,]  4 0.57300 0.238900

## [16,]  4 0.58740 0.217700

## [17,]  4 0.59930 0.198400

## [18,]  5 0.61170 0.180700

## [19,]  5 0.62200 0.164700

## [20,]  5 0.63050 0.150100

## [21,]  5 0.63760 0.136700

## [22,]  5 0.64350 0.124600

## [23,]  5 0.64840 0.113500

## [24,]  5 0.65240 0.103400

## [25,]  6 0.65580 0.094240

## [26,]  6 0.65870 0.085870

## [27,]  6 0.66110 0.078240

## [28,]  6 0.66310 0.071290

## [29,]  7 0.66630 0.064960

## [30,]  7 0.66960 0.059190

## [31,]  7 0.67240 0.053930

## [32,]  7 0.67460 0.049140

## [33,]  7 0.67650 0.044770

## [34,]  8 0.67970 0.040790

## [35,]  8 0.68340 0.037170

## [36,]  8 0.68660 0.033870

## [37,]  8 0.68920 0.030860

## [38,]  8 0.69130 0.028120

## [39,]  8 0.69310 0.025620

## [40,]  8 0.69460 0.023340

## [41,]  8 0.69580 0.021270

## [42,]  8 0.69680 0.019380

## [43,]  8 0.69770 0.017660

## [44,]  8 0.69840 0.016090

## [45,]  8 0.69900 0.014660

## [46,]  8 0.69950 0.013360

## [47,]  8 0.69990 0.012170

## [48,]  8 0.70020 0.011090

## [49,]  8 0.70050 0.010100

## [50,]  8 0.70070 0.009207

## [51,]  8 0.70090 0.008389

## [52,]  8 0.70110 0.007644

Figure 45 The relationship between the coefficient and the 

fraction deviance explained.

Figure 46 The relationship between predicted and actual values in 

the ridge regression.
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## [53,]  8 0.70120 0.006965

## [54,]  8 0.70130 0.006346

## [55,]  8 0.70140 0.005782

## [56,]  8 0.70150 0.005269

## [57,]  8 0.70150 0.004801

## [58,]  8 0.70160 0.004374

## [59,]  8 0.70160 0.003986

## [60,]  8 0.70170 0.003632

## [61,]  8 0.70170 0.003309

## [62,]  8 0.70170 0.003015

## [63,]  8 0.70170 0.002747

## [64,]  8 0.70180 0.002503

## [65,]  8 0.70180 0.002281

## [66,]  8 0.70180 0.002078

## [67,]  8 0.70180 0.001893

## [68,]  8 0.70180 0.001725

## [69,]  8 0.70180 0.001572

Note that the model constructing process stops after step 

69 because the interpretation bias no longer decreases as the 

λ value increases. It is should be noted that the Df column 

also varies with λ. When the λ value is 0.001572, all eight 
variables should be included in the model. However, for 

testing purposes, first we use models with fewer variables 

to test, such as the 7 variables model. From the result row 

as shown below, we can see that the model changes from 

7 to 8 variables when the λ value is approximately 0.045. 
Therefore, this λ value should be used when evaluating the 

model using the test set. 

Like the ridge regression, we can draw the results in the 

graph. As follows:

plot(lasso, xvar =“lambda”, label =TRUE)

This graph shows how LASSO works (Figure 47). Note 

the curves labeled 8, 3, and 6, which correspond to the 

variables pgg45, age, and lcp, respectively. It seems that 
lcp is always close to 0 until the last variable is included 

in the model. We can calculate the coefficient values of 

the 7 variable model by the same operation as in the ridge 

regression, and put the λ value into the predict() function. 

As follows:

lasso.coef<-predict(lasso, s =0.045, type = “coefficients”) 

lasso.coef

## 9 x 1 sparse Matrix of class “dgCMatrix” 

##                         1 

## (Intercept) -0.1305900670 

## lcavol       0.4479592050 

## lweight      0.5910476764 

## age         -0.0073162861 

## lbph         0.0974103575 

## svi          0.4746790830 

## lcp  . 

## gleason      0.2968768129 

## pgg45        0.0009788059

The LASSO algorithm zeros the coefficient of lcp 

when the λ value is 0.045. Below is the performance of the 
LASSO model on the test set (Figure 48):

lasso.y<-predict(lasso, newx =newx,  

type =“response”, s =0.045) 

plot(lasso.y, test$lpsa, xlab =“Predicted”, ylab =“Actual”,  

main =“LASSO”)

Calculate the value of MSE as below:

lasso.resid<-lasso.y-test$lpsa 

mean(lasso.resid^2)

## [1] 0.4437209

It seems that our statistical chart is the same as above, 

but the MSE value has a minor improvement. The major 

improvement can only be relied on elastic network. To 

perform elastic network modeling, we can continue to use 

the glmnet package. The adjustment is to not only solve the 

λ value but also the elastic network parameter α. Remember 

that α=0 represents the ridge regression penalty, α=1 

represents the LASSO regression, and the elastic network 

is 0≤α≤1. Solving two different parameters at the same time 

can be very cumbersome and confusing, but we can resort 

to the caret package in R.

Cross-validation

Now we try K-fold cross-validation. The glmnet package 
uses 10-fold cross-validation by default when estimating the 

λ value using cv.glmnet(). In the K-fold cross-validation, 
the data is divided into k identical subsets (folds), each time 

using k-1 subsets to fit the model, then the remaining subset 
is used as the test set, and finally combine the k results 

(generally use average) to determine the final parameters. 

Figure 47 The relationship between the coefficient and the Log(λ) 
in the Lasso regression.

8         8         8         7          5         3         0

0.6 

0.4

0.2

0.0

–0.2

C
o

e
ff

ic
ie

n
ts

Log lambda

–6       –5       –4        –3       –2        –1        0



Annals of Translational Medicine, Vol 7, No 23 December 2019 Page 93 of 96

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2019;7(23):796 | http://dx.doi.org/10.21037/atm.2019.08.63

In this method, each subset is used only once as a test set. 

It is very easy to use K-fold cross-validation in the glmnet 
package. The results include the λ value for each fit and 

the corresponding MSE. The default setting is α=1, so if 

we want to try ridge regression or elastic network, we must 

specify the α value. Because we want to see as few input 

variables as possible, we still use the default settings, but 

because of the amount of data in the training set, there are 

only 3 folds:

set.seed(123) 

lasso.cv =cv.glmnet(x, y, nfolds =3) 

plot(lasso.cv)

The CV statistical chart is quite different from other 

charts in glmnet, it represents the relationship between the 

logarithm of λ and the mean square error, and the number 

of variables in the model (Figure 49). The two vertical 

dashed lines in the chart represent the log λ (left dashed 

line) of the minimum MSE and the log λ of a standard 

error of the minimum distance. If there is an overfitting 

problem, then the distance from the minimum to a standard 

error position is a very good starting point for solving the 

problem. We can also get the two specific values of λ. As 

follows:

lasso.cv$lambda.min # minimum

## [1] 0.00189349

lasso.cv$lambda.1se # one standard error away

## [1] 0.08586749

Use lambda.1se can complete the following process, view 

the coefficients and perform model validation on the test 

set:

coef(lasso.cv, s =“lambda.1se”)

## 9 x 1 sparse Matrix of class “dgCMatrix” 

##                         1 

## (Intercept) -0.3080148498 

## lcavol       0.4416782463 

## lweight      0.5300563493 

## age          . 

## lbph         0.0666015918 

## svi          0.4194205799 

## lcp  . 

## gleason      0.2475400081 

## pgg45        0.0001654219

lasso.y.cv =predict(lasso.cv, newx=newx, type =“response”,  

s =“lambda.1se”) 

lasso.cv.resid =lasso.y.cv -test$lpsa 

mean(lasso.cv.resid^2)

## [1] 0.4455302

The error of the model is 0.45, and there are only 5 
features of the model, excluding age, lcp and pgg45.

We get three different models through the analysis of the 

data set. The errors of these models on the test set are as 

below:

(I) Ridge regression model: 0.48;

(II) LASSO model: 0.44;

(III) LASSO cross-validation model: 0.45.
Just consider the error, the LASSO model which includes 

seven features is the best. But can this optimal model solve 

the problem we are trying to answer? We obtained a model 

with a λ value of about 0.125 by cross-validation, which is 
simpler and may be more suitable. We prefer to choose it 

because it is more explanatory. It is important that expertise 

from oncologists, urologists and pathologists is needed to 

help us figure out what makes the most sense. This is true, 
but it also requires more data. Under the sample size of 

this example, only change the random number seed or re-

dividing the training set and the test set may result in a large 

change in the results. In the end, these results will not only 

provide no answers, but may also cause more problems.

Figure 48 The relationship between predicted and actual values in 

the LASSO regression.

Figure 49 The relationship between the logarithm of λ and the 

mean square error in the LASSO regression.
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Brief summary

The aim of this Section is to introduce how to apply 

advanced feature selection techniques to linear models 

through a prostate dataset with a small amount of data. 

The dependent variables of the data set are quantitative, 

but the glmnet package we use also supports qualitative 

dependent variables (binary and multinomial) and survival 

outcome data. We introduced the regularization and applied 

these techniques to build the model, and then compared 

it. Regularization is a powerful technology that improves 

computational efficiency and extracts more meaningful 

features than other modeling techniques. In addition, we 

also use the caret package to optimize multiple parameters 

while training the model. 

The data used in this article can be found online at: 

http://cdn.amegroups.cn/static/application/1091c788c0342

c498b882bd963c5aafb/2019.08.63-1.zip
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