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In-Network Quality Optimization for

Adaptive Video Streaming Services
Niels Bouten, Student Member, IEEE, Steven Latré, Member, IEEE, Jeroen Famaey, Member, IEEE,

Werner Van Leekwijck, and Filip De Turck, Senior Member, IEEE

Abstract—HTTP Adaptive Streaming (HAS) services allow the
quality of streaming video to be automatically adapted by the
client application in face of network and device dynamics. Due
to their advantages compared to traditional techniques, HAS-
based protocols are widely used for Over-The-Top (OTT) video
streaming. However, they are yet to be adopted in managed envi-
ronments, such as ISP networks. A major obstacle is the purely
client-driven design of current HAS approaches, which leads
to excessive quality oscillations, suboptimal behavior, and the
inability to enforce management policies. Moreover, the provider
has no control over the quality that is provided, which is essential
when offering a managed service. This article tackles these chal-
lenges and facilitate the adoption of HAS in managed networks.
Specifically, several centralized and distributed algorithms and
heuristics are proposed that allow nodes inside the network to
steer the HAS client’s quality selection process. The algorithms
are able to enforce management policies by limiting the set of
available qualities for specific clients. Additionally, simulation
results show that by coordinating the quality selection process
across multiple clients, the proposed algorithms significantly
reduce quality oscillations with a factor 5 and increase the average
delivered video quality with at least 14%.

I. INTRODUCTION

THE increasing popularity of Over-The-Top (OTT) mul-
timedia services has led to the widespread adoption of

HTTP-based streaming protocols. Such protocols have many
advantages compared to traditional streaming methods, such
as reuse of existing HTTP infrastructure (e.g., servers, proxies
and caches), reliable transmission and firewall compatibility.
Originally, progressive download techniques were used, al-
lowing the user to start consuming the content after a few
seconds of buffering. However, progressive download methods
cannot cope with congestion, the highly fluctuating throughput
of mobile networks or diverging characteristics of devices
and networks. To overcome said problems, a new generation
of HTTP-based streaming protocols, collectively referred to
as HTTP Adaptive Streaming (HAS), was introduced. The
offered content is split into a set of temporal segments, which
are encoded at multiple bit rates. In traditional HAS, a rate
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adaptation algorithm, deployed at the client, is then used to
select the bit rate of each segment, based on the current
network conditions, buffer status and device capabilities.

State-of-the-art HAS solutions embed the rate adaptation
algorithm inside the client application. This allows the client
to independently choose its playback quality and prevents the
need for intelligent components inside the network, which are
the main reasons HAS is used in OTT scenarios. However,
academia and industry are showing a growing interest in the
use of HAS in managed networks [1]12, for example by opti-
mizing the delivery by applying in-network bitrate adaptation3

or by deploying IP multicasting to ease the distribution of
linear TV HAS services [2]4. The extensive content catalogue
and increased flexibility in terms of supported devices of
these OTT-services (e.g., YouTube, Hulu, Netflix) but deliv-
ered over the managed network, could greatly benefit both
the provider and the end-user. However, in such environ-
ments, a purely client-driven approach has several significant
disadvantages. First, the lack of coordination among clients
leads to competing behavior among those clients, resulting
in incorrect throughput estimations, causing excessive qual-
ity oscillations and suboptimal decisions [3], [4], negatively
impacting QoE [5]. Second, management policies, such as
user subscription constraints and guarantees on the delivered
quality, cannot be easily enforced [6], [7]. In order to facilitate
adoption of HAS for the delivery of multimedia services in a
managed environment, these challenges should be tackled.

A straightforward solution to the resource scarcity affecting
streaming services could be to increase the physical capacity
of the delivery network. These updates are however associated
with high costs for the service provider, while an in-network
optimization based solution does not affect these infrastructure
costs. Since technologies (e.g. the advent of Ultra High Defi-
nition Television streaming) are constantly evolving, frequent
infrastructure updates are required to cope with the ever
increasing traffic demands. Physical infrastructure upgrades are
time-consuming, therefore we believe that there should be a
coexistence of both approaches to deal with future demand
by intelligently managing resources in attendance of physical
capacity updates.

This article proposes a hybrid approach where the rate

1http://www.juniper.net/us/en/local/pdf/solutionbriefs/3510463-en.pdf
2http://www.rgbnetworks.com/pdfs/RGB-Velocix Adaptive Streaming

CDN White Paper 0911-01.pdf
3http://www.cachelogic.com/vx-portfolio/solutions/velocixeve
4http://www.velocix.com/vx-portfolio/solutions/video-optimised-
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adaptation algorithm is steered by an in-network component
to address the aforementioned challenges. It is deployed on
intermediary proxies and supports client-side rate adaptation
algorithms by dynamically limiting the possible set of bit rates
to select from. Currently an operator’s multimedia delivery
network typically contains several transparent caches and QoE
measurement platforms which interpret HTTP headers and
reconstruct HTTP adaptive streaming sessions in order to
evaluate the end-to-end QoE. These platforms can be extended
to not only measure the QoE, but also optimize the QoE
by performing in-network quality optimization, thus requiring
only limited extensions to the already available infrastructure.
The proposed hybrid approach allows clients to still react
upon sudden network changes or scarcity in device resources,
while increasing the overall quality and stability. Moreover, it
can enforce a wide range of management policies, allowing
providers to specify priorities when allocating resources to a
certain group of users. This translates into several concrete
contributions. First, the in-network rate adaptation problem is
formally defined. Second, an optimal centralized algorithm is
proposed that solves the problem as an Integer Linear Program
(ILP). Third, a scalable variant of the algorithm is introduced
that can be distributed across multiple logically hierarchical
intermediary proxies. Finally, a heuristic with significantly
lower computational complexity is proposed.

The remainder of this article is structured as follows. Sec-
tion II lists and discusses state of the art research on client-
based and in-network HAS rate adaptation. Subsequently, the
in-network rate adaptation problem is formally defined in
Section III. Sections IV and V describe and evaluate the three
algorithms proposed to solve this problem respectively. Finally,
Section VI concludes the article.

II. RELATED WORK

The increased popularity of video consumption over the
Internet has led to the development of a range of protocols
that allow adaptive video streaming over HTTP. Some of the
major players have introduced their proprietary protocols such
as Microsoft’s Silverlight Smooth Streaming5, Apple’s HTTP
Live Streaming6 and Adobe’s HTTP Dynamic Streaming7.
More recently, a standardized solution has been proposed
by MPEG, called Dynamic Adaptive Streaming over HTTP
(DASH) [8]. Although differences exist between these imple-
mentations they are based on the same basic principles: a
video is split up into temporal segments which are encoded
at different quality rates, the autonomic video client heuristic
then dynamically adapts the quality, based on metrics such
as average throughput, delay and jitter. The drawback of this
approach is of course that all control lays in the hands of
the clients which strive to maximize their individual quality.
From the providers perspective however, other factors such as

5Microsoft Smooth Streaming - http://www.iis.net/downloads/microsoft/
smooth-streaming

6Apple HTTP Live Streaming - http://tools.ietf.org/html/
draft-pantos-http-live-streaming-13

7Adobe HTTP Dynamic Streaming - http://www.adobe.com/products/hds-
dynamic-streaming.html

minimization of costs and prioritization of users with higher
subscription levels are of equal importance. Current HAS
approaches do not support intervention during the quality
assignment process which is fully dominated by the clients.
The approach presented in this paper therefore focuses on
managing the quality for HAS by the service provider.

The performance of HAS-based services can be improved
by applying changes both at the client and the delivery
network. Each commercial HAS implementation comes with
a proprietary client heuristic. Akhshabi et al. compare sev-
eral commercial and open source HAS players and indicate
significant inefficiencies in each of them, such as frequent
oscillations and unfairness when the number of competing
clients increases [3]. Several heuristics have been proposed
in literature as well, each focussing on a specific deployment.
Liu et al. discuss a video client heuristic that is suited for a
Content Delivery Network (CDN) by comparing the expected
segment fetch time with the experienced segment fetch time to
ensure a response to bandwidth fluctuations in the network [9].
Andelin et al. provide a heuristic which was specifically
designed for Scalable Video Coding (SVC) and using a slope
to define the trade-off between downloading the next segment
and upgrading a previously downloaded segment [10]. In
previous work [11][12], the authors evaluated different client
heuristics both for Advanced Video Coding (AVC) and SVC,
applying optimizations such as pipelined and parallel download
scheduling. Several of the aforementioned authors indicate the
impact of competing HAS clients on the quality oscillations,
which are known to have a negative impact on Quality of
Experience (QoE) [5]. Furthermore, most of the commercial
client heuristics require a considerably large buffer to be able
to react to network changes. This paper therefore aims at
controlling the quality by introducing global QoE management,
reducing drastically the number of quality oscillations and
allowing to reduce the required buffer size. The presented
approach is applicable to both AVC and SVC.

An autonomic delivery framework for HAS-based Live TV
and Time Shifted TV (TSTV) was presented in previous
work [13][2] which allows to reduce the consumed bandwidth
by grouping unicast HAS sessions sharing the same content
into a single multicast session. However, for Video on Demand
(VoD) HAS sessions, the content is more diverse and only
few sessions are potentially shared among multiple users. This
prevents them to be grouped into a shared multicast session
and therefore prevents them from being delivered in a scalable
manner. In [14], an overview of interesting use cases for
applying SVC in a network environment are presented, among
which the graceful degradation of videos when the network
load increases. The authors argue the need for Media Aware
Network Elements (MANEs), capable of adjusting the SVC
stream based on a set of policies specified by the network
provider. Similar to this approach, Latré et al. proposes an in-
network rate adaptation algorithm, responsible for determining
which SVC quality layers should be dropped in combination
with a Pre-Congestion Notification (PCN) based admission
control mechanism [15]. In [16], a prototype of an intermediary
adaptation node is proposed, where the media gateway esti-
mates the available bandwidth on the client link and extracts



the supported SVC-streams. Similar to this, the WiDASH
proxy is responsible for in-network video adaptation and is
able to perform global optimization over multiple concurrent
HAS flows by prioritizing clients which have poor channel
quality [17]. Wirth et al. discuss the optimization of multi-
user resource assignment for DASH video transmission over
the LTE downlink [18]. By deploying a cross-layer technique
for allocating the resources at the base station and taking into
account the specific information of the video sessions, the
number of playout starvations can be considerably reduced.
In Parakh et al., the authors propose a game theoretic approach
towards decentralized bandwidth allocation for video streams
in wireless systems, where users are charged for bandwidth re-
sources proportionally to the requested bit-rate [19]. Situnen et
al. propose dropping video layers based on their priority when
network congestion arises for scalable video streaming over
wireless networks [20]. Most of the aforementioned research
focuses on the dropping of quality layers when congestion
arises, meaning the quality is limited in the same way for all
users. Our proposed approach limits the maximum quality in a
per client manner, allowing the service provider to differentiate
the delivered video services based on the clients subscription.
This allows the service provider to control the QoE on a per
subscriber level, and thus offering different subscription types
for the VoD HAS services.

Lee et al. describe a three-tier streaming service where
multiple clients are connected through multiple intermediate
proxies to a multimedia server [21]. The authors only consider
live streaming, if however VoD streaming would be targeted,
the streaming service can no longer be delivered in an efficient
way using multicast streaming, since a lot of requests are on
unpopular content which is infrequently requested. This causes
the content to be delivered using unicast transport from origin
to regional servers and thus having the risk of running into
bandwidth bottlenecks on these links as well, which is not
addressed within the cited paper. Furthermore, videos need to
be transcoded in the intermediary proxies, in standard HAS
however, the quality levels are discrete and fixed, causing
the objective function in the proposed solution to change
drastically and leading to the inability to use the max-min
composition. Unlike Real Time Streaming Protocol (RTSP)
en Real Time Transport Protocol (RTP) based streaming pro-
tocols, there is no server-side bitrate adaptation required, the
client decides autonomously which quality it will select, based
on the current state of the network and from a list of permitted
qualities, selected from within the network. This also implies
that if a client struggles to achieve its assigned quality level,
for example due to poor wireless connection quality or limited
CPU resources, it can still decide to switch to a lower quality.

In [22][23], the authors focus on optimizing the allocation
of bits of video sequences among multiple senders to stream
to a single client. Peer-to-peer streaming and multi-server
distributed streaming are the main use-cases of this approach,
there is no simple extension of the work when multiple
clients need to share the same server side bottleneck. Fur-
thermore, this requires fine-grained scalable video streaming
to support the allocation of non-overlapping bit ranges to
multiple servers, while for HAS, fixed bitrate representations
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Fig. 1: Graphical representation of variables and assumptions.

are available, encoded using advanced video coding, leading to
video segments of which the quality cannot be improved in a
straightforward way by downloading additional bit ranges. Our
work however, could also be extended to support scalable video
in a straightforward way. Akhshabi et al. propose server-side
rate adaptation to cope with unstable streaming players due to
ON-OFF patterns when they compete for bandwidth [24]. The
systems detect sudden rate fluctuations in the client playout
and try to solve them by shaping the sending rate at the
server to resemble the bitrate of the stream. These systems
are able to restore the streaming session when oscillation
or freezing occurs and then remove the shaping when the
client has stabilized. Our approach is not only able to solve
the problems of oscillation or freezes when they occur, but
actively tries to prevent them. This is because we can use more
detailed in-network information. This article is an extension
to our previous work on in-network quality management for
HAS [25]. However, the problem formulation is generalized
and we significantly extended the approach with a centralized,
distributed and relaxed optimization. Furthermore, the previous
work only considered simple topologies with a single bot-
tleneck where multiple clients directly connect to the server.
Whereas this article supports more complex topologies with
multiple levels, multiple bottlenecks and intermediary proxies,
as well as asymmetric topologies.

III. FORMAL PROBLEM DESCRIPTION

Providers are exploring how they can offer VoD HAS
services next to traditional TV services over their managed
network environment. HAS services offer the same content
at multiple qualities, each at their corresponding rate. This
allows providers to perform QoE management by adjusting
each sessions quality level, based on the current network
utilization. At peak times, the consequences of an inadequate
amount of resources in the network, can thus be anticipated
by reducing the quality of individual streaming sessions, while
still allowing admittance of all users.



TABLE I: Variables used for the rate decision

αs Weighing factor to model the tradeoff between quality and quality

switches

Be Bandwidth reserved for HAS traffic for edge e ∈ E
βq Bitrate associated with layer q ∈ Q
βmax Highest bitrate in Q
C ⊂ N The set of HAS VoD clients

Ce ⊆ C The set of clients in the service delivery tree for which the VoD

traffic traverses edge e ∈ E
Cn ⊆ C The set of clients in the service delivery tree for which the VoD

traffic traverses node n ∈ N
E The set of edges in the service delivery tree

Ec ⊆ E The unique delivery path from server sc to client c ∈ C
e
n− The edge connecting node n to its predecessor n−

E
n+ ⊆ E The set of edges connecting node n to its successors N

n+

Hc The history of previous quality decisions for client c ∈ C
hc,q,t ∈
Hc

Binary variable indicating wether client c ∈ C was assigned quality

q ∈ Q at time t

N The set of nodes in the service delivery topology

N
n+ ⊂ N The set of successors of node n

n− The predecessor of node n

P ⊂ N The set of proxies in the delivery tree

Q Available quality rates for video

Qv ⊆ Q Available quality rates for video v ∈ V
S ⊂ N The VoD access server

sc ∈ S The VoD access server for client c

V The set of available videos via VoD server S
vc ∈ V The video v ∈ V for which client c is requesting access

A. Definition of variables and assumptions

Figure 1 gives an overview of the problem variables and
assumptions. Let us consider an access network topology
modeled as a graph, consisting of a set of nodes N , which
encompasses servers S ⊂ N , proxies P ⊂ N , and clients
C ⊂ N . A set of edges E connects the nodes in a logical tree
topology which is typically used for video delivery networks8.
Note that typical access networks are using a logical tree for
their delivery, although the underlying physical network is not
a tree due to replication concerns. Every node n ∈ N has
an incoming edge en− ∈ E connecting it to its predecessor
n− ∈ N and a set of outgoing edges EN+ ⊆ E connecting it
to its successors N+ ⊂ N . Every edge e ∈ E has an associated
bandwidth capacity Be reserved for HAS traffic.

The servers host a set of videos V . Every video v ∈ V has an
associated set of quality representations Qv ⊆ Q. Moreover,
every quality representation q ∈ Q has a bit rate βq . Every
client c ∈ C has an associated origin server sc ∈ S , a unique
delivery path Ec ⊆ E from that server, and a video vc ∈ V . The
set of clients that have an edge e ∈ E as part of their delivery
path Ec, is represented by Ce ⊆ C. In summary, Table I lists
the symbols introduced throughout this section.

B. Integer Linear Programming formulation

The problem consists of maximizing the QoE over all clients
c ∈ C, while adhering to the edge bandwidth constraints. The
solution is characterised by a boolean decision matrix A. The
element ac,q ∈ A is equal to 1 if quality q ∈ Qvc

is selected
for client c ∈ C, and 0 otherwise. The decision variables are

8An example is the Triple Play Service Delivery Architecture from Alcatel-
Lucent (http://goo.gl/4aZVvf), which is used by over 50 operators worldwide
(http://goo.gl/kHMY1b)

subject to the following two constraints:

∀c ∈ C, ∀q ∈ Qvc
: ac,q ∈ 0, 1 (1)

∀c ∈ C :
∑

q∈Qvc

ac,q = 1 (2)

The above constraints state that the decision variables are
boolean values and that only one quality representation can
be selected per client.

According to Padhye et al., the maximum achievable
throughput B for a TCP connection subject to a round trip time
RTT and maximum window size Wmax, probability of packet
loss p, delayed ACK number of b and average retransmission
timeout T0 can be approximated by the following [26]:

B(p) ≈ min









Wmax

RTT
,

1

RTT

√

2bp
3 + T0 min

(

1, 3
√

3bp
8

)

p(1 + 32p2)









(3)

The maximum achievable TCP throughput for client c is
thus limited by its window size Wmax,c and its RTTc. Both
parameters can be estimated or measured at the client and
forwarded to the in-network control proxy. When p values
are low, which is the case in fixed networks, the achievable
throughput is primarily limited by the first term. To limit
the overhead of acquiring packet loss probabilities for all
clients, only the first part of the TCP estimator is considered.
Therefore, the following constraint is added, limiting the end-
to-end achievable throughput for each client:

∀c ∈ C :
∑

q∈Qc

ac,q × βq ≤
Wmax,c

RTTc

(4)

When N TCP-connections use the same bottleneck link,
Altman et al. state that the maximum aggregated achievable
throughput that can be obtained is a factor of the link capacity
Be [27]:

Bmax ≈

(

1−
1

1 + cN

)

Be (5)

Where c = 1+d
1−d with d the fraction with which the

send rate is decreased when congestion arises. We use this
approximation of the maximum achievable throughput to limit
the aggregated allocated rate of the different clients:

∀e ∈ E :
∑

c∈Ce

∑

q∈Qc

ac,q × βq ≤

(

1−
1

1 + c |C|

)

Be (6)

As stated, the objective aims to maximize the global QoE.
This is obviously a broad term that can be interpreted in



a multitude of ways. As such, a generic objective function
is proposed that can be adapted to the service provider’s
optimization policy, represented by the function F (·):

max
∑

c∈C

∑

q∈Qvc

F (ac,q) (7)

For example, the provider could aim to maximize the total
delivered bit rate, which can be translated into the following
objective function:

max
∑

c∈C

∑

q∈Qvc

ac,q × βq (8)

The operator could also decide to optimize the fairness
among the connected clients. This can be achieved by adopting
proportional fairness, as proposed by Kelly et al. [28][29].
A vector of rates Ac = (

∑

q∈Qvc
ac,q × βq, c ∈ C) is

proportionally fair if it is feasible, according to Equation (4)
and (6) respectively, and if for any other feasible vector A∗c ,
the aggregate of the proportional changes is zero or negative:

∑

c∈C

A∗c −Ac

Ac

≤ 0 (9)

According to Wei et al., the fair bandwidth allocation can
be represented by a local maximum of the logarithmic utility
function [30]. Since this function is differentiable and strictly
concave, it has only one maximum, which is therefore also the
global maximum. Therefore, the objective of a proportionally
fair bandwidth allocation can be expressed by:

max
∑

c∈C
log (

∑

q∈Qvc

ac,q × βq) (10)

Another objective could be to minimize the number of
switches since they have a negative impact on overall QoE.
This requires maintaining a history Hc of previous quality
decisions for each client c ∈ C where hc,q,t = ac,q at time
t. For quality switches, not only the frequency of switching
is important, but also the distance between quality selections
affects the overall quality [5]. Therefore, to assess the impact
of distance in quality, the variation in quality over the history
Hc is taken into account. The following weighted sum is
used to model the impact on switching behavior, where µ
represents the average quality, σ introduces a penalty for
quality switching and αs represents a weighing factor used
to emphasize either the impact of quality or the switching
behavior:

max αs × µ− (1− αs)× σ (11)

Since the decision variables ac,q are binary variables, the
calculation of the objective function can be simplified by
calculating µc,q and σc,q for each client c and it’s associated
quality range Qc. The quality rates are normalized with respect
to the highest quality rate βmax.

∀c ∈ C, ∀q ∈ Qv : µc,q =

1

|Hc|+ 1





βq

βmax

+
∑

hc,t∈Hc

∑

q∈Qc

hc,q,t × βq

βmax



 (12)

In this way, the use of quadratic terms in the objective
function is avoided. The penalty σ for switching between
qualities can be calculated as follows:

∀c ∈ C, ∀q ∈ Qv : σc,q =

√

1

|Hc|+ 1
∗

√

√

√

√

(

q × βq

βmax

− µc,q

)2

+
∑

hc,q,t∈Hc

∑

q∈Qc

(

hc,q,t × βq

βmax

− µc,q

)2

(13)

The total objective can then be expressed as:

max
∑

c∈C

∑

q∈Qv

ac,q × (α× µc,q + (1− α)× σc,q) (14)

IV. ALGORITHMS

A. Centralized ILP

The ILP formulation described in Section III-B can be
used to optimize the quality assignments using a centralized
controller. It requires as input the knowledge of the delivery
network topology (N , E), link constraints Be, the set of clients
Ce for which the VoD traffic traverses an edge e ∈ E and the
characteristics of these clients (Wmax,c, RTTc). Solving said
ILP formulation will yield a set of optimal quality assignments
ac,q for each client c and quality level q. These assignments
are optimal in the sense that they maximize the objective
∑

c∈C
∑

q∈Q F (ac,q) subject to the constraints described in
Equations (1), (2), (4) and (6). As we assume there is a
constant bitrate reserved for HAS traffic on each edge, the
Centralized optimization is executed each time a newly joined
client requests a manifest file or if a client becomes inactive
by leaving the delivery network.

B. Distributed ILP

The number of constraints for the centralized ILP grows
with an increasing depth of the service delivery topology tree.
Consider a topology tree with k child nodes per node and
l levels (thus l = logk|C| + 1), the total number of edge

constraints is then equal to
∑l−1

i=0 k
i which can be written as

1−kl

1−k . This leads to an exponentially increasing model size
with the number of levels in the delivery tree, affecting the
calculation time. Since our approach would be deployed in
an operational setting, the decision process should be able
to determine quality allocations in real-time. Therefore, we
propose a distributed approach, where each proxy locally
determines the optimal allocation constrained by the local edge



capacities and where the global solution is an aggregation
of these local solutions. The advantages of this approach are
threefold. First, each node only needs to have local information
on the properties of the upstream edge en− and the video
flows for clients Cn traversing this node. Second, since each
proxy locally solves the optimization problem, the number of
constraints does not increase with the tree size, leading to small
local ILP models. Third, proxies residing at the same level
in the topology tree can optimize their local ILP models in
parallel, leading to faster global optimization.

The distributed ILP algorithm uses a bottom-up approach
for the distributed solution where each node n locally op-
timizes the allocation problem and forwards the solution to
its predecessor n− in the delivery tree. The solution at node
n is constrained by the limitations of it’s successors Nn+ .
These limitations are determined by the combination of the

optimal solutions an
+

c,q of each node n+ ∈ Nn+ . For each
client c ∈ Cn, sqn,c determines the maximum quality a client
is able to receive according to the successors of n. The local
ILP formulation is then constrained by (1) and (2) as before
but only for c ∈ Cn, while the following determines that the
selected quality for a client c is not allowed to violate the
limitations determined by the successors in sqn,c:

∀c ∈ Cn :
∑

q∈Qvc :q>sqn,c

ac,q = 0 (15)

Furthermore, the total consumed bandwidth for the alloca-
tion is not allowed to exceed the HAS capacity Be

n−
for the

edge en− , connecting n to its predecessor n−.

∑

c∈Cn

∑

q∈Qvc

ac,q × βq ≤ Be
n−

(16)

The calculation time can be limited by taking advantage
of some specific properties of the problem. First, since the
distributed optimization is only performed when a client joins
or leaves the service delivery network, only the proxies p ∈ Pc

on the delivery path for client c are required to perform
local optimization. For other proxies, the previous optimal
solutions remain valid since there are no changes in (15)
and (16). This limits the number of local optimizations during
the execution of the distributed algorithm to the number of
levels l = logk |C| + 1. Second, the solutions determined by
the predecessors of n are optimal and since these solutions
are independent, their combination is optimal. This means

that if the combination of the solutions an
+

c,q is feasible, there
is no need to perform local optimization. In the best case,
where there is only one bottleneck in the network, we have
thus reduced the number of local optimization steps to 1.
For the worst case scenario, where the upstream bottleneck
becomes tighter at every node, the maximum number of local
optimizations is limited by l = logk |C|+ 1 as before.

There is a communication overhead when using the dis-
tributed optimization, which requires sending a list of clients
for which the video traffic traverses the node and the deci-
sion on the quality level per client. Since this list (or any
combination made of it by any node) contains at most n

entries, with n the number of connected clients, the number of
required bits per client entry is ⌈log2 n⌉ to uniquely identify
the clients and ⌈log2 q⌉ to identify their selected quality
with q the highest number of available qualities. For each
level in the topology, the information exchanged will thus
be equal to n⌈log2 n⌉ + ⌈log2 q⌉ bits and since logkn + 1
is the number of levels, the total information exchange is
n logk n(⌈log2 n⌉ + ⌈log2 q⌉). If there are 1000000 clients in
the network and k is equal to 10, then the total communication
overhead is 16.5 MB per optimization. If the lowest quality
representation is 1Mbps, the total amount of traffic flowing
through the network per second is in the order of Tbps, leading
to a negligible communication overhead for the optimization.

C. Relaxed Distributed Linear Program (LP) Formulation

Solving the distributed ILP optimally in a single node can
however lead to execution times in the order of seconds when
the number of VoD flows crossing that node becomes large.
We can increase the execution speed at the expense of a sub-
optimal solution by moving from an Integer LP formulation to
a Relaxed LP formulation by relaxing the boolean constraints
on the variables ac,q in (1) by only requiring ac,q to belong to
the interval [0, 1]:

∀c ∈ C, ∀q ∈ Qvc : 0 ≤ ac,q ≤ 1 (17)

This relaxation can be solved in polynomial time but at the
cost of optimality. The variables ac,q do not longer unambigu-
ously define which quality each client is allowed to download,
therefore a heuristic is required to transform the optimal
floating point solution into an integer solution. Algorithm 1
shows an overview of the heuristic procedure. First, the clients
of the solution matrix A are sorted according to two criteria:
first on the proximity of the floating point solution to the
integer solution and subsequently on the contribution to the
objective (line6). The proximity of a client solution is defined
as Pc = minq∈Qvc

(1− ac,q), where Pc = 0 indicates that the
floating point client solution can be immediately transformed
into an integer client solution (line 2). The contribution to
the objective is calculated as

∑

q∈Qvc
F (ac,q) and gives an

indication of the weight of a single client in the global
objective (line 3). Second, the maximum quality each client
is allowed to download determined by the solution ac,q , is set
to mqc = maxq∈Qvc

(ac,q > 0) (line 4). This assures that the
limitations of the successors Nn+ are not violated which could
lead to an infeasible solution further down the delivery tree.
Third, for each client c ∈ Cn w.b.e calculate their contribution
to the constraint as

∑

q∈Qvc
ac,q × βq and add it to the budget

B (line 9). We then optimize the following problem for client
c (line 12 to 19):

max
∑

q∈Qvc

F (ac,q) (18)

subject to
∑

q∈Qvc

ac,q × βq < B (19)

ac,q ∈ {0, 1}∀q ∈ Qvc . (20)



Algorithm 1: Overview of the heuristic to transform a floating-
point solution to an integer solution

1: for all c ∈ C do
2: Proximityc ← minq∈Qvc

(1− ac,q)

3: Contributionc ←
∑

q∈Qvc

F (ac,q)

4: mqc ← maxq∈Qvc
(ac,q > 0)

5: end for
6: Sort(ac,q, Proximityc, Contributionc)
7: sol← 0
8: for all c ∈ C do
9: B ← B +

∑

q∈Qvc

ac,q × βq

10: MaxObj ← 0
11: setq ← 0
12: for all q ∈ {0,mqc} do

13: if B ≥
∑

q∈Qvc

ac,q × βq and
∑

q∈Qvc

F (ac,q) > MaxObj then

14: MaxObj ←
∑

q∈Qvc

F (ac,q)

15: setq ← q

16: end if
17: end for
18: solc,setq ← 1
19: B ← B − βsetq

20: end for

Fig. 2: Network topology, modeling a typical video service
delivery network.

TABLE II: Overview of the quality layers for the Big Buck
Bunny video

Quality Layer Average Bitrate Average PSNR Average SSIM
Index (kbps) (dB)

0 300 32.04 0.8746
1 427 32.72 0.8861
2 608 34.41 0.9108
3 866 35.71 0.9249
4 1233 36.88 0.9387
5 1636 37.64 0.9469
6 2436 40.07 0.9608

V. PERFORMANCE EVALUATION

A. Experiment Setup

A VoD HAS scenario was implemented by using an NS3
based simulation framework, capable of the transmission of
HAS video [25]. This framework has been extended with
support for QoE management at both the servers and the
proxies. For the HAS Clients we used the AVC MSS algorithm,
which is based on the implementation of an open source
version of the algorithm of the Microsoft Smooth Streaming
(MSS) video player9 and is extensively described by Famaey
et al. [11]. The server-based traffic shaping method proposed
by Akhshabi et al. was also implemented in combination with
AVC MSS and is referred to as AVC MSS Rate Controlled [24].
This approach tries to reduce quality oscillations when multi-
ple clients compete for bandwidth, by dynamically adjusting
the shaping rate when oscillations are detected. For further
implementation details we refer to the paper by Akhshabi
et al. [24]. Furthermore, an additional client heuristic was
implemented, which downloads each segment using the QoE
management quality decision and checks if these decisions
are feasible, given the measured throughput at the client.
If the measurements indicate that the proposed quality is
not achievable, the proposed client heuristic will select the
highest sustainable quality based on the local throughput
measurements. We refer to the aforementioned heuristic as
AVC Steered. Both client heuristics dispose of a buffer of 10
second, thus accommodating space for 5 segments. Both client
implementations use persistent connections to avoid the impact
incurred by the setup and teardown of TCP-connections. The
congestion window at the server was limited to avoid unfair
sharing of the bottleneck bandwidth [31]. The configured

9Source available from https://slextensions.svn.codeplex.com/svn/trunk/
SLExtensions/AdaptiveStreaming

congestion window allows transmitting segments at a rate that
is two times bigger than the maximum bitrate of the stream.

As discussed before, we modeled the delivery network as
a tree-based topology, where a video server S streams videos
to a set of clients C. The number of branches on each level
was set to k, leading to l = logk|C| + 1 levels in the
tree. For each level the available HAS bandwidth was varied
depending on the bottleneck factor BF . For each level the
bandwidth BWi = (k ∗ BF )l−i−1 ∗ BWl−1, meaning that if
BF = 0.8, l = 4, k = 5, BWl−1 = 4Mbps, the bandwidth
for a edge at level 1 is BW1 = 64Mbps. Figure 2 gives a
graphical overview of the service delivery network topology.
Clients are started using a Weibull startup process with shape
2.5 and mean of 300s. The average RTT for each client c is set
to RTTc = 40ms unless stated otherwise [32]. VoD Service
Delivery Domain The Big Buck Bunny video10 was encoded
at 7 different quality rates and divided into 200 segments with
an average duration of 2 seconds. Table II gives an overview
of the different quality layers, their associated bitrates, average
Peak Signal-to-noise Ratio (PSNR) and Structural Similarity
(SSIM) values. During the evaluations we used the SSIM
metric introduced by Wang et al., which is motivated by the
assumption that human visual perception is highly adapted for
extracting structural information. It has been shown to have a
high correlation with image [33] and video quality [34].

B. Implementation details

The IBM CPLEX11 solver was used to implement and solve
the proposed binary ILP-problems for both the centralized and
distributed algorithm, as well as the relaxed distributed LP-
problem. Since NS3 is an event-based simulation framework,

10Big Buck Bunny available from http://www.bigbuckbunny.org/
11IBM ILOG CPLEX Optimizer: http://www.ibm.com/software/integration/

optimization/cplex-optimizer/
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Fig. 3: Impact of number of clients, using a topology with k = 2, BWl−1 =
3Mbps, BF = 0.9
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Fig. 4: Impact of number of bottlenecks
in the topology on the average decision
time, using a topology with k = 5,
BWl−1 = 2Mbps, |C| = 125 and l = 4

the execution times of the optimizations were measured as
texec and used to schedule the release of the calculated
configuration at tcurrent + texec. We executed the different
experiments using two modes: Delayed ensuring that the
configurations only become available when optimization is
finished and Optimal which is agnostic to execution times and
installs the configuration immediately.

However, since executions can take several seconds, clients
can join during this period, leading to two implications for the
system: first, since there is no immediate quality configuration
available, the Steered Client heuristic will not be able to select
the optimal quality and second, new optimizations, which take
into account more recent network configurations are delayed
by the execution of the previous one. Both problems can be
solved by performing a heuristic optimization first, allowing to
quickly install a suboptimal quality configuration and replace
it with the optimal configuration when it becomes available.
This also allows us to preempt a QoE optimization when
additional requests lead to a changed environment and the
optimal solution would be outdated. The heuristic optimization
checks if the previous limitations in combination with the
additional client are feasible for each edge e, if not the client
qualities for c ∈ Ce are lowered by one level until the solution
is feasible again.

C. Evaluation Details

The performance of the centralized ILP, distributed ILP
and relaxed distributed LP was evaluated in terms of service

assurance, quality delivery and oscillations. Also the impact of
the different approaches on the decision time was quantified.
The network size, the number of bottlenecks, the optimization
objective, Round Trip Time (RTT) and number of servers
were varied. During the evaluations, the maximization of
the video bitrates, defined by (8), was used as a network
provider’s objective. We refer to the centralized and distributed
ILP optimization as Centralized Exact and Distributed Exact
respectively, while the relaxed optimization is indicated as
Distributed Relaxed. All experiments use the quick optimiza-
tion heuristic, providing a preliminary decision on the selected
qualities, which is updated when the optimization calculation
is finished. Therefore these results are installed with a delay
and are referred to as Delayed decisions. When it is explicitly
stated that the configurations are installed based on the Optimal
selection, we show the results that could be achieved with the
optimal configurations in the presence of network variations
and buffering. All of the following results are averaged over
n = 10 iterations, with the graphs showing the 95% confidence
intervals [X̄ − 1.96 σ√

n
, X̄ + 1.96 σ√

n
] [35].

D. Impact of Number of Clients

In this section, we motivate the deployment of in-network
quality adaptation algorithms for HAS delivery networks and
quantify the impact of the delivery tree size on the in-network
adaptation performance. For the following experiments we set
the number of child nodes k for each node to 2 and varied the
number of clients |C| in the interval [2, 128], the bandwidth
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Fig. 5: Impact of Switching Alpha αs, using a topology with k = 5, BWl−1 = 4Mbps, BF = 0.8, |C| = 125 and l =
logk|C|+ 1 = 4

on the first link BWl−1 is set to 3Mbps, while the bottleneck
factor is set to BF = 0.9, leading to a bottleneck at the server
S of approximately 184Mbps.

Figure 3(a) illustrates the impact of the number of clients on
the QoE optimization execution times. For both the Centralized
Exact and Distributed Exact optimization, the execution times
show a logarithmic increase with the number of clients and
thus a linear increase with respect to the number of levels
in the topology tree. For 7 levels, the average optimization
time for the Centralized Exact algorithm is 3563.34ms, for the
Distributed Exact algorithm it is 1881.75ms, while the Dis-
tributed Relaxed algorithm only requires 23.52ms (including
an average one-way delay of 20ms for forwarding local solu-
tions). These results indicate that only the distributed heuristic
approach is feasible for medium to large size problems.

The impact of the in-network quality management on the
average bitrate, the number of switches and average quality
in terms of SSIM is shown in Figure 3(b), 3(c) and 3(d)
respectively. The results show a significant improvement on the
average played bitrate over traditional client-based heuristics
ranging from 14% to 23%, while the number of switches
can be reduced with a factor of 1.5 to 5. Since client-based
heuristics have only a local view on the network situation,
they require safety measures to avoid buffer starvations and
quality oscillations, resulting in underestimations of the avail-
able throughput and thus underutilization of the available
bandwidth. Combining a client-driven approach with server-
based traffic shaping allows maintaining the same quality as
with a client-driven approach, while reducing the number of

switches up to a factor 2.5. In-network quality adaptation
is able to react more quickly to changing network environ-
ments and allows to fully utilize the available bandwidth.
The Distributed Relaxed optimization is able to reduce the
number of switches with a factor 5 compared to the traditional
client-based heuristic and with a factor 2.5 when traditional
client-based approaches are combined with server-based rate
shaping. The Centralized Exact Delayed optimization is able to
achieve a slightly higher quality than the Distributed Relaxed
optimization, but shows an increased number of switches
which can be accounted to the longer execution times causing
the clients to choose suboptimal quality configurations while
waiting for the optimal configuration. The Centralized Exact
Optimal optimization shows the theoretical configuration that
could be achieved in absence of the long execution times.
These results show a penalty of about 3% in terms of average
quality rate when using the Distributed Relaxed optimization
due to suboptimal solutions attained by the rounding heuristic.
As shown in Figure 3(d), also the achieved average SSIM,
is slightly lower for the Distributed Relaxed optimization.
The average number of switches is slightly higher for the
Centralized Exact Optimal optimization when compared to
the Distributed Relaxed heuristic. The Bandwidth optimization
objective does not take into account the switching penalty
explicitly, while the Distributed Relaxed optimization reuses
local solutions which are still feasible to calculate the next
optimal solution, inherently minimizing the difference between
two subsequent solutions. For further discussion on how this
switching penalty could be included during the optimization,
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Fig. 6: Impact of the RTT (ms), using a topology with k = 5, BWl−1 = 3Mbps, BF = 0.8, |C| = 125 and l = logk|C|+1 = 4

we refer to Section V-F.
The aforementioned results confirm the advantages of adopt-

ing in-network quality adaptation: First, the average played
quality can be improved compared to the quality delivered
by traditional client heuristics. Second, also the number of
quality switches can be significantly reduced. Furthermore, the
Distributed Relaxed heuristic is able to calculate a suboptimal
configuration at low execution cost, making the approach
viable for real-time delivery systems. The fast calculation of
the optimal configuration also leads to fewer quality switches,
since the configurations can be installed quickly and there is
no need to install suboptimal temporary configurations as is
the case with both Centralized Exact Delayed optimization.

E. Impact of Number of Bottlenecks

As indicated in Section IV-B, the number of bottlenecks has
an impact on the behavior of the Distributed Exact optimiza-
tion. The topologies for these experiments were created by
introducing bottlenecks in a top-down manner and setting the
bottleneck factor BFl to 1 if there is no bottleneck at level l
and BFl = 0.8 otherwise. Figure 4 confirms a linear increase
in execution time for both the Exact and Relaxed optimization
with an increasing number of bottlenecks. The Centralized
Exact optimization however, takes 300ms to execute, even in
the absence of a bottleneck, while the Distributed optimization
is only performed when the configuration assigning maximum
quality to each client becomes infeasible, leading to an exe-
cution time of on average 20ms, consisting solely out of the
delay introduced by forwarding the local solutions.

F. Impact of Optimization Objective

An operator can optimize different policies when offering
a HAS streaming service such as maximizing the total bitrate
over all streams (Equation (8)), maximizing the proportional
fairness across the streaming sessions (Equation (10)) or
maximizing the QoE as a weighted sum of the total bitrate
and bitrate variations (Equation (14)). Decreasing the factor αs

puts the emphasis on decreasing the impact of switches, while
increasing αs increases the impact of bitrate optimization.
To quantitatively evaluate the fairness degree of the different
optimization schemes, the Jain’s Fairness Index is used [36].

This index states that if a system allocates resources to |C|
users, where user c receives a rate allocation bc, the fairness
index of the system is defined to be:

J =

(
∑

c∈C
bc)

2

|C|
∑

c∈C
bc

2 (21)

Figure 5(a) shows the impact of these different optimization
goals on the average Jain Fairness in function of the switching
factor αs. Optimizing the total bitrate allocation is able to
achieve a fairness index closer to 1 then AVC MSS, indicating
a fairer distribution of the available throughput among the
clients. Adding rate shaping at the server allow increasing
the fairness for AVC MSS at a slightly increased quality
and a reduction with a factor 1.7 in terms of number of
switches. When optimizing for proportional fairness, the in-
network optimization is able to increase the fairness index at
the cost of slightly decreasing the average quality as indicated
in Figure 5(b) and 5(d) and increasing the average number of
switches from 18 to 26. This indicates the trade-off between
maximizing fairness and total bitrate allocation. When the
impact of the number of switches increases (by decreasing
αs), the fairness index drops. This can be attributed to the fact
that the in-network optimization will prefer to retain the same
quality level for each client at any moment in time, leading
to a number of clients downloading the highest quality, while
newly arrived streaming sessions are assigned a lower quality,
decreasing the total fairness. As Figure 5(c) shows, the in-
network adaptation is able to reduce the number of quality
switches compared to AVC MSS for all optimization goals.
Explicitly minimizing the number of switches allows further
reduction of d the number of switches from 43% to 30% at
the cost of decreasing quality.

G. Impact of Delay

The in-network optimization uses an approximation of the
achievable throughput as an upper bound for each link. Since
RTT has the biggest impact on the available throughput,
we varied the RTT and evaluated the impact on streaming
performance. Figure 6(b) show how both the client-side and
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Fig. 7: Network topology, modeling a typ-
ical video service delivery network with
multiple servers.
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(b) Impact on average played quality bitrate
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(e) Impact on average buffer starvations
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(h) Impact on average SSIM

Fig. 8: Impact of multiple servers with balanced load and the Number of clients, using a topology with BWl−1 = 2Mbps,
BF = 0.8 and |C| = 200 ((a), (b), (c)) and (d) and Impact of multiple servers with unbalanced load and the Number of clients,
using a topology with BWl−1 = 2Mbps, BF = 0.8 and |C| = 200 ((e), (f), (g) and (h))

in-network assisted quality decision based clients suffer from
a quality degradation when delay increases. For low RTT
(10 ms) we are able to increase the quality by 10.8% by
deploying in-network quality decisions, while for higher RTT’s
(80ms), the gain decreases to 8.9%. This slight performance
decrease can be attributed to the fact that an approximation
of the achievable throughput is used. As discussed in previous
work [12], HAS quality decreases quickly when RTT’s in-
crease due to the subsequent download-request cycles. Using
HTTP pipelining can reduce the negative impact of the RTT
on quality, by eliminating the idle time between two successive
downloads. Figure 6(a) illustrates the impact of RTT on the
decision times. Since the Distributed optimization requires a
bottom up propagation of intermediary solutions, the decision

times are also impacted by increasing delays. Figure 6(b)
shows that for increasing delay, the performance of the in-
network decisions slightly decreases when compared to the
optimal decision, due to the network delay increasing the
decision time.

H. Impact of Multiple Servers

To analyze the impact of multiple servers on the in-network
optimization, we modeled a typical video service delivery
network with multiple servers as illustrated in Figure 7. We
modified the Distributed optimization to also support this
type of topologies by first performing two types of bottom-
up optimizations, one taking no limitations as input and a
second optimization taking into account the limitations of



performing a local optimization between Gateway and servers
first. Both approaches yield feasible solutions, out of which
the most optimal one is selected. We varied the number of
servers n and scaled the link bandwidths (BWSG) to reflect
this situation. We created 20 content items and distributed the
clients over these content items using a Zipf distribution with
α = 0.81 to mimic the Internet popularity [37]. The content
items were then assigned to the different server instances to
evenly distribute the load among them. Figure 8(a) illustrates
the average buffer starvation in seconds, showing how the
in-network optimization is able to deliver the video stream
without buffer starvations, whereas AVC MSS suffers some
minor frame freezes due to competing behavior. The average
quality is shown in Figure 8(b) and 8(d) which indicates
that the in-network optimization is able to yield a higher
average quality than AVC MSS. Adding rate shaping at the
server, allows increasing the quality for AVC MSS when the
number of servers increases. Up to 4 servers, the Distributed
Relaxed optimization is able to outperform the Centralized
Exact Delayed optimization due to the installation delay of the
former approach, which was discussed earlier. The Distributed
Relaxed decision however is suboptimal compared to the
Centralized Exact Optimal decision. This is caused by the
rounding heuristic and the distributed approach, which does not
propagate multiple identical solutions which could yield more
optimal solutions upwards the stream. Propagating multiple
similar solutions, could benefit the distributed approach, at
the cost of increased complexity and network communica-
tion. With respect to the number of switches, the Distributed
Relaxed approach outperforms the AVC MSS algorithm, AVC
MSS with rate shaping and Centralized Delayed optimization
with approximately a factor between [2.1, 2.3], [1.5, 1.7] and
[3.3, 4.1] respectively.

During the previous experiments the load was evenly dis-
tributed across the different servers. During the following
experiments, the content items were assigned to the different
server instances following the pareto principle: 80% of the
content items are stored on 20% of the servers. This results
in an unevenly distributed request pattern across the servers.
The Distributed approach is not able to achieve the same
performance as the Centralized optimization. This can be at-
tributed to the fact that an optimal resource allocation upstream
of the gateway does not necessarily translate into a feasible
and optimal solution downstream of the gateway and vice
versa. Figure 8(f) shows the impact of adding multiple servers
with uneven load distribution on the average achieved quality
rate. This shows how the performance of the Distributed
optimization degrades when the number of servers increases
due to the suboptimal quality decisions. For 8 servers, the
performance of the Distributed optimization drops to about
88% of the optimal solution. Figure 8(e) and (g) show the
impact of increasing the number of servers on the buffer
starvations and quality switches respectively. Both in-network
approaches are able to maintain a fluent playout, while for
AVC MSS, the average freeze time is about 0.4s. For 8 servers,
the average number of switches for AVC MSS amounts to 23,
which can be reduced to 19 when applying server-based rate
shaping. Enabling the Centralized in-network approach allows

reducing the number of switches to 6. The Distributed ap-
proach even further decreases the average number of switches
to 3.3, but at the cost of reduced quality compared to the
Centralized optimization, as was mentioned before. This shows
that an unbalanced spread across the content servers impacts
the performance of the Distributed approach compared to the
Centralized optimization.

VI. CONCLUSION

In this paper, we proposed an in-network QoE management
for VoD HTTP Adaptive Streaming in a managed network
environment. The adaptation algorithms enable the network
providers to control the quality selection at the client. This
allows them to increase the average played quality with at least
14% compared to traditional client-based heuristics. Moreover,
due to the in-network management, the number of quality
oscillations can be reduced with a factor 5 and with a factor 2.5
when traditional client-based approaches are combined with
server-based rate shaping. We also discussed different variants
of the in-network QoE management: an optimal Centralized
ILP, a Distributed ILP and a relaxation of the Distributed
algorithm. The impact of the number of clients, the Absolute
Gap for the integer optimization and the number of bottlenecks
were quantified. The impact of the delayed installation of
the configurations showed that, even though the Distributed
Relaxed optimization yields suboptimal configurations, the
immediate installation of these configurations allows them to
yield higher average quality at a significantly lower number of
switches compared to the Exact optimization algorithms.
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