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Abstract We describe two unrelated patients, a 12-yr-old female and a 6-yr-old male,
with congenital contractures and severe congenital muscular atrophy. Exome and genome
sequencing of the probands and their unaffected parents revealed that they have the same
de novo deletion in BICD2 (c.1636_1638delAAT). The variant, which has never been report-
ed, results in an in-frame 3-bp deletion and is predicted to cause loss of an evolutionarily
conserved asparagine residue at position 546 in the protein. Missense mutations in
BICD2 cause autosomal dominant spinal muscular atrophy, lower-extremity predominant
2 (SMALED2), a disease characterized bymuscleweakness and arthrogryposis of early onset
and slow progression. The p.Asn546del clusters with four pathogenic missense variants in a
region that likely binds molecular motor KIF5A. Protein modeling suggests that removing
the highly conserved asparagine residue alters BICD2 protein structure. Our findings
support a broader phenotypic spectrum of BICD2 mutations that may include severe
manifestations such as cerebral atrophy, seizures, dysmorphic facial features, and profound
muscular atrophy.

[Supplemental material is available for this article.]

CASE PRESENTATION

Here we report two unrelated patients with muscular atrophy and arthrogryposis who
ultimately were found to have the same molecular diagnosis. Their clinical features are
compared in Table 1; additional clinical data are included in the supplement.

Patient 1 is a 12-yr-old girl with history of decreased fetal movement, bilateral femur frac-
tures, and contractures of the ankles, digits, and wrists from birth. She required gastrostomy
feeding and a tracheostomy, which was removed at age 8 yr. She had severe kyphoscoliosis
and underwent multiple orthopedic procedures and spinal fusion surgery. On examination,
she had relative macrocephaly with frontal bossing, thick eyebrows, prominent ears with
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hypoplastic outer helices and prominent anthelix, and mild midface hypoplasia with up-
turned nose and pointed nasal tip. Her extremities were thin, with muscle wasting and dis-
coloration. She was nonverbal and nonambulatory with a history of “rolandic” seizures in
the past. Brain MRI showed volume loss with thinning of the cortex.

Patient 2 is a 6-yr-old boy born at 38 wk gestation after a pregnancy noted to have severe
polyhydramnios, fetal macrocephaly, and marked decreased fetal movement, particularly of
the arms and legs. At birth he had dysmorphic features, bilateral symmetric facial weakness,
micrognathia, weak cry, absent gag, and markedly decreased muscle bulk/tone with severe
contractures (elbows, wrists, fingers, ankles in flexion, knees extended, hips internally rotat-
ed). Bone survey on day of life 1 showed right femur fracture. Neonatal brain MRI was con-
sistent with very severe in utero hypoxic ischemic injury. Whole-body muscle MRI including
the pelvis and thighs revealed marked absence of the musculature with fatty replacement
(Supplemental Fig. 1). He developed intractable epilepsy and hydrocephalus requiring shunt
placement at 6 mo of age. Follow-up brain MRI at 3.5 yr showed near complete absence of
cerebral white matter and cortex with subsequent enlargement of the ventricular system.

VARIANT INTERPRETATION

Patient 1

Whole-exome sequencing (WES) revealed a de novo, previously unreported, heterozygous
deletion in BICD2 (Table 2). The c.1636_1638delAAT variant results in an in-frame 3-bp

Table 1. Clinical features

HPO term Patient 1—Female, 12 yr Patient 2—Male, 6 yr

Decreased fetal movement + +

Polyhydramnios unk +

Arthrogryposis multiplex congenita + +

Skeletal muscle atrophy + +

Muscle weakness + +

Recurrent fractures + +

Thoracolumbar kyphoscoliosis + −

Feeding difficulties + +

Macrocephaly + +

Frontal bossing + −

Abnormality of the ear + −

Open mouth + +

Downturned corners of mouth + +

Tapered fingers + +

EEG abnormality + +

Seizures + +

Cerebral cortical atrophy + +

Weak cry unk +

Absent speech + +

Left ventricular hypertrophy + −

Mitral regurgitation + −

Human Phenotype Ontology (HPO) terms are listed with an indication of whether each patient was positive (+), negative (−),
or unknown (unk) for each feature.
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deletion and is predicted to cause loss of an evolutionarily conserved Asparagine residue
at position 546 in the protein, denoted as p.Asn546del. The c.1636_1638delAAT variant
was not observed in large population cohorts (Lek et al. 2016). GeneDx interpreted the
c.1636_1638delAAT variant as a likely pathogenic variant and submitted it to ClinVar in
October 2016 (SCV000571877.3). The general assertion criteria for variant classification
are publicly available on the GeneDx ClinVar submission page (http://www.ncbi.nlm.nih.
gov/clinvar/submitters/26957/).

Patient 2

Whole-genome sequencing (WGS) revealed a heterozygous deletion in BICD2 (Table 2),
which we interpreted according to ACMG guidelines (Richards et al. 2015). Sanger sequenc-
ing of the patient and both parents confirmed its de novo status. The c.1636_1638delAAT
variant has not observed in the gnomAD populations, and is predicted to cause a deletion
of a highly conserved asparagine residue in a nonrepeat region. The ClinVar report from
GeneDx of the same de novomutation in a patient with similar features provided further sup-
porting evidence. Nationwide Children’s interpreted the variant as pathogenic and submit-
ted it to ClinVar in April 2018 (SCV000715101.1).

The p.Asn546Del variant maps just outside one of the coiled-coil domains that harbor
several reported BICD2 mutations (Fig. 1A), but within a region that (in mice) interacts
with molecular motor kinesin-1 (Splinter et al. 2010). A nearby variant, p.Arg501Pro, ap-
pears to increase the binding affinity of the BICD2 protein for the dynein–dynamin com-
plex (Oates et al. 2013). Protein modeling suggests that the p.Asn546del variant alters
protein structure (Supplemental Fig. 2), and that the changes to secondary structure are
more striking for the p.Asn546del than for nearby missense mutations (Supplemental
Fig. 3).

SUMMARY

The BicD gene was discovered in Drosophila and named bicaudal D (“having two tails”),
because mutant embryos showed abnormal body patterning in which the head, thorax,
and anterior abdominal segments are replaced with a mirror image of the posterior
body segments and tail (Bullock and Ish-Horowicz 2001). The two mammalian homologs
of BicD (BICD1 and BICD2) encode motor adaptor proteins that interact with the dynein–
dynactin complex and facilitate transport of mRNAs as well as other cellular cargoes
(Vazquez-Pianzola et al. 2017).

Heterozygousmissense changes in BICD2 cause autosomal dominant spinal muscular at-
rophy with lower extremity predominance (SMALED2, MIM #615290) (Neveling et al. 2013;
Oates et al. 2013; Peeters et al. 2013), a disease characterized by early-childhood or congen-
ital onset of muscle weakness and atrophy. To date, 11 pathogenic missense variants

Table 2. Genomic findings and variant interpretation

Genomic location HGVS cDNA HGVS protein Zygosity Origin Interpretation

9: 95481289 ATT/− NM_001003800:
c.1636_1638delAAT

BICD2: p.
Asn546Del

Het De novo Likely pathogenic

Both Patient 1 and Patient 2 were found to have the same de novo mutation in BICD2. Genomic coordinates reflect build
GRCh37.
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in BICD2 have been reported to the ClinVar database (Fig. 1A). The c.1636_1638delAAT var-
iant is the only reported in-frame deletion in ClinVar; however, during preparation of this
manuscript, Trimouille et al. (2018) published an in-frame deletion segregating in a family
with variable disease severity.

There is a growing appreciation of the wide phenotypic spectrum of BICD2 mutations,
which can range from asymptomatic to lethal congenital manifestations (Ravenscroft et al.
2016; Storbeck et al. 2017). A study of a four-generation Australian kindred with dominant
spinal muscular atrophy (Oates et al. 2012) found that the clinical presentation of this disease
can vary widely even within a single family. The manifestations in our patients are at the
severe end of the spectrum, including lack of ambulation, dysmorphic craniofacial features,
seizures, and cerebral atrophy. Patient 2 in particular had a striking lack of skeletal muscle,
although therewas also evidence of ischemic brain injury byMRI that could be a contributing
factor. Even so, the substantial clinical overlap between our two patients, and the fact that
they share the same de novo mutation, support the p.Asn546del mutation as a likely molec-
ular basis for disease.

Figure 1. Location and conservation of the p.Asn546del variant. (A) Pathogenic and likely pathogenic variants
reported in the ClinVar database as of July 3, 2018. Blue dots represent missense variants. The p.Asn542del
variant is shown in red. BICD2 protein structure, coiled-coil domains (gold), and KIF5 interaction region (red
bar) were taken fromUniProtKB entryQ8TD16. (B) UCSCGenomeBrowser screenshot for the region harboring
the p.Asn542del variant.
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METHODS

Patient 1

Using genomic DNA from the proband and parents, the exonic regions and flanking splice
junctions of the genome were captured using the Clinical Research Exome kit (Agilent
Technologies) by genetic testing provider GeneDx. Massively parallel (NextGen) sequenc-
ing was performed using an Illumina system with 100-bp paired-end reads. Additional se-
quencing technology and variant interpretation protocols have been previously described
(Tanaka et al. 2015).

Patient 2

The proband and his parents underwent WGS (2×100 bp) performed using the Illumina
HiSeq 2500 instrument. Reads were mapped to the GRCh37 reference sequence and
secondary data analysis was performed using Churchill (Kelly et al. 2015). Our approach to
variant annotation and prioritization has already been described (Koboldt et al. 2018).

More details on the sequencing and analysis can be found in the Supplemental Analysis
and Methods section. Sequencing metrics are provided in Supplemental Table 1. The
mutation diagram in Figure 1A was generated with Lollipops v1.3.2 (Jay and Brouwer 2016)
using information from UniProt (entry #Q8TD16) and the ClinVar (Landrum et al. 2018) data-
base (accessed March 22, 2018). Protein modeling was performed using the Phyre2 (Kelley
et al. 2015) and RaptorX (Källberg et al. 2012) web servers.

ADDITIONAL INFORMATION

Data Deposition and Access

The variants and their interpretations have been submitted to the ClinVar database (ID
#422408) (https://www.ncbi.nlm.nih.gov/clinvar/). Submitted reports are available under
accession numbers SCV000571877.3 (Patient 1) and SCV000715101.1 (Patient 2). Raw se-
quencing data was not deposited because of lack of patient consent.

Ethics Statement

For Patient 1, written consent for GeneDx exome sequencing was obtained as part of the
patient’s clinical evaluation at Mount Sinai Medical Center. For Patient 2, written consent
was obtained enrolling subjects into a research protocol approved by the Institutional Re-
view Board at Nationwide Children’s Hospital (IRB11-00215 Study: Using Genome Sequenc-
ing to Identify Causes of Rare Birth Defects and Rare Disorders).
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