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Abstract

Background: Antimicrobial resistance is a major global health challenge. Metagenomics allows analyzing the presence
and dynamics of “resistomes” (the ensemble of genes encoding antimicrobial resistance in a given microbiome) in disparate
microbial ecosystems. However, the low sensitivity and specificity of available metagenomic methods preclude the detection
of minority populations (often present below their detection threshold) and/or the identification of allelic variants that differ
in the resulting phenotype. Here, we describe a novel strategy that combines targeted metagenomics using last generation
in-solution capture platforms, with novel bioinformatics tools to establish a standardized framework that allows both
quantitative and qualitative analyses of resistomes.

Methods: We developed ResCap, a targeted sequence capture platform based on SeqCapEZ (NimbleGene) technology,
which includes probes for 8667 canonical resistance genes (7963 antibiotic resistance genes and 704 genes conferring
resistance to metals or biocides), and 2517 relaxase genes (plasmid markers) and 78,600 genes homologous to the
previous identified targets (47,806 for antibiotics and 30,794 for biocides or metals). Its performance was compared with
metagenomic shotgun sequencing (MSS) for 17 fecal samples (9 humans, 8 swine). ResCap significantly improves MSS to
detect “gene abundance” (from 2.0 to 83.2%) and “gene diversity” (26 versus 14.9 genes unequivocally detected per
sample per million of reads; the number of reads unequivocally mapped increasing up to 300-fold by using ResCap),
which were calculated using novel bioinformatic tools. ResCap also facilitated the analysis of novel genes potentially
involved in the resistance to antibiotics, metals, biocides, or any combination thereof.

Conclusions: ResCap, the first targeted sequence capture, specifically developed to analyze resistomes, greatly enhances
the sensitivity and specificity of available metagenomic methods and offers the possibility to analyze genes related to the
selection and transfer of antimicrobial resistance (biocides, heavy metals, plasmids). The model opens the possibility to
study other complex microbial systems in which minority populations play a relevant role.

Keywords: Antimicrobial resistance, Resistome, Metagenomics, Differential abundance analysis, Targeted
metagenomics

Background
Antimicrobial resistance is considered a major global

health challenge that has been recently included in the

agendas of major international bodies [1]. The adoption of

measures to address the antibiotic resistance crisis [2] is

impaired by the controversy over what resistance is and

how and where it should be detected and analyzed [3–5].

Metagenomic methods are increasingly being used to

analyze the ensemble of genes that may encode antibiotic

resistance in various microbial ecosystems, which are

defined as the resistome [6–17]. An important hurdle con-

fronting current resistome analyses is low sensitivity in the

detection of minority populations harboring resistance

genes (often present at concentrations below the detection

level of the methods used) [18] and/or low specificity in the

identification of allelic variants that might confer different
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susceptibility phenotypes [19]. Such requirements are

needed for prioritizing risks of antibiotic resistance genes in

metagenomes in terms of public health [20, 21].

The challenge of achieving a sensitive and specific iden-

tification of genes influencing antibiotic resistance in a

complex metagenome background parallels the difficulties

found by scientists studying human inherited diseases

years ago [20]. In that case, the limitations of available

sequencing technologies were overcome by using capture-

based or targeted sequencing strategies of all protein-

coding regions (exome). Such approaches reduced the

number of sequences to be screened, and therefore repre-

sented a cost- and time-effective and high-throughput

alternative to the metagenomic technologies for analyzing

exomes [22, 23]. In-solution targeted capture platforms

(TCPs) also provide technical improvements over array-

based platforms and other genome-partitioning approaches

in terms of scalability, cost-effectiveness, and enhanced data

quality, including lower variance in target coverage, more

accurate single nucleotide polymorphism [SNP] calling,

higher reproducibility and better quality assembly [24].

Although TCPs are mostly used for the diagnosis of human

inherited diseases [25], the methodology offers tremendous

potential for boosting advances in environmental and eco-

logical studies which requires the isolation of sequences of

interest from a mixture of DNA from a complex commu-

nity of organisms [26].

This study reports the development and validation of

the first TCP for the analysis of bacterial resistomes,

which was designated ResCap (for Resistome Capture).

We show that ResCap could significantly improve the sen-

sitivity and specificity over previous metagenomic analysis

in the detection of antibiotic resistance. ResCap also

allows the analysis of the presence and diversity of genes

conferring resistance to other antimicrobials (heavy metals

and biocides), which are frequently co-selected with anti-

biotic resistance genes and genes from replicons of mobile

genetic elements (such as plasmids). An ad hoc advanced

bioinformatics pipeline, developed in parallel, exploits the

capabilities of ResCap for comparative metagenomic ana-

lysis. The metagenomic approach described here paves the

way for a future series of applications in the studies

directed to the identification, epidemiological surveillance,

ecology, and study of evolutionary trajectories of resist-

ance genes in complex microbial environments.

Methods

ResCap design

The ResCap capture library is a homemade core reference

database (which will be available upon request) that com-

prises both well-known and hypothetical genes encoding

resistance to antimicrobials (antibiotics, heavy metals, bio-

cides) and genes coding for relaxases, enzymes involved in

the process of DNA mobilization and transfer of conjugative

elements that use to carry antimicrobial resistance genes

(plasmids, conjugative transposons). The core reference data-

base was built by downloading sequences associated with

non-redundant antimicrobial genes available in the curated

databases Arg-ANNOT [27], CARD [28], RED-DB (http://

www.fibim.unisi.it/REDDB/Default.asp), ResFinder [29], and

Bacmet [30]. These antibiotic resistance databases were com-

bined within a non-redundant set. Proteins were clustered in

protein families by homology, using CD-HIT with parame-

ters of 80% identity and 80% coverage. Each protein family

was aligned by MUSCLE v. 3.7 [31] with default parameters

and a hidden Markov model (HMM) was built for each fam-

ily with hmmbuild function of the HMMER3 [32] using

default parameters. Hmmer search function (hmmsearch)

was used against UniProtDB for each HMM profile to search

homologous proteins for each family of proteins that confer

antibiotic resistance. Manual curation of the database, which

consisted on reviewing the annotation and the score of the

search of datasets, allowed removing false positives. The pro-

teins of the final data set were translated to a DNA se-

quences using ENA accession numbers associated with each

UniProtDB entry.

The final ResCap-targeted sequence panel consists of

78,600 non-redundant genes (81,117 redundant genes)

with a target space of 88.13 Mb, not yet reaching the

200 Mb target capacity offered by the custom SeqCap EZ

library format (NimbleGen, Madison, USA). Probes tar-

geting the antibiotic resistome include 47,806 putative

antibiotic resistance genes and 7963 functionally charac-

terized genes which are designed here as “canonical, anti-

biotic resistance genes.” Probes targeting the metal and

biocide resistome include 30,794 putative resistance genes

and 704 canonical resistance genes. The platform also

includes probes for 2517 relaxases genes of the ConjDB

database [33], which are used for plasmid identification

and classification) [34]. In addition to the 8667 genes that

confer functionally proven resistance to these antimicro-

bials (canonical genes), the platform also includes targets

for 78,600 resistance gene homologs (47,806 for antibiotic

and 30,794 for biocide and metal resistance).

We submitted the consolidated list of target sequences to

Roche NimbleGen (Madison, USA) for capture, library

design, and synthesis, which was further implemented under

the custom NimbleGen SeqCap EZ Developer Library for-

mat. Redistribution of probes for better capture uniformity,

redundancy and comprehensive target base coverage relied

on NimbleGen based on patented algorithms. ResCap design

covers 98.3% of the 88.13 Mb, and 99.6% of the genes have

more than 50% of their sequence covered [Additional file 1].

The ResCap workflow

The ResCap workflow consists of (i) whole-metagenome

shotgun library construction; (ii) hybridization and cap-

ture, (iii) captured DNA sequencing. All the steps were
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performed according to NimbleGen standard protocols

for Illumina platforms. To evaluate ResCap efficiency,

the samples were sequenced before and after capture.

i) Whole-metagenome shotgun library construction.

Total nucleic acid was extracted following the standard-

ized Metahit protocol [35] (http://www.metahit.eu/) and

using the FastPrep instrument (MP Biomedicals, USA).

Libraries were prepared following the instructions of the

Kapa Library Preparation Kit for Illumina platforms

(Kapabiosystems, KR0935-v1.13). Briefly, 1.0 μg input

DNA (measure by Picogreen) was fragmented to 500–

600 bp insert size by sonication with Bioruptor (Fas-

tPrep®-24). After end repair, A-tailing, and adapter

ligation, we followed Dual-SPRI size selection, adding

0.5 vol in the first cut and 0.2 vol in the second cut to

achieve 650–750 bp libraries. Library amplification was

performed using an LM-PCR of 7 cycles, as indicated in

the SeqCap EZ Library SR User’s Guide v4.2. At this

level, samples were labeled with specific barcodes for

further sample identification. A first aliquot of the

resulting amplified libraries was quality checked on a

Bioanalyzer 2100 (Agilent) and pooled in equimolecular

amounts for sequencing on an Illumina HiSeq 2000

instrument, generating 100–150 bp paired-end reads (pre-

capture samples).

ii) Hybridization and capture. The second part of each

DNA library was subjected to targeted sequence capture

with the custom ResCap probes prior to sequencing

(post-capture samples). Both experiments were made in

separate sequencing runs. Targeted sequence capture

was performed according to the manufacturer’s specifi-

cations. The captured DNA was checked for quality and

integrity on a Bioanalyzer and titrated by quantitative

polymerase chain reaction using the Kapa-SYBR FAST

qPCR kit for LightCycler480 and a reference standard

for quantification.

iii) Captured DNA sequencing. The captured libraries

were denatured prior to being loaded on a flow-cell at a

density of 2.2 pM, where clusters were formed and

sequenced using a HiSeq 2000 in a 2 × 100 paired-end

mode for swine samples and NextSeq 500 in a 2 × 150

paired-end mode for human samples. Raw sequences were

processed using the FastX Toolkit (http://hannonlab.csh-

l.edu/fastx_toolkit/) with a quality cutoff of 20 and reads

shorter than 100 and 150 bp, respectively, being discarded.

Bioinformatic analysis

Reference-based workflow

Analysis of sequence data from metagenomes constitutes a

challenge because of the inherent variability of the samples

analyzed, and the limitations of current bioinformatics’

methods for unequivocally identifying specific alleles from

short-length reads (100–150 bp). To overcome such limita-

tions, we developed a novel approach to define variables

suitable for inferring gene abundance and gene diversity

and, in our case, to perform quantitative analysis of anti-

microbial resistance genes. Moreover, we suggest a workflow

of variable normalization in relation to the information con-

tent of the targeted variable that would make it possible to

compare different samples from various hosts. These tools

were developed for ResCap but could be implemented for

any other metagenomic sequence dataset. Shotgun metage-

nomic sequencing allowed assembling the sequences into

contigs to infer the functionality of the sequenced metagen-

ome. Figure 1 shows the workflow that illustrates and

defines the variables used.

Fig. 1 ResCap analysis workflow. Processed reads are mapped against the reference database. SAM files are parsed to extract the reads unequivocally
mapped and those ambiguously mapped to determine the genes unequivocally detected and to form the allele network. The allele network is built
using all the study’s SAM files. The MGCs determined from the allele network were used to perform the statistical analysis of abundance and diversity.
Finally, a differential analysis was performed with the abundance data
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Raw data processing

Reads were mapped against our database, comprising

ARG-ANNOT [27], BacMET [30], and ConjDB [33] da-

tabases independently, using Bowtie2 software [36].

Bowtie2 was set up to retrieve all end-to-end possible

alignments and to suppress both discordant alignments

and mixed alignments. The output SAM file was parsed

to get the fields of Query template NAME, Reference se-

quence NAME, 1-based leftmost mapping Position,

MAPping Quality, Position of the mate/next read. Reads

with unavailable information (field Query Template

NAME equal to ‘*’) were suppressed. Subsequently, a

homemade Perl script was used to count matched reads

per gene. Using the SAM parsed file and the length of

the reference genes, the Perl script generated a table

with the following fields: (i) the number of reads per

gene mapped (“RPG”, gene depth coverage); (ii) the

number of reads per kb of gene (“RPK”); (iii) the number

of the reads that were mapped unequivocally to a given

gene (“unique”); and (iv) the percentage of coverage of

the gene sequence (“horizontal gene alignment cover-

age”) of each mapped gene. Table fields RPG, RPK, and

unique, were normalized by the total amount of reads in

each sample, transforming such fields in reads per gene

per million reads and RPKM, respectively, the last being

a common unit of gene abundance [37]. Several ways of

normalizing abundance data have been applied to differ-

ent studies (e.g., expression data in RNA-Seq experi-

ments). The aim of our approach was to estimate the

proportion of antimicrobial resistance genes among sam-

ples that putatively contained the same amount of DNA;

thus, normalization using the total amount of DNA (i.e.,

reads) in the samples fits better with the initial

approach.

The redundancy of mapped reads can be represented

as a network in which the nodes are the genes (usually

alleles of the same gene), and the edges are the reads

that map in the different nodes. Because one read can

map in various alleles/genes, all the genes mapped by

these reads are linked among them. The resulting net-

work that comprises all the nodes and edges in a set of

samples was named allele network (Fig. 2). The allele

network must be unique for all samples of a given assay

or study; thus, an allele network was built joining all the

SAM parsed files of the study.

Each cluster of the allele network represents the set of

alleles/genes detected by a set of reads and was defined

as “mapping gene clusters” (MGCs). Each MGC can in-

clude hundreds of genes or just one gene, and will be

detected when at least one read maps against any of the

genes within that MGC. Due to allele network are con-

structed for the whole study, they constitute a set of nor-

malized variables that allow performing qualitative and

quantitative comparisons between the samples included

in this particular analysis. To quantify the MGCs in each

sample, the highest value shown by an allele (node)

within a given MGC is the occurrence of such an MGC

(abundance). This criterium is used to avoid an over and

underestimation of data that would occur when using

the mean or median of the reads corresponding to alleles

with high homology (thus, sharing a high proportion of

reads) but present in different proportions. Therefore,

the MGC approach builds a unique variable for each set

of possible detected alleles. Figure 2 shows the 839

MGCs of our sample (237 for AbR, 283 for biocides and

metals and 319 for relaxases).

A homemade Perl script was used to build the allele

network from the SAM parsed files, taking the mapped

genes as nodes and searching the ambiguously mapped

reads to create the edges. The Perl script calculates the

edges’ weight as the number of reads that map the

linked nodes at the same time. The allele network was

loaded into the R environment [38] using the igraph

package [39] MGCs were defined using mcl, from the

MCL R package [40], with default parameters except

allowing loops and clusters with only one member in the

allele network.

Data analysis The resistome of a given experiment was

analyzed in terms of gene abundance and gene diversity

according to the methodology described above. The

abundance and the diversity of genes in a particular

resistome are the (dependent) variables that define this

resistome, which are measured as the number of RPKMs

per MGC and the number of MGCs per million reads

(MPM), respectively.

This MGC system builds a set of normalized variables

that allow analyzing abundance and diversity within and

between samples, and thus the comparison of datasets

from various sources. The MGCs of the antibiotic resist-

ance gene database were divided according to antibiotic

families [27]. The MGCs of the relaxase database were

organized in known different relaxase families [33, 41].

The MGCs of the biocide and heavy metal resistance

gene database were classified according to susceptibility

to specific compounds [30]. Biocide and heavy metals re-

sistance genes that belong to more than one functional

category (e.g., genes conferring resistance to various

metals or genes encoding resistance to different bio-

cides) contribute equally for any of them. Descriptive

statistics were performed using the dplyr [42], tidyr [43],

and ggplot2 [44] packages of R [38].

A statistical analysis of gene abundance, analogous to

that used for comparing the abundance of mRNA among

samples in differential expression analysis [37], was per-

formed to quantify the relative abundance of the MGCs.

Differential analysis was performed using the DESeq2

package [45]. Tables containing the original abundance
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data obtained by ResCap and MSS data sets were used as

input for the DESeq2 package. Normalization and statis-

tical analysis were performed with the default parameters

of DESeq2. MGCs were classified as differentially detected

(only present in either human or swine samples, p

value ≤ 10−3) or commonly detected (present in both

human and swine samples, p value ≥ 10−3) in different

hosts. This p value ≤ 10−3 is also used as cutoff is other

differential analysis.

Reference-free workflow

ResCap includes probes for approximately 78,600 genes

that are homologous to known resistance genes, with differ-

ent degrees of sequence identity, which might be involved

in antimicrobial resistance. This ensemble of genes has also

been considered in the definition of resistome [17]. Assem-

blies were performed by MegaHit software with default pa-

rameters [46]. Prodigal [47] was used for gene recognition

and translation with the specific parameters for metage-

nomic sequences. Quality assemblies’ quantification was

performed by Quast software [48]. Predicted genes were

first annotated against the ResCap database by Best Blast

Hit approach using blastn software [49]. To identify only

the genes belonging to the ResCap database or their homo-

logs and to minimize the false positive ratio, Blast hits were

filtered by e value of 10−100 and 80% of reference coverage.

Genes with identities higher than 95% and coverage higher

than 80% were cataloged as belonging to ResCap database

(ResCapDB). The remaining sequences were translated to

proteins. Proteins were compared against UniProtKB data-

base by blastp. Again, hits with higher identity than 95%,

coverage higher than 80% and e value lower than 10−100

were considered as UniProtKB known proteins. The set of

remaining proteins that did not accomplish this threshold

were cataloged as novel proteins. Additional file 2 shows

this analysis workflow.

Samples analyzed

ResCap was validated by analyzing fecal samples from

nine humans and eight swine, all collected as part of the

Fig. 2 Allele network: nodes of the network represents individual genes that are mapped by some read. Edges between nodes represent reads
that mapped on both nodes that link. Individual nodes are genes that are unequivocally identified. Gene clusters are mainly composed of
different variants of the same gene (alleles). The Mapping Gene Cluster (MGC) is defined using the Markov cluster algorithm (MCL)
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FP7 European Research Consortium EvoTAR (http://

www.evotar.eu). Independent fecal samples from swine

were collected on Spanish farms linked to large compan-

ies that supply broilers and swine processed meat to the

EU. Antibiotics as growth promoters or with preventive

purposes are not used on these farms. Fecal human sam-

ples were collected at the Hospital Bichat, Paris, France,

under the protocol approved by its local ethics commit-

tee. The DNA extraction from the fecal samples ana-

lyzed was performed according standardized protocols

(MetaHIT Protocol; http://www.metahit.eu/). The ro-

bustness of the platform was tested by comparative ana-

lysis of two technical replicates of two swine samples.

Results
ResCap performance was compared with MSS in two

ways. First, by applying a reference-based approach that

maps metagenome reads against specific databases

(AbR, metals and biocides, and relaxases). Second, by

applying a reference-free approach that assembles meta-

genomic reads and performs a functional annotation.

The results of these evaluations appear below.

Reference-based evaluation

This section addresses how the abundance and diversity

of resistance genes (ResCap or those already validated)

were calculated.

ResCap achieves better recovery of target genes than MSS

An average of 1.9 × 107 paired reads was obtained from

the MSS and ResCap datasets (0.92–3.2 × 107). The on-

target average (the number of reads mapping on the target

genes relative to the total read number) against the

selected databases (see “Methods”) was 0.11% (0.07–0.18)

for MSS data and 30.26% (20.27–41.83%) for ResCap data,

which represents an enrichment of 279-fold (Table 1).

The analysis of gene abundance, expressed in reads

per kb per million reads (RPKMs), demonstrates a better

recovery of gene coding for resistance to antibiotics,

heavy metals, biocides, and relaxases (plasmid genes),

when using ResCap compared against MSS. Figure 3a

represents the RPKMs inferred before (MSS) and after

capture (ResCap) for all the samples analyzed, and Add-

itional file 3 shows the gain plots for each sample. Most

canonical genes (99.3%, 1.339/1.348) detected by MSS

were also detected with ResCap.

Furthermore, a significant portion of genes detected by

ResCap (42%, 975/2323), was not detected by MSS. The

linearity of the system was evaluated by using a linear

regression model for the genes only detected in each paired

sample (MSS vs. ResCap). An R2 mean of 0.813 (0.85–0.99)

shows a good match between both protocols.

The enrichment of canonical resistance genes when

using ResCap was similar in samples from humans and

swine. Further, the observed differences in the relative

abundance of genes encoding resistance to antimicrobials

Table 1 Summary of mapping results. Comparison of ResCap against MSS technology. The mapping ratios (on-target value) were
extracted from the number of reads mapped (SAM files) divided by the total number of reads. The “gain values” are the results of
dividing ResCap on-target value by the MSS on-target value

Sample Metagenome shotgun sequence MSS ResCap Gain

N° reads AbR BacMet Rel Total N° reads AbR BacMet Rel Total

Bichat1 14,127,290 0.05% 0.002% 0.04% 0.10% 16,705,789 19% 0.48% 5.22% 24.68% 244.24

Bichat2 15,128,135 0.05% 0.028% 0.04% 0.12% 33,589,838 12% 5.56% 2.98% 20.27% 170.81

Bichat3 14,488,245 0.05% 0.005% 0.03% 0.09% 17,276,637 34% 2.31% 5.96% 41.83% 480.59

Bichat6 17,476,666 0.07% 0.001% 0.05% 0.12% 19,191,320 25% 0.85% 5.84% 32.13% 261.87

Bichat7 16,732,926 0.07% 0.002% 0.05% 0.13% 28,530,922 27% 0.33% 5.99% 33.60% 267.77

Bichat9 17,058,000 0.03% 0.013% 0.05% 0.09% 18,038,257 14% 10.59% 7.55% 31.80% 336.29

Bichat10 15,039,883 0.03% 0.066% 0.06% 0.15% 34,798,281 6% 28.81% 5.48% 40.63% 265.17

Bichat11 13,425,077 0.03% 0.091% 0.06% 0.18% 35,901,508 5% 26.73% 4.72% 35.98% 201.67

Bichat13 17,903,872 0.05% 0.023% 0.06% 0.14% 26,283,052 16% 13.27% 7.39% 36.85% 270.02

F266 19,557,955 0.06% 0.005% 0.02% 0.08% 14,024,345 21% 4.62% 2.57% 28.23% 337.50

PIG20 27,375,311 0.08% 0.028% 0.01% 0.12% 22,485,364 18% 16.20% 1.81% 36.38% 298.23

PIG26 13,831,057 0.07% 0.005% 0.02% 0.10% 15,756,070 19% 3.88% 2.73% 25.93% 271.20

PIG29 18,945,765 0.09% 0.018% 0.02% 0.12% 26,223,850 18% 10.26% 2.52% 30.65% 248.31

PIG31 12,778,294 0.07% 0.010% 0.02% 0.09% 18,055,019 13% 5.76% 2.08% 20.77% 219.12

PIG528 19,689,471 0.06% 0.003% 0.02% 0.08% 13,864,257 21% 2.70% 3.11% 26.83% 323.23

PIG94 15,985,219 0.07% 0.004% 0.02% 0.10 15,351,408 18% 2.57% 3.31% 24.05% 240.20

PIG96 9,290,402 0.06% 0.001% 0.01% 0.07% 12,225,935 21% 1.13% 1.67% 23.84% 320.90
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(antibiotics, heavy metals, biocides) and relaxases in vari-

ous samples (Fig. 3b, c) could be explained by the variabil-

ity of microbiota from different hosts [50, 51].

ResCap addresses gene diversity

Allele redundancy of some resistance genes hinders the

correct estimation of gene diversity and precludes a cor-

rect estimation of gene abundance in metagenomes when

using most available metagenomic tools. To overcome this

issue, we defined a mapping gene cluster (MGC) as a

group of alleles/genes detected by the same set of reads

and normalized such MGCs by the total number of

sequencing reads per each sample expressed in millions of

reads (MGC Per Million or MPM) in order to use it as

unit of diversity that allow us comparing different samples.

The number of MPMs increased 1.3-fold in humans (0.7–

1.74, p-value 2·10−1) and 2.1-fold (2.3–1.9, p-value 2·10−4)

in swine when using ResCap instead of MSS (Fig. 3b, c).

As an increase in reads per MGC does not imply a

homogeneous distribution of the reads, we also determined

the gene horizontal alignment coverage, which was defined

as the fraction of a gene that is covered by reads, as well as

the number of reads per nucleotide or gene depth coverage.

These parameters determine the probability of identifying

an allele-specific mutation by unequivocally mapping reads.

Figure 4 shows how the horizontal gene alignment coverage

obtained with MSS improves with ResCap from 73.4 to

97.5%, (35.9–94.8% vs. 66–99%). Most genes were almost

fully covered by reads, with a general increase in gene depth

coverage [Additional file 4]. Consequently, the number of

genes unequivocally detected by ResCap was almost double

that of MSS (n = 26, range 17.1–30.0 genes per sample per

million of reads vs. n = 14.9, range 12–17.6 genes per sam-

ple per million of reads, respectively). The number of reads

unequivocally mapped increased up to 300-fold (2 · 105 for

ResCap vs. 8 · 102 for MSS) (Fig. 5).

Figure 6 shows the abundance (RPKMs) and diversity

(MPMs) obtained by ResCap and MSS for individual cat-

egories of resistance genes (antibiotics, biocides and metals),

which also illustrates the improved sensitivity of ResCap vs.

MSS. Additional file 5 reflects that although both ResCap

and MSS can track the most abundant gene families as

those conferring resistance to beta-lactams, macrolides, ami-

noglycosides and tetracyclines followed by those conferring

resistance to phenicols and sulfonamides, many canonical

resistance genes were only detected by the ResCap platform

(e.g., mecA and blaZ in beta-lactams; ermA, ermC, ermD,

erm33, and lnu in macrolides; fexA, catA, and catB alleles in

phenicols). Genes encoding resistance to fluoroquinolones,

glycopeptides or trimethoprim, families of first-line antibi-

otics used to treat community and hospital-based infections,

were barely detected using MSS but were unequivocally

detected with ResCap (e.g., dfrA16, dfrA15, dfrG, and dfrK

among those conferring resistance to trimethoprim;

oqxAB, qnrB, and qnrS among those producing resistance

to quinolones; and vanB, vanA for glycopeptide resist-

ance). ResCap also detected more genes conferring resist-

ance to heavy metals (e.g. cadmium, copper, silver and

mercury) and relaxases, which are markers of plasmid

families that carry antibiotic resistance genes (MOBC,

MOBF, MOBP1, MOBP2)[Additional files 6, 7, and 8].

The robustness of the platform was ascertained by

using replicates of swine samples. The correlation be-

tween replicates measured by Pearson’s linearity model

a b d

c e

Fig. 3 ResCap Performance Summary. Panel a represents the gain function in reads per kilobase per million of reads of each detected gene between
MSS protocol (abscissa axis) and ResCap (ordinate axis). Genes only detected by ResCap are represented by the dot cluster in the initial values of the
abscissa axis. Data distribution of the platform efficiency evaluating b the number of mapped reads per million of sequenced reads against a canonical
(well known) gene data set; and c the number of detected genes per million of sequenced reads using as reference the well-known gene data set.
Fecal samples were differentiated according to the source. Data distribution of the platform efficiency evaluating d the number of mapped reads per
million of sequenced reads against the three canonical gene groups and e the number of detected genes per million of sequenced reads using as ref-
erence the three canonical gene groups
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test was 0.98 (p value 2.2 · 10−16) and 0.89 (p value

2.2 · 10−16), respectively [Additional file 9]. This result is

within the range specified by NimbleGene for other

SeqCapEZ capture platforms.

Comparative analysis of resistomes from various samples

In order to further demonstrate the improvements of

using ResCap over MSS, we compared the resistomes of

human and swine samples to estimate the relative abun-

dance of MGCs by using these two methodological

approaches. Volcano plots in Fig. 7a show a general view

of the relative abundance of MGCs for each dataset (AbR,

metal and biocide, and relaxases) and each method.

MGCs for antimicrobials were more abundant in swine

samples than humans while those for relaxases were pre-

dominant in human resistomes (represented as positive

and negative p values, respectively, expressed in log2 in

the x-axis). The figure also reflects the higher number of

MGCs detected by ResCap than by MSS and the improve-

ment of the p values.

Figure 7b represents the distribution of the MGCs in

different hosts by using MSS and ResCap. Using MSS, the

resistome of the total samples analyzed comprises 525

MGCs, 88 MGCs being differentially detected (60 MGCs

from humans and 28 MGCs from swine), and 437 being

commonly detected in these hosts. Conversely, ResCap

detected 831 MGCS, 262 classified as differentially

detected (186 from humans and 76 from swine) and

569 as commonly detected. The data reflects a 3-fold

increase in the number of MGCs using ResCap in

comparison with MSS.

Figure 7c compares the results obtained by ResCap

and MSS for both the differentially detected and the

commonly detected MGCs in different hosts (262 vs. 88,

and 569 vs. 437, respectively).

Of all the MGCs differentially detected (262 by ResCap

plus 88 by MSS), 185 were only differentially detected by

ResCap, 77 were differentially detected by both approaches,

and 11 were only differentially detected by MSS. The aver-

age of reads used for the statistical test of these 11 MGCs

was 18 using MSS (ranging from 6.02 to 78.3 reads) and

2907 using ResCap (ranging from 1884 to 3947 reads),

which make us to suggest these 11 MGCs could be potential

false positives.

Of all MGCs commonly detected in both types of hosts

(569 by ResCap and 437 by MSS), both methods detected

269 MGCs while 300 MGCs were only detected by ResCap

and 168 MCGs were only detected by MSS. Again, the low

number of useful reads might explain the higher p values of

MSS over ResCap and identify this set of MGCs as com-

mon MGCs between humans and swine.

Reference-free evaluation

Assembly statistics and coverage show that the informa-

tion obtained with the ResCap platform only covers the

small portion of the metagenome to which the platform

has been designed (Fig. 8). The genes detected were classi-

fied in the ResCapDB, UniProtKB, and novel categories

(see “Methods” for definition of each category).

Fig. 4 Longitudinal coverage distribution. The figure shows the comparison of longitudinal coverage distribution between protocols in each sample.
Distributions are represented by density parameter and expressed by the number of genes (ordinate axis) and the coverage percent (abscissa axis)
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ResCap in comparison with MSS, improves not only

the number of the detected canonical genes included in

known databases (Arg-ANNOT [27], BACMet [30], and

ConjDB [33]) as shown in previous sections, but also the

number of detected ResCapDB, UniProtKB, or novel ho-

mologs as presented in Fig. 9 (ResCapUniProtKB 752 ± 237

genes vs. MSSUniProtKB 237 ± 107 for humans, and

ResCapUniProtKB 441 ± 71 genes vs. MSSUniProtKB 82 ± 46

for swine; ResCapNovel genes, 79 ± 38 genes vs. MSSNovel

genes 20 ± 7107 for humans, and ResCapNovel genes 105 ±

26 genes vs. MSSNovel genes 9 ± 4 for swine). In addition,

Additional file 2 shows the better resolution of ResCap

expressed by number of blast hits per gene per mega-

base. The actual role of these genes in antibiotic resist-

ance will require functional validation that is beyond the

scope of the current study. However, their identification

as bona fide resistance genes as well as the analysis of

changes in their abundance upon antibiotic challenge

might have a significant impact on further studies on the

evolution of antibiotic resistance.

Discussion
This study reports the development of a novel targeted

gene capture platform, ResCap, and its comparative evalu-

ation with MSS in resistance gene identification using a

collection of human and swine fecal samples. The results

show that ResCap is suited for high-resolution analysis of

resistomes and offers the possibility to detect genes hom-

ologous to known resistance genes, which will allow per-

forming further comprehensive analyses on the diversity

and the evolution of antibiotic resistance [17].

ResCap also provides several technical advantages to

study resistomes in comparison with current metage-

nomic methods. First, the enrichment of ResCap resides

in its targeted metagenomics approach, which significantly

increases the recovery of resistance gene sequences. Our

results indicate that the resistome represents barely 0.2%

of the gut metagenome. As a consequence, MSS would

need at least 3.75 · 109 reads per sample to reach a similar

coverage to that obtained by using ResCap (average of

1.9 · 107 paired reads, which represents a relative enrich-

ment of 279×). Second, the tiling of capture probes greatly

facilitates the higher level of horizontal gene alignment

coverage of ResCap as compared to MSS, resulting in

increased specificity. Third, ResCap’s ability to detect pre-

viously unrecognized DNA fragments with homology to

canonical resistance genes will facilitate the discovery of

novel genes potentially involved in antimicrobial resist-

ance. In case they were selectable, such novel genes would

be enriched in the presence of antimicrobials, an import-

ant point to be tested during clinical trials. In addition,

ResCap is of interest in public health, because it allows a

more accurate risk ranking analysis [21] of the genes

within the resistomes of various microbiota. Finally, the

substantial capacity of the platform (200 Mb) makes Res-

Cap extensible up to 2-fold of its current capacity, provid-

ing opportunities for updating the platform with probes

for newly published resistance genes or for resistance

genes added to resistance gene databases. ResCap updates

will be publicly available through the GitHub repository

(https://github.com/valflanza/ResCap) and the Nimble-

Gene webpage. Nonetheless, the threshold of ResCap de-

tection remains unknown due to the lack of a negative

control that demonstrates the ability of ResCap to pick

antibiotic resistance genes from quantified minority popu-

lations (e.g., mock genomic populations). Although appro-

priate, the complexity and variability of the metagenomic

samples makes it difficult to use a good negative control

for this type of study.

The parameters to express “gene abundance” and “gene

diversity” allow comparing the resistomes of various sam-

ples. Relative abundance parameters are widely used in

computational analysis of MSS datasets but require special-

ized statistics, because these compositional parameters are

influenced by the variability in metagenomes of different

a

b

Fig. 5 Quantification of unequivocally mapping reads. The figure shows
the comparative of the quantification of reads mapping on just one
gene (or allele). First, the abundance of reads that are unequivocally
mapped on one gene (a). Second, the number of genes (or MGC) that
have almost one read that maps unequivocally (b). Box plots are
differentiated for MSS protocol and ResCap protocol
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samples. The novel “mapping gene cluster” (MGC) concept

allows to provide a set of normalized variables that can be

measured in terms of abundance and diversity among sam-

ples. Furthermore, MGC permits the evaluation of diversity

within and among various functional groups (in our case,

families of antibiotics, groups of genes conferring resistance

to heavy metals or biocides and plasmid relaxases). To date,

few quantitative metagenomic approaches to analyze resis-

tomes are available, and they do not achieve this level of

accuracy [14, 16].

Because of its sensitivity, specificity, and the possibility to

compare results between samples, ResCap complies with

the needs of public health epidemiology of antibiotic resist-

ance that include (i) the detection of antibiotic resistance
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Fig. 6 (1) Abundance and diversity of antibiotic resistances. Comparison of ResCap and MSS protocol in antibiotic resistance data. Antibiotic
resistance genes were classified among nine antibiotic families (AGly: aminoglycosides, Bla: beta-Lactams, Flq: fluoroquinolones, Gly: glycopeptides,
MLS: macrolides, Phe: phenicols, Sul: sulfonamides, Tet: tetracyclines and Tmt: trimethoprim). Abundance (a) was measured as read per kilobase
per million reads that mapped against genes or allele-cluster genes of each antibiotic resistance family. Diversity (b) was measured as the number
of detected genes per million reads of each antibiotic resistance family(2) Abundance and diversity of relaxases. Comparison of ResCap and MSS
protocol in relaxases dataset. Relaxases were classified in nine protein families (MOBB, MOBC, MOBF, MOBH, MOBP1, MOBP2, MOBQ, MOBT, and
MOBV). Abundance (a) was measured as read per kilobase per million reads that mapped against genes or allele-cluster genes of each relaxase
family. Diversity (b) was measured as a number of detected genes per million reads of each relaxase family. (3) Abundance and diversity of bio-
cide and metal resistances. Comparison of ResCap and MSS protocol in biocide and metal resistance data. Biocide and metal resistance genes
were classified by the type of detoxified targets. Abundance (a) was measured as read per kilobase per million reads that mapped against genes
or allele-cluster genes of each target family. Diversity (b) was measured as a number of detected genes per million reads of each target family.
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threats in various microbial environments [52, 53]; (ii) the

need for implementation of accurate risk assessment stud-

ies based on resistome analysis in healthy humans, hospital-

ized patients, animal husbandry, the food industry, and the

environment [52, 54]; (iii) the quality control of sewage and

water body decontamination of antibiotic resistant genes

[5, 54]; (iv) the update and refining of the list of resistance

genes to be considered in monitoring the adverse effects of

drugs in microbiomes, including pharmacomicrobiomic ap-

plications in clinical trials; (v) the close monitoring of the

efficacy of microbiome reconstitution/rebiosis, whether

through targeted probiotic live culture administration or

a b c

Fig. 7 Differential study plots. Panel a shows the distribution of abundance variation between swine and human AbR resistomes (left), metal and
biocide resistome (middle), and mobilome (right) in the form of volcano plots (fold change vs p value) using the different approaches MSS (top)
and ResCap (bottom). Left and right branches in the volcano plot refers to higher abundance in humans and swine, respectively. Abscissa axis
reflects the relative abundance between humans and swine samples. Positive values represent MGCs more abundant in swine than in human
samples. Negative values represent MGCs more abundant in human than in swine samples and the values near to zero represent the MGCs with
similar abundance between samples. Panel b summarizes the number of statistically significant MGCs of humans, swines, and the genes in common
between them using both approaches: MSS (top) and ResCap (bottom). Panel c shows the Venn diagrams between approaches of differentially detected
MGCs (top) and commonly (in both sets) detected MGCs (bottom)

Fig. 8 Assembly statistics. Assembly statistics was calculated by Quast software. Statistic summary of the main assembly variables; the number of
contigs (all and longer than 1 kb), number of genes per sequenced Mb, the size of longest contig, the length of the assembled metagenome per
sequenced Mb, and the N50 (the shortest contig length at 50% of the metagenome). Coverage data were calculated as the total sequenced
bases divided by the total length (without normalizing). Length per Mb and genes per Mb were normalized by the total amount of megabases
sequenced by each sample
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fecal microbiota transplantation, to alleviate the adverse im-

pact of antibiotic administration; and (vi) to analyze the ef-

fect of eco-evo drugs and strategies to combat antibiotic

resistance [55].

Conclusions

This study constitutes the first description of targeted meta-

genomics to analyze antimicrobial resistance. ResCap, the

novel capture platform developed, allows meeting the chal-

lenge of analyzing samples with a complex and heteroge-

neous mix of genes in low and high concentration DNA

samples with a high level of specificity and to further

explore the presence of novel genes. Thus, ResCap-like ap-

proaches might also be used to identify other sequences in

minority bacterial populations that are part of complex mi-

crobial systems, such as virulence determinants, key eco-

logical traits involved in biosynthesis or biodegradation, or

relevant genes of biotechnological interest.
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Additional file 1: Histogram of gene coverage distribution by
hybridizing probes. Two metrics were provided by NimbleGene: direct
coverage (red bars) and adjacent coverage (cyan bars). Ninety percent of
the genes are covered by at least 96.9% of direct coverage, and 90% of
the genes are covered by 100% of adjacent coverage. (PDF 173 kb)

Additional file 2: Blast annotations summary. Summary of the
classification steps of assembled genes. The sequential annotation
comprises a first blastn search for identifying homologous resistome
genes. Genes with an e-value higher than 10−100 were discarded. Filtered
genes were split into two groups: genes with identity higher than 95%
and genes with identity lower than 95%. The second group was anno-
tated against UniProtKB and was split again into two groups: genes with

identity higher than 95% and genes with identity lower than 95%. A
number of blast hits were normalized by the number of assembling
genes per sequenced megabase. (PDF 351 kb)

Additional file 3: Gain function plot for each sample. Representation of
the gain in reads per kilobase per million reads of each detected gene
between MSS (abscissa axis) and ResCap (ordinate axis). Genes, which
were only identified by ResCap, are represented by the dot cluster in the
initial values of the abscissa axis. The pictures are represented in log-log
scale to better perceive the linearity of the gain function in genes de-
tected by each protocol. (PDF 1129 kb)

Additional file 4: Distribution of read abundance. Figure shows the
histograms of read abundance per each gene. Each frame represents a
sample, superimposing results from the MSS protocol and the ResCap
protocol. A square scale was used for the ordinate axis and a logarithmic
scale for the abscissa axis to optimize the representation of the data.
(PDF 178 kb)

Additional file 5: MGC abundance comparison of antibiotic resistance
between swine and human samples. MGCs corresponding to the antibiotic
resistance dataset were classified by antibiotic families (Agly: aminoglycosides,
Bla: betalactams, Flq: fluoroquinolones, Gly: glycopeptides, MLS: macrolides,
Phe: phenicols, Sul: sulfonamides, Tet: tetracyclines, Tmt: trimethoprim).
Abundance was measured as read per kilobase per million reads. The right
panel shows the results of MSS, and the left panel shows the results of
ResCap. (PDF 533 kb)

Additional file 6: MGC abundance comparison of biocide resistance
between swine and human samples. Gene abundance was extracted
from original count data after normalization. Some sets of genes make
complex MGCs. In this representation, MGC quantification was discarded
in order to increase the biological information. Genes were classified by
compound susceptibility. Because some biocide resistance genes can
confer different phenotypes (resistance to more than one compound),
genes are not constricted to one category. Genetic abundance is expressed
as reads per kilobase per million reads (RPKM). The right panel shows the
results of MSS and the left panel shows the results of ResCap. (PDF 933 kb)

Additional file 7: Gene abundance comparison of metal resistance
between swine and human samples. Gene abundance was extracted
from original count data after normalization. Some sets of genes make
complex MGCs. In this representation, MGC quantification was discarded
in order to increase the biological information. Genes were classified by
metal susceptibility. Because some metal resistance genes can confer
different phenotypes (resistance to more than one compound), genes are
not constricted to one category. Genetic abundance is expressed as
reads per kilobase per million reads (RPKM). The right panel shows the
results of MSS and the left panel shows the results of ResCap. (PDF
602 kb)

Additional file 8: MGC abundance comparison of relaxases between
swine and human samples. Relaxases were classified by MOB families.
MGC abundance was summarized in MOB families. Each MOB family is
composed of several MGCs. Genetic abundance is expressed as reads per
kilobase per million reads (RPKM). The right panel shows the results of
MSS, and the left panel shows the results of ResCap. (PDF 116 kb)

Additional file 9: Reproducibility of ResCap. Reads from replicates are
represented in dot plot to illustrate the linearity of the results from ResCap
sequencing. Dots represent the genes detected in any of the replicates.
Pearson’s product-moment correlation was used to estimate the correlation
between technical replicates. (PDF 295 kb)
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