
UC Office of the President
Recent Work

Title
In-Memory Data Rearrangement for Irregular, Data-Intensive Computing

Permalink
https://escholarship.org/uc/item/9ck835qz

Journal
COMPUTER, 48(8)

ISSN
0018-9162

Authors
Lloyd, Scott
Gokhale, Maya

Publication Date
2015

DOI
10.1109/MC.2015.230

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9ck835qz
https://escholarship.org
http://www.cdlib.org/

In-memory data rearrangement for irregular, data intensive computing

Scott Lloyd and Maya Gokhale
Lawrence Livermore National Laboratory

gokhale2@llnl.gov

Abstract—As CPU core counts continue to increase, the gap

between compute power and available memory bandwidth has

widened. A larger and deeper cache hierarchy benefits locality-

friendly computation, but offers limited improvement to irreg-

ular, data intensive applications. In this work we explore a

novel approach to accelerating these applications through in-

memory data restructuring. Unlike other proposed processing-

in-memory architectures, the rearrangement hardware per-

forms data reduction, not compute offload. Using a custom

FPGA emulator, we quantitatively evaluate performance and

energy benefits of near-memory hardware structures that dy-

namically restructure in-memory data to cache-friendly lay-

out, minimizing wasted memory bandwidth. Our results on

representative irregular benchmarks using the Micron Hybrid

Memory Cube memory model show speedup, bandwidth sav-

ings, and energy reduction in all cases. Application speedup

ranges from 1.24X to 4.15X. The number of bytes transferred

is reduced by up to 11.69X, reflecting the efficiency of data

rearrangement. Energy improvement ranges from 1.49X to

2.7X. We analyze the effect of memory access at an 8-byte

granularity, and find energy reduction possible of up to 7.84X.

1. Introduction

The memory wall is perhaps the most prominent obstacle
threatening our ability to analyze expanding data volumes.
While CPU innovations deliver Teraflop compute nodes,
irregular memory access prevents many data intensive work-
loads from achieving corresponding performance improve-
ments. It remains a continuing challenge to keep the CPU
cores doing useful work since memory bandwidth improve-
ments mainly benefit regular, streaming access patterns. If
only one eighth of every cache line fetched from memory is
used – 8 bytes of a 64 byte cache line – memory bandwidth
and power are wasted, and performance suffers.

We have developed a novel method to dynamically lay
out data in memory in the form that the application needs,
when the application needs it. Our proposed Data Rear-
rangement Engine (DRE) dynamically rearranges data in
memory to create a cache-optimized layout so that the CPU
uses every byte of every cache line in the rearranged data
structure. Our approach uses near-memory hardware logic
implementable in a logic layer of emerging 3D memory
packages such as the Hybrid Memory Cube [1]. It effectively

exploits vast bandwidth internal to the memory to maximize
use of limited off-package bandwidth.

Using an FPGA-based emulator built for this purpose,
we present quantitative assessment of performance and en-
ergy improvements through in-memory data rearrangement
on representative data intensive analytics benchmarks. Our
system architecture using simple DMA and gather/scat-
ter hardware delivers application speedup from 1.24X to
4.15X, memory bandwidth reduction greater than an order
of magnitude, and energy improvement from 1.49X to 2.7X.
Remarkably, energy reduction of up to 7.84X is possible
when memory can be accessed in 8-byte units.

1.1. Irregular applications and cache

As CPU clock frequency plateaus, multi- and many-
core architectures with heterogeneous compute units have
emerged as the norm, enabling continued improvement in
peak FLOPS through spatial parallelism. To mitigate the
gap between greatly increased peak FLOPs and more modest
improvement in memory bandwidth, many-core CPUs incor-
porate deep cache hierarchies to increase the likelihood that
applications’ memory accesses will be satisfied in cache.
However, memory intensive applications with little spatial
or temporal access locality may not benefit from cache
hierarchies. For these applications, the compute units often
sit idle waiting for data.

For example, sparse matrix/vector operations form the
core of the popular PageRank algorithm, which traverses a
web graph to locate frequently referenced web pages. As
shown in Figure 1, the algorithm accesses random locations
in the graph and pagerank vector. Ideally the CPU cache
will only hold pagerank vector entries corresponding to a
vertex’s edgelist, as shown on the left.

DMA and gather/scatter hardware integrated with the
CPU allows the CPU to initiate data structure rearrangement,
but the full data structure must still traverse the memory
bus. In our memory-integrated approach, DREs are on the
memory package, and only the restructured data traverses
the memory bus.

1.2. Memory-integrated computing

The concept of integrating logic with memory has been
investigated for many years [2], [3], [4], [5], [6]. With this

Page Rank

Edge List
Vertex i

Page Rank View
Vertex i

float

float

int

0

N

edges

0

N

edges

0

N

vertices
Compact pagerank vector view based on index
array

Index
array

Figure 1: View assembly: The DRE assembles a page rank
view based on the adjacency list for vertex i which is an
index array into the full page rank vector.

technology, computation that is typically handled by a CPU
is performed within the memory system. Performance is
improved and energy reduced because processing is done
close to the data without having to move data across chip
interconnects from memory to the processor.

There have been many proposed designs for compute
elements in memory. However, previous designs were pred-
icated on the integration of logic in the same fabrication
process as DRAM cells, and did not become commer-
cially viable due to cost. With the advent of 2.5D and 3D
packaging, placing compute elements directly within the
DRAM is no longer necessary. Stacking allows logic to be
placed on a separate layer in a separate fabrication process,
which makes memory-integrated computing structures more
attractive than in a purely DRAM fabrication.

Computing with 3D stacked memory has been explored
using the logic layer of the Hybrid Memory Cube to hold
processor arrays [7]. The fundamental HMC architecture
consists of a stack of DRAM layers connected to a base
logic layer with through silicon vias. The logic layer con-
tains an integrated memory controller. In the HMC design,
the memory controller receives and transmits packetized
data over a custom link protocol to an external (off-package)
unit such as a CPU. In proposed HMC processor designs,
throughput-oriented processors are located in the logic layer
and operate on streaming data directly from DRAM banks.
In contrast, we perform data reduction, not compute offload,
in memory, similarly to FPGA-based data reorganization
proposed by Diniz et al. [8].

1.3. Data rearrangement engines

Unlike previous proposals that place full functionality
processor arrays in memory, we propose lightweight data
rearrangement engines (DRE) that assist the main CPU by
creating cache-friendly data blocks on demand in an in-
memory buffer. In our design, load and store requests from
the CPU traverse the normal cache hierarchy. DREs are ex-
plicitly invoked by applications to rearrange data within the

memory. When a DRE command finishes, the application
accesses the rearranged data buffer, which then traverses
the cache hierarchy instead of the original data blocks. For
example, upon request, a DRE would create a “gathered”
subset of the pagerank vector in memory containing entries
for a vertex’s edge list, and the application would access
that reduced vector. Since the application needs every byte
transferred, cache lines are fully utilized. As an additional
benefit, computation on the restructured data can be vec-
torized, which isn’t possible when the data is scattered in
memory.

2. Architecture

In our scheme an application is partitioned between re-
structuring data in memory and computing with data in the
CPU. During the course of execution, a DRE library routine
assembles the desired view of a data structure fragment in
a memory-resident SRAM buffer, the main application in
the CPU reads and updates the buffer, and the DRE stores
from the buffer back to DRAM. The DRE’s application-
specific restructuring creates or stores a compact view of a
data structure, and the CPU program loads, computes on,
and stores that compact view. The DRE microarchitecture
and associated API support this workflow.

2.1. Microarchitecture

The DRE has been designed to be compatible with the
HMC memory organization. On the HMC, DRAM banks are
laid out in vertically structured vaults. A vault atomically
accesses a 32-byte unit. The vaults are interconnected with
each other and with a link controller that is responsible for
serializing and de-serializing the data going to or coming
from the memory package. The HMC link protocol can
handle multiple data packet lengths from 128 bytes down to
16 bytes. The HMC has multiple high speed links to connect
to the CPU and potentially to other HMC devices for
greater capacity. In the latter configuration, inbound memory
requests are either routed to an internal vault or forwarded
to the destination on a pass-thru link. The current HMC
packet protocol only supports requests coming from an
external host; however, a possible extension to the protocol
and interconnect would allow a DRE to originate memory
requests from within a device and access data structures
transparently across a large distributed memory.

Figure 2 shows a notional diagram of an HMC-like pack-
age in which data rearrangement engines are also attached
to the interconnect. A DRE consists of a programmable
DMA unit (load/store unit or LSU) along with a microcon-
troller (MCU) that executes a simple set of commands as
directed by an application. The MCU program orchestrates
LSU actions by generating command messages consisting
of addresses and lengths for the LSU to fetch/store in either
a fixed stride pattern or as specified in an associated stream
of indexes. The LSU uses an SRAM buffer as a scratchpad.
This buffer can also be directly addressed by the main

HMC Processor

DRE

Interconnect

DRE

Masters

Slaves

CPU 0

CPU 1

 CPU Cores

Link

LSU

MCU

LSU

MCU

DRAM

Vault Vault Vault

CPU n

Cache

hierarchy
DRE

LSU

MCU

SRAM SRAM SRAM

Figure 2: Data rearrangement engines connect to the inter-
nal interconnect. Each DRE holds a programmable reorder
engine and an SRAM buffer.

CPU and serves as a shared view buffer for communication
between CPU and DRE.

2.2. API

Upon request, an application process acquires a DRE.
The application specifies a microcontrol unit (MCU) pro-
gram, and the operating system loads the program into MCU
instruction memory, which is also in the logic layer. The
application and MCU communicate with small messages:
the application issues commands and receives completion
notification by writing and reading a memory-mapped ad-
dress range. Commands include:

setup to load parameters, such as base addresses and
either DMA size and stride for DMA operations,
or index vector size and base address for gather/s-
catter;

fill to copy from DRAM to the SRAM buffer according
to the access pattern established during setup;

drain to copy from the SRAM buffer into DRAM accord-
ing to the access pattern established during setup.

2.3. CPU interaction

The CPU and DRE exchange control messages: the
CPU issues commands and awaits completion, and similarly
the DRE waits for commands, executes them, and notifies
completion. A range of reserved memory addresses is used
to communicate parameters and completion flags. Polling is
used to check for completion.

The CPU and DRE components cooperate to maintain
cache/DRAM consistency by issuing cache flush and inval-
idate operations at well defined synchronization points such
as preceding and following fill operations. Cache consis-
tency operations are explicitly invoked by application code
and target the cache in either the CPU or in the DRE’s
microcontrol unit. The flush/invalidate is done to the entire
cache or to an address range, depending on the size of
the updated region. Our implementations select the most

efficient option. The overhead of maintaining consistency
must be factored into evaluating the potential benefit of
DREs.

The CPU’s Memory Management Unit (MMU) trans-
lates process virtual addresses to physical memory ad-
dresses. Memory requests from the DRE must also be
translated, which requires that the DRE have its own address
translation table. A general mechanism of mirroring the
CPU MMU is done in graphics processors, high perfor-
mance networking such as Infiniband, and some processing-
in-memory proposals [7]. We propose a simpler, albeit more
restrictive approach and require that the application allocate
data to be accessed by the DRE in contiguous physical
pages. This can be accomplished by using a custom al-
locator to gather a large contiguous physical range, as is
being developed in transparent large page support in the
OS, and by pinning pages (commonly done by network
interfaces in High Performance Computing systems) to pre-
vent subsequent relocation. The setup command gives the
base physical page address, and the DRE adds the base to
each address being loaded or stored. This requires minimal
additional hardware, adds no performance overhead as the
address can be assembled as it is loaded onto the request
queue, and virtually no energy overhead since it involves
a simple concatenation of bit fields. Addresses outside that
range would then trigger return of control to the application
to assemble a new continguous range for the DRE to access.

3. Emulator

3.1. Data flow

To quantitatively evaluate the performance and energy
usage of in-memory data reordering engines, we have de-
veloped an FPGA emulator modeling a CPU and DRE. The
emulator is implemented on a Xilinx Zynq 7000 System-on-
Chip. The Zynq block diagram and emulation framework are
shown in Figure 3a. The Zynq SoC has two main compo-
nents, the Processing System (PS) and Programmable Logic
(PL). In the emulation, the ARM A9 cores in the PS run
the application and use a dedicated memory, a 1 GB DRAM
(labeled Program DRAM) that holds instructions and data.
The DREs (Figure 3b) are implemented in FPGA logic in
the PL, which also holds the emulation infrastructure to non-
intrusively capture memory traffic. Although there is a direct
path on the Zynq from the ARMs to Program DRAM, during
emulation memory requests from the ARMs not satisfied in
cache are routed through the PL. This enables the trace sub-
system to monitor the ARMs’ memory accesses to Program
DRAM. The DREs also issue memory requests to Program
DRAM, and these are also captured. The AXI Performance
Monitor filters the memory requests and forwards them to
the Trace Capture Device for storage in the 1 GB Trace
DRAM. The SRAM (on the PS side) is used to emulate the
SRAM scratchpad in the DRE by looping SRAM accesses
through the PL as well. As the AXI Performance Monitor
passively reads transactions on the system bus, it does not
perturb memory request timing.

Programmable Logic (PL)

Processing System (PS)

Zynq SoC

T
ra
ce
&S
u
b
sy
st
e
m
&

M
e
m
o
ry
&S
u
b
sy
st
e
m
&

H
o
st
&S
u
b
sy
st
e
m
&

Trace DRAM

SRAM

P
ro

g
ra

m
 D

R
A

M

AXI Performance
Monitor (APM)

ARM
Core

L2 Cache

ARM
Core

Accelerator Accelerator DRE

AXI Interconnect

Trace Capture
Device

Monitor

AXI Peripheral

Interconnect

BRAM

L1 L1

Delay Delay

Delay

(a) Zynq SoC with emulation framework

Data Rearrangement Engine
(DRE)

Load-Store Unit
(LSU)

Microcontrol Unit
(MCU)

AXI Memory Interface

Local

Memory

Bus

Command Messages

(address, length…)

BRAM

To Peripheral

Interconnect

AXI Interconnect

Memory

Read and Write

Stream Switch FIFO
Host
Adapter

DMA operations MicroBlaze

(b) Data Rearrangement Engine detail

Figure 3: Emulation architecture

3.2. Clock Frequencies

The clock system on the Zynq platform supports many
configurable clocks that can span a wide range of fre-
quencies. The A9 cores on the Zynq 7000 can run up to
800 MHz and down to under 1 MHz. The programmable
logic clock frequency depends on the specific design placed
on the FPGA but is typically around 200 MHz. The DDR
program memory runs at 1066 MT/s. Since the DRE runs
in slower programmable logic, the CPU is also slowed to
run at a frequency with a ratio comparable to the target

system. For example if the DRE runs at 100 MHz and the
CPU at 200 MHz, program run times when scaled by a
factor of 20 represent components running at 1 GHz and
2 GHz respectively. The DRAM clocks are not slowed;
therefore, memory requests are routed through a set of
programmable delay units (labeled Delay in Figure 3a) to
emulate memory latencies consistent with the CPU and DRE
frequency. These delay units also allow emulation of a wide
range of memory latencies encompassing current and future
technologies. CPU and DRE clock frequencies along with
delay parameters are set with values that maintain consistent
ratios needed to emulate various CPU and active memory
configurations.

Our use of an SoC to emulate a system offers efficiency
and challenges. Using hard IP modules such as the ARM
cores, the on-chip scratchpad, and the memory architecture
of the development board saves FPGA logic and devel-
opment time. However, these fixed components also limit
host design space exploration and require coordination of
multiple clocks to accurately model the desired system.

4. Experiments

To evaluate the potential benefits of DRE-assisted com-
putation, irregular, data intensive benchmarks were run over
a range of emulated CPU-memory latencies.

4.1. Emulation parameters

The emulation targets a standard CPU core and an
HMC-like memory. Datapath widths and memory band-
widths conform to standard configurations. The processor
is a hypothetical 32-bit ARM A9 core running at 2.57 GHz
with 5 GB/s memory bandwidth. Since the applications are
memory bound, using a 32-bit rather than 64-bit processor
was not found to affect run time. The 1.25 GHz LSU has
a 64-bit internal data path and a bandwidth of 10 GB/s.
The 1.25 GHz MCU has a 32-bit data path and 5 GB/s
of bandwidth. The control path of sending commands to
the DRE has a round trip latency of 340ns. Measuring
performance using a single CPU core and a single DRE
enables precise measurement of the application’s memory
access characteristics.

Memory parameters are derived from measurement on
an Arira Design Gen 2 HMC evaluation board [9] which has
instrumentation to capture latency, bandwidth and power.
Based on these measurements, the latency to access the
DRAM array is set to 45ns, reflecting the effects of random
access in applications lacking long sequential data bursts. On
the HMC there may be additional latency due to congestion
in vault request and response queues within the memory
package. Since our benchmarks run in isolation, we model
the effects of interference from other jobs in a workload by
emulating congestion delay at three different rates, 0ns (no
delay) for a light load, 20ns for medium load, and 40ns for
heavy load. This latency affects both CPU and DRE memory
accesses. SRAM latency for the DRE’s scratchpad is set to
10ns. SRAM latencies vary widely; this value represents

an average among latencies reported in the literature. The
link latency to transfer packets between memory package
and CPU is set to 24ns, again derived from measurement.
The DRAM energy is modeled at 19.4 pJ/bit, the SRAM
is 1 pJ/bit, and the link is 10.3 pJ/bit. DRAM and link
energy estimates are obtained from measurement on the
HMC board. SRAM energy is estimated from reports in
the literature [10].

Irregular applications often access random 8-byte data
values. To study the effects of hardware support for this
behavior, we additionally evaluate the energy impact of a
“narrow vault” architecture modeled on the HMC in which
the DRAM can be accessed internally in 8-byte units. On
the HMC, the DRAM is accessed in 32-byte units, and even
a 16-byte request will touch 32 bytes within a vault.

For these configurations, detailed evaluation is con-
ducted on three representative benchmarks.

4.2. Benchmarks

There are two forms of each benchmark, CPU only and
DRE-assisted. The CPU version is the benchmark in its orig-
inal form. In the DRE-assisted version, the CPU program
communicates with the DRE to load and store an SRAM
“view buffer,” but all computation is performed by the CPU.
In each benchmark, restructured data in the view buffer is in
a compact form that allows the compiler to vectorize CPU
computations. However, this is not possible in the CPU-only
version when the data is scattered in memory. Both forms
of benchmarks are serial; in the DRE-assisted version, the
CPU core waits for DRE command completion to perform
computation and does not double buffer to hide the DRE
latency. The benchmarks run standalone with a one-to-one
virtual to physical mapping to enable accurate measurement
of each phase of DRE operation.
The benchmarks are as follows:
RandomAccess [11] uses the DRE gather and scatter hard-
ware. It is the best example of extreme irregular applications,
and is designed to measure memory performance in the pres-
ence of a completely random access pattern in combination
with minimal compute. The benchmark reads, modifies and
writes back random elements of a table that occupies up
to half the total memory size. In our benchmark the table
is of size .5 GB. The benchmark iteratively performs the
computation

T[ran[j] & (TableSize-1)] ˆ= ran[j];

where ran is a sequence of random 64-bit numbers. Like
the Graph500 breadth first search benchmark, RandomAc-
cess encapsulates the core of one class of irregular, data-
intensive applications.
PageRank uses the DRE gather hardware. It is a popular
data intensive irregular benchmark characterized by floating
point computation on a sparse matrix (graph) and vector
(pagerank). We use a synthetic scale-free input graph with
2
22 vertices and an adjacency list representation of the

graph. The algorithm iterates through the list of vertices
and updates each vertex’s rank. Indirect, scattered accesses

to the page rank vector are replaced by direct, contiguous
accesses into the edgelist’s page rank view.
Image differencing of reduced resolution imagery uses
strided DMA. We include this benchmark to demonstrate
that even a regular streaming access can appear irregular
from the viewpoint of cache re-use, enabling effective DRE
assist when the stride exceeds cache line length. The bench-
mark loads two high resolution 2D images into memory and,
given a decimation factor, subtracts corresponding pixels in
reduced resolution views in both x and y dimensions. We
use decimation factor 16. In the DRE-assisted implementa-
tion, the DRE loads two view buffers with corresponding
blocks of the decimated images. The CPU performs the im-
age difference and stores the differenced image to memory.

All three benchmarks exercise the synchronization and
cache consistency management methods described in Sec-
tion 2. The CPU part of the application issues setup, fill,
and drain commands by sending messages to the DRE
through the special memory addresses. The DRE executes
the command and returns a completion message to the CPU.
To maintain memory consistency, the CPU issues cache
invalidate to update the cache with the DRE’s fill of the
SRAM view buffer, and issues cache flush to write its
updated view buffer contents to the memory so that the
DRE can drain the buffer. The DRE issues corresponding
cache flush and invalidate operations to update its cache if
needed. The time to perform these operations is included in
the performance evaluation.

4.3. Evaluation

Figure 4 summarizes benchmark speedup, reduction in
memory bandwidth required, and reduction in energy used.
For these benchmarks, it is always advantageous to use
a DRE for performance, memory bandwidth savings, and
energy reduction. The speedup results highlight the effects
of intra-package queue delays. Using the DRE gives speedup
in the contrived case of exclusive access to memory in
serial execution, but there is even more speedup in the more
normal case of interfering memory requests, as shown in
the Q40 row (queue delay of 40ns). Memory bandwidth
savings is at least 2.46X and is 11.69X at best, showing
the data reduction afforded by using the DRE. Energy use
is modeled in two scenarios, HMC and Narrow. The HMC
row reflects the access unit of the HMC, requiring 32-byte
access even when only 8 bytes are requested. The Narrow
row reflects potential energy savings if it were possible to
access down to an 8-byte granularity. In HMC mode, energy
savings is at least 49% and is as high as 2.7X. If narrow
mode were available, the energy savings jumps to 7.80X.

PageRank shows speedup ranging from 24% – 29%. The
more modest speedup compared to the other benchmarks
is due to the large number of vertices with few edges,
which is characteristic of a scale-free graph. Because of
synchronization overhead between CPU and DRE, it is only
profitable to process long edgelists on the DRE. The number
of “hub” vertices and the edgelist lengths increase with
scale, so larger graphs are expected to show greater speedup.

RandomAccess PageRank ImageDiff

Q0 1.48 1.24 2.99

Q20 1.78 1.27 3.60

Q40 2.06 1.29 4.15

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Im
p

ro
v

e
m

e
n

t

Speedup

(a) Speedup for three queue delay parame-
ters.

RandomAccess PageRank ImageDiff

Reduction 4.87 2.46 11.69

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Im
p

ro
v

e
m

e
n

t

Reduction in Bytes Transferred

(b) Reduction in bytes transferred for DRE-
assisted versions of benchmarks.

RandomAccess PageRank ImageDiff

Narrow 5.20 2.26 7.84

HMC 1.95 1.49 2.70

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Im
p

ro
v

e
m

e
n

t

Reduction in Energy

(c) Reduction in energy for a hypothetical
narrow access memory and for the HMC.

Figure 4: Performance of benchmark applications.

Figure 5 shows a running power profile captured from
ImageDiff memory traces (due to space limitations, the other
energy profiles are not shown). The full trace shows that the
DRE-assisted version with HMC model (32-byte access)
uses more power than the CPU only version, but for a
much shorter time. The narrow model uses significantly
less power. Both models show overall energy savings (Fig-
ure 4c). The enlarged segment shows the handoff between
CPU and DRE in the DRE-assisted version (red for CPU
and either green or yellow for DRE depending on HMC or
Narrow model). The blue line is CPU only.

5. Discussion

Data rearrangement in active memory provides substan-
tial performance and energy improvement in benchmarks
whose access patterns are representative of irregular, data
intensive analytics workloads. The improvement is partic-
ularly significant considering that the DRE, in contrast to
other processing-in-memory designs, performs data reduc-
tion, not compute offload. The improvements are enabled
by transforming cache unfriendly data layout into a tightly
packed, locality enhancing format before the data traverses
the memory bus. Overheads to using the DRE include
coherence transactions to maintain memory consistency,
and communication between CPU and DRE. Despite these
overheads, the proposed approach using shared scratchpad
demonstrates improvement in all metrics evaluated.

Another aspect to consider is the access granularity at the
memory bank. For irregular applications, 8-byte granularity
would save substantial energy for DRE-assisted irregular
applications. While reducing access size introduces perhaps
unacceptable complexity into DRAM, it has been suggested
that such an organization is better suited to future persistent
memories [12].

In this evaluation we have written the DRE-assisted
versions of the benchmarks manually to closely control
the low level hardware interfaces for effective co-design of
hardware and API. With promising performance and energy
results from the evaluation, it is now time to built higher
level tools. These include encapsulating the view buffer
interactions in libraries similarly to communication libraries,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

W
a
tt
s

Seconds

Image Difference Power
DRAM:19.4 pJ/bit, SRAM:1 pJ/bit, Off-Chip:10.3 pJ/bit, Factor:16

CPU Only CPU+DRE HMC CPU+DRE Narrow

(a) The entire run.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0102 0.0103 0.0104 0.0105 0.0106 0.0107 0.0108 0.0109 0.011

W
a
tt
s

Seconds

Image Difference Power
DRAM:19.4 pJ/bit, SRAM:1 pJ/bit, Off-Chip:10.3 pJ/bit, Factor:16

CPU Only CPU w/DRE DRE HMC DRE Narrow

(b) Enlarged segment of the run.

Figure 5: ImageDiff power profile.

hiding DRE interaction in high level language classes that
use the libraries, and using compiler pragmas to indicate
DRE interaction.

While the focus of this work has been a single CPU
core interacting with a single DRE, a more comprehensive
use case would include multiple DREs, managed by one or
multiple cores. Each DRE would have its own view buffer,
and, as for the single DRE/CPU case, the application would
have to coordinate synchronization and cache consistency
if data structures are shared. Another important aspect is
whether/how the reduction in bandwidth used by the irreg-
ular part of the workload can be exploited by other more
regular applications. While this is certainly plausible, more
work must be done to evaluate the effect on full system
throughput.

6. Conclusions

This work follows a data reduction approach to memory-
integrated computing that leverages simple memory move-
ment hardware to directly address the memory bandwidth
problem. Our implementation is compatible with the Hy-
brid Memory Cube and is applicable to other integrated
memory/logic technologies. The DRE uses a simple API to
perform application-specific transformations on data struc-
tures, enabling cache-friendly buffers to be assembled. Our
benchmarks, which use this API, exemplify irregular, data
intensive access patterns, and demonstrate how to use data
rearrangement hardware effectively.

To assess quantitatively the impact to applications of us-
ing DREs, we have designed and implemented an emulator
with DRE instantiated in programmable hardware blocks.
We have assessed performance and energy of the benchmark
applications over a range of memory parameters. DRE-
assisted performance improvement ranges from 1.24X to
4.15X on irregular, data intensive access patterns. Reduction
in bandwidth usage ranges from 2.46X to 11.69X. Energy
is reduced by up to 2.7X for the current generation HMC
and up to 7.84X for a proposed narrow access organization.
We find that data rearrangement in memory offers signifi-
cant advantage to applications with irregular, data intensive
access patterns.

Acknowledgments

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract No. DE-AC52-07NA27344. We
thank Roger Pearce for the original pagerank benchmark.

References

[1] “Hybrid Memory Cube,” http://www.hybridmemorycube.org/, Hybrid
Memory Cube Consortium, 2011. [Online]. Available: http://www.
hybridmemorycube.org/

[2] M. Gokhale, W. Holmes, and K. Iobst, “Processing in memory: The
Terasys massively parallel PIM array,” IEEE Computer, vol. 28, no. 4,
pp. 23–31, Apr 1995.

[3] J. B. Brockman, S. Thoziyoor, S. K. Kuntz, and P. M. Kogge, “A low
cost, multithreaded processing-in-memory system,” in Workshop on

Memory Performance Issues at ISCA. ACM, 2004, pp. 16–22.

[4] J. Draper, J. T. Barrett, J. Sondeen, S. Mediratta, C. W. Kang, I. Kim,
and G. Daglikoca, “A prototype processing-in-memory (PIM) chip for
the data-intensive architecture (diva) system,” The Journal of VLSI

Signal Processing, vol. 40, pp. 73–84, 2005.

[5] J. Gebis, S. Williams, C. Kozyrakis, and D. Patterson, “VIRAM1: A
mediaoriented vector processor with embedded DRAM,” in Student

Design Contest, DAC, 2004.

[6] L.Zhang, Z.Fang, M.A.Parker, B.K.Mathew, L.Schaelicke, J.B.Carter,
W.C.Hsieh, and S.A.McKee, “The impulse memory controller,” Nov.
2001, pp. 1117–1132.

[7] R. Nair, “Active memory cube,” Dec. 2014,
www.cs.utah.edu/wondp/Nair.pdf.

[8] P. C. Diniz and J. Park, “Data reorganization engines for the next
generation of system-on-a-chip fpgas,” in Proceedings of the 2002

ACM/SIGDA Tenth International Symposium on Field-Programmable

Gate Arrays, ser. FPGA ’02. New York, NY, USA: ACM, 2002, pp.
237–244.

[9] “Arira design,” 2015, www.ariradesign.com.

[10] B. Rooseleer, S. Cosemans, and W. Dehaene, “A 65 nm, 850 mhz, 256
kbit, 4.3 pj/access, ultra low leakage power memory using dynamic
cell stability and a dual swing data link,” in ESSCIRC, Sept 2011,
pp. 519–522.

[11] “HPC challenge randomaccess,” accessed 01/2015,
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/.

[12] J. Meza, J. Li, and O. Mutlu, “A case for small row buffers in non-
volatile main memories,” in ICCD. IEEE, Oct. 2012, pp. 484–485.

