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ABSTRACT
Programmable data plane hardware creates new opportuni-
ties for infusing intelligence into the network. This raises a
fundamental question: what kinds of computation should be
delegated to the network?

In this paper, we discuss the opportunities and challenges
for co-designing data center distributed systems with their
network layer. We believe that the time has finally come for
offloading part of their computation to execute in-network.
However, in-network computation tasks must be judiciously
crafted to match the limitations of the network machine archi-
tecture of programmable devices. With the help of our exper-
iments on machine learning and graph analytics workloads,
we identify that aggregation functions raise opportunities to
exploit the limited computation power of networking hard-
ware to lessen network congestion and improve the overall
application performance. Moreover, as a proof-of-concept,
we propose DAIET, a system that performs in-network data
aggregation. Experimental results with an initial prototype
show a large data reduction ratio (86.9%-89.3%) and a similar
decrease in the workers’ computation time.

1 INTRODUCTION
The advent of flexible networking hardware [6] and expres-
sive data plane programming languages [5, 29] have produced
networks that are deeply programmable. The functionality
of networks can now be enriched without hardware changes
while retaining the capability of processing packets at very
high rates, even above Terabits per second. Emerging pro-
grammable network devices are paving the way for new ser-
vices to better support data center applications [9, 18] and
improve network monitoring [13, 16, 24–26].
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Programmable networks create the opportunity for in-
network computation, i.e., offloading a set of compute opera-
tions from end hosts into network devices such as switches
and smart NICs. In-network computation can offer substan-
tial performance benefits, as it is for example the case with
consensus protocols [9, 10] and in-network caches [20]. Al-
though traditional networks are not capable of computation,
the idea of using the network not just to move data, but also
to perform computation on transmitted data is reminiscent
of Active Networks [30], which proposed to replace packets
with small programs called “capsules” that are executed at
each traversed switch. However, for the past two decades
the hardware capabilities were lacking. This appears to be
changing.

The recently proposed RMT architecture [6] and its upcom-
ing incarnation in the Barefoot Networks’ Tofino [3] switch
chip has a flexible parser and a customizable match-action
engine. To process packets at high speed, this architecture has
a multi-stage pipeline where packets flow at line rate. Each
stage has a fixed amount of time to process every packet,
allowing for lookups in memory (SRAM and TCAM), manip-
ulating packet metadata and stateful registers, and performing
boolean and arithmetic operations using ALUs. Other ven-
dors are also introducing new classes of programmable chips
with similar capabilities [7]. We believe that with this new
generation of flexible data plane hardware it is worth revis-
iting a fundamental question: as networks become capable
of computation, what kinds of computation should networks
perform?

In this paper, we will consider this question in the scope
of data center applications because it is likely that data cen-
ters will be early adopters of programmable networks and
many of these applications have stringent performance re-
quirements. On the one hand, in-network computations can
be broadly useful in several performance-oriented contexts to
reduce latency and/or increase throughput of certain opera-
tions. Furthermore, it can help reducing network traffic, so as
to alleviate congestion, which is a major cause of application
performance degradation. In particular, a computation that
happens on-path and at line rate is appealing since it bears no
cost to the application, which can spare CPU cycles for other
tasks instead. On the other hand, despite recent technological
advancements, network devices have limited compute power
and little storage to support general computation. Moreover,
systems designers are prescribed by the end-to-end princi-
ple [28] to avoid implementing application-specific logic in

150

https://doi.org/10.1145/3152434.3152461


the network and are generally wary about raising the over-
all system complexity. Additionally, in-network computation
must not affect the application correctness.

We posit that in-network computation must be used judi-
ciously. Towards this goal, we seek to identify what type of
computation can be done in-network such that: (i) network
traffic is significantly reduced, (ii) only a minimal change at
the application level is required and (iii) the correctness of
the overall computation is not affected.

We find that a plausible class of applications that sat-
isfy the above desiderata are those applications that follow
a partition/aggregate workload pattern. These applications
cover a wide spectrum of data-intensive frameworks includ-
ing big data analytics as in MapReduce [12] and machine
learning [1, 11], graph processing [14, 22] and stream pro-
cessing [19]. Generally these frameworks scale applications
by distributing data and computation across many worker
servers. Each worker performs some computation on a data
partition, which is followed by a communication phase to
update shared state or finalize the computation. This process
can be performed iteratively until a stopping condition is met.

These applications are sensitive to network performance
and the communication cost can be one of the dominant
scalability bottlenecks as large volume of data need to be
moved routinely in many to many patterns. Already several
distributed frameworks like MapReduce [12], Pregel [22] and
DryadLINQ [32] allow for user-defined aggregation functions.
These functions enable application developers to reduce the
network load (e.g., by summing all individual messages to a
common graph vertex) and consequently, the job execution
time. However, the aggregation functions are only applied at
the worker-level, missing the opportunity of achieving better
traffic reduction ratios when applied at the network level.

These aggregation functions have several characteristics
that make them appealing and suitable to be partially executed
in-network. First, they usually reduce the amount of data (e.g.,
sum the inputs, or find the minimum). Thus, it is beneficial
to apply these functions as early as possible to decrease the
amount of network traffic and lessen congestion. Second,
they are usually characterized by simple arithmetic/logic op-
erations, which make them amenable to parallelization and
execution on programmable switches. Third, in many algo-
rithms [14, 22], they are commutative and associative func-
tions, which implies that they can be applied separately on
different portions of the input data, disregarding the order,
without affecting the correctness of the final result. Fourth,
they are often readily available, meaning that they could be
transparently supported without requiring the developer to
write new application logic. As we will show, implementing
certain aggregation functions inside the network is possible
and beneficial since programmable switches can aggregate
intermediate data, thus reducing the traffic as well as the
processing load at the destination. However, the limited re-
sources, restricted compute power and stringent constraints
on packet processing time create several challenges and call
for a judicious system design.

To contribute a concrete point in the design space, we
propose DAIET, a system for data aggregation in-network.
While our design is still incomplete and likely to change, this
represents an example of a system that can be built using P4
to offload computation to the data plane. Our experimental
results with an initial prototype supporting a MapReduce
application show that this approach provides a large data
reduction (86.9%-89.3%) and a similar decrease in worker’s
computation time.

A number of recent research efforts [8, 15, 21] have pro-
posed in-network aggregation techniques for a variety of ap-
plications. However, these systems either required to change
the network architecture [8, 21] or build a switch chip with
a fixed set of aggregation functions [15]. We demonstrate
that similar benefits can be reaped using flexible and pro-
grammable data planes. That said, we envision that practical
deployments for our proposal might be better suited within
clusters and racks specialized for certain workloads such
as deep learning or data analytics where the benefits of in-
network aggregation are substantial without requiring data
center-wide adoption.

We note that aggregation functions, though they are a
generic primitive applicable to a number of applications, are
not the sole type of in-network computation possible and we
hope that our work will trigger a broader discussion around
the driving question behind our work: what should networks
compute?

2 JUDICIOUS NETWORK COMPUTING
We focus on in-network computation enabled by the recent
developments in reconfigurable, protocol-independent switch
ASICs such as RMT [6]. Their network machine architec-
ture is based on a multi-stage pipeline of packet processing
logic [4]. Computing on these devices corresponds to exe-
cuting streaming algorithms that have stringent constraints
on the number and type of operations that can be performed.
This is due to the following limitations:
Limited memory size. Packet processing at high speed re-
quires a very fast memory, such as TCAMs or SRAM, which
is expensive and usually available in small capacities. As an
example, the upcoming Barefoot Tofino [3] switch chip is
expected to process a remarkable 6.5 Tb/s while still provid-
ing the flexibility of data plane programmability. To match
this processing speed, packets can be processed by a limited
number of lookup tables and the expected available SRAM is
in the range of few tens of MBs.
Limited set of actions. Programmable devices support a
small set of actions, usually simple arithmetic, data manipula-
tion, and hashing operations. Some switches can also provide
limited support for floating point operations [15].
Few operations per packet. To guarantee execution at line
rate, programs have only tens of nanoseconds to process a
single packet. As a result, they cannot use constructs that do
not have an upper bound on the number of performed opera-
tions (e.g., loops). Some devices allow to recirculate a packet
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Figure 1: Potential traffic reduction ratio for two machine learning applications and various graph analytics algorithms.

in the ingress queue for further processing, thus allowing to
implement loops. But this comes at the cost of additional
processing latency and lowers the forwarding capacity.

Furthermore, offloading functionality to the network faces
several challenges. First, the underlying target imposes re-
strictions as discussed above and resources are limited. As
such, in-network computation must live within these confines.
Second, applications correctness is paramount. Data center
networks have multiple paths and failures of links and devices
are not uncommon. As such, in-network computation should
provide benefits even if traffic follows different paths or an
application experiences failures. Alternately, an application
should be no worse than without in-network computation
even when this is executing. Third, offloading functionality
raises complexity not only because certain packet processing
logic is executed in the network but also due to the required
integration with applications or libraries. As such, in-network
computation should focus on primitives that are broadly ap-
plicable to a class of applications and workloads, and identify
reusable, high-level abstractions that promote easy adoption.

Since we are just at the onset of programmable data plane
hardware, it is hard to gauge how far in-network compu-
tation can go and what possibilities the next technological
enhancements will enable. As an analogy, the spectrum of
applications of GPUs has evolved significantly since when
they first became programmable, and today’s GPGPUs have
usages for deep learning and mining cryptocurrencies, that
are far beyond the computer graphics domain.

In the rest of this paper, we follow through our earlier
premise and explore in-network aggregation as a concrete
example of in-network computation. Consequently, a main
challenge to address when delegating data aggregation to
the network is to account for all the constraints above while
providing high data reduction ratios without affecting the
correctness of the final results.

3 DATA AGGREGATION IN DATA
CENTER APPLICATIONS

Data aggregation is a common task in several distributed data
center applications [1, 12, 22, 31]. It also satisfies the char-
acteristics discussed in Section 1. Therefore, it represents

a good candidate for tasks that can be delegated to the net-
work. In this section, we study a set of algorithms that can
utilize aggregation functions to improve their performance.
Specifically, we consider two classes of algorithms: machine
learning and graph analytics. The goal of this analysis is to
show the potential traffic reduction that can be achieved when
aggregating the traffic inside the network.

For machine learning algorithms, we use TensorFlow [1]
to run two applications: a Soft-Max Neural Network using
mini-batch Stochastic Gradient Descent (SGD) and Adam
optimization [17] (Adam). We use a mini-batch of size 3 for
the former and 100 for the latter. In these experiments, we
use the MNIST1 database of handwritten digits. The model is
trained to correctly identify the digits present in each image.
We deployed TensorFlow on six machines: one acts as the
parameter server while the other five machines run as many
worker processes. Each machine is equipped with 128GB of
RAM and two 2.20GHz Intel Xeon E5-2630v4 CPUs.

Workers are responsible for compute-intensive tasks while
the parameter server stores and maintains a set of shared pa-
rameters that comprise the trained model. In this setting, each
worker is training the same model on different mini-batches
of the data. In each iteration, the worker sends its parameter
updates to the server which aggregates the local updates from
each worker. Then, the parameters at each worker are updated
according to their values at the parameter server.

In TensorFlow, the parameters are tensors, which are repre-
sented as large n-dimensional arrays. Parameter updates are
deltas that change only a subset of the overall tensor and can
be aggregated by a vector addition operation. We evaluate
the overlap of the tensor updates, i.e., the portion of tensor
elements that are updated by multiple workers at the same
time. This overlap is representative of the possible data re-
duction achievable when the updates are aggregated inside
the network. A high overlap means that aggregating the local
updates of each worker inside the network could reduce the
network traffic significantly.

Figures 1(a) and 1(b) show the amount of overlap among
workers updating the same portion of tensors in the same iter-
ation for SGD and Adam applications, respectively. Note that
the overlap percentage is consistent among different iterations.

1http://yann.lecun.com/exdb/mnist/
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The average overlap percentage is around 42.5% and 66.5%
for SGD and Adam applications, respectively. Also note that
the results in this experiment represent a lower bound of the
possible overlap as the applications could be tuned to sched-
ule communication to maximize overlap. In both applications,
there are other tensors communicated over the network with a
higher overlap percentage, or even fully communicated (100%
overlap). We also experimented while increasing the number
of workers from two to five (without changing the mini-batch
size), and observed that the overlap increases.

We further consider graph analytics algorithms. We used
the LiveJournal dataset,2 which consists of 4.8M vertices and
68M edges. To run these algorithms, we deployed GPS [27] –
an open-source Pregel clone – on four machines, each with
3.40GHz Intel Core i7-2600 CPU and 16GB of RAM. We con-
sider three algorithms with various characteristics: PageRank,
Single Source Shortest Path (SSSP) and Weakly Connected
Components (WCC). The three algorithms are associated
with a commutative and associative aggregation function.

Figure 1(c) shows the potential traffic reduction ratio for
various graph algorithms using the LiveJournal graph. Each
graph algorithm exhibits a different traffic volume. In PageR-
ank, each vertex starts by sending its PageRank value to all its
neighbours. Then, each vertex in the next iteration receives
and sums the various values from its neighbours and calcu-
lates a new PageRank value. The traffic reduction ratio is
calculated by combining all the messages sent to the same
destination into a single message by applying the aggregation
function used by the algorithm, i.e., sum, inside the network.
In each iteration, all vertices are active and send messages to
their neighbours; hence, the traffic reduction ratio is almost
the same across all iterations. SSSP starts by sending a smaller
number of messages from the source vertex. In the following
iteration, the number of messages increases exponentially and
hence a higher traffic reduction ratio is achieved. On the other
hand, WCC starts by sending large number of messages from
all vertices which decrease as the algorithms converges. The
potential traffic reduction ratio in all the three applications
ranges from 48% up to 93%.

In summary, applying in-network aggregation functions
could significantly reduce the traffic of these applications.

4 SOLUTION SKETCH
As a proof-of-concept, we propose DAIET, a system for in-
network aggregation designed to address the challenges pre-
sented in Section 2. While it has been designed with P4 and
programmable ASICs in mind, it is general enough to be
possibly implemented on different programmable data plane
platforms. For the sake of presentation, we describe DAIET
when applied to MapReduce-based applications. However,
the proposed solution is generic enough and works well for
various partition/aggregate data center applications.

To perform in-network aggregation, DAIET requires a close
collaboration between the application and the network. Prior

2https://snap.stanford.edu/data/
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Figure 2: Aggregation Trees: example of physical and log-
ical view for traffic aggregation in a data center network.

to starting a job, the master allocates the map and reduce jobs
to the workers. This allocation information is exchanged with
the network controller. Then, the controller defines the aggre-
gation trees. An aggregation tree (Figure 2) is a spanning tree
covering all the paths from all the mappers to a reducer. There
is one tree rooted at each reducer. The network controller then
configures the network devices, pushing a set of flow rules,
to perform the per-tree aggregation and forward the traffic
according to the tree. Specifically, each network device needs
to know (i) the tree ID (i.e., reducer ID) that is embedded in
packets addressed to one reducer, (ii) the associated output
port to forward the traffic to the next node in the tree, and (iii)
the specific aggregation function to perform. Moreover, for
each tree a network device is configured with the number of
children nodes it receives traffic from, so that the aggregated
data are flushed to the next node when all the children have
sent their intermediate results.

When the map phase is completed, each map task produces
an intermediate data set consisting of key-value pairs, which
is partitioned among the reducers. These partitions are sent to
the reducer using UDP packets containing a small preamble
and a sequence of key-value pairs. In the current prototype,
we do not address the issue of packet losses, which we leave
as future work. The abstraction of key-value pairs can be
mapped on the messages exchanged in various data center
applications; e.g., they can represent updates to shared pa-
rameters in a machine learning job or exchanged messages
among vertices in graph processing.

The preamble specifies the number of pairs present in the
packet and the tree ID the packet belongs to. We have care-
fully defined how the output of the map task is serialized in
the local file, so that packets are transmitted without partial
pairs. In fact, data cannot be deserialized during packetiza-
tion, since it would greatly affect the execution time, therefore
we use a fixed-size representation for the pairs, so that it is
easy to calculate the offsets of pairs in the file and extract a
number of complete pairs. This serialization and deserializa-
tion modification is not required in those applications that do
not store intermediate results on disk. Finally, the end of the
transmission is marked by a special END packet.

For each tree, network devices store two arrays, one for the
keys and one for the values. These two arrays are managed as
a hash table with buckets of only one element. Specifically,
a hash function is used to convert a key to an index in the
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Algorithm 1: Packet Processing Algorithm
Input: Network Packet P
Output: Aggregated Network Traffic

1 header ← parseHeader (P )
2 if header .type = DATA_PACKET then
3 entr ies ← parsePayload (P , header .num_entr ies)
4 foreach pair in entr ies do
5 idx ← Hash (pair .key)
6 if keyReдister [idx ] is empty then
7 keyReдister [idx ]← pair .key
8 valueReдister [idx ]← pair .value
9 indexStack .push (idx )

10 else if keyReдister [idx ] = pair .key then
11 updateValue (valueReдister [idx ], pair .value)

12 else
13 store (spilloverBucket ,pair )
14 if spilloverBucket is full then
15 flushData (spilloverBucket )

16 else if header .type = END_PACKET then
17 r emaininд_children = r emaininд_children − 1
18 if r emaininд_children = 0 then
19 flushData (keyReдister , valueReдister )

array. The index is used to access the two arrays and store
the key and its corresponding value in the relative cells. If
a collision is detected (a key generates the same hash of a
different, already stored, item), then the new pair is not used
for aggregation, and is stored in a different spillover bucket.
This bucket is a queue of pairs with as many entries as the
number of pairs that can fit in one packet. When this bucket
is full, the entries are immediately sent to the next node in
the tree. If the hash function distributes hash values evenly
across the available range, this solution better employs the
available memory (a scarce resource in data plane devices)
without affecting the correctness of the final result. In fact this
solution saves the allocation of multiple collision buckets that
have a low probability to be used. The non-aggregated values
in the spillover bucket are the first to be sent to the next node,
so that they ware more likely to be aggregated if the next node
is a network device and has spare memory. Additionally, an
index stack is kept in the device memory to store the indices
of the used cells in the two arrays. This facilitates flushing the
results to the next node, avoiding a costly scan of the arrays.

Algorithm 1 summarizes the steps performed by the net-
work device for each received packet. When a new packet
containing key-value pairs is received, each pair in the packet
is processed to update the local state. First, the hash function
is applied to the key to obtain the corresponding index. This
index is then used to access the keys array and check if: (i)
the cell is empty, (ii) the same key has been received before,
or (iii) a different key with the same hash value is already
stored in the cell. In the first case, the new key-value pair is
stored and the index is saved in the index stack. In the second
case, the value is aggregated with the previously stored value
and the result is stored in the array. In the latter case (i.e.,
a collision), the pair is stored in the spillover bucket. If this
bucket is full, all its pairs are sent to the next node.

When an END packet is received, marking the end of one
partition, the number of pending children (initialized by the
controller) is decremented. When this value reaches zero, all
the aggregated pairs in the two arrays can be sent to the next
node towards the destination.

While usually a reducer receives the intermediate results
from each mapper sorted according to the key, DAIET can-
not preserve the order, thus the reducer receives unordered,
aggregated, intermediate results. As a consequence, the inter-
mediate results must be sorted at the reducer rather than at
the mapper, which usually reduces the amount of parallelism.
However, as shown in Section 5, the reduction in the amount
of data to sort makes this overhead negligible.

5 PRELIMINARY EVALUATION
Our current implementation of DAIET is built using P4 and
is available as open source3. As in a traditional SDN, the
controller can configure a P4 data plane by pushing flow rules
to a set of tables. These flow rules can match custom protocols
and execute custom actions. We found that P4 imposes two
main constraints affecting the implementation of DAIET: (i) a
table can be applied at most once per packet, therefore it is not
possible to apply the same table to all the headers in a stack
of multiple headers of the same type, and (ii) the absence of
variable-length data structures.

The first constraint, which is meant to avoid loops during
packet processing, forces the programmer to manually per-
form loop unrolling, at the expenses of code readability and
size. The second constraint is relevant in case of variable-
length keys (e.g., strings). In fact, in this case the programmer
is forced to reserve for each key as many bytes as the largest
expected key, increasing the memory footprint, which in turn
causes the allocation of arrays with fewer cells, thus increas-
ing the possibility that a pair is not aggregated.

We present preliminary results from our prototype imple-
mentation. We focus on quantifying the reduction of traffic
received by the root node of each tree (i.e., reducers) and
the corresponding decrease in completion time at reducers.
We believe this reduction, in a deployment with hardware
switches, is expected to be proportional to the reduction in
the job completion time, since each reducer will receive and
process less data. However, as P4 hardware was not yet avail-
able to us, we obtain results using the bmv2 software switch,4

which is not designed for line-rate packet processing. Thus,
we cannot directly measure an improvement in job comple-
tion time but our results, which show around 88% median
traffic reduction are still indicative of the expected benefits.

We run the experiments on a single server with two Intel
Xeon E5-2680v2 CPUs with 40 logical cores in total and
768 GB of RAM. We run the bmv2 switch in a container
on 4 dedicated cores, while 12 more containers, each with 2
dedicated cores, are used as workers to run 24 mappers (one
per core) and 12 reducers (one per worker). An additional

3https://sands.kaust.edu.sa/daiet/
4https://github.com/p4lang/behavioral-model
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Figure 3: Reduction on the amount of data, running time
and number of packets received at reducers.

container is used to run the master. The 12 workers execute
a WordCount benchmark on an implementation of MapRe-
duce adapted to send the map results using DAIET. The input
dataset is a 500 MB file containing random words that are not
causing hash collisions.5 We do not test with a larger dataset
because the network aggregation is performed by bmv2 using
mainly a single core. We configure P4 registers to store 16K
key-value pairs, so that, with words of maximum 16 charac-
ters and a 4 B integer value, the total SRAM required would
be around 10 MB, which is a reasonable amount of memory
for a hardware P4 switch. To quantify the reduction, we run
the same benchmark in two other baseline scenarios without
in-network aggregation: (i) using the original TCP-based data
exchange and (ii) using UDP and the DAIET protocol, but
without executing data aggregation in the switch.

Figure 3 shows a box plot of the reduction, across all the
workers, in the total data volume and execution time at the
reducers observed with DAIET compared to the first baseline.
We observe that in-network aggregation provides a 86.9%-
89.3% reduction of the amount of data received by the reduc-
ers. Because the smaller the data the less processing time at
the reducer, we measured a median decrease of 83.6% in the
execution time at the reducer, despite the received data are
not sorted and require a complete sort operation.

Because current P4 hardware switches are expected to
parse only around 200-300 B of each packet6, we consider
that one DAIET packet can contain at most 10 key-value pairs.
Thus, our implementation generates more packets compared
to the TCP baseline. However, the data volume reduction due
to in-network aggregation is greater than the overhead caused
by the additional packets. Figure 3 presents the reduction in
the number of packets received by the reducer compared to
the two baselines.We observe a median and maximum reduc-
tion of 90.5%, with a minimum of 88.1% compared with the
baseline using UDP without in-network aggregation. Even
considering the TCP baseline, we still measured a median
42% reduction in the number of packets. It is worth noting
that an additional overhead in the data volume and number of
packets is given by the fixed-size length of strings in our im-
plementation, that forces a 16 B key even for smaller strings.
This limitation will be removed in a future version of DAIET.

5Our current prototype does not manage collisions.
6According to private conversations with a P4 hardware vendor.

6 RELATED WORK
NetAgg [21] is a software middlebox platform that provides
an on-path aggregation service. NetAgg middleboxes are
deployed on servers directly attached to network switches
through high-bandwidth links, composing an aggregation
tree in the network. This requires changes in the network
architecture. Furthermore, for computation-bound applica-
tions the middleboxes can become a performance bottleneck.
SHArP [15] is designed to offload MPI collective operation
processing to the network. Reduction operations are per-
formed on the data as it traverses a reduction tree in the
network, reducing the volume of data as it goes up the tree.
SHArP only supports a limited set of combiners, since they
are directly implemented in the switch ASIC. Unlike NetAgg
and SHArP, DAIET does not modify the network architecture
and provides more flexibility to support a variety of applica-
tions. Similar to NetAgg, Camdoop [8] also supports on-path
aggregation for MapReduce-based applications. It leverages
the capabilities of Camcube [2] which uses direct-connect
protocols where all traffic is forwarded between servers with-
out switches. Thus, it requires a custom topology and it is
incompatible with a common data center infrastructure.

Besides data aggregation, IncBricks [20] is an in-network
caching fabric with basic computing primitives. It comprises
of programmable switches and smart NICs. It uses a key-value
store as the application interface and allows to offload com-
mon compute operations on key-value pairs; e.g., increment,
compare and update. Their design shifts the computation to-
wards smart NICs since switches have limited storage. A
specialized, in-switch key-value store for network measure-
ment collection and aggregation also appears in Marple [25].

7 OUTLOOK
Programmable network hardware is finally emerging and
provides the opportunity to revisit the idea of performing
computation inside the network. Given ever more stringent re-
quirements for data center applications facing hardware scala-
bility bottlenecks and the end of Moore’s law, programmable
hardware appears to be the next frontier for achieving higher
levels of efficiency and speed. Google’s Tensor processing
unit and Microsoft’s Catapult projects are just two examples
of this ongoing trend. We believe that the time has come
to entrust network devices with part of the tasks typically
executed by software. However, programmable networking
devices have a distinct network machine architecture with
stringent constraints. Determining the kinds of in-network
computation, streaming algorithms and workloads that are
going to be feasible under these architectural model is a major
open challenge. As in the case of TCP offloading [23], we
might need to see a period where variants are proposed, tested,
evolved, and sometimes discarded. Data aggregation appears
as a natural fit for in-network computation and our results are
promising. But we view our work merely as an initial step
towards the larger goal of judicious in-network computing.
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