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Abstract. A novel system concept is presented to transport microwave signals over an in-house multimode graded-index polymer optical fiber
network, in order to feed the radio access points in high-capacity wireless LANs. By employing optical frequency multiplying, the network’s
intrinsically limited bandwidth is overcome. The feasibility of this concept to carry data at several hundreds of Mbit/s speed for various
microwave signal formats at carrier frequencies in the tens of GHz range is shown. The concept enables cost-effective system implementation,
and easy upgrading by offering data signal transparency. It can readily be integrated with other system technologies such as wired Gigabit

Ethernet in a single multi-service in-house polymer optical fiber network.
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1 Introduction

Silica single-mode optical fiber has already estab-
lished an undisputable position in core
telecommunication networks and in metropolitan
area networks, reaching Tbit/s throughputs. As a
next step, it is intruding the capillaries of the network,
the access lines. When moving towards the end user,
however, and penetrating his residential area, the
costs of installing and maintaining the fiber network
become ever more important. Clear advantages are
offered by deploying polymer optical fiber (POF): its
large core diameter considerably eases coupling and
splicing, and its ductility and flexibility simplifies
installation in often less accessible customer loca-
tions.

However, although considerable improvements
have been made recently, the attenuation of POF is
still orders of magnitude higher than that of silica
single-mode fiber. As it guides a huge number of
modes, the dispersion of POF is also much larger.
State-of-the-art perfluorinated graded-index POF
(GIPOF) has losses below 20dB/km at 1300nm
(and < 30dB/km at 800 nm), and bandwidth length
products of around 1GHz-:km. Therefore, POF
systems still have limited bandwidth and reach. For
short links such as in in-house networks, however,

high transport capacities have been achieved. Single-
wavelength systems have reached 11 Gbit/s over
100m of GIPOF [1], and recently, a single-
wavelength GIPOF system carrying a Gigabit
Ethernet signal (1.25Gbit/s) over almost 1km
GIPOF has been experimentally demonstrated [2].
Wavelength multiplexing and novel approaches such
as mode group diversity multiplexing offer further
opportunities to extend the capacity of GIPOF
networks for digital data transport [3].

Wireless LANs are taking a rapidly evolving
market share of in-house broadband communications,
in particular in business and academic environments.
In order to provide high bit rates to the users, high
carrier frequencies and small radio cells are required.
Current wireless LAN products operate in the ISM
band (2.4 GHz), and offer transport capacities of
11 Mbit/s per carrier frequency, following the IEEE
802.11b standard. IEEE 802.11a systems can carry up
to 54Mbit/s per carrier in the 5.2GHz band [4].
Systems offering more than 100 Mbit/s will require
carrier frequencies beyond 10 GHz; 60 GHz systems
are under investigation [5].

When the data rates and the carrier frequencies
increase, the radio cells that can be served become
smaller. Thus the number of antennas needed to cover
for instance an office building grows, requiring a more
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extensive wired network to feed the antennas of the
radio access points (RAPs). Furthermore, it becomes
advantageous to carry the microwave signals directly
over this network; this enables to consolidate the
signal processing functions (for e.g., handover and
macro-diversity) at the headend station and thus
considerably simplifies the antenna sites.

GIPOF is a very attractive medium to be used in the
feeder network, but its limited bandwidth prohibits
carrying directly the microwave signals. To overcome
this barrier, in this paper a novel approach relying on
optical frequency multiplying is proposed, where fast
tunable laser sources are used at the headend in
combination with a periodic filter at the antenna site.
Thus, by providing transparency for the microwave
signals in combination with installation easiness,
GIPOF is a very attractive medium for in-house
cabling between wireless LAN access points and its
headend station.

2 System Concept

The proposed novel system concept is shown in Fig. 1.

At the transmitting end, the wavelength 4, of the
light emitted by a fast tunable laser diode is swept
periodically at a high frequency rate f;,, over a limited
wavelength range, while keeping the light power
constant. Alternatively, the laser diode may operate at
a fixed wavelength, and the wavelength is periodically

Headend station

GIPOF
link

swept by means of an external phase modulator driven
by a signal with frequency f,, (see Fig. 8). The data
signal is intensity-modulated on this optical-fre-
quency-swept signal by means of a low-chirp
external modulator (such as a symmetrically driven
Mach Zehnder Interferometer).

Via a power-split network, the signal is distributed
among various RAPs. In a RAP, an optical periodic
bandpass filter (e.g., a Fabry-Perot etalon) is used in
front of an optical receiver. The transmission peaks of
this filter are spaced by its free spectral range (FSR).
When the wavelength 4, is swept over N peaks, the
intensity of the signal impinging on the photodiode
fluctuates with a frequency 2N -f,,. This signal is
detected, and after amplification and bandpass
filtering (to reduce harmonics and noise) it is fed to
the antenna. The intensity-modulated data signal,
being the envelope of the optical frequency swept
signal, is also detected by the photodiode, but not up-
converted in frequency. Thus the antenna at the RAP
emits a radio wave at the microwave frequency
Sfoum = 2N £, carrying transparently the data signal
impressed at the headend station. Thus high-
frequency microwave signals can be obtained by
remotely generating optical signals at modest optical
sweep frequencies.

An upper limit to the optical sweep frequency is put
by the dispersion of the GIPOF link. For instance, with
a GIPOF having a 1 GHz-km bandwidth-times-length
product, sweep frequencies up to 2 GHz for in-house

Radio Access Point

transmission

Fig. 1. Transporting microwave signals in a graded-index polymer optical fiber network.
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Fig. 2. Generated microwave signals for sinusoidally and triangu-
larly sweeping of the laser wavelength (with sweep frequency
fsae = 1/T), using a Fabry Perot optical filter at the receiver, for
(a) sinusoidal wavelength sweep (b) triangular wavelength sweep.

fiber lengths up to 500 m are obtainable. A similar
limit is put to the data transport speed. The microwave
carrier frequency which can be realised may surpass
the GIPOF link bandwidth by as much as an order of
magnitude, by appropriately designing the ratio of the
optical frequency sweep range and the spacing of the
transmission peaks of the periodic optical bandpass
filter.

The shape of the generated microwave signal
depends on the shape of the laser wavelength sweep
and on the periodic filter characteristic. When using
for instance a Fabry-Perot etalon as the periodic filter
and a sinusoidal sweep of the laser wavelength, the
microwave signal shows strong frequency modulation
and therefore many spectral components; see
Fig. 2(a). A much better defined microwave signal is
obtained for a triangular sweep of the laser wave-
length, provided the wavelength sweep range equals
an integer number of the filter’s FSR. The generated
microwave signal then shows a nice regular pattern as

given in Fig. 2(b). This periodic microwave signal can
be expanded in a Fourier series according to

i(t) = b
1 + F + sin®(2nNF, 1)
1-R -
=iy R 142 E R" cos(4nnNf,,t) ¢,

n=1

where F = 4R/(1 — R)” and R is the power reflection
coefficient of the Fabry Perot plates. The relative
powers of the various spectral components are shown
in Fig. 3. The power of the fundamental component
2N -f,, is maximized when R = /2 — 1~41%, for
which the higher-order harmonics are down by more
than 7.6 dB. A better suppression of these harmonics
while not reducing significantly the power of the
fundamental component is obtained for a lower plate
reflectivity; e.g., for R =20%, the fundamental
component’s power is only 2.2dB lower, whereas
the other harmonics are down by more than 14 dB.
Such a lower reflectivity is also advantageous for low-
cost design. The harmonics are further reduced by the
electrical bandpass filter and the band-limited ampli-
fier following the photodiode. At higher reflectivity R,
the power of the n-th-order harmonic increases, and
reaches its maximum for R = (v'1+n? — 1)/n. By
appropriately choosing the central frequency of the
electrical bandpass filter, one may also select one of
these higher harmonics to become the system’s
microwave carrier frequency. Again, the intensity-
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Fig. 3. Relative powers of the harmonic components of the
generated microwave signal in case of a triangular source
wavelength sweep and a Fabry Perot optical filter with plate
reflectivity R.
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modulated data signal is not being affected, and is
transparently transferred to the microwave carrier.

When the triangular wavelength sweep range does
not match an integer number of the filter’s FSR, the
microwave signal shows a periodicity equal to the
sweep interval, which yields relatively weak spectral
lines close to the fundamental component and its
harmonics. With a sinusoidal wavelength sweep, these
spectral sidelines have considerably higher power,
and many of them will pass the electrical bandpass
filter, yielding a clearly less pure microwave carrier
than the one achieved with the well-aligned triangular
wavelength sweep.

3 System Simulations

3.1 Transporting a CW Microwave Signal

Preliminary system simulations with the Virtual
Photonics Inc. software package have shown the
feasibility of the concept. The laser wavelength 4, is
around 1.3um (i.e., in the low-loss window of
perfluorinated GIPOF), and the full width at half
maximum (FWHM) linewidth is 1 MHz while the
laser diode provides 10 mW fiber-coupled power. The
laser wavelength is swept over Af,, = 28.8GHz
(corresponding to 0.17nm) at a sweep rate of
fow =900MHz, by means of an external phase
modulator driven over 4n. This sweep rate should
not cause fiber dispersion problems for GIPOF link
lengths up to 500 m. At the receiver, a Fabry-Perot
filter with an FSR of 9.6 GHz (corresponding to a plate
spacing of 15.6 mm) and a plate reflectivity of 20% is
deployed. Thus a frequency multiplication factor
2N =2+ |Af,,/FSRpp| =6 is obtained, which
yields a microwave signal with a fundamental
frequency of 5.4 GHz. The spectrum of this signal at
the photodiode output is shown in Fig. 4. The
fundamental frequency component at 5.4GHz is
14dB stronger than the second-order harmonic at
10.8 GHz, which agrees with the theoretical curves of
Fig. 3; also the power levels of the higher-order
harmonics are in agreement with these curves. The
spurious spectral lines spaced at 900 MHz are due to
Af,p not being an exact integer multiple of the FSR of
the Fabry Perot filter, due to numerical rounding
errors. The signal is significantly cleaned up by a
Gaussian bandpass filter after the photodiode and
centered at 5.4 GHz having a —3dB bandwidth of
1 GHz, the spectrum of the signal at the filter output is

Power [dBm]

PD Output (Freq Plot)
-9 H

5.4 GHz: -26 dBm LD LineWidth = 1 MHz

-20F :
10.8 GHz; ~40 dBm

- 401 : T 16.2 GHz; -58 dBm

[} 5 10 15 20 25 30 35 40
Frequency [GHz]

Fig. 4. Spectrum of CW signal at output of photodiode.

given in Fig. 5. With a laser linewidth of 1 MHz, the
spectral width of the CW 5.4 GHz microwave signal is
found to be less than 1 kHz.

3.2 Transporting an ASK Modulated Microwave
Signal

Secondly, the system has been simulated with a
225 Mbit/s on/off data pattern; the other system
parameters are the same as in the CW case simulated
before. A clear 5.4 GHz amplitude shift keying (ASK)
modulated microwave signal is generated at the
bandpass filter output, as shown in Fig. 6.

Power [dBm]
-9

RF 5.4 GHz (Bessel BPF 1.4*DataRate)

5.4 GHz; -26 dBm LD LineWidth = 1 MHz

-20F

-60}

~-80

=100

-120L 4 i . ’ i i i i i $
0 5 10 15 20 25 30 35 40

Frequency [GHz]

Fig. 5. Spectrum of CW signal at output of bandpass filter centered
at 5.4 GHz.
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Fig. 6. Microwave signal with 225 Mbit/s ASK data modulation at
output of bandpass filter centered at 5.4 GHz.

By only changing the center frequency of the band-
pass filter in order to pass the second harmonic of the
photodiode output signal, it is also feasible to generate
an ASK modulated microwave signal at 10.8 GHz. As
displayed in Fig. 7, its power is about 14dB lower
than that of the 5.4 GHz ASK modulated signal, which
agrees with the theoretical curves of Fig. 3.

3.3 Transporting a BPSK Modulated Microwave
Signal

Wireless LANs mostly use signal formats based on
amplitude as well as phase modulation. In OFDM
systems as adopted a.o. in specification IEEE 802.11a

Headend station

cos 2rf ¢

BPSK modulator

e~ 6] RF 10.8 GHz (Bessel BPF 1.4*DataRate)
550

LD LineWidth = 1 MHz

400F o - ,,,,,

2001

- 2001

- 4001

- 550 L L ) i

i i

i
0 20 40 60 80 100 120 142

Time [ns]

Fig. 7. Microwave signal with 225 Mbit/s ASK data modulation at
output of bandpass filter centered at 10.8 GHz.

for transport of up to 54 Mbit/s in the 5.2 GHz region
[4], the data may be modulated in BPSK, QPSK, 16-
QAM or even 64-QAM format on as much as 52
multiplexed orthogonal subcarriers. As a first assess-
ment of the feasibility for carrying phase-modulated
signals, the system has been simulated for a binary
phase shift keying (BPSK) signal format. The setup of
the system is shown in Fig. 8. A 28.125 Mbit/s data
signal is BPSK modulated on a subcarrier of
225 MHz, which drives the Mach Zehnder Interfero-
meter intensity modulator at the headend station. The
other parameters are equal to those of the ASK system
simulated before. The waveform of the sweep signal

Radio Access Point

Fig. 8. Transporting BPSK-modulated microwave signals in a GIPOF network.
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Modulated Sub-Carrier (BPSK)

1.2
1.0h

Sub-Carrier = 225 MHz
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Fig. 9. Data signal at 28.125Mbit/s BPSK-modulated on a
225 MHz subcarrier.

driving the phase modulator is the integral of a
triangular waveform, thus yielding the desired
triangular wavelength sweep.

At the headend station, the input data signal
assumed is a 28.125 Mbit/s bipolar alternating one/
zero pattern. Fig. 9 displays the signal after BPSK
modulation on a 225 MHz subcarrier, showing the
data-induced phase reversals. This signal is subse-
quently intensity-modulated on the wavelength-swept
light signal, by means of the Mach Zehnder
Interferometer intensity modulator. Using the same
sweep rate of f,, =900MHz, sweep optical fre-
quency range of Af,, = 28.8 GHz, and Fabry Perot
periodic filter with FSR = 9.6 GHz, again a micro-
wave signal with fundamental frequency of 5.4 GHz is
generated at the output of the photodiode, carrying the
BPSK modulated data on the 225 MHz subcarrier. In
analogy with the expression for the CW microwave
signal, the BPSK modulated microwave signal can be
described as

ig - m(t) cos(2mf, 1)

l( ) 1+ F- Sinz(zﬂNf;wl)
' 1-R
=1y m([) COS(27Ifsc[) ) T

. { 142 Z R” cos(4nnNf,,t) },

n=1

where f;. denotes the subcarrier frequency, and m(z)
the bipolar input data signal (see Fig. 8).

[e-3]
4

After BPF & Amp

BPF: 5.4 GHz; Bandwidth = 1.4*Sub-Carrier

i
0 50 100 142

Time [ns]

Fig. 10. BPSK modulated data signal on 225MHz subcarrier,
riding on the 5.4 GHz microwave signal.

Fig. 10 shows the signal at the output of the
bandpass filter (with sufficiently large bandwidth to
pass on the BPSK modulated subcarrier) after the
photodiode. On the envelope of this signal, the BPSK
modulation is clearly visible. The signal’s frequency
spectrum, centered around 5.4 GHz and including the
two sidebands due to the BPSK modulated subcarrier,
is shown in Fig. 11. This modulated microwave signal
is radiated by the antenna to the mobile user terminals,
where it will be downconverted with a local 5.4 GHz
oscillator, and subsequently BPSK-demodulated by

Power [dBm)] After BPF & Amp
-24 :
5.4 GHz; -28 dBm

- 60

- 80

~-100F & .

0 5 10 15 20 25 30 35 40
Freguency [GHz]

Fig. I1. Spectrum of BPSK modulated data signal on the 225 MHz
subcarrier of the 5.4 GHz microwave.
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Fig. I2. Recovered data signal after BPSK demodulation at
wireless user terminal.

means of synchronous detection (mixing with syn-
chronized 225 MHz oscillator signal, and low-pass
filtering). The resulting demodulated signal is shown
in Fig. 12; obviously, the data pattern sent from the
headend can be recovered with a high degree of
confidence.

The system can be extended to support a wide
variety of modulation formats such as QPSK and x-
level QAM, by replacing the BPSK modulator in Fig.
8 by a quadrature modulator, as shown in Fig. 13.
Simulations have been made of the system perfor-
mance for a 56 Mbit/s 16-QAM signal modulated on a
225 MHz subcarrier. The spectrum of the microwave
signal at the output of the bandpass filter is shown in
Fig. 14. The eye patterns of the demodulated in-phase

to MZI modulator

data input
m(t)

Quadrature modulator

Fig. 13. Quadrature modulation of data signal m(¢) on a subcarrier,
enabling a wide variety of modulation formats (QPSK, x-level
QAM, ..)).

Power [dBm]
-27

BPF (5.4 GHz)

16-QAM; 56 Mbps

—agb

51 5.2 5.3 5.4 5.5 5.6 5.7
Frequency [GHz]

Fig. 14. Spectrum of 16-QAM signal transporting 56 Mbit/s data at
carrier frequency 5.4 GHz.

and quadrature signals at the wireless mobile terminal,
obtained after downconversion and synchronous
demodulation, are depicted in Figs 15 and 16,
respectively. Both eye patterns are clearly open,
indicating a system performance can be achieved
with low bit error rate.

4 Extension to a Bidirectional System

In order to support interactive communications, as
needed in wireless LANs, the proposed concept can be

Eye

104

T

0 50 100 142
Time [ns]

Fig. 15. Eye pattern of demodulated 16-QAM in-phase symbols.
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Eye

0 50 100 142
Time [ns]

Fig. 16. Eye pattern of demodulated 16-QAM quadrature-phase
symbols.

extended to a bidirectional system as shown in Fig.
17. Two wavelengths are used, 4, for downstream and
A, for upstream traffic, which are combined with
wavelength division multiplexing (WDM) devices.
Thus, due to the wavelength selectivity provided by
these WDM devices, near-end crosstalk is adequately
suppressed. When no data is going downstream, the
unmodulated microwave signal generated in the RAP
is used for downconverting in a mixer the upstream
signal from the mobile terminal. Thus data can be
transported bidirectionally in time-division half-
duplex mode. Following a medium-access control

Headend station

protocol, the upstream data is intensity-modulated in
baseband on a laser diode in the RAP, and detected at
the headend station. The upstream data speed is
limited by the bandwidth of the GIPOF link, which

may be as high as 2 GHz for 500 m reach.

5 Flexible and Transparent Muiti-Service
In-House POF Network

Presently, different in-house network infrastructures
are deployed to carry a variety of services: coaxial
cable for CATV/FM radio broadcast and data signals,
twisted copper pair cable for voice telephony and
data, power line for control of home appliances, and
also wireless LANs for data. This set of in-house
networks is well-suited for the present service
offerings and business goals. However, on the
longer term a trend is emerging in which service
delivery (e.g., of voice or data) is not necessarily
restricted to a particular one of the available in-house
networks. Also it is expected that the functionalities
are linked across these networks, and to the variety of
outdoor access network infrastructures (coaxial cable,
twisted copper pair, satellite, fiber), via a residential
gateway. Convergence of the in-house networks into a
single versatile infrastructure would then consider-
ably ease the maintenance of the network, the
upgrading, and the introduction of new services.
Therefore, an in-house network not only needs to
provide higher data transport capacities, but it should

Radio Access Point

antenna 5

circulator

Fig. 17. Bidirectional wireless system using GIPOF.
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Fig. 18. Transparent in-house POF network (RG =residential
gateway; FD = fixed device; MD = mobile device).

also become more flexible and transparent. It should
enable the user to become less location-bound, and
thus increase his/her mobility. Also it should support
IP-based traffic, which is becoming the major carrier
of services.

Optical fiber is excellently suited for providing high
bandwidth and service format transparency, and in
particular POF is very attractive for in-house networks
due to its additional advantage of easy handling and
installation. As depicted in Fig. 18, a POF network
infrastructure can provide a universal transparent
broadband in-house network, providing both fixed and
mobile devices with a wealth of broadband services.
The radio-over-POF system concept for feeding the
mobile devices can be readily integrated with other
system architectures such as a fixed-wired Gigabit
Ethernet LAN, e.g., by hosting the different systems
on different wavelengths in the POF network. For
example, a Gigabit Ethernet system with a reach of up
to 1km over GIPOF at a wavelength of 840nm has
been demonstrated [2], and can be overlaid with the
radio-over-POF system at 1300 nm as presented in this
paper.

6 Conclusions

A novel system concept for carrying microwave
signals over an in-house POF network has been
reported, surpassing its intrinsically limited band-
width. This optical frequency multiplying method

deploys wavelength sweeping of an optical source in
the headend station across the characteristics of a
periodic optical bandpass filter at the access point. It
benefits from the installation easiness of polymer
optical fiber, and it allows consolidation of mobility
functions at the headend station and simplification of
the radio access points.

The feasibility of the concept for various micro-
wave signal formats has been shown, e.g., for a
56 Mbit/s 16-QAM microwave signal at a carrier
frequency of 5.4 GHz. Microwave carrier frequencies
significantly beyond the bandwidth of the polymer
optical fiber network can be realized, with high
spectral purity. Carrier frequencies of e.g., 60 GHz are
within reach in POF networks spanning up to 500 m
(bandwidth up to 2GHz), by sweeping the laser
wavelength at a rate of 1 GHz over a 1.2 nm range, and
using at the radio access point an optical periodic filter
with 5 GHz FSR followed by a 60 GHz photodiode.
Data transfer speeds are limited by the fiber’s
bandwidth, and may go up to several hundreds
of Mbit/s. The concept also supports bi-directional
half-duplex communication.

The system concept may enable cost-effective in-
stallation of high-capacity wireless LANs, and easy
upgrading by offering data signal transparency. It can
readily be integrated with other system technologies,
such as Gigabit Ethernet, in a single flexible and
transparent multi-service in-house POF network.
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