

Delft University of Technology

In-Memory Indexed Caching for Distributed Data Processing

Uta, Alexandru; Ghit, Bogdan ; Dave, Ankur ; Rellermeyer, Jan ; Boncz, Peter

DOI
10.1109/IPDPS53621.2022.00019
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

Citation (APA)
Uta, A., Ghit, B., Dave, A., Rellermeyer, J., & Boncz, P. (2022). In-Memory Indexed Caching for Distributed
Data Processing. In L. O'Conner (Ed.), Proceedings of the 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS) (pp. 104-114). [9820703] IEEE .
https://doi.org/10.1109/IPDPS53621.2022.00019
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/IPDPS53621.2022.00019
https://doi.org/10.1109/IPDPS53621.2022.00019

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

In-Memory Indexed Caching for Distributed Data Processing

Alexandru Uta
LIACS, Leiden University

a.uta@liacs.leidenuniv.nl

Bogdan Ghit
Databricks

bogdan.ghit@databricks.com

Ankur Dave
UC Berkeley

ankurd@eecs.berkeley.edu

Jan Rellermeyer
TU Delft

j.s.rellermeyer@tudelft.nl

Peter Boncz
CWI

p.boncz@cwi.nl

Abstract—Powerful abstractions such as dataframes are only
as efficient as their underlying runtime system. The de-facto
distributed data processing framework, Apache Spark, is poorly
suited for the modern cloud-based data-science workloads due
to its outdated assumptions: static datasets analyzed using
coarse-grained transformations. In this paper, we introduce the
Indexed DataFrame, an in-memory cache that supports a
dataframe abstraction which incorporates indexing capabilities to
support fast lookup and join operations. Moreover, it supports ap-
pends with multi-version concurrency control. We implement the
Indexed DataFrame as a lightweight, standalone library which
can be integrated with minimum effort in existing Spark pro-
grams. We analyze the performance of the Indexed DataFrame
in cluster and cloud deployments with real-world datasets and
benchmarks using both Apache Spark and Databricks Runtime.
In our evaluation, we show that the Indexed DataFrame sig-
nificantly speeds-up query execution when compared to a non-
indexed dataframe, incurring modest memory overhead.

I. INTRODUCTION

The advent of data science has fundamentally changed

our perception of how to gain insights, namely by adding

what Jim Gray called a fourth paradigm of science driven

by data [1]. However, while pioneers like Gray envisioned

relational database systems to become the engines of this new

branch of science [2], the tremendous momentum of data

science has called for new systems to be developed, most

importantly systems that are optimized for processing large

amounts of unstructured or semi-structured data using clusters

of machines. Due to the more agile and iterative nature of

data science, those systems have departed from the idea of

forcing data into a fixed schema for the purpose of giving the

database system the chance to optimize common operations

through query optimization and the use of indexes.

Dataframes [3], [4], for instance, are modern-day data

science abstractions similar to relational tables that enable

users to express computations through SQL-like interfaces [5]

and execute those computations on distributed processing

frameworks such as Dask [6] or Apache Spark [7]. The high-

level interfaces enabled by dataframes and SQL are very

attractive to users as their programs can automatically trigger

query optimization [5] without manual tuning.

Even though dataframes are widely adopted by data sci-

entists, they are only as efficient as their underlying runtime

system can be. In practice, the performance can be under-

whelming because systems like Spark have been designed

around assumptions like the static nature of data and justifies

the reliance on coarse-grained transformations as the main

processing paradigm but are, unfortunately, increasingly ob-

solete [8]. In the last decade new use cases for data science

workloads emerged in which data can be processed through

streaming interfaces [9], [10] and data-lakes [11], [12], which

makes existing data processing pipelines to not necessarily run

on static read-only files. The net result is an inefficient setup

which is bottlenecked by network and IO bandwidth due to

the reliance on shuffle and broadcast operations [13].

Traditionally, data indexing has been a very effective way of

minimizing the network overhead as it can significantly reduce

the amount of data transferred by pre-filtering [14], [15], [16],

[17], [18]. However, supporting indexes on non-static datasets

is difficult since write operations may cause consistency issues

when scheduling tasks. This is particularly the case when using

an external index as it as been suggested by prior work [19].

In this paper, we present a novel approach that combines

the best of the two worlds of relational database technol-

ogy and data science systems. We show how embedding a

write-enabled in-memory indexed cache into structures like

Dataframes unlocks better performance for modern applica-

tions while seamlessly integrating into processing frameworks

like Spark. The result of this effort, the Indexed DataFrame,

enables low-latency joins and point look-ups in interactive

workloads on data that is continuously changing and increas-

ing in size. The Indexed DataFrame extends the space of use

cases for Spark by efficiently supporting applications such as

on-line threat detection and response [20], or real-time social

network monitoring and dashboarding [21].

We show empirically that the Indexed DataFrame can be

seamlessly integrated in Apache Spark frameworks deployed

in clusters, but also in production-ready cloud-based envi-

ronments such as the Databricks Runtime [22]. The main

benefit of the integration with existing frameworks is the

automatic access to the framework’s scheduling and fault-

tolerance mechanisms.

The contributions of this work are:

1) We motivate the need of the Indexed DataFrame by

showing the inefficiencies encountered in Spark when

running typical data science queries (Section II).

2) We present the design and implementation of the novel

Indexed DataFrame, including the API we support to

index Spark dataframes, the integration with Spark’s Cat-

alyst optimizer, and the underlying indexing data structure

(Section III).

3) We evaluate the performance of our reference implemen-

tation of the Indexed DataFrame which is available open-

source1. We demonstrate the scalability of the Indexed

1https://github.com/alexandru-uta/IndexedDF

104

2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPS53621.2022.00019

20
22

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 (I
PD

PS
) |

 9
78

-1
-6

65
4-

81
06

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
S5

36
21

.2
02

2.
00

01
9

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 08:17:28 UTC from IEEE Xplore. Restrictions apply.

(a) Vanilla Spark. (b) Indexed DataFrame.

Fig. 1. Flame-graphs for 5 consecutive runs of a join operation on a Spark
worker: Vanilla Spark (left) and the Indexed DataFrame (right) running
on the Databricks Runtime. The workload is 5 consecutive join operations.
The red part at the right of each subfigure represents JVM load, while the
green parts represent actual Spark computations.

DataFrame, as well as the performance improvement

of the Indexed DataFrame of up to 20X in production

environments using several real-world workloads and

datasets (Section IV).

II. A CASE FOR INDEXED DATAFRAMES

Indexing is a well-known technique employed in traditional

database systems to speed-up the access to the data source.

In this section, we identify the main reasons why indexing is

attractive for modern data science workloads and we explain

why adopting them in data analytics engines such as Spark

is challenging. In social-network graph processing [21] and

cyber-security threat detection [20] many similar operations

are performed continuously, while the datasets are constantly

growing, often through fine-grained (individual records or

small sets of) appends. Data processing frameworks such as

Spark are not designed for offering sufficient performance to

support such application patterns.

These applications make extensive use of point lookups and

join operations. The former relate to quickly finding certain el-

ements in a large data collection. The latter relate to combining

information in multiple columns of two or more dataframes.

Furthermore, both aforementioned applications could benefit

from fine-grained appends: in the graph processing use-case,

new links in social network graphs are formed continuously,

while in real-time threat detection and security monitoring,

network connections are incoming in high-volumes, and need

to be analyzed in interactive time.

Hybrid transaction/analytical processing (HTAP) systems

such as Druid [23], Splice Machine [24], or SnappyData [19]

try to solve such problems by reconciling both OLAP and

OLTP workloads. Designing such capabilities require a re-

thinking of the underlying runtime system such that it effi-

ciently supports both types of workloads, or augmenting it

with another system, leading to maintenance difficulties.

Being designed with immutability in mind, Spark only

supports coarse-grained data transformation and not fine-

grained updates/appends. To support updates, Spark needs to

be integrated with external storage such as Cassandra [25]

or Delta Tables [11] or the Azure implementation of Data

Lakes [12], [26]. For running queries on fresh data, even if
only few records have been added, Spark requires reloading

Listing 1. The Indexed Data Frame API.
1 // creating an index
2 var indexedDF = regularDF.createIndex(colNo)
3 // caching the indexed dataframe
4 var indexedDF = indexedDF.cache()
5 // key lookup returns a dataframe
6 val lookupKey = 1234
7 val resultDataFrame = indexedDF.getRows(lookupKey)
8 // appending all the rows of a regular dataframe
9 val newIndexedDF = indexedDF.appendRows(aRegularDF)

10 // index-powered, efficient join
11 val result = indexedDF.join(regularDF,

indexedDF.col("c1") === regularDF.col("c2"))

the complete dataset from the external data store after a write.

Without supporting fine-grained appends in-place, reloading

data from external data sources is an expensive operation,

which highly limits interactive response times.

Spark is generally inefficient for point lookups and joins.

Without additional data structures or partitioning, point

lookups in Spark are linear in time to the number of entries.

Joins are even more complex due to Spark’s distributed

nature: data is either sorted and then merged (i.e., Sort-

Merge Join [27]), or hash-tables are being built for one of

the dataframes, these are then broadcast and probed locally

against all entries of the other dataframe (i.e., BroadcastHash

Join [28]). In data science operational pipelines, these opera-

tions are not run only once, but continuously. Therefore, per-

forming O(n) operations for lookups, building hash-tables and

shuffling data around for every run is inefficient. Implementing

an index next to the data helps both these operations: point

lookups now become worst-case logarithmic time, while for

joins the index acts as a pre-built hash-table.

To show evidence for this, we performed 5 joins operations

in a sequence on a 7GB Broconn [20] table, joining it with a

small random sampled subset of itself, of less than 10MB. We

ran these join operations on the Databricks Runtime on four

i3.xlarge virtual machine instances. Figure 1 shows the

performance breakdown for these two executions. The regular

Spark implementation for join operations needs to perform

the same networked operations and hash-table building for

each join execution. For the Indexed DataFrame, the index

is computed only once, and its overhead can be amortized

over many executions of the indexed operations.

We have argued for and gave empirical evidence that

supports the addition of indexes in Spark. In the following

sections, we provide the in-depth design and performance

evaluation of the Indexed DataFrame.

III. INDEXED DATAFRAME DESIGN

We propose the Indexed DataFrame, a data abstraction

that we can use to manipulate cached indexed datasets. We

present the API and the main design and implementation

details. The Indexed DataFrame is built as an extension library

which integrates with the Dataframe API supported by Spark

SQL [5], and can be added to existing Spark programs.

A. Programming Interface

To address the requirements of a wide spectrum of

large-scale data science applications, we designed the In-

105

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 08:17:28 UTC from IEEE Xplore. Restrictions apply.

Physical Execution
 Layer

(1) Logical Plan

Catalyst Tree
Node

Indexed Catalyst
Tree Node

extends

(2) Physical Plan

Indexed Execution

Indexed Operator

CreateIndex,
Equality filter,

Equi-join,

Regular Execution

Regular Operator extends

RDD[Rows]

Partition k

transformToRowRDD Indexed Batch RDD

Partition n

Text

Regular queries

Regular Queries Indexed QueriesAnalysis
Layer

Logical
Optimization

Layer

Physical
Planning

Layer

Fig. 2. Indexed DataFrame logical flow. Users write SQL queries or use
the Dataframe API. Catalyst rules determine whether the queries are regular
or indexed. If regular, they follow the regular execution. If indexed, special
rules, and optimization strategies are applied such that indexed execution is
triggered. An Indexed Batch RDD can always fall back to a regular Spark
Row RDD to trigger regular execution on top of the Indexed DataFrame.

dexed DataFrame to support the following: create index,

cache index, point lookups, append rows, and

indexed joins. The corresponding Scala API is presented

in Listing 1. In our current implementation the index supports

any type of column, but for good performance, we recommend

using only primitive column types (e.g., (un)signed 32/64-bit

integers, floating point numbers).

As we want to store the Indexed DataFrame in-memory

on the Spark executors, instantiating the index should be

immediately followed by a caching operation. Furthermore,

the append rows operation can be performed both in a fine-

grained and a batch-oriented mode by organizing the rows we

need to append as a regular Spark Dataframe. In this way,

users can append with low latency small amounts of rows,

or batch multiple updates in a larger Dataframe. When users

need to lookup the rows associated with a certain key, our

library returns a (smaller) Dataframe containing the required

rows. In the case of join operations, if any of the sides of

the relation are indexed, our implementation of the Indexed
DataFrame triggers an indexed join operation. The result is

a regular Spark dataframe. Evidently, in case of the indexed
join, the indexed relation is always the build side (as it is

actually pre-built due to the index), while the probe side is

the non-indexed relation.

B. Integration with Catalyst

Figure 2 shows the architecture of the Indexed
DataFrame and its integration with the Catalyst optimizer

in Spark. To add indexed operations to the regular Spark SQL

and the Dataframe API without modifying the Spark source

code we employ Scala implicit conversions. In this way we

can add our methods to the Dataframe class, while leveraging

the full capabilities of the Catalyst [5] query optimizer. Our

library includes optimization rules that make regular Spark

SQL queries aware of our custom indexed operations.

In Spark SQL, queries have abstract representations called

query plans. These are converted through a sequence of

transformations into optimized plans that finally execute on

the cluster. Catalyst translates queries into logical plans that

provide high-level representations of each operator without

defining how to perform the computation. Optimization rules

transform the logical plan into a physical plan with specific

instructions on how to execute the query.

Through our library, we use the extensibility of Catalyst

to add index-aware optimization rules. These translate the

indexed logical operators into physical operators. These rules

ensure that the appropriate look-up functions are called for

each indexed or basic logical operator and ensure that the

Indexed DataFrame operations are always triggered when

executing queries on indexed data. Similarly, for queries on

non-indexed dataframes we fall back to the default Spark

behavior.

C. The Indexed Batch RDD

Spark datasets are typically partitioned across multiple

nodes so that the framework can divide jobs into multiple

tasks that can be executed in parallel on multiple executors.

The Dataframe API can perform relational operations on

Spark’s built-in distributed collections, i.e., the RDDs [7].

The Indexed DataFrame operates in a similar way by

partitioning data across multiple executors, but requires a

custom RDD implementation, the Indexed Batch RDD, to

make use of indexed operations.

Figure 3 depicts the design of the Indexed Batch RDD.

Our implementation stores data in-memory. This decision

was made to optimize for performance but without loss of

generality; the representation could easily extend to store data

out-of-core, for example in SSD or NVMe devices for different

tradeoffs. Each partition is composed of three data structures:

(1) a cTrie [29], which represents the index, (2) a set of

row batches2, which store the tabular data, and (3) a set of

backward pointers, which are used to crawl the partition for

rows that are indexed on the same key.

Design. The cTrie is a concurrent hash-trie, which can

employ thread-safe, lock-free inserts, deletes, and lookups.

Furthermore, the cTrie can perform lock-free, atomic snap-

shotting in constant time. The cTrie snapshotting is similar to a

persistent data structure [30]. Because a new snapshot version

shares most of the state with the parent object, we only need

to store the actual modifications resulted from appends. The

cTrie requires minimum overhead when creating new Indexed

DataFrames by taking snapshots on writes.

Non-unique Keys. The cTrie stores a pointer to the latest

appended row associated with a key. If there are multiple rows

associated with a key, the backward pointer data structure

consists of linked lists, one per unique key. This data structure

2In our prototype we store data in row-wise format in the Indexed Batch
RDD. However, this could seamlessly be changed to columnar formats. The
decision is based on the type of workload the user needs to support.

106

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 08:17:28 UTC from IEEE Xplore. Restrictions apply.

...

Zipcode Name Age

1234 Alice 29

4321 Bob 20

1234 John 55

1234 Mary 42

4321 Laura 31

1000 Jim 61

4321 Chris 18

1000 Anna 25

cTrie Index Row Batches Backward
Pointers

Fig. 3. Indexed DataFrame internal design: (1) cTrie for storing pointers to
last row containing the key; (2) collection of row batches storing the data; (3)
backward pointers for rows with equal keys.

can be used to traverse the list of rows associated with the key.

The row batches are collections of binary, unsafe arrays (e.g.,

of 4MB in size), each storing a number of rows determined

by the row and batch sizes. The pointers stored both in the

cTrie and in the backward pointer data structure are packed in

dense 64-bit integers, each containing the row batch number,

an offset within a row batch, and the size of the previous row

indexed on the same key.

Maximum Size. In our experiments we use indexed par-

titions with rows that may have up to 1 KB and 231 row

batches, each of which may have up to 4 MB. Thus, our

setup enables 4×231 MB data per core, sufficient for modern

server configurations. Transformations within a partition are

sequentially executed on a single core. As a rule-of-thumb,

Spark deployments should be configured with 1 to 4 partitions

per core3. Both the batch and row sizes are configurable.

Scheduling Physical Operators. To implement the indexed
operations efficiently in Spark, we employ a hash partitioning
scheme on the indexed key and shuffle operations to transfer

the data to their indexed partitions. This section presents the

main Indexed DataFrame operations.

Index Creation, Append. The operation of the Indexed

DataFrame on a single partition is similar both for index

creation and for appends. The Indexed DataFrame is hash
partitioned on the indexed column. This ensures a better

load balancing when the key ranges are not known a-priori.

When an index is created on a regular Dataframe, its rows

are shuffled based on the hash partitioning scheme to their

respective Indexed DataFrame partitions. First, each row is

inserted in the row batch responsible for its key. If a row with

a similar key was already inserted in the partition, the cTrie

entry for the key is updated to point to the newly added row,

while the backward pointer of the newly added row is created

to point to the previous row.

Lookup. A lookup operation is scheduled on the Spark

partition responsible for holding that key based on the hash

partitioning scheme. The lookup is then performed locally, and

the set of resulting rows is returned to the user as a regular

Dataframe. A local lookup consists of a search in the cTrie,

3https://spark.apache.org/docs/latest/tuning.html

Listing 2. Indexed DataFrame divergence.
1 // dataframes A and B share the same parent
2 indexedDF_A = indexedDF.append(appendDF1)
3 indexedDF_B = indexedDF.append(appendDF2)
4 // divergent and materialized in reverse order
5 indexedDF_B.collect()
6 indexedDF_A.collect()

followed by a traversal of the backward pointers if multiple

rows share the same key.

Indexed Join. To join a Indexed DataFrame and a (regular)

Dataframe, the rows of the latter are shuffled according to

the hash partitioning scheme of the former. As the build side

is already created in the form of the index, the probes are

made locally from the shuffled rows. If the Dataframe size is

small enough to be broadcasted efficiently, we fall back to a

broadcast-based join instead of a shuffle.

D. Fault-tolerance and Consistency

Spark fault-tolerance is achieved via task recomputation

based on its lineage graph. To achieve fault-tolerance for the

Indexed DataFrame, we use the recomputation mecha-

nism provided by Spark in the following way. All Indexed

DataFrame operations, except append, are able to be replayed

using the lineage graph without any additional considerations.

For the append operation to be re-generated properly, we

rely, similarly to Spark Structured Streaming [10], on either

a replayable data source, such as Apache Kafka [9] or a

persistent (distributed) file system, such as HDFS [31].

Maintaining consistency when supporting data appends is

non-trivial. We distinguish special use-cases: supporting strag-

gler nodes, bad scheduler decisions, or even failed nodes. In

either of these cases, a Spark task can be scheduled on a

node that does not have locally the required indexed partition.

Spark is optimized for achieving data locality, so every task

is prioritized to run on a node that contains its input data. In

case locality cannot be achieved within a configurable timeout,

tasks can be scheduled on remote nodes. In such a case, in

practice we end up with multiple copies of the same data. If

this piece of data is obtained through multiple transformations,

these are replayed on the new node.

In the case of Indexed DataFrame, this mechanism works

similarly. This means that all former operations must be

replayed locally, which is a safe operation but results in

two identical copies of the same data. While in regular

Spark operations this is a non-issue, since data is static, a

new append operation means that the two partitions are not

identical anymore. Hence, the older partition cannot be used

for future tasks, because it is stale. To properly handle these

situations, on each append on an Indexed DataFrame, the

underlying custom RDD data structure (i.e., Indexed Batch

RDD) increments a version number. The version number aids

the scheduler not to send tasks to stale partitions, ensuring

consistent operation.

107

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 08:17:28 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE HARDWARE CONFIGURATION USED IN OUR EXPERIMENTS.

Hardware Type #Cores Memory Network Disk

Private
Cluster

Intel
E5-2630-v3

16 64 GB
FDR
InfiniBand

SSD

Amazon EC2
i3.xlarge &
i3.8xlarge

4 & 16 30 & 122 GB 10 Gbps SSD

TABLE II
THE REAL-WORLD AND SYNTHETIC DATASETS AND THE QUERIES WE USE

TO EVALUATE THE PERFORMANCE OF THE INDEXED DATAFRAME.

Dataset Experiment Query Query Desc. Index
Column

SNB (SF-1000) §IV-B,IV-C,IV-D Join
join edges with vertices ON
edge source

integer

SNB (SF-300) §IV-E SQ1-SQ7 online [32] various

US Flights
(120 GB)

§IV-E Q1 join flights with planes on tailNum string
§IV-E Q2 select * where tailNum = x string

§IV-E Q3
join flights with selected flights table
(flightNum <200)

integer

§IV-E Q4
join flights with selected flights table
(flightNum <400)

integer

§IV-E Q5 point query (10 matches) integer
§IV-E Q6 point query (100 matches) integer
§IV-E Q7 point query (1000 matches) integer

TPC-DS
(SF-1,10,100,1000)

§IV-E Join
store sales JOIN date dim ON
ss sold date sk

integer

E. Divergence and Multi-Versioning

Because the append operation returns a new version of

the Indexed DataFrame, we can reach the situation depicted

in Listing 2. Here, two successive appends on a parent data

frame create two divergent children dataframes. However, the

append is only triggered when the newly created Indexed

DataFrame is materialized. Theoretically, we could make the

parent dataframe read-only once an append is performed, to

guard against such situations. In practice, in case the children

dataframes are materialized in reverse order, it is not trivial to

decide which append should be permitted.

To permit both appends, a pragmatic solution would be

to employ a copy-on-write mechanism, such that divergent

dataframes could co-exist. However, this incurs large perfor-

mance penalties (i.e., full data copies) and storage overheads

(i.e., keeping multiple copies of the same data). An efficient

solution is to employ a persistent data structure scheme, where

the children dataframes share the parent data and only store

the deltas. This is achievable due to the cTrie index capability:

whenever a snapshot is triggered, the newly created copy

shares the initial state with no memory overhead and only

stores differences to the previous version. In case of the row

batches, this is achieved with a similar scheme: we use a

secondary cTrie that stores pointers to the row batches of

the Indexed DataFrame partitions. In this way, the Indexed

DataFrame supports divergent appends with minimum storage
and performance overheads.

F. Implementation

The Indexed DataFrame was implemented in Scala and Java

and is available as a standalone open-source sbt project. Users

can bundle the generated jar binary in their applications and

simply have Spark make use of the Catalyst optimizations and

strategies that trigger indexed operations. After a call to cre-
ateIndex is made (i.e., the only modification a programmer has

to make to a Spark program to use the Indexed DataFrame), all

TABLE III
THE SIZE OF EACH PROBE AND BUILD RELATION IN DIFFERENT JOIN

OPERATIONS USED IN OUR EXPERIMENTS.

Join Scale Probe Side
(rows)

Indexed or Build
Side (rows)

Result Size
(rows)

S 10K 1B 1.5M

M 100K 1B 14M

L 1M 1B 110M

XL 10M 1B 1B

1E-16C 2E-8C 4E-4C 2E-8C
NUMA

4E-4C
NUMA

Number of Executors - Number of Cores per Executor

0

2

4

6

8

10

Ti
m

e
[s

]

Fig. 4. Deployment of the Indexed DataFrame on a dual-socket NUMA
machine. Number of Spark executors vs. cores per executor vs. pinning
executors to NUMA domains. Data is presented as IQR boxplots, with
whiskers representing minimum and maximum, while blue dot represents the
mean performance.

the functionality we implemented is triggered automatically if

the optimizer rules we provided determine that the index can

be used. These include Spark SQL code and dataframe code.

The Indexed DataFrame allocates memory for the rows it

stores in unsafe off-heap memory that is not managed by

the JVM, thus not triggering inefficient GC pauses. The only

JVM-managed memory of the Indexed DataFrame is the cTrie,

which is a scala-native implementation. However, as we show

in Section IV, this is sufficiently effective in maintaining an

index that achieves interactive query time.

IV. INDEXED DATAFRAME EVALUATION

We take an experimental approach to evaluate performance

aspects of the Indexed DataFrame. To this end, we seek to

answer the following questions:

Q1 What (environment) parameters and variables is the In-
dexed DataFrame sensitive to?

Q2 How does the Indexed DataFrame scale with the number
of cluster machines, numbers of cores, and problem size?

Q3 How does the Indexed DataFrame perform on typical Spark
SQL operations (e.g., filter, projection, aggregation), and
what are its overheads?

Q4 How does the Indexed DataFrame perform on real-world
applications and how does it integrate into production
environments?

A. Experimental Setup

We evaluate the Indexed DataFrame through experiments on

both a private non-virtualized cluster and a production system

deployed on a public cloud. We present the cluster and cloud

configurations and the SQL benchmarks that we use to assess

the performance of the Indexed DataFrame.

108

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 08:17:28 UTC from IEEE Xplore. Restrictions apply.

64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB
Row Batch Size

0.50

0.75

1.00
N

or
m

al
iz

ed
Pe

rfo
rm

an
ce

write
read

Fig. 5. Read and write performance for the Indexed DataFrame with varying
row batch sizes. Results are normalized by the performance of a deployment
where the batch size is 4KB (OS page size). Vertical axis does not start at 0
to improve visibility.

Cluster Setup. To run our experiments we have deployed

Spark 2.3.0 with the Indexed DataFrame on a private non-

virtualized cluster with the datasets stored in an HDFS instance

with version 2.7.0. We co-located the HDFS instance with

Spark on the same machines. Furthermore, we incorporated

the Indexed DataFrame with clusters provisioned from the

Amazon EC2 public cloud with the Databricks Runtime [22]

system with the datasets stored on S3. For each experiment, we

report averages of performance metrics over many runs, adher-

ing to modern standards of performance reproducibility [13],

[33]. The Indexed DataFrame is an in-memory table, thus

our performance baseline is the default in-memory (columnar)

caching mechanism provided by Spark.

Workloads and Datasets. We use two types of queries

in our experiments: lookups and joins. We run these against

synthetic and real-world datasets which we summarize in

Table II. The Social Network Benchmark (SNB) [21] is de-

signed to mimic typical social network structure and behavior.

This benchmark was developed for evaluating data analytics

applications on updatable graphs. The benchmark generates a

social network with power-law structure, similar to Facebook.

The benchmark also includes a number of queries to explore

the graph. The dataset consists of edge and vertex tables

(jointly over 33 GB), each of which stores various attributes

of users in the network.

TPC-DS [34] is the de-facto dataset for assessing the per-

formance of large-scale analytics frameworks. We use various

scale factors from 1 to 1000 to assess the performance of

indexed joins.

Finally, we use a real-world dataset released by the US

Department of Transportation which tracks the performance

of domestic flights operated by large air carriers [35]. We use

two tables from this dataset, a flights table of 120 GB and

a planes table of 420 KB. The flights table records the

details of each flight that is identified by a unique number

(flightNum) including the plane identifier, departure and

arrival dates, delays, origin, and destination.

B. Sensitivity Analysis

We show an investigation on what parameters make a dif-

ference when deploying and running the Indexed DataFrame.

Modern Servers. Memory latency and bandwidth can be

a significant bottleneck in large-scale data processing, es-

pecially when the execution platform is a complex NUMA

architecture. Spark is JVM-based and thus agnostic to the

underlying physical hardware of the machines. To deploy a

(a)

Fig. 6. The scalability properties of the Indexed DataFrame: horizontal
scalability (top) and vertical scalability (bottom). The points are average
runtimes over 10 repetitions and the whiskers standard deviations.

S M L XL
Join Size

0
500

1000
1500
2000
2500
3000

Ti
m

e
[m

s] IndexedDF
Spark

Fig. 7. The performance of the Indexed DataFrame versus vanilla Spark for
different sizes of the join probe relation (see Table III). The bars represent
the average runtimes over 10 repetitions.

Spark cluster, administrators need to decide how to slice the

resources of the worker machines between multiple executors.

Standard deployments are usually based on rules-of-thumb

such as one executor per machine or n cores per executor.

Optimal allocation is not investigated in prior work focused on

performance [36], [37]. Recent research [38], [39] conducted

on IBM Power8 clusters shows evidence that Spark is indeed

sensitive to NUMA allocations.

Impact of NUMA. We assess the impact of NUMA ma-

chines on the performance of the Indexed DataFrame.

We use numactl pinning to control on which socket the

Spark executor can allocate threads and memory. Figure 4

summarizes our findings. We plot five combinations of ex-

ecutors and cores per executor, and NUMA pinning. For this

experiment we ran a join operation between the 1B edge table

of SNB SF-1000 and a 10M subset of it (XL join size in

Table III). More fine-grained executors perform better, and

NUMA pinning is able to further reduce the running time.

In all subsequent experiments (with the exception of the

ones performed in the cloud) we use the best performing

configuration from Figure 4. On dual-socket machines, each

of which having 8 cores per socket, we start 4 executors per

machine – two per NUMA domain. Each executor is allocated

4 cores.

Row Batch Size. Another important low-level parameter for

the Indexed DataFrame is the row batch size (i.e., the granu-

larity of the buffers used to store data for each partition of the

Indexed DataFrame). Larger allocations determine less batches

per partition. We performed a similar experiment to the one

described above to perform reads (i.e., joins) and measured

append performance to determine write performance. Figure 5

summarizes the findings of the experiment. We normalize the

109

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 08:17:28 UTC from IEEE Xplore. Restrictions apply.

Join Filter Equality
Filter

Aggre-
gation

Projection Scan

Query

0
500

1000
1500
2000
2500
3000

Ti
m

e
[m

s] IndexedDF
Spark

Fig. 8. The performance of the Indexed DataFrame versus vanilla Spark
for different SQL operators. The bars depict the average runtimes over 10
repetitions.

performance for both reads and writes by the performance

achieved using 4 KB batches, the default OS page size. We

identify a sweet-spot for both read and write performance at

batch sizes of 4 MB. We experimented also with larger batch

sizes, of up to 128 MB, but these perform exceptionally poorly

for writes and are excluded from the figure.

C. Scalability Analysis

Spark is designed to scale-out on compute clusters with

many machines. To reduce the network communication [40]

Spark employs delay scheduling, a technique that aims at co-

locating the tasks with their data. Incorporating indexing in

Spark may, however, impact the scalability of the applications.

We evaluate the scalability properties of join operations on the

Indexed DataFrame using the SNB benchmark by varying both

the cluster size and the input data size.

Horizontal and Vertical. To showcase the scalability prop-

erties of the Indexed DataFrame, we use a join between

the 1B edge table of SNB SF-1000 and a 10M subset of

it (XL join size in Table III). We show that the Indexed
DataFrame scales well both horizontally and vertically for

such join queries in which our indexing structure requires a

non-trivial amount of shuffle operations.

Figure 6a depicts the horizontal scalability behavior of

the Indexed DataFrame. We increase the number of worker

machines in our Spark cluster from 2 to 32 and we keep

the input dataset size constant. We observe that the speed-

up is sub-linear because increasing the cluster size results in

more network communication. However, the same behavior

applies for regular Spark operation. Furthermore, in Figure 6b

we show how our Indexed DataFrame scales vertically. In this

experiment, we setup a cluster with 4 worker machines and

we vary the number of cores used by the Spark executors

to run tasks from 1 to 16. For simplicity, in this experiment

we configured a single executor per worker machine. We find

that the Indexed DataFrame has close to linear scaling with

the number of cores per executor.

Dataset Size. We compare the operation of a hash-join in

Spark with our Indexed DataFrame. When two tables are hash-

joined, Spark first creates a hash-table on the smaller side of

the join which is called the build relation. When this relation is

small (less than 10 MB), Spark broadcasts it across all worker

machines in the cluster to co-locate it with the opposite table of

the join – the probe relation. For each row in the probe relation,

Spark finds corresponding rows from the build relation by

lookups in the hash table.

0 100 200 300 400 500 600
Read Performance [ms]

0
1K

10K
100K

1M

W
rit

e
S

iz
e

[ro
w

s]

Fig. 9. Read performance latency increase when writing various amounts
of rows at a time. Experiments are performed 200 times and results shown
represent the mean.

0 1 2 3 4 5 6 7
Write Performance [s]

1K

10K

100K

1M

W
rit

e
S

iz
e

[ro
w

s]

Write
Shuffle

Fig. 10. Write performance throughput of the Indexed DataFrame for various
amounts of rows written at a time. Experiments are performed 200 times and
the performance results are cumulated. This result applies to both appendRows
and createIndex since they are backed by the same writing mechanism.

The operation of the Indexed DataFrame is in contrast with

the execution of a typical Spark hash-join. The index is always

pre-built on the side of the join that remains in place, i.e., the

larger table (the build side). The index is then used for locally

probing the other table, whose partitions are shuffled over the

network to co-locate them with the index. When the probing

relation increases, the networked communication is prone to

become a bottleneck. In Table III we depict the probe relation

sizes used in our join queries. We find that irrespective the

probe size, our Indexed DataFrame is faster than Spark with

speed-ups in the range of 3 and 8 (Figure 7).

D. Indexed DataFrame Microbenchmarks

The Spark dataframe and SQL APIs contain a plethora

of operations that programmers can employ to manipulate

large-scale datasets. We want to ensure that the Indexed

DataFrame delivers similar performance with vanilla Spark on

such operations as well as negligible storage overhead.

Microbenchmarks. We compare the performance of the

Indexed DataFrame versus vanilla Spark on a selection of SQL

operators including join, filter, projection, aggregation, and

scan using an in-memory input dataframe that incorporates

the large 1 B rows edge table of the SNB benchmark (see

Table III). Since the join and filtering operators naturally use

the index their performance is significantly improved by the

Indexed DataFrame as we show in Figure 8. We observe that

the projection and non-equality filters are the only operators

that suffer slowdowns because of our Indexed DataFrame. This

is because our in-memory representation of the data is based

on a row structure which is less efficient than the columnar

format adopted by the Spark cache for projections or analyzing

single columns.

Append & Index Creation. Writing data into the Indexed

DataFrame has two components: the latency it adds to read

operations (due to the extra row materialization and extra

shuffles when actually writing the data), and the throughput
of effectively appending the data. To measure these, we

performed two experiments. The first entails running 200 S

110

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 08:17:28 UTC from IEEE Xplore. Restrictions apply.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Partition ID

0

1

2

3
M

em
or

y
O

ve
rh

ea
d

[%
]

Fig. 11. The memory overhead of the Indexed DataFrame for each partition
of a 30 GB table.

join operations (see Table III) in a sequence. Every 5 join

operations we also issue an append. This models real-world

behavior of users who need to query data sources that get

written into regularly. The read performance is influenced by

the size of the append. Figure 9 shows the results we achieved.

The read performance is significantly influenced by the write

size. Writes of at most 100K rows slow down reads by a factor

of 3X, but larger writes double the latency to a factor of 6X.

However, all this is still acceptable compared to regular Spark

operation, where all join sizes take longer than 1 second (see

Figure 7), without tolerating appends.

To measure effective writing throughput we performed 200

appends of various row sizes. Figure 10 presents the results.

It is immediate that most of the write time is dominated by

shuffles. This is expected, because the rows have to be sent

to the Indexed DataFrame partitions that are responsible for

storing them, as the data is hash-partitioned. Spark is known

to not be efficient for networked operations [41]. All possible

write implementations on Spark would suffer the same shuffle

penalty. It is important to notice that the results are similar

for both append and createIndex, as the two APIs perform

the same internal operations. Note that the results presented

in Figure 10 are cumulated performance results over 200

executions. In the topmost experiment we inserted 200 M rows

in batches of 1 M rows, which took just below 7 seconds.

Memory Overhead. Storing a tree-based index next to the

actual data may result in memory overhead. To assess how

large this overhead is we investigated in detail our previous

experiment. When creating the index, the 30 GB SNB edge

table is split into partitions, each Spark node storing a subset

of those partitions. In our design, each partition stores its

own local index in the Indexed Batch RDD, as described

in Section III. We measure the overhead of the cTrie index

for each of these partitions. To this end, we instrument the

Indexed DataFrame code with the JAMM memory meter [42].

Figure 11 plots the memory overhead for the 64 partitions

of the SNB edge table. We find that the memory overhead

for the Indexed DataFrame is consistently lower than 2%
and therefore negligible in comparison with the performance

benefits achieved by indexing.

Fault-Tolerance. In the Spark ecosystem, fault-tolerance

is achieved via re-computation based on the lineage graph.

Whenever a node is lost, all its data has to be re-created

by re-running the operations that led to its creation. For

the Indexed DataFrame this mechanism is no different,

however, it entails more work (Section III-D). If an indexed

partition is lost, then the index has to be re-created, and if

0 10 20 30 40 50 60 70 80 90 100
Query Iteration

0

100

200

300

400

Ti
m

e
[m

s]

13721

Executor Crash; Rebuilding Indexed Partitions

mean w/ failure
mean w/o failure

Fig. 12. Indexed DataFrame fault-tolerance overhead when one Spark
executor fails during the execution of 200 join queries. The horizontal axis
ends at 100 for visibility.

SQ1 SQ2 SQ3 SQ4 SQ5 SQ6 SQ7
Query

0

5000

10000

Ti
m

e
[m

s] IndexedDF Spark

Fig. 13. The improvement of the SNB queries on Indexed DataFrame
versus Spark on an input dataset of SF 300.

there were any appends on that particular partition, these have

to be replayed as well. This process adds an overhead, but

we show that once this overhead is paid for, the Indexed

DataFrame performance falls back to normal. In a cluster of

8 nodes, we performed 200 S join operations (see Table III)

and during the execution time we manually killed a Spark

executor which was holding 4 indexed partitions. Figure 12

shows the results. We notice that the failure took place during

the execution of the 20th query. Re-creating the index extends

the execution time of this query to over 13s, but subsequent

queries operate at regular speed and the average execution

time is only increased marginally. In conclusion, the overhead

incurred by re-creating the index can be tolerated in typical

environments where failures occur but are infrequent.

E. Indexed DataFrame in the Real-World

In this section, we analyze the performance of the Indexed

DataFrame using real-world workloads and datasets, as well

as production deployments. We analyze the performance of a

set of queries selected from the real-world SNB benchmark as

well as the state-of-the-art TPC-DS and US Flights workloads.

Social-Network Benchmark. We run the complete set of

short read SNB queries on an input dataset of scale factor

300. The results are presented in Figure 13. We observe that

the Indexed DataFrame speeds up all queries, with the

exception of SQ5 and SQ6, which are unable to use the index

properly. This behavior is similar to the issue identified in

Subsection IV-D in which we found that a columnar data

representation performs better than a row-based representation

for projections. The access patterns of these two queries trigger

the inefficiencies of the row-based representation. However,

data representation is orthogonal to the design of the Indexed

DataFrame and column-based solutions may affect the scan

performance because they are likely to produce more cache

misses when materializing all rows [43].

111

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 08:17:28 UTC from IEEE Xplore. Restrictions apply.

1 10 100 1000
TPC-DS Scale Factor

0
5

10
15
20
25

Ti
m

e
[s

]
IndexedDF
Databricks Runtime

0
1
2
3
4
5

S
pe

ed
up

Fig. 14. Performance of the Indexed DataFrame relative to Databricks Run-
time using TPC-DS dataset and a join query running on 16 i3.8xlarge Amazon
EC2. Bars represent average results computed over 10 runs. Secondary vertical
axis represents speedup.

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Query

0

5

10

15

20

S
pe

ed
up

Fig. 15. Speedup of the Indexed DataFrame compared to the Databricks
Runtime on 7 queries running on the US Flights dataset. Bars represent
average speedup over 10 runs.

Integration in Production. The Indexed DataFrame is

implemented as a lightweight library, which can be included

in any existing Spark programs, with minimal modifications

that basically require attaching the library to the Spark cluster

and invoking a simple API to create the index. In this way, we

integrated our library in the Databricks Runtime to speed-up

the performance of join and look-up queries. In this benchmark

we use the BroadcastHashJoin implementation, which is faster

than the notoriously slow SortMerge Join.

TPC-DS. Figure 14 shows our results with TPC-DS datasets

of increasing size when running a join query (see Table II)

on an Amazon EC2 cluster of 16 i3.8xlarge running the

Databricks Runtime. We observe that by having the Indexed

DataFrame created upfront we are able to significantly improve

the performance by large margins. We tested several orders of

magnitude of the TPC-DS scale factor, from 1 to 1000. The

trend here is clear: the larger the dataset, the larger the gap

between the indexed version of the join compared to its non-

indexed version. This is an effect of the large amount of data

that can be filtered out by using the index: the larger the dataset

size, the more data is filtered out by the index.

US Flights. Figure 15 shows our results on the Databricks

Runtime when executing several queries analyzing the US

Flights dataset (see Table II). We compare the performance of

the Indexed DataFrame operations on both string and integer

columns. Our main findings are as follows. As expected,

Indexed DataFrame clearly outperforms the stock Databricks

Runtime, by factors of 5-20X. The largest speedups are

achieved for integer-key based filters (Q5–Q7). The string-

based filter (Q2) is sped up only up to 5X because non-

primitive type data incurs additional overhead to be used as a

key. Strings need to be hashed into an 32-bit number which is

then used as a key in the cTrie. For similar reasons, integer-key

joins are sped up more than the string-key joins.

V. DISCUSSION AND RELATED WORK

Indexing has been successfully and extensively used in

database design for decades to accelerate many types of

database operations, including joins [44], [45], [46]. These

techniques were not only applicable in single-machine setups,

but also in distributed databases [14], [15], [16], in both

OLTP [17] and OLAP [18] systems. These database systems

that support indexing have in common an ability to handle fine-

grained writes, sometimes with strong transaction semantics.

Going forward, in the big data era the major technol-

ogy switch was toward MapReduce-like systems [47], which

are designed for achieving performance through scaling out

and simplicity. In this category, we can include not only

Hadoop [48], but also Spark [7], DryadLinq [49], or Na-

iad [50], which extend the simplistic MapReduce model to

more complex dataflows. Such big data processing systems

are thought to be complementary to parallel databases: Stone-

braker et al. [51] consider the former to excel at complex

analytics and ETL, while the latter at efficiently query-ing

large datasets. One of the inefficiencies of MapReduce-like

systems come from the fact that they are not designed to

support indexing [52].

Significant research effort has been invested into adding in-

dexes to improve the performance of data processing systems.

Hadoop has been updated with adaptive HDFS indexes [53],

indexes at split level [54]. Moreover, indexes have been used

to speed up Hive queries [55] running on top of Hadoop.

Indexes have also been built in Spark, for the purpose of

quickly solving geospatial queries [56], [57], [58]. However,

the downside of all such indexing techniques on current data

processing systems is that they do not support any kind of fine-

grained updates, either in place or appends, thus not being able

to offer interactive performance for applications that do need

updates.

SnappyData [59] supports finer-grained updates and indexes

by integrating Spark with an external key-value store–Apache

GemFire. Managing an external system next to Spark is an

overhead that not many organizations can afford. Furthermore,

existing Spark programs need be significantly modified to

support SnappyData. In our experiments, we were unable to

get consistent results from SnappyData when trying to run

the benchmarks used in our evaluation. Koalas [4] is another

indexed processing system that uses Spark as a backend. Due

to this design, its performance is bottlenecked by the behavior

of default Spark when it comes to fine-granuar updates as

exhibited by our benchmarks. In our experiments, Koalas was

orders of magnitude slower for both indexed joins and point

queries. Dask is a python-based distributed framework that

offers Pandas-like functionality. However, language overheads

like global interpreter locks caused Dask in our experiments

to be orders of magnitude slower than the Indexed DataFrame.

Another kind of large-scale storage systems for big data

processing that provide indexes are the so-called cloud data

lakes, such as Delta Lake [60] and Helios [12] or Hyper-

space [26]. They offer a tightly-coupled integration between

112

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 08:17:28 UTC from IEEE Xplore. Restrictions apply.

analytics engines and large-scale cloud (object) storage sys-

tems. In contrast to these systems, which offer secondary

storage indexing, our work could be seen as an in-memory

indexed cache, which is easy to integrate even with systems

such as Delta Lake or Helios.

The Timely Dataflow system [61] based on the Naiad [50]

design promises to solve most sources of inefficiencies in

current data processing systems. It is unclear at the moment

whether such systems would even benefit from indexes, but

their current performance promises to deliver beyond the

inefficiencies of current data processing systems. However,

their application in practice lags behind the popularity of

Spark. Finally, using machine learning techniques to learn and

optimize indexes [62] is a promising research direction, pro-

vided it can build upon robust indexing mechanisms. Indexed

DataFrames could be such a mechanism for AI-driven indexes

VI. CONCLUSION

In this paper we argue for bridging the divide between

traditional relational database systems and data analytics plat-

forms like Spark to get the best of both worlds. Concretely,

we showed that adding indexing to the main underlying

abstractions of Spark can greatly improve performance in

many cases. The presented Indexed DataFrame brings indexing

to the Spark data processing engine, as well as fine-grained

appends with minimum performance and memory overheads,

and large-scale gains for workloads that make use of the index,

such as joins or point lookups. The Indexed DataFrame is

designed as a lightweight library that can be included in any

Spark program, from any Spark distribution–be it Apache, or

Databricks Runtime–to achieve a boost in performance for

workloads that make use of indexes, of up to 20X.

ACKNOWLEDGEMENTS

Part of this work was conducted while the first author was

an intern at Databricks. We would like to thank Herman van

Hovell, Adrian Ionescu for their suggestions on the implemen-

tation of the project, as well as Matei Zaharia for his valuable

comments on the manuscript of the paper. The work in this

article was in part supported by The Dutch National Science

Foundation NWO Veni grant VI.202.195.

REFERENCES

[1] A. J. Hey, S. Tansley, K. M. Tolle et al., The fourth paradigm: data-
intensive scientific discovery. Microsoft Research, 2009, vol. 1.

[2] T. Barclay, J. Gray, and D. Slutz, “Microsoft terraserver: a spatial data
warehouse,” in Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, 2000, pp. 307–318.

[3] W. McKinney, Python for data analysis: Data wrangling with Pandas,
NumPy, and IPython. ” O’Reilly Media, Inc.”, 2012.

[4] “Koalas: Pandas API on Apache Spark,” https://koalas.readthedocs.io/
en/latest/.

[5] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark
SQL: relational data processing in spark,” in SIGMOD, 2015.

[6] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in Proceedings of the 14th python in science confer-
ence, no. 130-136. Citeseer, 2015.

[7] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in NSDI,
2012.

[8] M. Vuppalapati, J. Miron, R. Agarwal, D. Truong, A. Motivala, and
T. Cruanes, “Building an elastic query engine on disaggregated stor-
age,” in 17th USENIX Symposium on Networked Systems Design and
Implementation NSDI 20), 2020, pp. 449–462.

[9] J. Kreps et al., “Kafka: A distributed messaging system for log process-
ing,” in NetDB, 2011.

[10] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi,
I. Stoica, and M. Zaharia, “Structured streaming: A declarative API for
real-time applications in apache spark,” in SIGMOD, 2018.

[11] M. Armbrust et al., “Databricks delta: A unified data management
system for real-time big data,” 2017.

[12] R. Potharaju, T. Kim, W. Wu, V. Acharya, S. Suh, A. Fogarty, A. Dave,
S. Ramanujam, T. Talius, L. Novik et al., “Helios: hyperscale indexing
for the cloud & edge,” Proceedings of the VLDB Endowment, vol. 13,
no. 12, pp. 3231–3244, 2020.

[13] A. Uta, A. Custura, D. Duplyakin, I. Jimenez, J. Rellermeyer,
C. Maltzahn, R. Ricci, and A. Iosup, “Is big data performance repro-
ducible in modern cloud networks?” in 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), 2020, pp.
513–527.

[14] P. B. Danzig, J. S. Ahn, J. Noll, and K. Obraczka, “Distributed indexing:
A scalable mechanism for distributed information retrieval,” in ACM
SIGIR, 1991.

[15] B. Nam and A. Sussman, “Spatial indexing of distributed multidimen-
sional datasets,” in CCGrid, 2005.

[16] F. K. H. A. Dehne, Q. Kong, A. Rau-Chaplin, H. Zaboli, and R. Zhou,
“A distributed tree data structure for real-time OLAP on cloud architec-
tures,” in IEEE Big Data, 2013.

[17] C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mittal, R. Stonecipher,
N. Verma, and M. Zwilling, “Hekaton: SQL server’s memory-optimized
OLTP engine,” in SIGMOD, 2013.

[18] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman, “Index
selection for OLAP,” in Proceedings of the Thirteenth International
Conference on Data Engineering, April 7-11, 1997, Birmingham, UK,
1997, pp. 208–219.

[19] J. Ramnarayan et al., “Snappydata: A hybrid transactional analytical
store built on spark,” in SIGMOD, 2016.

[20] D. Brezinski and M. Armbrust, “Threat detection and response at scale,”
in Spark Summit, 2018.

[21] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat-
Pérez, M. Pham, and P. A. Boncz, “The LDBC social network bench-
mark: Interactive workload,” in SIGMOD, 2015.

[22] “Databricks Runtime,” https://www.databricks.com.
[23] “Apache druid,” http://druid.apache.org.
[24] “Splicemachine,” https://www.splicemachine.com.
[25] A. Lakshman and P. Malik, “Cassandra: a decentralized structured

storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[26] R. Potharaju, T. Kim, E. Song, W. Wu, L. Novik, A. Dave, A. Fogarty,
P. Pirzadeh, V. Acharya, G. Dhody et al., “Hyperspace: the indexing
subsystem of azure synapse,” Proceedings of the VLDB Endowment,
vol. 14, no. 12, pp. 3043–3055, 2021.

[27] G. Graefe, “Sort-merge-join: An idea whose time has (h) passed?” in
IEEE ICDE, 1994.

[28] D. J. DeWitt and R. Gerber, Multiprocessor hash-based join algo-
rithms. University of Wisconsin-Madison, Computer Sciences Depart-
ment, 1985.

[29] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky, “Concurrent
tries with efficient non-blocking snapshots,” in PPoPP, 2012.

[30] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making data
structures persistent,” Journal of computer and system sciences, pp. 86–
124, 1989.

[31] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in IEEE MSST, 2010.

[32] “Ldbc social network benchmark,” https://arxiv.org/pdf/2001.02299.pdf.
[33] A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn, R. Stutsman, and

R. Ricci, “Taming performance variability,” in 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), 2018, pp.
409–425.

[34] R. O. Nambiar and M. Poess, “The making of tpc-ds,” in VLDB, 2006.

113

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 08:17:28 UTC from IEEE Xplore. Restrictions apply.

[35] “US Flights On-Time Airline Statistics,” http://stat-computing.org/
dataexpo/2009/the-data.html.

[36] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B. Chun, “Mak-
ing sense of performance in data analytics frameworks,” in USENIX
NSDI, 2015.

[37] N. Chaimov, A. D. Malony, S. Canon, C. Iancu, K. Z. Ibrahim, and
J. Srinivasan, “Scaling spark on HPC systems,” in ACM HPDC, 2016.

[38] T. Chiba and T. Onodera, “Workload characterization and optimization
of TPC-H queries on apache spark,” in ISPASS, 2016.

[39] S. Baig, M. Amaral, J. Polo, and D. Carrera, “Performance characteriza-
tion of spark workloads on shared NUMA systems,” in BigDataService,
2018.

[40] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in EuroSys, 2010.

[41] H. Zhang, B. Cho, E. Seyfe, A. Ching, and M. J. Freedman, “Riffle:
optimized shuffle service for large-scale data analytics,” in Proceedings
of the Thirteenth EuroSys Conference, 2018, pp. 1–15.

[42] “JAMM Memory Meter,” https://github.com/jbellis/jamm.
[43] W. Wen, Y. Li, W. Li, L. Deng, and Y. He, “CORES: towards scan-

optimized columnar storage for nested records,” TOS, 2019.
[44] N. Roussopoulos, “View indexing in relational databases,” ACM Trans.

Database Syst., vol. 7, no. 2, pp. 258–290, 1982.
[45] P. Valduriez, “Join indices,” ACM Trans. Database Syst., 1987.
[46] P. E. O’Neil and G. Graefe, “Multi-table joins through bitmapped join

indices,” SIGMOD, 1995.
[47] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on

large clusters,” in OSDI, 2004.
[48] T. White, Hadoop - The Definitive Guide: MapReduce for the Cloud.

O’Reilly, 2009.
[49] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and

J. Currey, “Dryadlinq: A system for general-purpose distributed data-
parallel computing using a high-level language,” in OSDI, 2008.

[50] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi, “Naiad: a timely dataflow system,” in ACMSOSP, 2013.

[51] M. Stonebraker, D. J. Abadi, D. J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin, “Mapreduce and parallel dbmss: friends or
foes?” Commun. ACM, vol. 53, no. 1, pp. 64–71.

[52] D. DeWitt and M. Stonebraker, “Mapreduce: A major step backwards,”
The Database Column, vol. 1, p. 23, 2008.

[53] S. Richter, J. Quiané-Ruiz, S. Schuh, and J. Dittrich, “Towards zero-
overhead static and adaptive indexing in hadoop,” VLDB Journal, 2014.

[54] M. Y. Eltabakh, F. Özcan, Y. Sismanis, P. J. Haas, H. Pirahesh, and
J. Vondrák, “Eagle-eyed elephant: split-oriented indexing in hadoop,” in
EDBT/ICDT, 2013.

[55] M. Mofidpoor, N. Shiri, and T. Radhakrishnan, “Index-based join
operations in hive,” in IEEE BigData, 2013.

[56] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba: Efficient
in-memory spatial analytics,” in SIGMOD. ACM, 2016.

[57] Y. Cui, G. Li, H. Cheng, and D. Wang, “Indexing for large scale
data querying based on spark sql,” in 2017 IEEE 14th International
Conference on e-Business Engineering (ICEBE). IEEE, 2017, pp. 103–
108.

[58] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani, and W. G. Aref, “Lo-
cationspark: A distributed in-memory data management system for big
spatial data,” Proceedings of the VLDB Endowment, vol. 9, no. 13, pp.
1565–1568, 2016.

[59] B. Mozafari, J. Ramnarayan, S. Menon, Y. Mahajan, S. Chakraborty,
H. Bhanawat, and K. Bachhav, “Snappydata: A unified cluster for
streaming, transactions and interactice analytics,” in CIDR, 2017.

[60] M. Armbrust, T. Das, L. Sun, B. Yavuz, S. Zhu, M. Murthy, J. Torres,
H. van Hovell, A. Ionescu, A. Łuszczak et al., “Delta lake: high-
performance acid table storage over cloud object stores,” Proceedings
of the VLDB Endowment, vol. 13, no. 12, pp. 3411–3424, 2020.

[61] “Timely Dataflow,” https://github.com/TimelyDataflow.
[62] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case

for learned index structures,” CoRR, vol. abs/1712.01208, 2017.

114

Authorized licensed use limited to: TU Delft Library. Downloaded on July 18,2022 at 08:17:28 UTC from IEEE Xplore. Restrictions apply.

